EP2105991A1 - Dielectric horn antenna - Google Patents
Dielectric horn antenna Download PDFInfo
- Publication number
- EP2105991A1 EP2105991A1 EP09003955A EP09003955A EP2105991A1 EP 2105991 A1 EP2105991 A1 EP 2105991A1 EP 09003955 A EP09003955 A EP 09003955A EP 09003955 A EP09003955 A EP 09003955A EP 2105991 A1 EP2105991 A1 EP 2105991A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- section
- horn
- horn antenna
- emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/08—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
Definitions
- the invention relates to a dielectric horn antenna having a dielectric feed section and a dielectric emission section, wherein the feed section can be acted upon by electromagnetic radiation, electromagnetic radiation can be guided and emitted with the emission section, and the emission section is configured as a horn which opens in the emission direction and at least partially surrounds a cavity is. Furthermore, the invention also relates to a modular system for producing such a dielectric horn antenna.
- Horn antennas as well as dielectric antennas per se have long been known and are used in a variety of configurations and sizes for very different purposes, such as in industrial process monitoring for determining distances - for example, media surfaces in tanks - over the transit time determination of reflected electromagnetic waves (radar applications).
- radar applications reflected electromagnetic waves
- the invention described herein is completely independent of the field in which the subsequently treated antennas are used; By way of example, reference will be made below to the use of the antennas in question in the field of level measurement.
- Horn antennas - also referred to as horn radiators in the transmission case - are characterized by a waveguide, which has a funnel-shaped extension. Via the waveguide, the horn is fed with a TE-wave or a TM-wave, such as with a TE 11 -wave, the electric field strength thus has no share in the propagation direction of the electromagnetic wave.
- the guided by the waveguide electromagnetic wave propagates ultimately in the funnel-shaped extension - the horn - and continues to the aperture opening of the horn and emitted through the aperture opening of the horn in the room as a free space wave.
- the mostly electrically conductive wall of the horn limits the propagation of the electromagnetic radiation, the horn itself therefore represents an interface for the propagating electromagnetic radiation, are reflected at the electromagnetic waves as far as possible.
- the antenna In dielectric antennas, on the other hand, the antenna essentially consists of a body of dielectric material, electromagnetic waves also being guided in the material and being able to be emitted via the material.
- the electromagnetic waves guided and radiated by this dielectric material are fed into the antenna via a feed section of the dielectric antenna and radiated into the room via a radiating section.
- the dielectric antenna may have other sections, but it does not necessarily have the two described sections.
- the dielectric feed section often consists of a rod with an ultimately tapered mandrel which is insertable into a waveguide, said mandrel is then acted upon by guided in the waveguide electromagnetic waves.
- the emission section of a dielectric antenna can be designed very differently, for example as a stem or pear-shaped as a field lens.
- the dielectric emission section is designed as a horn which opens in the emission direction and at least partially surrounds a cavity.
- Such an antenna will hereinafter be referred to as a "dielectric horn antenna”.
- the emission section is configured as a horn which opens at least partially in the emission direction
- the emission direction is essentially the main emission direction of the dielectric horn antenna, ie the direction in which the directivity of the horn antenna is particularly pronounced is.
- the cavity surrounded by the horn need not actually be open constructively in the emission direction of the horn antenna, it may for example be completed in the emission with a material that, however, the radiation of the electromagnetic waves in the emission direction substantially no resistance, so that in the emission direction opening horn in the emission direction is electromagnetically functionally open, but not necessarily in the constructive-geometric sense must be open.
- Horn antennas as well as dielectric antennas are often used in industrial process measuring technology - as mentioned above - for level measurement. In such applications it is of particular advantage when the antennas used identify as narrow a main direction of emission as possible and at the same time as compact a design as possible. However, these requirements are contradictory with regard to the constructive measures that usually have to be taken for their technical implementation.
- a narrow directivity in Hauptabstrahlutter can be achieved only by a large aperture - ie opening area - of the Abstrahlabitess both a horn antenna and a dielectric antenna and also in a dielectric horn antenna, which makes a large extension of the antenna perpendicular to the main radiation required.
- the electromagnetic radiation emitted by the emission section must have as flat a phase front as possible, such a planar phase front can only be realized with the antenna types mentioned with increasing length of the antenna, which is also the desired compact design opposes.
- a dielectric insert is arranged over the use of at least a portion of the acted upon via the feed section electromagnetic radiation can be guided and radiated and the use extends in the emission of the antenna substantially over the cavity of the horn.
- the arrangement of a dielectric insert in the horn of the dielectric horn antenna is excellent is adapted to form and smooth the phase fronts of the total guided and radiated by the horn antenna electromagnetic radiation outside the dielectric material, so that can realize flat wavefronts in the emission of the horn antenna, without the outer dimensions of the horn antenna must be increased.
- the electromagnetic radiation is shaped by the dielectric insert so as to give a large virtual aperture of the horn dielectric antenna which is significantly larger than the geometric aperture of the dielectric horn antenna usable without dielectric use.
- the cross-sectional area of the horn decreases in the emission direction of the antenna. Due to the decreasing cross-sectional area of the horn, its effective permittivity in the emission direction of the antenna decreases, whereby an increasing portion of the total guided electromagnetic field passes from the dielectric horn into the outer space; This reduces the coupling of the field to the horn ever further. At the same time, however, this causes the virtual antenna aperture to be much larger than the geometric antenna aperture. This effect is also reinforced by the inventively provided dielectric insert within the dielectric horn.
- the outer contour of the horn is substantially constant in the emission direction of the antenna, wherein the horn can have, in particular, a circular, ellipsoidal or rectangular cross-section perpendicular to the emission direction.
- An invariable outer contour of the horn means u. a., That a maximum dielectric field-carrying volume with the largest possible geometric aperture can be achieved because the dielectric horn over its entire extent in the emission direction of the antenna may have a maximum diameter.
- the dielectric insert in the horn is designed so that its cross-sectional area in the emission direction of the antenna remains substantially constant or even decreases.
- a decreasing cross-sectional area of the insert brings with it, as already explained at the Horn that an increasing proportion of the beginning in the dielectric insert guided electromagnetic field in the outer space - ie the space between the horn and use - occurs and is decoupled from the insert.
- the emission section of the horn antenna extends in the emission direction substantially up to a location of a field elevation of the guided electromagnetic waves, which means above all the electromagnetic waves traveling in the outer space of the horn.
- hybrid electromagnetic waves are guided via dielectric antennas-in contrast to electromagnetic waves in waveguides-such as, for example, a HE 11 fundamental wave and possibly electromagnetic waves in different modes.
- waveguides such as, for example, a HE 11 fundamental wave and possibly electromagnetic waves in different modes.
- a change in the amplitude of the guided outer field is observable, with alternate locations of low amplitude of the outer field with locations with increased amplitudes of the outer field.
- This amplitude change can be explained inter alia by the mode conversion of the electromagnetic waves along the horn antenna in the emission direction.
- the radiating portion substantially terminates at a position of field elevation of the guided electromagnetic waves, the previously guided electromagnetic wave becomes a free space wave at that location and amplitude, thereby automatically reaching a large virtual aperture of the dielectric horn antenna.
- the dielectric insert is designed rod-shaped, in particular as a solid rod having a substantially round, ellipsoidal or rectangular cross-section.
- the choice of the cross section is preferably adapted to the inner contour of the horn.
- the ratio of the length of the radiating portion to the free space wavelength of the radiated electromagnetic radiation is in the range of about 1.5 to 2.5, preferably substantially 2. In this length of the emission section normalized to the free space wavelength, there is a maximum of the field increase at the end of the emission section. It is also particularly advantageous if the ratio of the diameter perpendicular to the emission direction of the horn to the free space wavelength of the radiated electromagnetic radiation is in the range of about 1.4 to 1.9, preferably substantially between 1.6 and 1.7, preferably at 1 , 65, since an optimum of the virtual aperture to the actual geometric aperture of the dielectric antenna is achieved here.
- the dielectric insert is designed as a horn insert which opens at least partially in the emission direction and which has in particular a substantially round, ellipsoidal or rectangular peripheral contour, wherein the peripheral contour is in particular applied to the inner wall of the outer horn the dielectric horn antenna is adapted.
- dielectric horn antennas with a dielectric horn insert it has turned out to be particularly advantageous, as in the dielectric horn antennas with rod-shaped dielectric insert, when the emission section extends in the emission direction up to the second field elevation of the guided electromagnetic radiation, since the second field elevation is greater as the first field elevation and therefore also a larger virtual aperture of the horn antenna can be achieved at this point.
- the additional - unwanted - length of the horn antenna is here an acceptable limitation against the substantial gain in the virtual Aperture and the overall improved directional effect of the Homantenne.
- the ratio of the length of the emission section to the free space wavelength of the radiated electromagnetic radiation is in the range of about 6 to 9, preferably in the range of about 7 to 8, particularly preferably substantially about 7.5, since with such a dimensioning the end of the horn antenna is in the range of the second field elevation of the entrained electromagnetic radiation.
- the ratio of the diameter perpendicular to the emission direction of the horn to the free space wavelength of the emitted electromagnetic radiation is in the range from about 1.4 to 1.9, preferably in the range between 1.6 and 1.7, essentially at 1 , 65, as in this dimensioning, just as in the case of the dielectric rod-type dielectric horn antenna, a good ratio of virtual aperture to geometric aperture of the horn antenna is achieved.
- a dielectric transition section is provided between the dielectric feed section and the dielectric radiating section of a dielectric horn antenna, which realizes a transition from the radiating section-side cross section of the feed section to the feed section-side cross section of the radiating section.
- the transition section ensures that, for example, a feed section with only a very small cross section can also feed a radiating section with a considerably larger cross section.
- the transition section in the emission of the antenna has only approximately the thickness of a housing wall available for mounting.
- the transition section can be kept short and the dielectric horn antenna as a whole compact, without fear of significant negative effects with respect to the electromagnetic properties of the horn antenna.
- the overall conical outer contour of the transition section is also advantageous for the assembly of the dielectric antenna according to the invention in a housing wall, since the antenna must be countered, for example, only from the outside via a suitable thread on the feed section of the dielectric antenna.
- the dielectric horn antennas are integrally formed of dielectric material, which in particular the mechanical stability and conductivity of the horn antennas for electromagnetic waves is beneficial.
- the feed section, the emission section and possibly the transition section or a sub-combination of feed section, emission section and transition section are formed by separate connectable modules, which is advantageous in particular for mounting the horn antennas.
- the modular design of the horn antenna according to the invention is also advantageous for the manufacturer of such horn antennas since a large number of dielectric horn antennas can be manufactured with a few module variants for the feed section, the emission section and the transition section.
- the object described above is achieved in a modular system for producing a previously described dielectric horn antenna with a feed section, with a radiating section and with a transition section between the feed section and the radiating section in that the module system has feed section modules of different cross section, radiating modules of different cross section and different transition section modules and that with the transition section modules, a transition between the different cross sections of the feed section modules and the different cross sections of the Abstrahlabêtmodule can be produced.
- Fig. 1 to 6 are cross sections of dielectric horn antennas 1 shown. All horn antennas 1 have a dielectric feed section 2 and a dielectric emission section 3. The feed section 2 of the dielectric horn antenna 1 is acted upon by a waveguide 4 with electromagnetic radiation 5 in the illustrated embodiments. With the radiating section 3, the electromagnetic radiation 5 can then continue to be guided and radiated, wherein the radiating section 3 in the illustrated exemplary embodiments is in any case designed as a horn 3a which opens at least partially in the emission direction 6 and surrounds a cavity 7.
- the cavity 7 is also open structurally in the emission direction 6 of the dielectric antenna 1, but this is not absolutely necessary as long as the cavity 7 is opened in the emission direction 6 functionally electromagnetic.
- dielectric horn antennas 1 are characterized in that in the horn 3a, a dielectric insert 3b is arranged. At least part of the electromagnetic radiation 5 that can be acted upon via the feed section 2 can be guided and emitted via the insert 3b, with the insert 3b extending essentially over the cavity 7 in the emission direction 6 of the dielectric horn antenna 1.
- the dielectric insert 3b is connected in each case at the feed section end of the Abstrahlabterrorisms 3 with the horn 3a and spaced over the extension of the horn 3a from the inner wall of the horn 3a.
- the dielectric insert 3b is thus functionally part of the radiating section 3.
- the insert 3b extends in the emission direction 6 of the horn antenna substantially over the cavity 7, it is meant that the dielectric insert 3b extends over at least the major part of the axial extent of the horn 3a, which is necessary is because of the Dielectric insert 3b is the cause of a guidance and shaping of the electromagnetic radiation 5, which leads to the fact that the radiated free space waves in the main emission direction 6 have largely flat phase fronts. This is necessary to achieve the desired narrow directional characteristics.
- the cross-sectional area of the horn 3a decreases in the emission direction 6 of the horn antenna 1, wherein the outer contour of the horn 3 a in the emission direction 6 of the horn antenna 1 is constant and the horn 3a perpendicular to the emission has a circular or annular cross-section.
- dielectric horn antennas 1 reach a relation to the purely geometric aperture significantly larger effective virtual aperture by the radiating portion 3 extends in the emission direction 6 substantially up to a place of field elevation 8 of the guided electromagnetic radiation 5, which in the 4 to 6 is recognizable.
- the amplitude of the outer field of the illustrated dielectric horn antennas 1 varies in the emission direction 6 of the horn antennas 1, which is due inter alia by a mode conversion of guided in the emission section 3 electromagnetic radiation 5; This is especially good in the Fig. 4 and 6 to recognize.
- the virtual aperture of the horn dielectric 1 is significantly larger than the geometrical aperture, whereby the directivity of the illustrated horn dielectric antennas 1 is significantly better than known dielectric horn antennas 1 without dielectric Insert 3b, which in the Fig. 3 and 5 are shown.
- the dielectric horn antennas 1 are each only indicated schematically by an outline.
- the illustrated electromagnetic fields 5 are, strictly speaking, the electric field component that exceeds a certain amplitude value of the electric field strength lies.
- the illustrated component of the electromagnetic radiation 5 can be clearly seen, which has advantageous effect the use of a dielectric insert 3b each in the horn 3a on the development of the virtual aperture and on a planar phase of the radiated electromagnetic waves.
- Fig. 3 schematically shows a short-length dielectric horn antenna 1 whose radiated field has a common directional characteristic for dielectric horn antennas 1; The radiated electromagnetic waves do not achieve a particularly good even phase position.
- Fig. 4 shows the dielectric horn antenna 1 from Fig. 3 , which is, however, additionally equipped with a dielectric insert 3b, wherein the dielectric insert 3b is designed here rod-shaped and has a substantially circular cross-section.
- the radiating section 3 consisting of the horn 3a and the dielectric insert 3b extends in the emission direction 6 up to the first field elevation 8 of the guided electromagnetic radiation 5. It has been shown that when using rod-shaped dielectric inserts 3b the first field elevation 8 already reaches a maximum and with subsequent field peaks virtually no larger virtual apertures can be achieved, which is why with dielectric horn antennas 1 of in Fig. 4 shown type particularly short dielectric horn antennas 1 can be achieved with significantly better directivity than in dielectric horn antennas 1 without dielectric use.
- the ratio of the length of the radiating portion 3 to the free space wavelength of the radiated electromagnetic radiation 5 is substantially 2, and the ratio of the diameter perpendicular to the radiating direction 6 of the horn 3a to the free space wavelength of the radiated electromagnetic radiation is substantially 1.65.
- Fig. 5 is one opposite the in Fig. 3 illustrated dielectric antenna 1 significantly longer-building dielectric antenna 1 shown.
- the electromagnetic Radiation 5 will - as in Fig. 5 can be seen, radiated without a dielectric insert in a comparatively wide main lobe.
- Fig. 6 is a dielectric horn antenna 1 according to Fig. 5 however, a dielectric insert 3b designed as a horn insert is additionally used, wherein the horn insert at least partially surrounds a cavity 9 and wherein the cavity 9 opens in the emission direction 6.
- the dielectric insert 3b has a round peripheral contour, which is therefore adapted to the inner wall of the horn 3a.
- the emission section 3 extends in the emission direction 6 up to the second field elevation 8 of the guided electromagnetic radiation 5, because the second field elevation 8 is considerably greater than the first field elevation of the electromagnetic radiation 5 Fig. 6 It is therefore advantageous to take a longer radiation section 3 into account, although in return a far better directivity is achieved than in the case of conventional dielectric horn antennas 1.
- the ratio of the length of the radiating portion 3 to the free space wavelength of the radiated electromagnetic radiation 5 is substantially about 7.5 and the ratio of the diameter perpendicular to the radiating direction 6 of the horn 3a to the free space wavelength of the radiated electromagnetic radiation 5 is about 1, 65th This ensures that the radiating section 3 lies substantially at the location of the second field elevation 8 of the guided and radiated electromagnetic radiation 5.
- the illustrated dielectric horn antennas 1 have, between the dielectric feed section 2 and the dielectric emission section 3, a dielectric transition section 10 which realizes a transition from the emission section-side cross section of the feed section 2 to the feed section-side cross section of the emission section 3.
- This dielectric transition section 10 allows that over a Supply section 2 small cross-section fed electromagnetic radiation 5 to a dielectric Abstrahlabites 3 with a much larger cross-section.
- the transition section 10 quite deliberately only approximately the thickness of the housing wall 11 available for mounting. With conventional dimensions of housing walls 11, this results in a considerable opening angle of the transitional section 10. This large opening angle of the conical transition section 10 causes additional modes of electromagnetic radiation 5 are generated, which propagate through the radiating section 3 on. However, this is even desirable in the case of the illustrated dielectric horn antennas 1, since the desired field enhancements 8 are primarily caused by the excited mode conversion, which can be enhanced by the dielectric insert 3b and shaped in the form of a planar phase curve.
- the thus configured dielectric horn antennas 1 are very easy to install, since they form with the housing wall 11 itself a tight seal.
- the dielectric horn antennas 1 have a thread with which they can be pressed by the waveguide 4 against the housing wall 11.
- the illustrated dielectric horn antennas 1 are all made in one piece from dielectric material, in the present case made of polytetrafluoroethylene (PTFE), which is known, for example, under the name Teflon. If the housing wall 11, as in the embodiments shown here, in turn consists of a metal, then the housing wall 11 together with the waveguide 4 forms a metallic horn antenna, which serves as an excitation structure for the dielectric emission section 3.
- PTFE polytetrafluoroethylene
- Fig. 7 is a directional diagram of the electric field strength of the radiated electromagnetic radiation shown for in the Fig. 3 . 4 and 6 illustrated dielectric horn antennas 1, wherein the electric field strength for each embodiment is normalized to the occurring there maximum value, so that the in Fig. 7 illustrated directional diagrams have the same start and end points.
- the horn antenna without a dielectric insert smooth solid line
- a dielectric horn antenna with a rod-shaped dielectric insert (dotted line)
- a dielectric horn antenna with a horn insert as a dielectric insert triangular line
Landscapes
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
Die Erfindung betrifft eine dielektrische Hornantenne mit einem dielektrischen Speiseabschnitt und mit einem dielektrischen Abstrahlabschnitt, wobei der Speiseabschnitt mit elektromagnetischer Strahlung beaufschlagbar ist, mit dem Abstrahlabschnitt elektromagnetische Strahlung führbar und abstrahlbar ist und der Abstrahlabschnitt als sich in Abstrahlrichtung öffnendes, einen Hohlraum zumindest teilweise umgebendes Horn ausgestaltet ist. Ferner betrifft die Erfindung auch ein Modulsystem zur Herstellung einer solchen dielektrischen Hornantenne.The invention relates to a dielectric horn antenna having a dielectric feed section and a dielectric emission section, wherein the feed section can be acted upon by electromagnetic radiation, electromagnetic radiation can be guided and emitted with the emission section, and the emission section is configured as a horn which opens in the emission direction and at least partially surrounds a cavity is. Furthermore, the invention also relates to a modular system for producing such a dielectric horn antenna.
Hornantennen wie auch dielektrische Antennen an sich, sind seit langem bekannt und werden in unterschiedlichen Ausgestaltungen und Größen für ganz unterschiedliche Zwecke verwendet, so beispielsweise auch in der industriellen Prozeßüberwachung zur Bestimmung von Abständen - beispielsweise von Medienoberflächen in Tanks - über die Laufzeitermittlung von reflektierten elektromagnetischen Wellen (Radaranwendungen). Die hier beschriebene Erfindung ist vollkommen unabhängig von dem Gebiet, in dem die nachfolgend behandelten Antennen zur Anwendung kommen; exemplarisch wird im folgenden auf die Verwendung der in Rede stehenden Antennen in dem Gebiet der Füllstandsmeßtechnik bezug genommen.Horn antennas as well as dielectric antennas per se have long been known and are used in a variety of configurations and sizes for very different purposes, such as in industrial process monitoring for determining distances - for example, media surfaces in tanks - over the transit time determination of reflected electromagnetic waves (radar applications). The invention described herein is completely independent of the field in which the subsequently treated antennas are used; By way of example, reference will be made below to the use of the antennas in question in the field of level measurement.
Hornantennen - im Sendefall auch als Hornstrahler bezeichnet - zeichnen sich durch einen Hohlleiter aus, der eine trichterförmige Erweiterung aufweist. Über den Hohlleiter wird der Hornstrahler mit einer TE-Welle oder einer TM-Welle gespeist, wie zum Beispiel mit einer TE11-Welle, deren elektrische Feldstärke also keinen Anteil in der Fortpflanzungsrichtung der elektromagnetischen Welle aufweist. Die von dem Hohlleiter geführte elektromagnetische Welle pflanzt sich letztlich in die trichterförmige Erweiterung - das Horn - fort und wird bis zur Aperturöffnung des Horns weitergeführt und über die Aperturöffnung des Horns in den Raum als Freiraumwelle abgestrahlt. Die meist elektrisch leitfähige Wandung des Horns begrenzt dabei die Ausbreitung der elektromagnetischen Strahlung, das Horn selbst stellt demnach eine Grenzfläche für die sich ausbreitende elektromagnetische Strahlung dar, an der elektromagnetische Wellen weitestgehend reflektiert werden.Horn antennas - also referred to as horn radiators in the transmission case - are characterized by a waveguide, which has a funnel-shaped extension. Via the waveguide, the horn is fed with a TE-wave or a TM-wave, such as with a TE 11 -wave, the electric field strength thus has no share in the propagation direction of the electromagnetic wave. The guided by the waveguide electromagnetic wave propagates ultimately in the funnel-shaped extension - the horn - and continues to the aperture opening of the horn and emitted through the aperture opening of the horn in the room as a free space wave. The mostly electrically conductive wall of the horn limits the propagation of the electromagnetic radiation, the horn itself therefore represents an interface for the propagating electromagnetic radiation, are reflected at the electromagnetic waves as far as possible.
Bei dielektrischen Antennen hingegen besteht die Antenne im wesentlichen aus einem Körper aus dielektrischem Material, wobei elektromagnetische Wellen auch in dem Material geführt werden und über das Material abgestrahlt werden können. Die von diesem dielektrischen Material geführten und abgestrahlten elektromagnetischen Wellen Werden über einen Speiseabschnitt der dielektrischen Antenne in die Antenne eingespeist und über einen Abstrahlabschnitt in den Raum abgestrahlt. Die dielektrische Antenne mag noch andere Abschnitte aufweisen, funktionsnotwenig weist sie jedenfalls die beiden beschriebenen Abschnitte auf. Der dielektrische Speiseabschnitt besteht oft aus einem Stab mit einem letztlich konisch zulaufenden Dorn, der in einen Hohlleiter einführbar ist, wobei dieser Dorn dann von in dem Hohlleiter geführten elektromagnetischen Wellen beaufschlagt wird. Der Abstrahlabschnitt einer dielektrischen Antenne kann sehr unterschiedlich ausgestaltet sein, beispielsweise als Stiel oder birnenförmig als Feldlinse.In dielectric antennas, on the other hand, the antenna essentially consists of a body of dielectric material, electromagnetic waves also being guided in the material and being able to be emitted via the material. The electromagnetic waves guided and radiated by this dielectric material are fed into the antenna via a feed section of the dielectric antenna and radiated into the room via a radiating section. The dielectric antenna may have other sections, but it does not necessarily have the two described sections. The dielectric feed section often consists of a rod with an ultimately tapered mandrel which is insertable into a waveguide, said mandrel is then acted upon by guided in the waveguide electromagnetic waves. The emission section of a dielectric antenna can be designed very differently, for example as a stem or pear-shaped as a field lens.
Der Anmelderin ist aus der Praxis bekannt, daß der dielektrische Abstrahlabschnitt als sich in Abstrahlrichtung öffnendes, einen Hohlraum zumindest teilweise umgebendes Horn ausgestaltet ist. Eine solche Antenne wird im folgenden als "dielektrische Hornantenne" bezeichnet.The applicant is known from practice that the dielectric emission section is designed as a horn which opens in the emission direction and at least partially surrounds a cavity. Such an antenna will hereinafter be referred to as a "dielectric horn antenna".
Wenn davon die Rede ist, daß der Abstrahlabschnitt als sich in Abstrahlrichtung öffnendes, einen Hohlraum zumindest teilweise umgebendes Horn ausgestaltet ist, dann ist mit der Abstrahlrichtung im wesentlichen die Hauptabstrahlrichtung der dielektrischen Hornantenne gemeint, also die Richtung, in der die Richtwirkung der Hornantenne besonders ausgeprägt ist. Der von dem Horn umgebene Hohlraum muß nicht tatsächlich konstruktiv in Abstrahlrichtung der Hornantenne geöffnet sein, er kann beispielsweise auch in Abstrahlrichtung mit einem Material abgeschlossen sein, das jedoch der Abstrahlung der elektromagnetischen Wellen in Abstrahlrichtung im wesentlichen keinen Widerstand entgegensetzt, so daß das sich in Abstrahlrichtung öffnende Horn in Abstrahlrichtung elektromagnetisch funktional geöffnet ist, jedoch nicht zwingend im konstruktiv-geometrischen Sinne offen sein muß.If it is mentioned that the emission section is configured as a horn which opens at least partially in the emission direction, then the emission direction is essentially the main emission direction of the dielectric horn antenna, ie the direction in which the directivity of the horn antenna is particularly pronounced is. The cavity surrounded by the horn need not actually be open constructively in the emission direction of the horn antenna, it may for example be completed in the emission with a material that, however, the radiation of the electromagnetic waves in the emission direction substantially no resistance, so that in the emission direction opening horn in the emission direction is electromagnetically functionally open, but not necessarily in the constructive-geometric sense must be open.
Hornantennen als auch dielektrische Antennen werden in der industriellen Prozeßmeßtechnik - wie eingangs erwähnt - häufig zur Füllstandsmessung verwendet. Bei solchen Anwendungen ist es von besonderem Vorteil, wenn die verwendeten Antennen eine möglichst schmale Hauptabstrahlrichtung und gleichzeitig eine möglichst kompakte Bauform ausweisen. Diese Anforderungen widersprechen sich jedoch hinsichtlich der konstruktiven Maßnahmen, die üblicherweise zu ihrer technischen Umsetzung ergriffen werden müssen.Horn antennas as well as dielectric antennas are often used in industrial process measuring technology - as mentioned above - for level measurement. In such applications it is of particular advantage when the antennas used identify as narrow a main direction of emission as possible and at the same time as compact a design as possible. However, these requirements are contradictory with regard to the constructive measures that usually have to be taken for their technical implementation.
Eine schmale Richtcharakteristik in Hauptabstrahlrichtung kann bekanntlich erst durch eine große Apertur - also Öffnungsfläche - des Abstrahlabschnitts sowohl bei einer Hornantenne als auch bei einer dielektrischen Antenne und auch bei einer dielektrischen Hornantenne erzielt werden, was eine große Ausdehnung der Antenne senkrecht zur Hauptabstrahlrichtung erforderlich macht. Damit die Apertur auch im Sinne einer schmalen Hauptabstrahlrichtung genutzt wird, muß die von dem Abstrahlabschnitt abgestrahlte elektromagnetische Strahlung eine möglichst ebene Phasenfront aufweisen, wobei eine solch ebene Phasenfront bei den genannten Antennentypen nur mit zunehmender Länge der Antenne realisierbar ist, was der gewünschten kompakten Bauform ebenfalls entgegensteht. Im Bereich der Füllstandsmeßtechnik besteht ein zusätzliches Problem häufig darin, daß die geometrische Apertur des Hornes nur in engen Grenzen vergrößert werden kann, da die Antenne andernfalls nicht mehr in das zu überwachende Volumen - zum Beispiel über bereits vorhandene Tanköffnungen und Stutzen - eingebracht und dort nicht mehr montiert werden kann.A narrow directivity in Hauptabstrahlrichtung can be achieved only by a large aperture - ie opening area - of the Abstrahlabschnitts both a horn antenna and a dielectric antenna and also in a dielectric horn antenna, which makes a large extension of the antenna perpendicular to the main radiation required. In order for the aperture to be used in the sense of a narrow main emission direction, the electromagnetic radiation emitted by the emission section must have as flat a phase front as possible, such a planar phase front can only be realized with the antenna types mentioned with increasing length of the antenna, which is also the desired compact design opposes. In the field of Füllstandsmeßtechnik an additional problem is often that the geometric aperture of the horn can be increased only within narrow limits, as the antenna is not more in the volume to be monitored - for example, over existing tank openings and nozzles - introduced and not there can be mounted more.
Es ist daher Aufgabe der vorliegenden Erfindung, eine dielektrische Hornantenne anzugeben, mit der eine verbesserte Richtwirkung bei kompakter Bauform erzielt werden kann.It is therefore an object of the present invention to provide a dielectric horn antenna, with which an improved directivity can be achieved in a compact design.
Die zuvor hergeleitete und beschriebene Aufgabe ist erfindungsgemäß bei einer dielektrischen Hornantenne der oben angegebenen Art dadurch gelöst, daß in dem Horn ein dielektrischer Einsatz angeordnet ist, über den Einsatz wenigstens ein Teil der über den Speiseabschnitt beaufschlagbaren elektromagnetischen Strahlung führbar und abstrahlbar ist und sich der Einsatz in Abstrahlrichtung der Antenne im wesentlichen über den Hohlraum des Horns erstreckt.The previously derived and described object is achieved according to the invention in a dielectric horn antenna of the type specified above, that in the horn, a dielectric insert is arranged over the use of at least a portion of the acted upon via the feed section electromagnetic radiation can be guided and radiated and the use extends in the emission of the antenna substantially over the cavity of the horn.
Es hat sich überraschenderweise herausgestellt, daß die Anordnung eines dielektrischen Einsatzes in dem Horn der dielektrischen Hornantenne hervorragend dazu geeignet ist, die Phasenfronten der von der Hornantenne insgesamt geführten und abgestrahlten elektromagnetischen Strahlung außerhalb des dielektrischen Materials zu formen und zu glätten, so daß sich ebene Wellenfronten in Abstrahlrichtung der Hornantenne realisieren lassen, ohne daß die Außenabmessungen der Hornantenne vergrößert werden müssen. Ferner wird die elektromagnetische Strahlung durch den dielektrischen Einsatz derart geformt, daß sich eine große virtuelle Apertur der dielektrischen Hornantenne ergibt, die erheblich größer als die ohne dielektrischen Einsatz nutzbare geometrische Apertur der dielektrischen Hornantenne ist. Sowohl das dielektrische Horn als auch der dielektrische EinsatzIt has surprisingly been found that the arrangement of a dielectric insert in the horn of the dielectric horn antenna is excellent is adapted to form and smooth the phase fronts of the total guided and radiated by the horn antenna electromagnetic radiation outside the dielectric material, so that can realize flat wavefronts in the emission of the horn antenna, without the outer dimensions of the horn antenna must be increased. Further, the electromagnetic radiation is shaped by the dielectric insert so as to give a large virtual aperture of the horn dielectric antenna which is significantly larger than the geometric aperture of the dielectric horn antenna usable without dielectric use. Both the dielectric horn and the dielectric insert
Nach einer besonders vorteilhaften Ausgestaltung der Erfindung nimmt die Querschnittsfläche des Horns in Abstrahlrichtung der Antenne ab. Durch die abnehmende Querschnittsfläche des Horns nimmt dessen effektive Permittivität in Abstrahlrichtung der Antenne ab, wodurch ein zunehmender Anteil des insgesamt geführten elektromagnetischen Feldes von dem dielektrischen Horn in den Außenraum tritt; damit reduziert sich die Kopplung des Feldes an das Horn immer weiter. Gleichzeitig bewirkt dies jedoch, daß die virtuelle Antennenapertur weitaus größer ist als die geometrische Antennenapertur. Auch dieser Effekt wird verstärkt durch den erfindungsgemäß vorgesehenen dielektrischen Einsatz innerhalb des dielektrischen Horns.According to a particularly advantageous embodiment of the invention, the cross-sectional area of the horn decreases in the emission direction of the antenna. Due to the decreasing cross-sectional area of the horn, its effective permittivity in the emission direction of the antenna decreases, whereby an increasing portion of the total guided electromagnetic field passes from the dielectric horn into the outer space; This reduces the coupling of the field to the horn ever further. At the same time, however, this causes the virtual antenna aperture to be much larger than the geometric antenna aperture. This effect is also reinforced by the inventively provided dielectric insert within the dielectric horn.
Es hat sich weiterhin als besonders vorteilhaft herausgestellt, wenn die Außenkontur des Horns in Abstrahlrichtung der Antenne im wesentlichen konstant ist, wobei das Horn senkrecht zur Abstrahlrichtung insbesondere einen kreisförmigen, ellipsoidalen oder rechteckigen Querschnitt aufweisen kann. Eine unveränderliche Außenkontur des Horns bedeutet u. a., daß ein maximales dielektrisches feldführendes Volumen bei größtmöglicher geometrischer Apertur erzielbar ist, da das dielektrische Horn über seine gesamte Erstreckung in Abstrahlrichtung der Antenne einen maximalen Durchmesser aufweisen kann.It has also been found to be particularly advantageous if the outer contour of the horn is substantially constant in the emission direction of the antenna, wherein the horn can have, in particular, a circular, ellipsoidal or rectangular cross-section perpendicular to the emission direction. An invariable outer contour of the horn means u. a., That a maximum dielectric field-carrying volume with the largest possible geometric aperture can be achieved because the dielectric horn over its entire extent in the emission direction of the antenna may have a maximum diameter.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der dielektrische Einsatz in dem Horn so ausgestaltet, daß seine Querschnittsfläche in Abstrahlrichtung der Antenne im wesentlichen konstant bleibt oder sogar abnimmt. Eine abnehmende Querschnittsfläche des Einsatzes bringt es mit sich, wie zuvor schon am Horn erläutert, daß ein zunehmender Anteil des Anfangs in dem dielektrischen Einsatz geführten elektromagnetischen Feldes in den Außenraum - also den Zwischenraum zwischen Horn und Einsatz - tritt und aus dem Einsatz ausgekoppelt wird.According to a further advantageous embodiment of the invention, the dielectric insert in the horn is designed so that its cross-sectional area in the emission direction of the antenna remains substantially constant or even decreases. A decreasing cross-sectional area of the insert brings with it, as already explained at the Horn that an increasing proportion of the beginning in the dielectric insert guided electromagnetic field in the outer space - ie the space between the horn and use - occurs and is decoupled from the insert.
Gemäß einer weiteren bevorzugten Ausgestaltung der dielektrischen Hornantenne ist vorgesehen, daß sich der Abstrahlabschnitt der Hornantenne in Abstrahlrichtung im wesentlichen bis zu einem Ort einer Feldüberhöhung der geführten elektromagnetischen Wellen erstreckt, wobei damit vor allem die im Außenraum des Horns mitlaufenden elektromagnetischen Wellen gemeint sind.According to a further preferred embodiment of the dielectric horn antenna, it is provided that the emission section of the horn antenna extends in the emission direction substantially up to a location of a field elevation of the guided electromagnetic waves, which means above all the electromagnetic waves traveling in the outer space of the horn.
Im allgemeinen Fall werden über dielektrische Antennen - im Gegensatz zu elektromagnetischen Wellen in Hohlleitern - hybride elektromagnetische Wellen geführt, wie z.B. eine HE11-Grundwelle und ggf. elektromagnetische Wellen in unterschiedlichen Moden. Über die Erstreckung der Hornantenne in Abstrahlrichtung ist eine Veränderung der Amplitude des geführten Außenfeldes beobachtbar, wobei sich Orte geringer Amplitude des Außenfeldes mit Orten mit erhöhten Amplituden des Außenfeldes abwechseln. Diese Amplitudenänderung ist u. a. durch die Modenkonversion der elektromagnetischen Wellen entlang der Hornantenne in Abstrahlrichtung erklärbar. Wenn der Abstrahlabschnitt im wesentlichen an einem Ort einer Feldüberhöhung der geführten elektromagnetischen Wellen endet, wird die zuvor geführte elektromagnetische Welle an dieser Stelle und mit dieser Amplitude zu einer Freiraumwelle, wodurch automatisch eine große virtuelle Apertur der dielektrischen Hornantenne erreicht wird.In the general case, hybrid electromagnetic waves are guided via dielectric antennas-in contrast to electromagnetic waves in waveguides-such as, for example, a HE 11 fundamental wave and possibly electromagnetic waves in different modes. Over the extent of the horn antenna in the emission direction, a change in the amplitude of the guided outer field is observable, with alternate locations of low amplitude of the outer field with locations with increased amplitudes of the outer field. This amplitude change can be explained inter alia by the mode conversion of the electromagnetic waves along the horn antenna in the emission direction. When the radiating portion substantially terminates at a position of field elevation of the guided electromagnetic waves, the previously guided electromagnetic wave becomes a free space wave at that location and amplitude, thereby automatically reaching a large virtual aperture of the dielectric horn antenna.
Bei einer bevorzugten Ausgestaltung der Erfindung ist der dielektrische Einsatz stabförmig ausgestaltet, insbesondere nämlich als ein massiver Stab mit einem im wesentlichen runden, ellipsoidalen oder rechteckigen Querschnitt. Die Wahl des Querschnitts ist vorzugsweise an die Innenkontur des Horns angepaßt. Bei einer solchen Geometrie des Einsatzes ist es von besonderem Vorteil, wenn sich der Abstrahlabschnitt der Hornantenne in Abstrahlrichtung lediglich bis zur ersten Feldüberhöhung der geführten elektromagnetischen Strahlung erstreckt, da die Feldüberhöhung bei dielektrischen Hornantennen mit stabförmigem Einsatz bereits an dem Ort der ersten Feldüberhöhung maximal ist, jedenfalls die Feldüberhöhung an späteren Orten eines Amplitudenmaximums nicht in dem Maße größer ist, als daß es lohnenswert wäre, eine dadurch erzwungene wesentlich größere Abmessung der Hornantenne in Abstrahlrichtung in Kauf zu nehmen.In a preferred embodiment of the invention, the dielectric insert is designed rod-shaped, in particular as a solid rod having a substantially round, ellipsoidal or rectangular cross-section. The choice of the cross section is preferably adapted to the inner contour of the horn. With such a geometry of the insert, it is of particular advantage if the emission section of the horn antenna extends in the emission direction only up to the first field elevation of the guided electromagnetic radiation, since the field elevation in the case of dielectric horn antennas with rod-shaped insert already at the location of the first field elevation is maximal In any case, the field enhancement at later locations of an amplitude maximum is not greater to the extent that it would be worthwhile to accept a considerably larger dimension of the horn antenna in the direction of emission thereby forced.
Bei einer dielektrischen Hornantenne mit einem stabförmigen dielektrischen Einsatz hat es sich ferner als vorteilhaft herausgestellt, wenn das Verhältnis von der Länge des Abstrahlabschnitts zur Freiraumwellenlänge der abgestrahlten elektromagnetischen Strahlung im Bereich von etwa 1,5 bis 2,5 liegt, bevorzugt im wesentlichen bei 2. Bei dieser auf die Freiraumwellenlänge normierten Länge des Abstrahlabschnittes liegt ein Maximum der Feldüberhöhung am Ende des Abstrahlabschnitts vor. Es ist ferner besonders vorteilhaft, wenn das Verhältnis des Durchmessers senkrecht zur Abstrahlrichtung des Horns zur Freiraumwellenlänge der abgestrahlten elektromagnetischen Strahlung im Bereich von etwa 1,4 bis 1,9 liegt, vorzugsweise im wesentlichen zwischen 1,6 und 1,7, bevorzugt bei 1,65, da hier ein Optimum der virtuellen Apertur zur tatsächlichen geometrischen Apertur der dielektrischen Antenne erzielt wird.Further, in a dielectric horn antenna having a rod-shaped dielectric insert, it has been found advantageous if the ratio of the length of the radiating portion to the free space wavelength of the radiated electromagnetic radiation is in the range of about 1.5 to 2.5, preferably substantially 2. In this length of the emission section normalized to the free space wavelength, there is a maximum of the field increase at the end of the emission section. It is also particularly advantageous if the ratio of the diameter perpendicular to the emission direction of the horn to the free space wavelength of the radiated electromagnetic radiation is in the range of about 1.4 to 1.9, preferably substantially between 1.6 and 1.7, preferably at 1 , 65, since an optimum of the virtual aperture to the actual geometric aperture of the dielectric antenna is achieved here.
Bei einer anderen bevorzugten Ausgestaltung der Hornantenne ist der dielektrische Einsatz als sich in Abstrahlrichtung öffnender, einen Hohlraum zumindest teilweise umgebender Horneinsatz ausgestaltet, der insbesondere eine im wesentlichen runde, ellipsoidale oder rechteckige Umfangskontur aufweist, wobei die Umfangskontur insbesondere an die Innenwandung des - äußeren - Horns der dielektrischen Hornantenne angepaßt ist.In another preferred embodiment of the horn antenna, the dielectric insert is designed as a horn insert which opens at least partially in the emission direction and which has in particular a substantially round, ellipsoidal or rectangular peripheral contour, wherein the peripheral contour is in particular applied to the inner wall of the outer horn the dielectric horn antenna is adapted.
Bei derartigen dielektrischen Hornantennen mit einem dielektrischen Horneinsatz hat es sich - anders als bei den dielektrischen Hornantennen mit stabförmigem dielektrischen Einsatz - als besonders vorteilhaft herausgestellt, wenn sich der Abstrahlabschnitt in Abstrahlrichtung bis zur zweiten Feldüberhöhung der geführten elektromagnetischen Strahlung erstreckt, da die zweite Feldüberhöhung größer ist als die erste Feldüberhöhung und daher auch eine größere virtuelle Apertur der Hornantenne an dieser Stelle erzielbar ist. Die zusätzliche - unerwünschte - Länge der Hornantenne ist hier eine akzeptable Einschränkung gegenüber dem erheblichen Gewinn an der virtuellen Apertur und der damit insgesamt verbesserten Richtungswirkung der Homantenne.In such dielectric horn antennas with a dielectric horn insert, it has turned out to be particularly advantageous, as in the dielectric horn antennas with rod-shaped dielectric insert, when the emission section extends in the emission direction up to the second field elevation of the guided electromagnetic radiation, since the second field elevation is greater as the first field elevation and therefore also a larger virtual aperture of the horn antenna can be achieved at this point. The additional - unwanted - length of the horn antenna is here an acceptable limitation against the substantial gain in the virtual Aperture and the overall improved directional effect of the Homantenne.
Bei den erfindungsgemäßen dielektrischen Hornantennen mit einem dielektrischen Horneinsatz ist es vorteilhaft, wenn das Verhältnis von der Länge des Abstrahlabschnitts zur Freiraumwellenlänge der abgestrahlten elektromagnetischen Strahlung im Bereich von etwa 6 bis 9 liegt, bevorzugt im Bereich von etwa 7 bis 8, besonders bevorzugt im wesentlichen bei etwa 7,5, da bei einer derartigen Dimensionierung das Ende der Hornantenne im Bereich der zweiten Feldüberhöhung der mitgeführten elektromagnetischen Strahlung liegt. Besonders vorteilhaft ist weiterhin, wenn das Verhältnis des Durchmessers senkrecht zur Abstrahlrichtung des Horns zur Freiraumwellenlänge der abgestrahlten elektromagnetischen Strahlung im Bereich von etwa 1,4 bis 1,9 liegt, vorzugsweise im Bereich zwischen 1,6 und 1,7, im wesentlichen bei 1,65, da bei dieser Dimensionierung - genau wie im Fall der dielektrischen Hornantenne mit stabförmigem dielektrischen Einsatz - ein gutes Verhältnis von virtueller Apertur zu geometrischer Apertur der Hornantenne erzielt wird.In the dielectric horn antennas according to the invention with a horn insert, it is advantageous if the ratio of the length of the emission section to the free space wavelength of the radiated electromagnetic radiation is in the range of about 6 to 9, preferably in the range of about 7 to 8, particularly preferably substantially about 7.5, since with such a dimensioning the end of the horn antenna is in the range of the second field elevation of the entrained electromagnetic radiation. It is furthermore particularly advantageous if the ratio of the diameter perpendicular to the emission direction of the horn to the free space wavelength of the emitted electromagnetic radiation is in the range from about 1.4 to 1.9, preferably in the range between 1.6 and 1.7, essentially at 1 , 65, as in this dimensioning, just as in the case of the dielectric rod-type dielectric horn antenna, a good ratio of virtual aperture to geometric aperture of the horn antenna is achieved.
Bei einer ganz besonders bevorzugten Ausgestaltung der Erfindung ist zwischen dem dielektrischen Speiseabschnitt und dem dielektrischen Abstrahlabschnitt einer dielektrischen Hornantenne ein dielektrischer Übergangsabschnitt vorgesehen, der einen Übergang von dem abstrahlabschnittseitigen Querschnitt des Speiseabschnitts auf den speiseabschnittseitigen Querschnitt des Abstrahlabschnitts realisiert. Durch den Übergangsabschnitt wird erreicht, daß beispielsweise ein Speiseabschnitt mit nur sehr geringem Querschnitt auch einen Abstrahlabschnitt mit einem erheblich größeren Querschnitt speisen kann.In a most preferred embodiment of the invention, a dielectric transition section is provided between the dielectric feed section and the dielectric radiating section of a dielectric horn antenna, which realizes a transition from the radiating section-side cross section of the feed section to the feed section-side cross section of the radiating section. The transition section ensures that, for example, a feed section with only a very small cross section can also feed a radiating section with a considerably larger cross section.
Es ist bekannt, daß bei einer dielektrischen Antenne eine Durchmesseränderung nur behutsam durchgeführt werden darf, wenn keine zusätzlichen Moden der geführten elektromagnetischen Strahlung hervorgerufen werden sollen. Bei der erfindungsgemäßen dielektrischen Hornantenne ist ein elektromagnetischer Monomodus nicht von Bedeutung, ist vielmehr eine Modenkonversion der geführten elektromagnetischen Wellen entlang der dielektrischen Hornantenne gewünscht, um die resultierenden Feldüberhöhungen nutzen zu können. Insofern ist es bei einer besonders bevorzugten Ausgestaltung der Erfindung auch ohne weiteres möglich, daß der Übergangsabschnitt in Abstrahlrichtung der Antenne nur in etwa die Dicke einer für die Montage zur Verfügung stehenden Gehäusewand aufweist. So kann der Übergangsabschnitt kurz und die dielektrische Hornantenne damit insgesamt kompakt gehalten werden, ohne daß wesentliche negative Effekte hinsichtlich der elektromagnetischen Eigenschaften der Hornantenne zu befürchten sind. Die insgesamt konusartige Außenkontur des Übergangsabschnitts ist darüber hinaus vorteilhaft für die Montage der erfindungsgemäßen dielektrischen Antenne in einer Gehäusewand, da die Antenne beispielsweise nur noch von außen über ein geeignetes Gewinde am Speiseabschnitt der dielektrischen Antenne gekontert werden muß.It is known that in a dielectric antenna, a change in diameter may be carried out only gently, if no additional modes of the guided electromagnetic radiation to be caused. In the dielectric horn antenna according to the invention, an electromagnetic monomode is not important, but a mode conversion of the guided electromagnetic waves along the dielectric horn antenna is desired in order to use the resulting field peaks. In this respect, it is in a particularly preferred embodiment of the invention also readily possible that the transition section in the emission of the antenna has only approximately the thickness of a housing wall available for mounting. Thus, the transition section can be kept short and the dielectric horn antenna as a whole compact, without fear of significant negative effects with respect to the electromagnetic properties of the horn antenna. The overall conical outer contour of the transition section is also advantageous for the assembly of the dielectric antenna according to the invention in a housing wall, since the antenna must be countered, for example, only from the outside via a suitable thread on the feed section of the dielectric antenna.
In einer bevorzugten Ausgestaltung der zuvor beschriebenen erfindungsgemäßen dielektrischen Hornantenne sind die dielektrischen Hornantennen einstückig aus dielektrischem Material ausgebildet, was insbesondere der mechanischen Stabilität und der Leitfähigkeit der Hornantennen für elektromagnetische Wellen zuträglich ist.In a preferred embodiment of the above-described dielectric horn antenna according to the invention, the dielectric horn antennas are integrally formed of dielectric material, which in particular the mechanical stability and conductivity of the horn antennas for electromagnetic waves is beneficial.
Bei einer alternativen Ausgestaltung der dielektrischen Hornantenne sind der Speiseabschnitt, der Abstrahlabschnitt und ggf. der Übergangsabschnitt oder eine Unterkombination von Speiseabschnitt, Abstrahlabschnitt und Übergangsabschnitt durch separate verbindbare Module gebildet, was insbesondere für die Montage der Hornantennen vorteilhaft ist. Auch für den Hersteller derartiger Hornantennen ist der modulartige Aufbau der erfindungsgemäßen Hornantenne vorteilhaft, da mit wenigen Modulvarianten für den Speiseabschnitt, den Abstrahlabschnitt und den Übergangsabschnitt eine große Vielzahl an dielektrischen Hornantennen fertigbar ist.In an alternative embodiment of the dielectric horn antenna, the feed section, the emission section and possibly the transition section or a sub-combination of feed section, emission section and transition section are formed by separate connectable modules, which is advantageous in particular for mounting the horn antennas. The modular design of the horn antenna according to the invention is also advantageous for the manufacturer of such horn antennas since a large number of dielectric horn antennas can be manufactured with a few module variants for the feed section, the emission section and the transition section.
Insofern ist die eingangs beschriebene Aufgabe bei einem Modulsystem zur Herstellung einer zuvor beschriebenen dielektrischen Hornantenne mit einem Speiseabschnitt, mit einem Abstrahlabschnitt und mit einem Übergangsabschnitt zwischen dem Speiseabschnitt und dem Abstrahlabschnitt dadurch gelöst, daß das Modulsystem Speiseabschnittmodule unterschiedlichen Querschnitts, Abstrahlmodule unterschiedlichen Querschnitts und verschiedene Übergangsabschnittmodule aufweist und daß mit den Übergangsabschnittmodulen ein Übergang zwischen den verschiedenen Querschnitten der Speiseabschnittmodule und den verschiedenen Querschnitten der Abstrahlabschnittmodule herstellbar ist. Mit einem solchen Modulsystem kann durch Bereitstellung weniger verschiedener Komponenten eine große Anzahl verschiedener dielektrischer Hornantennen ohne weiteres hergestellt werden, wobei die Übergangsabschnittmodule insbesondere in gebräuchlichen Wanddickenabmessungen vorliegen, da die in Rede stehenden dielektrischen Hornantennen häufig in Wandungen von Gefäßen montiert werden müssen.In this respect, the object described above is achieved in a modular system for producing a previously described dielectric horn antenna with a feed section, with a radiating section and with a transition section between the feed section and the radiating section in that the module system has feed section modules of different cross section, radiating modules of different cross section and different transition section modules and that with the transition section modules, a transition between the different cross sections of the feed section modules and the different cross sections of the Abstrahlabschnittmodule can be produced. With such a modular system, by providing fewer different components, a large number of different horn dielectric antennas can be readily fabricated, with the transition section modules in particular in conventional wall thickness dimensions, since the subject horn dielectric antennas must often be mounted in vessel walls.
Im einzelnen gibt es nun verschiedene Möglichkeiten, die erfindungsgemäße dielektrische Hornantenne und das erfindungsgemäße Modulsystem zur Herstellung einer dielektrischen Hornantenne auszugestalten und weiterzubilden. Dazu wird verwiesen auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und auf die Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit der Zeichnung. In der Zeichnung zeigen
- Fig. 1
- einen Querschnitt durch eine erfindungsgemäße dielektrische Hornantenne mit einem stabförmigen dielektrischen Einsatz,
- Fig. 2
- einen Querschnitt durch eine erfindungsgemäße dielektrische Hornantenne mit einem hornartigen Einsatz,
- Fig. 3
- eine dielektrische Hornantenne ohne dielektrischen Einsatz mit dem erzeugten elektrischen Feld der abgestrahlten elektromagne- tischen Strahlung in der H-Ebene,
- Fig. 4
- den dielektrischen Hornstrahler gemäß
Fig. 3 , jedoch mit einem stabförmigen dielektrischen Einsatz und dem erzeugten elektri- schen Feld der abgestrahlten elektromagnetischen Strahlung in der H-Ebene, - Fig. 5
- eine weitere dielektrische Hornantenne ohne dielektrischen Ein- satz mit dem erzeugten elektrischen Feld der abgestrahlten elekt- romagnetischen Strahlung in der H-Ebene,
- Fig. 6
- die dielektrische Hornantenne gemäß
Fig. 5 mit hornartigem die- lektrischen Einsatz und dem erzeugten elektrischen Feld der ab- gestrahlten elektromagnetischen Strahlung in der H-Ebene und - Fig. 7
- ein Richtdiagramm der elektrischen Feldstärke der abgestrahlten elektromagnetischen Strahlung in der H-Ebene für verschiedene Antennen.
- Fig. 1
- a cross section through a dielectric horn antenna according to the invention with a rod-shaped dielectric insert,
- Fig. 2
- a cross section through a dielectric horn antenna according to the invention with a horn-like insert,
- Fig. 3
- a dielectric horn antenna without dielectric insert with the generated electric field of the radiated electromagnetic radiation in the H-plane,
- Fig. 4
- the dielectric horn according to
Fig. 3 but with a rod-shaped dielectric insert and the generated electric field of the radiated electromagnetic radiation in the H-plane, - Fig. 5
- a further dielectric horn antenna without dielectric insert with the generated electric field of the radiated electromagnetic radiation in the H-plane,
- Fig. 6
- the dielectric horn antenna according to
Fig. 5 with horn-like dielectric application and the generated electric field of the radiated electromagnetic radiation in the H-plane and - Fig. 7
- a directional diagram of the electric field strength of the radiated electromagnetic radiation in the H-plane for different antennas.
In den
Die in den
Wenn davon die Rede ist, daß sich der Einsatz 3b in Abstrahlrichtung 6 der Hornantenne im wesentlichen über den Hohlraum 7 erstreckt, dann ist damit gemeint, daß der dielektrische Einsatz 3b sich wenigstens über den größten Teil der axialen Erstreckung des Horns 3a erstreckt, was notwendig ist, da der dielektrische Einsatz 3b ursächlich für eine Führung und Formung der elektromagnetischen Strahlung 5 ist, die dazu führt, daß die abgestrahlten Freiraumwellen in Hauptabstrahlrichtung 6 weitestgehend ebene Phasenfronten aufweisen. Dies ist notwendig, um die gewünschte schmale Richtcharakteristik zu erzielen.When it is said that the
In den
Die in den
In den
Bei der in
In
Bei der in
Alle in den
In den dargestellten Ausgestaltungen weist der Übergangsabschnitt 10 ganz bewußt nur in etwa die Dicke der für die Montage zur Verfügung stehenden Gehäusewand 11 auf. Bei üblichen Abmessungen von Gehäusewänden 11 wird dadurch ein erheblicher Öffnungswinkel des Übergangsabschnitts 10 bewirkt. Dieser große Öffnungswinkel des konischen Übergangsabschnitts 10 bewirkt, daß zusätzliche Moden elektromagnetischer Strahlung 5 erzeugt werden, die sich über den Abstrahlabschnitt 3 weiter fortpflanzen. Dies ist jedoch bei den dargestellten dielektrischen Hornantennen 1 sogar erwünscht, da vor allem durch die so angeregte Modenkonversion erst die gewünschten Feldüberhöhungen 8 hervorgerufen werden, die durch den dielektrischen Einsatz 3b noch verstärkt und im Sinne eines ebenen Phasenverlaufs geformt werden können.In the illustrated embodiments, the
Die so ausgestalteten dielektrischen Hornantennen 1 sind sehr einfach montierbar, da sie mit der Gehäusewand 11 selbst einen dichten Abschluß bilden. In den
Die dargestellten dielektrischen Hornantennen 1 sind sämtlich einstückig aus dielektrischem Material gefertigt, vorliegend nämlich aus Polytetrafluorethylen (PTFE), das beispielsweise unter dem Namen Teflon bekannt ist. Wenn die Gehäusewand 11 wie in den hier dargestellten Ausführungsbeispielen ihrerseits aus einem Metall besteht, dann bildet die Gehäusewand 11 zusammen mit dem Hohlleiter 4 eine metallische Hornantenne, die als Anregungsstruktur für den dielektrischen Abstrahlabschnitt 3 dient.The illustrated
In
Claims (15)
dadurch gekennzeichnet,
daß in dem Horn (3 a) ein dielektrischer Einsatz (3b) angeordnet ist, über den Einsatz (3b) wenigstens ein Teil der über den Speiseabschnitt beaufschlagbaren elektromagnetischen Strahlung (5) führbar und abstrahlbar ist und sich der Einsatz (3b) in Abstrahlrichtung (6) der Antenne im wesentlichen über den Hohlraum (7) erstreckt.Dielectric horn antenna having a dielectric feed section (2) and with a dielectric emission section (3), wherein the feed section (2) can be acted upon by electromagnetic radiation (5), with the emission section (3) electromagnetic radiation (5) can be guided and emitted and the Abstrahlabschnitt (3) as in the emission direction (6) opening, a cavity (7) at least partially surrounding horn (3a) is configured,
characterized,
that a dielectric insert (3b) is arranged in the horn (3 a) on the insert (3b) at least a portion of the acted upon via the feed section of the electromagnetic radiation (5) can be guided and be radiated and the insert (3b) in the radiation ( 6) of the antenna extends substantially over the cavity (7).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008015409.1A DE102008015409B4 (en) | 2008-03-20 | 2008-03-20 | Dielectric horn antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2105991A1 true EP2105991A1 (en) | 2009-09-30 |
EP2105991B1 EP2105991B1 (en) | 2014-11-05 |
Family
ID=40672238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090003955 Not-in-force EP2105991B1 (en) | 2008-03-20 | 2009-03-19 | Dielectric horn antenna |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2105991B1 (en) |
DE (1) | DE102008015409B4 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202010003614U1 (en) | 2010-02-23 | 2010-07-29 | Technische Universität Ilmenau | Waveguide horn antenna for high frequency electromagnetic sensor and signal transmission applications |
EP2262059A3 (en) * | 2009-05-25 | 2011-03-30 | KROHNE Messtechnik GmbH | Dielectric antenna |
WO2015151967A1 (en) * | 2014-03-31 | 2015-10-08 | 東京計器株式会社 | Horn antenna |
DE102016105647A1 (en) | 2016-03-28 | 2017-09-28 | Krohne Messtechnik Gmbh | Guide element for an antenna and method for producing such a guide element |
WO2019110103A1 (en) * | 2017-12-07 | 2019-06-13 | Vega Grieshaber Kg | Limit level sensor and method for operating same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010014457A1 (en) | 2010-04-09 | 2011-10-13 | Gottfried Wilhelm Leibniz Universität Hannover | Method for determining characteristic of medium in container by radar, involves determining maximum intensity of portion of measuring signal that is reflected back in spatial area, which comprises central incidence on medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR77903E (en) * | 1960-06-13 | 1962-05-11 | Aerial with sectoral radiation pattern | |
JPS53146557A (en) * | 1977-05-27 | 1978-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Correcting beam conical horn |
US20050140560A1 (en) * | 2003-12-26 | 2005-06-30 | Sharp Kabushiki Kaisha | Feedhorn, radio wave receiving converter and antenna |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527569A1 (en) * | 1991-07-29 | 1993-02-17 | Gec-Marconi Limited | Microwave antenna |
US20020101387A1 (en) * | 2001-01-30 | 2002-08-01 | Brandau Ronald J. | Dielectric loaded feed horn |
DE10159394A1 (en) * | 2001-12-04 | 2003-06-12 | Endress & Hauser Gmbh & Co Kg | level meter |
DE102005022493A1 (en) * | 2005-05-11 | 2006-11-16 | Endress + Hauser Gmbh + Co. Kg | Device for detecting and monitoring the level of a medium in a container |
-
2008
- 2008-03-20 DE DE102008015409.1A patent/DE102008015409B4/en not_active Expired - Fee Related
-
2009
- 2009-03-19 EP EP20090003955 patent/EP2105991B1/en not_active Not-in-force
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR77903E (en) * | 1960-06-13 | 1962-05-11 | Aerial with sectoral radiation pattern | |
JPS53146557A (en) * | 1977-05-27 | 1978-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Correcting beam conical horn |
US20050140560A1 (en) * | 2003-12-26 | 2005-06-30 | Sharp Kabushiki Kaisha | Feedhorn, radio wave receiving converter and antenna |
Non-Patent Citations (1)
Title |
---|
ARMBRECHT G ET AL: "Compact directional UWB antenna with dielectric insert for radar distance measurements", ULTRA-WIDEBAND, 2008. ICUWB 2008. IEEE INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 10 September 2008 (2008-09-10), pages 229 - 232, XP031350128, ISBN: 978-1-4244-2216-6 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2262059A3 (en) * | 2009-05-25 | 2011-03-30 | KROHNE Messtechnik GmbH | Dielectric antenna |
US8354970B2 (en) | 2009-05-25 | 2013-01-15 | Krohne Messtechnik Gmbh | Dielectric antenna |
DE202010003614U1 (en) | 2010-02-23 | 2010-07-29 | Technische Universität Ilmenau | Waveguide horn antenna for high frequency electromagnetic sensor and signal transmission applications |
WO2015151967A1 (en) * | 2014-03-31 | 2015-10-08 | 東京計器株式会社 | Horn antenna |
JP2015201825A (en) * | 2014-03-31 | 2015-11-12 | 東京計器株式会社 | horn antenna |
US10122066B2 (en) | 2014-03-31 | 2018-11-06 | Tokyo Keiki Inc. | Horn antenna |
DE102016105647A1 (en) | 2016-03-28 | 2017-09-28 | Krohne Messtechnik Gmbh | Guide element for an antenna and method for producing such a guide element |
EP3226346A1 (en) | 2016-03-28 | 2017-10-04 | Krohne Messtechnik GmbH | Guide element for an antenna and method for the production of such a guide element |
US10700438B2 (en) | 2016-03-28 | 2020-06-30 | Krohne Messtechnik Gmbh | Guide element for an antenna and method for producing such guide element |
DE102016105647B4 (en) | 2016-03-28 | 2021-08-12 | Krohne Messtechnik Gmbh | Guide element for an antenna and method for producing such a guide element |
WO2019110103A1 (en) * | 2017-12-07 | 2019-06-13 | Vega Grieshaber Kg | Limit level sensor and method for operating same |
Also Published As
Publication number | Publication date |
---|---|
DE102008015409A1 (en) | 2009-09-24 |
EP2105991B1 (en) | 2014-11-05 |
DE102008015409B4 (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2592694B1 (en) | Dielectric antenna | |
EP2830156B1 (en) | Waveguide radiator, group antenna radiator and synthetic aperture radar radiator | |
EP2105991B1 (en) | Dielectric horn antenna | |
EP2112482B1 (en) | Dielectric Antenna | |
DE602004000083T2 (en) | Food for reflector antenna | |
DE69324744T2 (en) | Printed circuit antenna | |
EP2081254B1 (en) | Antenna coupler | |
DE102006057144B4 (en) | Waveguide radiators | |
DE2746376C2 (en) | Coupling device between a coaxial line and a waveguide | |
DE102006060566A1 (en) | Liquid-coupled antenna | |
EP2161552B1 (en) | Waveguide and horn antenna | |
DE2417577C2 (en) | High-frequency heating device for heating a dielectric material of elongated shape and small cross-section | |
EP0933833B1 (en) | Waveguide radiator | |
DE102017102050A1 (en) | Rod antenna with anti-spiral filament | |
EP2438645B1 (en) | Forward coupler comprising strip conductors | |
DE2054169A1 (en) | Radiators with different types of polarization for phase-controlled antennas | |
DE2005019C3 (en) | Electromagnetic wave isolator | |
AT501350B1 (en) | BROADBAND CIRCULAR ANTENNA | |
DE1156455B (en) | Drum arrangement for low-damping transmission of linearly polarized plane electromagnetic waves of very high frequency | |
DE102014214831A1 (en) | Waveguide assembly | |
EP3813188A1 (en) | Waveguide arrangement and antenna | |
DE29511273U1 (en) | Polarization switch for illuminating an antenna | |
DE1011945B (en) | Arrangement of funnel-like waveguides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090708 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17Q | First examination report despatched |
Effective date: 20090917 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140526 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: POHL, NILS Inventor name: SCHIEK, BURKARD, PROF. Inventor name: ARMBRECHT, GUNNAR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 695027 Country of ref document: AT Kind code of ref document: T Effective date: 20141115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009010171 Country of ref document: DE Effective date: 20141218 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141105 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150305 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150205 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150305 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009010171 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150319 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150319 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 695027 Country of ref document: AT Kind code of ref document: T Effective date: 20150319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170322 Year of fee payment: 9 Ref country code: CH Payment date: 20170322 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090319 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170529 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009010171 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |