EP2095501A1 - Transconductance amplifier with a filter for rejecting noise outside the useful band - Google Patents

Transconductance amplifier with a filter for rejecting noise outside the useful band

Info

Publication number
EP2095501A1
EP2095501A1 EP08701490A EP08701490A EP2095501A1 EP 2095501 A1 EP2095501 A1 EP 2095501A1 EP 08701490 A EP08701490 A EP 08701490A EP 08701490 A EP08701490 A EP 08701490A EP 2095501 A1 EP2095501 A1 EP 2095501A1
Authority
EP
European Patent Office
Prior art keywords
transistor
filter
current
amplifier
transconductance amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08701490A
Other languages
German (de)
French (fr)
Inventor
James Wei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2095501A1 publication Critical patent/EP2095501A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/005Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements using switched capacitors, e.g. dynamic amplifiers; using switched capacitors as resistors in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/168Two amplifying stages are coupled by means of a filter circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/421Multiple switches coupled in the output circuit of an amplifier are controlled by a circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45481Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45496Indexing scheme relating to differential amplifiers the CSC comprising one or more extra resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45652Indexing scheme relating to differential amplifiers the LC comprising one or more further dif amp stages, either identical to the dif amp or not, in cascade

Definitions

  • the invention is applicable while particularly to perform certain types of sample-and-hold devices, more specifically those that operate by sampling a quantity of charges rather than a point value of voltage.
  • the invention applies not only to circuits intended to convert a simple voltage variation into a simple current variation, but also to differential circuits intended to convert a differential voltage variation into a differential current variation.
  • Samplers using a transconductance amplifier as an input stage are used, in particular, in high frequency telecommunications signal sampling applications for frequency transposition and then for analog-to-digital conversion of the signals.
  • the frequency bands of telecommunications signals are very congested.
  • a telecommunications channel uses a narrow band of frequencies and anything outside that band is annoying noise. So Generally speaking, the telecommunication signal transmitted on a given channel comprises a useful spectrum centered on a carrier frequency Fo.
  • the carrier at frequency Fo is modulated in amplitude or in frequency and one of the purposes of the sampling is in particular to transpose the signal towards an intermediate frequency spectrum (centered on an intermediate frequency Fi lower than Fo) or even towards a spectrum in baseband (centered on a zero frequency).
  • Putting a filter at the input of the sample-and-hold device would eliminate some of the noise, but that would not eliminate the inherent noise of the input amplifier of the sampler. If we filter out, it is too late folded noises are already in the useful output bandwidth. In practice, it would be necessary to filter within the input amplifier of the sampler. Unfortunately, most input amplifier structures do not allow such internal filtering at the amplifier without degrading the performance of the amplifier.
  • the output stage is constituted according to the invention in folded cascode stage absorbing all the current produced by the transconductance amplifier and it is at this folded cascode stage that a filter is connected capable of deriving the current variations which do not occur. are not in the useful frequency band of the input signal to be sampled, without deriving the current variations that are in the useful band.
  • the filter has a high impedance in the useful band centered around the frequency Fo of the carrier.
  • the invention proposes a transconductance amplifier comprising a first transistor of a first type providing current variations to be sampled having a useful frequency spectrum centered on a frequency Fo, characterized in that it comprises an output stage. having a second transistor of a type opposite the first, whose source is connected to the drain of the first, whose gate is biased at a constant potential, and whose drain receives the current variations which are provided by the first transistor and which must be applied to a sampling capacity, and in that it further comprises a frequency response filter centered on the central frequency Fo of the input signals of the amplifier, having a very high impedance around this frequency and a low impedance outside the useful spectrum, the filter being connected to the source of the second transistor so as to derive outside the second transistor currents variations that are in a frequency band outside the useful spectrum.
  • the current variations to be sampled are superimposed on a bias current equal to the sum of a first and a second constant current.
  • the second transistor has its source connected to a first current source providing a current equal to the first constant current. Its drain is connected to a current output of the amplifier and to a second current source providing a current equal to the second constant current.
  • the amplifier according to the invention is particularly intended to be placed at the input of a sample-and-hold circuit for the conversion into current variations of high-frequency voltage signals having a useful spectrum centered on a frequency Fo, before sampling of these current variations.
  • the amplifier thus designed is simple or differential; if it is differential, it is constituted by two simple amplifiers and the filter is connected between the drains of the first respective transistors of the two simple amplifiers.
  • the filter can be a simple passive filter with inductance and capacitance. Thanks to the invention, a very high bandwidth and low noise sampler-blocker can be realized.
  • transistor covers both the MOS transistors and the transistors. bipolar transistors and that the terms “source”, “drain”, and “gate”, conventionally used for MOS transistors, must be interpreted as meaning “transmitter”, “collector” and “base”, respectively, if the transistors are bipolar.
  • MOS transistors of the opposite type are then NMOS and PMOS transistors, opposite type bipolar transistors are NPN and PNP transistors respectively.
  • FIG. 1 represents an example of a known transconductance amplifier from which the present invention can be applied;
  • FIG. 2 represents the transconductance amplifier according to the invention
  • FIG. 3 represents the amplifier according to the invention for a non-differential mode
  • FIG. 4 represents an application of the transconductance amplifier of FIG. 3 to a simplified diagram of a differential sample-and-hold device.
  • the transconductance amplifier of FIG. 1 is a differential amplifier having two inputs E, E 'between which an input differential voltage (in small high frequency signals) V + dv, V-dv, to be converted into current is applied.
  • differential I-di, l + di on two differential outputs in current S and S '.
  • V is a common mode voltage on the inputs
  • I is an identical bias current on both outputs.
  • the amplifier is symmetrical since it works here in differential and therefore has two identical halves.
  • the first half comprises a series of first and second MOS transistors (MP1, MN2) of the opposite type connected by their drains; the gate of the first transistor MP1 is connected to the input E; the source is connected to a constant current source I B i as well as to a resistor of value R and to the drain of a third MOS transistor MN3 of the same type as the second; the source of the second transistor MN2 and that of the third transistor MN3 are grounded (Vss); the gate of the transistor MN3 is connected to the drains of the first and second transistors; and the amplifier further comprises a fourth transistor MN4 whose function is to copy to the output S the current flowing through the transistor MN3; the sources of the second and fourth transistors, MN2 and MN4 are therefore connected, their grids too.
  • the gate of the transistor MN2 is biased by a fixed voltage V Bias so that the transistor acts as a current source and maintains a very fixed current value, of value I B 2, in the transistors MP1 and MN2.
  • the other half of the amplifier consists of an identical set of four transistors, designated by the same references assigned the sign 'prime', and connected in the same way between the input E 'and the output S'; the current sources are identical in the two amplifier halves, the resistors as well as the constitutions of transistors.
  • the resistors of value R are connected together and constitute a single resistor of value 2R shared between the two halves of the amplifier; this resistance of value 2R in fact connects the drains of the third transistors MN3, MN3 'of the two sets.
  • the amplifier therefore has a transconductance di / dv equal to 1 / R for small signals; this transconductance is well controlled and very linear.
  • the simplifying assumption is that the current copying is done with a factor of 1. It will be understood that this factor could be different by choosing a ratio of geometries different from 1 between the transistors MN3 and MN4.
  • Fig. 2 shows the block diagram of the present invention.
  • the core of the transconductance amplifier of FIG. 1, surrounded by a dashed line, is used to form the circuit according to the invention. It is designated AMPC in FIG. 2 (in dashed lines as well) and it has two differential inputs E and E 'in voltage and two differential outputs in current S and S' as explained previously.
  • the heart of the amplifier is followed on each output by an output stage called "folded cascode stage", whose function is to restore a di current from the current l + di and a current -di from the current l-di, to apply these currents in principle to a sampling capacity.
  • Folded cascode stage whose function is to restore a di current from the current l + di and a current -di from the current l-di, to apply these currents in principle to a sampling capacity.
  • the entire transconductance amplifier, the sampling capacitor (s), and the sampling switches with their control circuits (not shown in FIG. 2) will then constitute a complete sampling circuit.
  • the folded cascode output stage which is connected to the output S comprises a transistor MP5 (PMOS) identical to the transistor MP1 of the AMPC core and whose source is connected to the output S, therefore to the drain of the transistor MN4.
  • the function of this transistor is to eliminate a part of the current component I present on the drain of MN4. It is recalled that the component I is equal to IBI-IB2-
  • the cascode stage therefore comprises current sources SC1 and SC2 which respectively establish currents I B i and I B 2 that can be subtracted from current I.
  • the transistor MP5 is mounted so as to derive the current variations di from the AMPC core to an output Se which will comprise only the current di and not the current I-di.
  • the output of the cascode stage is a node Se and represents the output of the transconductance amplifier completed by its output stage; in a sampler, the output Se is intended to be connected to a sampling capacity via a switch or a system of switches.
  • the output stage operates in the following manner: since the output S supplies a current l-di which is equal to I BI -I B2 -CU, and because of the presence of the current source SC1 supplying the B- 1 , the current flowing in the transistor MP5 is necessarily equal to I BI - (I BI -I B2 -CU) so I ⁇ 2 + di. And, because of the presence of the source SC2 which supplies I B2 , the final output current of the transconductance amplifier is an outgoing current of value + di on the output Se. In the same way, it is an outgoing current of value -di on the output Se '.
  • a narrow band FLT filter intended to eliminate the noise upstream of the sampling.
  • This filter has the following properties: its impedance variation versus frequency curve is centered on the central frequency Fo of the signals to be converted; it has a very high impedance around this central frequency and a low impedance outside the useful spectrum of the signals to be transmitted, that is to say a low impedance outside a relatively narrow band around the central frequency.
  • the filter is connected between the outputs S and S ', thus between the drains of the transistors MN4 and MN4', so as to derive from the transistor MP5 the current variations that would be in a frequency band outside the useful spectrum.
  • the filter FLT tends to bypass the drains of the transistors MN4 and MN4 'for the non-useful frequencies (and in particular the noise situated outside the useful spectrum), so that the currents di and -di, for useless frequencies, tend to go from the drain of transistor MN4 to the drain of transistor MN4 'rather than to outputs Se and Se'.
  • the filter behaves like an open circuit and does not prevent the current variations di from being directed towards the output Se or Se '.
  • FIG. 3 The AMPC heart of the transconductance amplifier comprises half of the scheme of Figure 1, the elements affected by the 'premium' sign being deleted.
  • E an input to receive a voltage V + dv to be converted into current
  • S a single output S to provide a current I-di where I is equal to IBI -IB2-
  • the output stage of the transconductance amplifier only includes the transistor MP5 and the sources SC1 and SC2.
  • the FLT filter is connected between the output S and the low potential of the power supply (ground Vss).
  • the operation is the same as in differential: for the useful frequency spectrum centered on the central frequency Fo of the signals to be converted, the filter has a very strong impedance and plays no role. For frequencies outside the useful band, the filter tends to short-circuit current di to ground, so that it does not exit through output Se.
  • FIG. 4 shows a schematic diagram of use of the transconductance amplifier to realize a sampler.
  • the diagram considered as an example is a non-differential application to simplify the representation, but it is obviously transferable to a differential application using for example (but not necessarily) two separate sampling capabilities.
  • the voltage to be sampled, dv in small signals, applied to the input E is converted into a current di on the output Se by the transconductance amplifier which is that of FIG. 3.
  • This current di is integrated in a capacitance d EC sampling for the duration of a first half-wave CLK of a pulse of a sampling clock and stores a sample of charges in the capacitance CE.
  • the output Se is disconnected from the capacitance C E and the latter is connected to a sampled voltage output Vech that can be exploited, for example applied to an analog-digital converter.
  • a sampled voltage output Vech that can be exploited, for example applied to an analog-digital converter.
  • the current di to be sampled is applied alternately to the capacitance CE and the capacitance C ⁇ and while the voltage of one is read and exploited, the other receives the current to be sampled.
  • the capacities are reset after each operation in the case simple sampling without decimation, that is to say without adding series of N samples in the same capacity. The reset switches are not shown so as not to weigh down the diagram.
  • the transconductance amplifier according to the invention can be used in a sample-and-hold device for analog-to-digital conversion, in singles or differentials, and in particular in a sample-and-hold device providing two samples in quadrature phase at each sampling period (which implies doubling the number of sampling capacities). It can also be used in a finite impulse response sampled filter in which a weighted sum of a succession of N di current samples is performed and samples are provided at a reduced frequency or decimation frequency which is the sampling frequency divided by N. It will be noted that the transconductance amplifier principle according to the invention has been described with reference to an amplifier core which is that of FIG. 1, but that it is applicable to other circuit diagrams.
  • the transconductance amplifier core for example a scheme in which the transistor MN2 would have its gate connected not to a fixed bias voltage Vbias but to the gate of the transistor MP1.
  • the only condition to be respected is that the transconductance amplifier core provides a current I-di or l + di whose component I is known to be neutralized by the current sources SC1 and SC2 of the folded cascode transistor circuit. It is desirable then that the source SC2 be replaced by an NMOS transistor whose gate is brought to the same potential as the gate of MP5, this potential being such that the current in the transistor thus added is the same current IB2 as that which forms a component of I, that is to say the same current I B 2 as that flowing in the transistor MN2 of the AMPC core.
  • MOS transistors can be replaced by bipolar transistors as indicated.

Abstract

The invention relates to a transconductance amplifier which supplies current variations (di=k.dv) upon receipt of voltage variations (dv). The amplifier includes a first MOS transistor (MN4), the drain of which supplies differential currents (I-di, I+di). The invention also includes an output stage having a second transistor (MP5) of the opposite type to the first. The source of the second transistor is connected to the drain of the first and the gate of the second transistor is biased at a constant voltage (Vref). In addition, the drain of said second transistor receives the current variations supplied by the first transistor that have to be applied to a sampling capacitance. The amplifier also includes a filter (FLT) with a frequency response centred on the central frequency (Fo) of the signals to be converted, having a very high impedance around said central frequency and a low impedance outside of the useful spectrum, whereby the filter is connected to the source of the second transistor (MP5) such as to divert current variations located in a frequency band that is outside the useful spectrum away from the second transistor.

Description

AMPLIFICATEUR A TRANSCONDUCTANCE A FILTRE DE REJECTION TRANSCONDUCTANCE AMPLIFIER WITH REJECTION FILTER
DE BRUIT HORS BANDE UTILEOF NOISE OFF USEFUL BAND
L'invention concerne un amplificateur à transconductance, destiné à fournir des variations de courant di lorsqu'il reçoit des variations de tension dv, et ceci avec un coefficient de conversion désiré Gm appelé transconductance : Gm=di/dv L'invention est applicable tout particulièrement pour réaliser certains types d'échantillonneurs-bloqueurs, plus précisément ceux qui fonctionnent en échantillonnant une quantité de charges plutôt qu'une valeur ponctuelle de tension. Par ailleurs, l'invention s'applique non seulement à des circuits destinés à convertir une variation de tension simple en une variation de courant simple, mais aussi à des circuits différentiels destinés à convertir une variation de tension différentielle en une variation de courant différentielle.The invention relates to a transconductance amplifier, intended to provide current variations di when it receives voltage variations dv, and this with a desired conversion coefficient Gm called transconductance: Gm = di / dv The invention is applicable while particularly to perform certain types of sample-and-hold devices, more specifically those that operate by sampling a quantity of charges rather than a point value of voltage. Moreover, the invention applies not only to circuits intended to convert a simple voltage variation into a simple current variation, but also to differential circuits intended to convert a differential voltage variation into a differential current variation.
Pour situer le contexte de cette invention, on peut rappeler que l'on préfère quelquefois échantillonner des charges plutôt que des tensions, pour réduire l'influence du bruit d'horloge (parfois aussi appelé "jitter" ou gigue d'horloge) lorsqu'on veut échantillonner un signal à haute fréquence sous le contrôle d'une horloge qui définit les phases d'échantillonnage périodique. En intégrant non pas un niveau de tension dans une capacité d'échantillonnage mais un courant pendant une durée d'échantillonnage connue, on réduit l'influence de ce bruit d'horloge. Mais alors, comme le signal d'entrée à convertir se présente généralement sous forme d'une tension (ou plus exactement de variations de tension à haute fréquence), il faut placer en amont de la ou les capacités d'échantillonnage un amplificateur à transconductance de grande qualité qui va convertir très précisément les variations de tension en variations de courant.To set the context of this invention, it may be recalled that it is sometimes preferred to sample loads rather than voltages, to reduce the influence of clock noise (sometimes also called "jitter" or clock jitter) when we want to sample a high frequency signal under the control of a clock that defines the periodic sampling phases. By not integrating a voltage level into a sampling capacity but a current during a known sampling time, the influence of this clock noise is reduced. But then, since the input signal to be converted is generally in the form of a voltage (or more precisely of high-frequency voltage variations), a transconductance amplifier must be placed upstream of the one or more sampling capacitors. high quality that will very accurately convert voltage variations into current variations.
Des échantillonneurs-bloqueurs utilisant un amplificateur à transconductance comme étage d'entrée sont employés notamment dans des applications d'échantillonnage de signaux de télécommunications à haute fréquence en vue d'une transposition de fréquence puis d'une conversion analogique-numérique des signaux. Les bandes de fréquence de signaux de télécommunications sont très encombrées. Un canal de télécommunications utilise une bande étroite de fréquences et tout ce qui se présente en dehors de cette bande constitue du bruit gênant. De manière générale, le signal de télécommunications émis sur un canal donné comporte un spectre utile centré sur une fréquence de porteuse Fo. La porteuse à fréquence Fo est modulée en amplitude ou en fréquence et un des buts de l'échantillonnage est en particulier de transposer le signal vers un spectre à fréquence intermédiaire (centré sur une fréquence intermédiaire Fi plus basse que Fo) ou même vers un spectre en bande de base (centré sur une fréquence zéro).Samplers using a transconductance amplifier as an input stage are used, in particular, in high frequency telecommunications signal sampling applications for frequency transposition and then for analog-to-digital conversion of the signals. The frequency bands of telecommunications signals are very congested. A telecommunications channel uses a narrow band of frequencies and anything outside that band is annoying noise. So Generally speaking, the telecommunication signal transmitted on a given channel comprises a useful spectrum centered on a carrier frequency Fo. The carrier at frequency Fo is modulated in amplitude or in frequency and one of the purposes of the sampling is in particular to transpose the signal towards an intermediate frequency spectrum (centered on an intermediate frequency Fi lower than Fo) or even towards a spectrum in baseband (centered on a zero frequency).
Or il est connu que l'échantillonnage, à une fréquence d'échantillonnage Fe, d'un signal dont le spectre utile est centré sur une fréquence Fo produit d'une part un spectre utile dans une bande transposée centrée sur une fréquence intermédiaire Fi = Fe - Fo, mais produit aussi dans cette bande transposée ce qu'on appelle des repliements de spectre de bruit ; ce bruit replié provient non seulement du bruit présent dans la bande utile centrée sur Fo, mais aussi du bruit présent dans des bandes de même largeur centrées sur Fi+Fe, voire sur d'autres bandes encore liées aux harmoniques de Fe, telle qu'une bande centrée sur KFe + Fi ou KFe-Fi, K étant un entier. Tous ces bruits se replient vers la nouvelle bande de signal utile centrée sur la fréquence intermédiaire Fi, et le bruit résultant est la somme des bruits repliés car les bruits issus des différentes bandes sont non corrélés et restent non corrélés après repliement.However, it is known that the sampling, at a sampling frequency Fe, of a signal whose useful spectrum is centered on a frequency Fo produces on the one hand a useful spectrum in a transposed band centered on an intermediate frequency Fi = Fe - Fo, but also produces in this transposed band what are called folds of the noise spectrum; this folded noise comes not only from the noise present in the useful band centered on Fo, but also from the noise present in bands of the same width centered on Fi + Fe, or even on other bands still bound to the harmonics of Fe, such that a band centered on KFe + Fi or KFe-Fi, K being an integer. All these noises fold back to the new useful signal band centered on the intermediate frequency Fi, and the resulting noise is the sum of folded noises because the noises from the different bands are uncorrelated and remain uncorrelated after folding.
Si on mettait un filtre à l'entrée de l'échantillonneur-bloqueur, cela éliminerait une partie du bruit, mais cela n'éliminerait pas le bruit propre de l'amplificateur d'entrée de l'échantillonneur. Si on filtre en sortie, c'est trop tard les bruits repliés sont déjà dans la bande passante utile de sortie. En pratique, il faudrait filtre à l'intérieur même de l'amplificateur d'entrée de l'échantillonneur. Malheureusement, la plupart des structures d'amplificateur d'entrée ne permettent pas un tel filtrage interne à l'amplificateur sans dégradation des performances de l'amplificateur.Putting a filter at the input of the sample-and-hold device would eliminate some of the noise, but that would not eliminate the inherent noise of the input amplifier of the sampler. If we filter out, it is too late folded noises are already in the useful output bandwidth. In practice, it would be necessary to filter within the input amplifier of the sampler. Unfortunately, most input amplifier structures do not allow such internal filtering at the amplifier without degrading the performance of the amplifier.
A titre d'exemple, l'article de B. Nauta "A CMOS transconductance-C Filter Technique for Very High Frequencies" dans IEEE Journal of Solid-State Circuits, vol 27 N ° 2 pp 142-153 Février 1992 décrit une structure d'amplificateur à transconductance qui a de bonnes caractéristiques de bande passante mais corrélativement un fort bruit et il ne permet pas facilement de réaliser un filtrage de ce bruit. Un autre exemple est donné dans l'article de M. Koyama et al., "AAs an example, the article by B. Nauta "A CMOS transconductance-C Filter Technique for Very High Frequencies" in IEEE Journal of Solid-State Circuits, vol 27 No. 2 pp 142-153 February 1992 describes a structure of transconductance amplifier which has good bandwidth characteristics but correlatively a loud noise and it does not easily make it possible to filter this noise. Another example is given in the article by M. Koyama et al., "A
2.5-V Active Low-Pass Filter Using All-n-p-n Gilbert CeIIs with a 1 -Vp-p2.5-V Active Low-Pass Filter Using All-n-p-n Gilbert CeIIs with a 1 -Vp-p
Linear Input Range" dans IEEE Journal of SoNd State Circuits, vol. 28, no.Linear Input Range "in IEEE Journal of SoNd State Circuits, 28, no.
12, pp 1246-1253, Décembre 1993. Il s'agit d'un amplificateur à deux étages qui peut supporter un filtrage interne, mais qui présente de la distorsion.12, pp. 1246-1253, December 1993. This is a two-stage amplifier that can support internal filtering but exhibits distortion.
Dans un autre exemple encore, T. Kwan and K. Martin., "An adaptive analog continuous-time CMOS biquadratic filter", dans IEEE Journal of SoNd State Circuits, vol. 26, no. 6, pp 859-867, June 1991 , l'introduction d'un filtre interne perturberait les signaux utiles. On a trouvé qu'on pouvait modifier la structure de l'étage de sortie d'un amplificateur à transconductance destiné à être placé en entrée d'un échantillonneur-bloqueur, pour y introduire un filtrage interne remplissant de la meilleure manière possible une fonction d'élimination du bruit qui est engendré par repliement lors de l'échantillonnage effectué en aval. L'étage de sortie est constitué selon l'invention en étage cascode replié absorbant tout le courant produit par l'amplificateur à transconductance et c'est à cet étage cascode replié qu'on relie un filtre capable de dériver les variations de courant qui ne sont pas dans la bande de fréquence utile du signal d'entrée à échantillonner, sans dériver les variations de courant qui sont dans la bande utile. Le filtre a une impédance élevée dans la bande utile centrée autour de la fréquence Fo de la porteuse.In yet another example, T. Kwan and K. Martin., "An adaptive analog continuous-time CMOS biquadratic filter," in IEEE Journal of SoNd State Circuits, vol. 26, no. 6, pp 859-867, June 1991, the introduction of an internal filter would disturb the useful signals. It has been found that the structure of the output stage of a transconductance amplifier intended to be placed at the input of a sample-and-hold device can be modified to introduce an internal filtering which fulfills in the best manner possible a function of a transconductance amplifier. elimination of noise that is generated by folding during downstream sampling. The output stage is constituted according to the invention in folded cascode stage absorbing all the current produced by the transconductance amplifier and it is at this folded cascode stage that a filter is connected capable of deriving the current variations which do not occur. are not in the useful frequency band of the input signal to be sampled, without deriving the current variations that are in the useful band. The filter has a high impedance in the useful band centered around the frequency Fo of the carrier.
En conséquence, l'invention propose un amplificateur à transconductance comportant un premier transistor d'un premier type fournissant des variations de courant à échantillonner ayant un spectre de fréquence utile centré sur une fréquence Fo, caractérisé en ce qu'il comporte un étage de sortie comportant un deuxième transistor d'un type opposé au premier, dont la source est reliée au drain du premier, dont la grille est polarisée à un potentiel constant, et dont le drain reçoit les variations de courant qui sont fournies par le premier transistor et qui doivent être appliquées à une capacité d'échantillonnage, et en ce qu'il comporte en outre un filtre à réponse en fréquence centrée sur la fréquence centrale Fo des signaux d'entrée de l'amplificateur, ayant une très haute impédance autour de cette fréquence centrale et une faible impédance en dehors du spectre utile, le filtre étant connecté à la source du deuxième transistor de manière à dériver en dehors du deuxième transistor les variations de courant qui sont dans une bande de fréquences située hors du spectre utile.Accordingly, the invention proposes a transconductance amplifier comprising a first transistor of a first type providing current variations to be sampled having a useful frequency spectrum centered on a frequency Fo, characterized in that it comprises an output stage. having a second transistor of a type opposite the first, whose source is connected to the drain of the first, whose gate is biased at a constant potential, and whose drain receives the current variations which are provided by the first transistor and which must be applied to a sampling capacity, and in that it further comprises a frequency response filter centered on the central frequency Fo of the input signals of the amplifier, having a very high impedance around this frequency and a low impedance outside the useful spectrum, the filter being connected to the source of the second transistor so as to derive outside the second transistor currents variations that are in a frequency band outside the useful spectrum.
En pratique, les variations de courant à échantillonner sont superposées à un courant de polarisation égal à la somme d'un premier et d'un deuxième courants constants. Le deuxième transistor a sa source reliée à une première source de courant fournissant un courant égal au premier courant constant. Son drain est relié à une sortie en courant de l'amplificateur et à une deuxième source de courant fournissant un courant égal au deuxième courant constant. L'amplificateur selon l'invention est tout particulièrement destiné à être placé à l'entrée d'un échantillonneur-bloqueur en vue de la conversion en variations de courant de signaux de tension à haute fréquence ayant un spectre utile centré sur une fréquence Fo, avant échantillonnage de ces variations de courant. L'amplificateur ainsi conçu est simple ou différentiel ; s'il est différentiel, il est constitué par deux amplificateurs simples et le filtre est connecté entre les drains des premiers transistors respectifs des deux amplificateurs simples.In practice, the current variations to be sampled are superimposed on a bias current equal to the sum of a first and a second constant current. The second transistor has its source connected to a first current source providing a current equal to the first constant current. Its drain is connected to a current output of the amplifier and to a second current source providing a current equal to the second constant current. The amplifier according to the invention is particularly intended to be placed at the input of a sample-and-hold circuit for the conversion into current variations of high-frequency voltage signals having a useful spectrum centered on a frequency Fo, before sampling of these current variations. The amplifier thus designed is simple or differential; if it is differential, it is constituted by two simple amplifiers and the filter is connected between the drains of the first respective transistors of the two simple amplifiers.
Le filtre peut être un filtre passif simple à inductance et capacité. Grâce à l'invention, on peut réaliser un échantillonneur-bloqueur de très grande bande passante et à faible bruit.The filter can be a simple passive filter with inductance and capacitance. Thanks to the invention, a very high bandwidth and low noise sampler-blocker can be realized.
On notera que l'amplificateur selon l'invention peut être réalisé avec des transistors MOS ou avec des transistors bipolaires, et par conséquent, dans toute cette description, on considérera que l'appellation "transistor" recouvre à la fois les transistors MOS et les transistors bipolaires et que les appellations "source", "drain", et "grille", classiquement utilisées pour les transistors MOS, doivent être interprétées comme signifiant respectivement "émetteur", "collecteur" et "base", si les transistors sont bipolaires. Des transistors MOS de type opposé sont alors des transistors NMOS et PMOS, des transistors bipolaires de type opposé sont des transistors NPN et PNP respectivement.Note that the amplifier according to the invention can be realized with MOS transistors or with bipolar transistors, and therefore, throughout this description, it will be considered that the term "transistor" covers both the MOS transistors and the transistors. bipolar transistors and that the terms "source", "drain", and "gate", conventionally used for MOS transistors, must be interpreted as meaning "transmitter", "collector" and "base", respectively, if the transistors are bipolar. MOS transistors of the opposite type are then NMOS and PMOS transistors, opposite type bipolar transistors are NPN and PNP transistors respectively.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels : - la figure 1 représente un exemple d'amplificateur à transconductance connu à partir duquel la présente invention peut être appliquée ;Other features and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which: FIG. 1 represents an example of a known transconductance amplifier from which the present invention can be applied;
- la figure 2 représente l'amplificateur à transconductance selon l'invention ;FIG. 2 represents the transconductance amplifier according to the invention;
- la figure 3 représente l'amplificateur selon l'invention pour un mode non différentiel ;FIG. 3 represents the amplifier according to the invention for a non-differential mode;
- la figure 4 représente une application de l'amplificateur à transconductance de la figure 3 à un schéma simplifié d'échantillonneur bloqueur différentiel.FIG. 4 represents an application of the transconductance amplifier of FIG. 3 to a simplified diagram of a differential sample-and-hold device.
L'amplificateur à transconductance de la figure 1 est un amplificateur différentiel ayant deux entrées E, E' entre lesquelles est appliquée une tension différentielle d'entrée (en petits signaux à haute fréquence) V+dv, V-dv, à convertir en courant différentiel l-di, l+di sur deux sorties différentielles en courant S et S'. V est une tension de mode commun sur les entrées, I est un courant de polarisation identique sur les deux sorties.The transconductance amplifier of FIG. 1 is a differential amplifier having two inputs E, E 'between which an input differential voltage (in small high frequency signals) V + dv, V-dv, to be converted into current is applied. differential I-di, l + di on two differential outputs in current S and S '. V is a common mode voltage on the inputs, I is an identical bias current on both outputs.
L'amplificateur est symétrique puisqu'on travaille ici en différentiel et comporte donc deux moitiés identiques. La première moitié comporte un ensemble en série d'un premier et un deuxième transistors MOS (MP1 , MN2) de type opposé reliés par leurs drains ; la grille du premier transistor MP1 est reliée à l'entrée E ; la source est reliée à une source de courant constant lBi ainsi qu'à une résistance de valeur R et au drain d'un troisième transistor MOS MN3 de même type que le deuxième ; la source du deuxième transistor MN2 et celle du troisième transistor MN3 sont à la masse (Vss) ; la grille du transistor MN3 est reliée aux drains des premier et deuxième transistors ; et l'amplificateur comporte en outre un quatrième transistor MN4 dont la fonction est de recopier vers la sortie S le courant qui parcourt le transistor MN3 ; les sources des deuxième et quatrième transistors, MN2 et MN4 sont donc reliées, leurs grilles aussi. Enfin, la grille du transistor MN2 est polarisée par une tension fixe Vbιas pour que ce transistor agisse en source de courant et maintienne une valeur de courant bien fixe, de valeur IB2, dans les transistors MP1 et MN2. L'autre moitié de l'amplificateur est constituée par un ensemble identique de quatre transistors, désignés par les mêmes références affectées du signe 'prime', et raccordés de la même manière entre l'entrée E' et la sortie S' ; les sources de courant sont identiques dans les deux moitiés d'amplificateur, les résistances aussi ainsi que les constitutions de transistors. Les résistances de valeur R sont reliées ensemble et constituent une seule résistance de valeur 2R partagée entre les deux moitiés de l'amplificateur ; cette résistance de valeur 2R relie en effet les drains des troisièmes transistors MN3, MN3' des deux ensembles.The amplifier is symmetrical since it works here in differential and therefore has two identical halves. The first half comprises a series of first and second MOS transistors (MP1, MN2) of the opposite type connected by their drains; the gate of the first transistor MP1 is connected to the input E; the source is connected to a constant current source I B i as well as to a resistor of value R and to the drain of a third MOS transistor MN3 of the same type as the second; the source of the second transistor MN2 and that of the third transistor MN3 are grounded (Vss); the gate of the transistor MN3 is connected to the drains of the first and second transistors; and the amplifier further comprises a fourth transistor MN4 whose function is to copy to the output S the current flowing through the transistor MN3; the sources of the second and fourth transistors, MN2 and MN4 are therefore connected, their grids too. Finally, the gate of the transistor MN2 is biased by a fixed voltage V Bias so that the transistor acts as a current source and maintains a very fixed current value, of value I B 2, in the transistors MP1 and MN2. The other half of the amplifier consists of an identical set of four transistors, designated by the same references assigned the sign 'prime', and connected in the same way between the input E 'and the output S'; the current sources are identical in the two amplifier halves, the resistors as well as the constitutions of transistors. The resistors of value R are connected together and constitute a single resistor of value 2R shared between the two halves of the amplifier; this resistance of value 2R in fact connects the drains of the third transistors MN3, MN3 'of the two sets.
Ce schéma fonctionne idéalement de la manière suivante : le transistor MP1 parcouru par un courant constant est un suiveur de tension ; les petites variations dv sur sa grille se répercutent intégralement sur sa source. Il en est de même de MP1 ', avec une variation opposée (-dv). La résistance de valeur 2R voit une variation de tension 2dv a ses bornes. Elle est parcourue par une variation de courant di = 2dv/2R = dv/R qui ne peut circuler ni dans la branche lBi ni dans les transistors MP1 , MN2, MP1 ', MN2' dont les courants sont fixés à IB2- La variation de courant 2dV/R ne peut circuler que dans les transistors MN3 (dans un sens) et MN3' (dans l'autre sens). Il circule en pratique dans le transistor MN3 un courant l-di et dans le transistor MN3' un courant l+di, où le courant de polarisation commun I est simplement IBI -IB2- Les courants l-di et l+di sont recopiés par les transistors MN4 etThis scheme works ideally in the following manner: the transistor MP1 traversed by a constant current is a voltage follower; the small dv variations on its grid are fully reflected on its source. It is the same with MP1 ', with an opposite variation (-dv). The resistance of value 2R sees a variation of voltage 2dv at its terminals. It is traversed by a current variation di = 2dv / 2R = dv / R which can not flow neither in the branch l B i nor in the transistors MP1, MN2, MP1 ', MN2' whose currents are set at I B2 - The current variation 2dV / R can only flow in the transistors MN3 (in one direction) and MN3 '(in the other direction). It circulates in practice in the transistor MN3 a current l-di and in the transistor MN3 'a current l + di, where the common bias current I is simply IBI -IB2- The currents l-di and l + di are copied by the MN4 transistors and
MN4' pour constituer les courants différentiels de sortie l-di = l-dv/R dans un sens sur S, et l+di = l+dv/R dans l'autre sens sur S'. L'amplificateur a donc une transconductance di/dv égale à 1 /R pour les petits signaux ; cette transconductance est bien maîtrisée et très linéaire. On fait l'hypothèse simplificatrice que la recopie de courant est faite avec un facteur 1 . On comprendra que ce facteur pourrait être différent en choisissant un rapport de géométries différent de 1 entre les transistors MN3 et MN4.MN4 'to constitute the differential output currents l-di = l-dv / R in one direction on S, and l + di = l + dv / R in the other direction on S'. The amplifier therefore has a transconductance di / dv equal to 1 / R for small signals; this transconductance is well controlled and very linear. The simplifying assumption is that the current copying is done with a factor of 1. It will be understood that this factor could be different by choosing a ratio of geometries different from 1 between the transistors MN3 and MN4.
La figure 2 représente le schéma de principe de la présente invention. Le cœur de l'amplificateur à transconductance de la figure 1 , entouré par un trait tireté, est repris pour former le circuit selon l'invention. Il est désigné par AMPC sur la figure 2 (en traits tiretés également) et il possède deux entrées différentielles E et E' en tension et deux sorties différentielles en courant S et S' comme expliqué précédemment.Fig. 2 shows the block diagram of the present invention. The core of the transconductance amplifier of FIG. 1, surrounded by a dashed line, is used to form the circuit according to the invention. It is designated AMPC in FIG. 2 (in dashed lines as well) and it has two differential inputs E and E 'in voltage and two differential outputs in current S and S' as explained previously.
Le cœur de l'amplificateur est suivi, sur chaque sortie, d'un étage de sortie dit "étage cascode replié", qui a pour fonction de restituer un courant di à partir du courant l+di et un courant -di à partir du courant l-di, en vue d'appliquer ces courants en principe à une capacité d'échantillonnage. L'ensemble de l'amplificateur à transconductance, de la ou les capacités d'échantillonnage, et les commutateurs d'échantillonnage avec leurs circuits de commande (non représentés sur la figure 2) constituera alors un circuit d'échantillonnage complet.The heart of the amplifier is followed on each output by an output stage called "folded cascode stage", whose function is to restore a di current from the current l + di and a current -di from the current l-di, to apply these currents in principle to a sampling capacity. The entire transconductance amplifier, the sampling capacitor (s), and the sampling switches with their control circuits (not shown in FIG. 2) will then constitute a complete sampling circuit.
L'étage de sortie cascode replié qui est connecté à la sortie S comprend un transistor MP5 (PMOS) identique au transistor MP1 du cœur AMPC et dont la source est reliée à la sortie S, donc au drain du transistor MN4. La fonction de ce transistor est d'éliminer une partie de la composante de courant I présente sur le drain de MN4. On rappelle que la composante I est égale à IBI-IB2- L'étage cascode comprend donc des sources de courant SC1 et SC2 qui établissent respectivement des courants lBi et IB2 qu'on pourra soustraire du courant I. Le transistor MP5 est monté de manière à dériver les variations de courant di issues du cœur AMPC vers une sortie Se qui ne comportera plus que le courant di et non le courant l-di.The folded cascode output stage which is connected to the output S comprises a transistor MP5 (PMOS) identical to the transistor MP1 of the AMPC core and whose source is connected to the output S, therefore to the drain of the transistor MN4. The function of this transistor is to eliminate a part of the current component I present on the drain of MN4. It is recalled that the component I is equal to IBI-IB2- The cascode stage therefore comprises current sources SC1 and SC2 which respectively establish currents I B i and I B 2 that can be subtracted from current I. The transistor MP5 is mounted so as to derive the current variations di from the AMPC core to an output Se which will comprise only the current di and not the current I-di.
Les deux sources de courant SC1 et SC2 de même valeurs lBi et IB2 que les sources du cœur AMPC sont connectées de la manière suivante : la source de MP5 est reliée à la sortie S et également à la source de courant SC1 ( IB-I) qui prend son alimentation de Vdd. Le drain de MP5 est relié à la source de courant SC2 (IB2) qui dirige son courant vers la masse Vss. La grille du transistor MP5 est à un potentiel de polarisation fixe Vref.The two current sources SC1 and SC2 of the same values I B i and I B2 that the sources of the AMPC core are connected in the following way: the source of MP5 is connected to the output S and also to the current source SC1 (I B - I ) which takes its power from Vdd. The drain of MP5 is connected to the current source SC2 (I B 2) which directs its current to the ground Vss. The gate of transistor MP5 is at a fixed bias potential Vref.
La sortie de l'étage cascode est un nœud Se et représente la sortie de l'amplificateur à transconductance complété par son étage de sortie ; dans un échantillonneur, la sortie Se est destinée à être reliée à une capacité d'échantillonnage par l'intermédiaire d'un commutateur ou d'un système de commutateurs.The output of the cascode stage is a node Se and represents the output of the transconductance amplifier completed by its output stage; in a sampler, the output Se is intended to be connected to a sampling capacity via a switch or a system of switches.
Le montage et les paramètres numériques et géométriques sont rigoureusement les mêmes pour l'autre moitié de l'amplificateur ; les éléments portent les mêmes références avec le signe "prime".The mounting and the numerical and geometric parameters are strictly the same for the other half of the amplifier; the elements bear the same references with the sign "prime".
L'étage de sortie fonctionne de la manière suivante : puisque la sortie S fournit un courant l-di qui est égal à IBI-IB2-CU, et du fait de la présence de la source de courant SC1 fournissant lB-ι, le courant qui circule dans le transistor MP5 est nécessairement égal à IBI-(IBI-IB2-CU) donc à Iβ2+di. Et, du fait de la présence de la source SC2 qui fournit IB2, le courant de sortie final de l'amplificateur à transconductance est un courant sortant de valeur +di sur la sortie Se. De la même manière, c'est un courant sortant de valeur -di sur la sortie Se'. Ayant ainsi constitué deux sorties en courant de valeur di et -di sur les sorties Se et Se', on place entre les noeuds S et S', c'est-à-dire à l'intérieur de l'amplificateur à transconductance lui-même puisque c'est en amont des sorties finales Se et Se', un filtre FLT à bande étroite destiné à éliminer le bruit en amont de l'échantillonnage. Ce filtre a les propriétés suivantes : sa courbe de variation d'impédance en fonction de la fréquence est centrée sur la fréquence centrale Fo des signaux à convertir ; il a une très haute impédance autour de cette fréquence centrale et une faible impédance en dehors du spectre utile des signaux à transmettre, c'est-à-dire une faible impédance en dehors d'une bande relativement étroite autour de la fréquence centrale. Un tel filtre peut tout simplement être un circuit bouchon entièrement passif (une inductance en parallèle avec une capacité, répondant à la condition 2πl_CFo2 = 1 ). Des filtres plus sophistiqués peuvent être prévus si on souhaite un gabarit de filtrage plus rectangulaire que celui d'un filtre LC simple. Le filtre est connecté entre les sorties S et S', donc entre les drains des transistors MN4 et MN4', de manière à dériver en dehors du transistor MP5 les variations de courant qui seraient dans une bande de fréquences située hors du spectre utile. En d'autres mots, le filtre FLT tend à court-circuiter les drains des transistors MN4 et MN4' pour les fréquences non utiles (et notamment le bruit situé en dehors du spectre utile), de sorte que les courants di et -di, pour les fréquences inutiles, tendent à passer du drain du transistor MN4 vers le drain du transistor MN4' plutôt que vers les sorties Se et Se'. Au contraire, pour les fréquences utiles autour de Fo, le filtre se comporte comme un circuit ouvert et n'empêche pas les variations de courant di d'être dirigées vers la sortie Se ou Se'.The output stage operates in the following manner: since the output S supplies a current l-di which is equal to I BI -I B2 -CU, and because of the presence of the current source SC1 supplying the B- 1 , the current flowing in the transistor MP5 is necessarily equal to I BI - (I BI -I B2 -CU) so Iβ2 + di. And, because of the presence of the source SC2 which supplies I B2 , the final output current of the transconductance amplifier is an outgoing current of value + di on the output Se. In the same way, it is an outgoing current of value -di on the output Se '. Having thus constituted two current outputs of di and -di value on the outputs Se and Se ', it is placed between the nodes S and S', that is to say within the transconductance amplifier itself. even since it is upstream of the final outputs Se and Se ', a narrow band FLT filter intended to eliminate the noise upstream of the sampling. This filter has the following properties: its impedance variation versus frequency curve is centered on the central frequency Fo of the signals to be converted; it has a very high impedance around this central frequency and a low impedance outside the useful spectrum of the signals to be transmitted, that is to say a low impedance outside a relatively narrow band around the central frequency. Such a filter can simply be a fully passive plug circuit (an inductor in parallel with a capacitance, satisfying the condition 2πl_CFo 2 = 1). More sophisticated filters may be provided if a more rectangular filtering template than a single LC filter is desired. The filter is connected between the outputs S and S ', thus between the drains of the transistors MN4 and MN4', so as to derive from the transistor MP5 the current variations that would be in a frequency band outside the useful spectrum. In other words, the filter FLT tends to bypass the drains of the transistors MN4 and MN4 'for the non-useful frequencies (and in particular the noise situated outside the useful spectrum), so that the currents di and -di, for useless frequencies, tend to go from the drain of transistor MN4 to the drain of transistor MN4 'rather than to outputs Se and Se'. On the contrary, for the useful frequencies around Fo, the filter behaves like an open circuit and does not prevent the current variations di from being directed towards the output Se or Se '.
On notera que ce schéma est complètement transposable à un montage non différentiel dans lequel l'amplificateur à transconductance n'utilise qu'une moitié du schéma des figures 1 et 2. Un tel montage est représenté à la figure 3. Le cœur AMPC de l'amplificateur à transconductance comprend la moitié du schéma de la figure 1 , les éléments affectés du signe 'prime' étant supprimés. Il y a une seule entrée E pour recevoir une tension V+dv à convertir en courant et une seule sortie S pour fournir un courant l-di où I est égal à IBI -IB2- L'étage de sortie de l'amplificateur à transconductance comporte seulement le transistor MP5 et les sources SC1 et SC2. La sortie finale est la sortie Se fournissant un courant de petit signal di où di=dv/R.Note that this diagram is completely transferable to a non-differential mounting in which the transconductance amplifier uses only half of the diagram of Figures 1 and 2. Such an assembly is shown in Figure 3. The AMPC heart of the transconductance amplifier comprises half of the scheme of Figure 1, the elements affected by the 'premium' sign being deleted. There is a single input E to receive a voltage V + dv to be converted into current and a single output S to provide a current I-di where I is equal to IBI -IB2- The output stage of the transconductance amplifier only includes the transistor MP5 and the sources SC1 and SC2. The final output is the output Se providing a small signal current di where di = dv / R.
Dans ce cas, le filtre FLT est connecté entre la sortie S et le potentiel bas de l'alimentation (masse Vss). Le fonctionnement est le même qu'en différentiel : pour le spectre de fréquences utile centré sur la fréquence centrale Fo des signaux à convertir, le filtre présente une très forte impédance et ne joue aucun rôle. Pour les fréquences en dehors de la bande utile, le filtre tend à court-circuiter le courant di vers la masse, de sorte qu'il ne sort pas par la sortie Se.In this case, the FLT filter is connected between the output S and the low potential of the power supply (ground Vss). The operation is the same as in differential: for the useful frequency spectrum centered on the central frequency Fo of the signals to be converted, the filter has a very strong impedance and plays no role. For frequencies outside the useful band, the filter tends to short-circuit current di to ground, so that it does not exit through output Se.
La figure 4 représente un schéma simplifié d'utilisation de l'amplificateur à transconductance pour réaliser une échantillonneur. Le schéma considéré à titre d'exemple est une application non différentielle pour simplifier la représentation, mais il est évidemment transposable à une application différentielle utilisant par exemple (mais pas obligatoirement) deux capacités d'échantillonnage séparées. La tension à échantillonner, dv en petits signaux, appliquée à l'entrée E, est convertie en un courant di sur la sortie Se par l'amplificateur à transconductance qui est celui de la figure 3. Ce courant di est intégré dans une capacité d'échantillonnage CE pendant la durée d'une première demi- alternance CLK d'une impulsion d'une horloge d'échantillonnage et stocke un échantillon de charges dans la capacité CE. Pendant la durée de la demi- alternance suivante NCLK, la sortie Se est déconnectée de la capacité CE et celle-ci est reliée à une sortie de tension échantillonnée Vech qui peut être exploitée, par exemple appliquée à un convertisseur analogique-numérique. Pour augmenter la cadence d'échantillonnage, on peut très bien prévoir, mais ce n'est pas obligatoire, qu'un autre échantillonnage a lieu pendant la demi-alternance suivante NCLK, dans une capacité CΕ identique à la capacité CE. Ainsi, le courant di à échantillonner est appliqué alternativement à la capacité CE et à la capacité CΕ et pendant que la tension de l'une est lue et exploitée, l'autre reçoit le courant à échantillonner. Les capacités sont remises à zéro après chaque exploitation dans le cas d'un échantillonnage simple sans décimation, c'est-à-dire sans addition de séries de N échantillons dans la même capacité. Les interrupteurs de remise à zéro ne sont pas représentés pour ne pas alourdir le schéma.Figure 4 shows a schematic diagram of use of the transconductance amplifier to realize a sampler. The diagram considered as an example is a non-differential application to simplify the representation, but it is obviously transferable to a differential application using for example (but not necessarily) two separate sampling capabilities. The voltage to be sampled, dv in small signals, applied to the input E, is converted into a current di on the output Se by the transconductance amplifier which is that of FIG. 3. This current di is integrated in a capacitance d EC sampling for the duration of a first half-wave CLK of a pulse of a sampling clock and stores a sample of charges in the capacitance CE. During the duration of the next half cycle NCLK, the output Se is disconnected from the capacitance C E and the latter is connected to a sampled voltage output Vech that can be exploited, for example applied to an analog-digital converter. To increase the sampling rate, one can very well predict, but it is not obligatory, that another sampling takes place during the following half-wave NCLK, in a capacity CΕ identical to the capacity C E. Thus, the current di to be sampled is applied alternately to the capacitance CE and the capacitance CΕ and while the voltage of one is read and exploited, the other receives the current to be sampled. The capacities are reset after each operation in the case simple sampling without decimation, that is to say without adding series of N samples in the same capacity. The reset switches are not shown so as not to weigh down the diagram.
L'amplificateur à transconductance selon l'invention peut être utilisé dans un échantillonneur bloqueur destiné à une conversion analogique-numérique, en simple ou en différentiel, et notamment dans un échantillonneur bloqueur fournissant deux échantillons en quadrature de phase à chaque période d'échantillonnage (ce qui suppose de multiplier par deux le nombre de capacités d'échantillonnage). Il peut être utilisé aussi dans un filtre échantillonné à réponse impulsionnelle finie dans lequel on effectue une somme pondérée d'une succession de N échantillons de courant di et on fournit des échantillons à une fréquence réduite ou fréquence de décimation qui est la fréquence d'échantillonnage divisée par N. On notera que le principe d'amplificateur à transconductance selon l'invention a été décrit à propos d'un cœur d'amplificateur qui est celui de la figure 1 , mais qu'il est applicable à d'autres schémas de cœur d'amplificateur, par exemple un schéma dans lequel le transistor MN2 aurait sa grille connectée non pas à une tension de polarisation fixe Vbias mais à la grille du transistor MP1. La seule condition à respecter est que le cœur d'amplificateur à transconductance fournisse un courant l-di ou l+di dont la composante I soit connue pour pouvoir être neutralisée par les sources de courant SC1 et SC2 du montage à transistor cascode replié. Il est souhaitable alors que la source SC2 soit remplacée par un transistor NMOS dont la grille est portée au même potentiel que la grille de MP5, ce potentiel étant tel que le courant dans le transistor ainsi rajouté soit le même courant IB2 que celui qui forme une composante de I, c'est-à-dire le même courant IB2 que celui qui circule dans le transistor MN2 du cœur AMPC.The transconductance amplifier according to the invention can be used in a sample-and-hold device for analog-to-digital conversion, in singles or differentials, and in particular in a sample-and-hold device providing two samples in quadrature phase at each sampling period ( which implies doubling the number of sampling capacities). It can also be used in a finite impulse response sampled filter in which a weighted sum of a succession of N di current samples is performed and samples are provided at a reduced frequency or decimation frequency which is the sampling frequency divided by N. It will be noted that the transconductance amplifier principle according to the invention has been described with reference to an amplifier core which is that of FIG. 1, but that it is applicable to other circuit diagrams. amplifier core, for example a scheme in which the transistor MN2 would have its gate connected not to a fixed bias voltage Vbias but to the gate of the transistor MP1. The only condition to be respected is that the transconductance amplifier core provides a current I-di or l + di whose component I is known to be neutralized by the current sources SC1 and SC2 of the folded cascode transistor circuit. It is desirable then that the source SC2 be replaced by an NMOS transistor whose gate is brought to the same potential as the gate of MP5, this potential being such that the current in the transistor thus added is the same current IB2 as that which forms a component of I, that is to say the same current I B 2 as that flowing in the transistor MN2 of the AMPC core.
Dans tout ce qui précède, les transistors MOS peuvent être remplacés par des transistors bipolaires comme cela a été indiqué. In all of the above, the MOS transistors can be replaced by bipolar transistors as indicated.

Claims

REVENDICATIONS
1. Amplificateur à transconductance comportant un premier transistor (MN4) d'un premier type fournissant les variations de courant à échantillonner, l'amplificateur étant caractérisé en ce qu'il comporte un étage de sortie comportant un deuxième transistor (MP5) d'un type opposé au premier, dont la source est reliée au drain du premier, dont la grille est polarisée à un potentiel constant (Vref), et dont le drain reçoit les variations de courant (l-di, l+di) qui sont fournies par le premier transistor et qui doivent être appliquées à une capacité d'échantillonnage, et en ce qu'il comporte en outre un filtre (FLT) à réponse en fréquence centrée sur la fréquence centrale Fo des signaux à convertir, ayant une très haute impédance autour de cette fréquence centrale et une faible impédance en dehors du spectre utile, le filtre étant connecté à la source du deuxième transistor (MP5) de manière à dériver en dehors du deuxième transistor les variations de courant qui sont dans une bande de fréquences située hors du spectre utile.A transconductance amplifier comprising a first transistor (MN4) of a first type providing the current variations to be sampled, the amplifier being characterized in that it comprises an output stage comprising a second transistor (MP5) of a opposite type to the first, whose source is connected to the drain of the first, whose gate is biased at a constant potential (Vref), and whose drain receives the current variations (l-di, l + di) which are supplied by the first transistor and which must be applied to a sampling capacity, and in that it further comprises a frequency response filter (FLT) centered on the central frequency Fo of the signals to be converted, having a very high impedance around of this central frequency and a low impedance outside the useful spectrum, the filter being connected to the source of the second transistor (MP5) so as to derive outside the second transistor the variations of which are in a frequency band outside the useful spectrum.
2. Amplificateur selon la revendication 1 , caractérisé en ce que le filtre (FLT) est connecté par ailleurs à un potentiel d'alimentation (Vss).2. Amplifier according to claim 1, characterized in that the filter (FLT) is also connected to a supply potential (Vss).
3. Amplificateur différentiel à transconductance caractérisé en ce qu'il comporte deux amplificateurs simples selon la revendication 1 destinés à appliquer des variations de courant à deux capacités d'échantillonnage, et en ce que le filtre (FLT) est connecté entre les drains des premiers transistors respectifs (MN4, MN4') des deux amplificateurs simples.3. Differential transconductance amplifier characterized in that it comprises two simple amplifiers according to claim 1 for applying current variations to two sampling capacitors, and in that the filter (FLT) is connected between the drains of the first respective transistors (MN4, MN4 ') of the two single amplifiers.
4. Amplificateur à transconductance selon l'une des revendications 1 à 3, caractérisé en ce que le filtre (FLT) est un filtre passif à inductance et capacité.4. Transconductance amplifier according to one of claims 1 to 3, characterized in that the filter (FLT) is a passive filter with inductance and capacitance.
5. Amplificateur à transconductance selon l'une des revendications 1 à 4, caractérisé en ce que le drain du deuxième transistorTransconductance amplifier according to one of Claims 1 to 4, characterized in that the drain of the second transistor
(MP5) constitue une sortie (Se) d'amplificateur destinée à être reliée à travers un système de commutateurs à au moins une capacité d'échantillonnage. (MP5) constitutes an amplifier output (Se) intended to be connected to through a switch system with at least one sampling capability.
EP08701490A 2007-01-16 2008-01-15 Transconductance amplifier with a filter for rejecting noise outside the useful band Withdrawn EP2095501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0700287A FR2911446B1 (en) 2007-01-16 2007-01-16 TRANSCONDUCTANCE AMPLIFIER WITH NOISE REJECTION FILTER OUT OF USEFUL STRIP
PCT/EP2008/050380 WO2008090053A1 (en) 2007-01-16 2008-01-15 Transconductance amplifier with a filter for rejecting noise outside the useful band

Publications (1)

Publication Number Publication Date
EP2095501A1 true EP2095501A1 (en) 2009-09-02

Family

ID=38365595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08701490A Withdrawn EP2095501A1 (en) 2007-01-16 2008-01-15 Transconductance amplifier with a filter for rejecting noise outside the useful band

Country Status (4)

Country Link
US (1) US8035422B2 (en)
EP (1) EP2095501A1 (en)
FR (1) FR2911446B1 (en)
WO (1) WO2008090053A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823450B2 (en) 2012-07-19 2014-09-02 Honeywell International Inc. Multiple-output transconductance amplifier based instrumentation amplifier
US9112462B2 (en) 2013-05-15 2015-08-18 Honeywell International Inc. Variable-gain dual-output transconductance amplifier-based instrumentation amplifiers
EP3379204B1 (en) 2017-03-22 2021-02-17 Knowles Electronics, LLC Arrangement to calibrate a capacitive sensor interface
CN108801912B (en) * 2017-05-03 2020-05-26 中国科学院物理研究所 Low-noise preamplifier circuit for far infrared spectrum detection
CN112335262B (en) 2018-06-19 2021-12-28 美商楼氏电子有限公司 Microphone assembly, semiconductor die and method for reducing noise of microphone
WO2019246151A1 (en) * 2018-06-19 2019-12-26 Knowles Electronics, Llc Transconductance amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262677B1 (en) * 1997-10-31 2001-07-17 Texas Instruments Incorporated Sample-and-hold circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008090053A1 *

Also Published As

Publication number Publication date
FR2911446A1 (en) 2008-07-18
FR2911446B1 (en) 2012-11-16
US8035422B2 (en) 2011-10-11
WO2008090053A1 (en) 2008-07-31
US20100176882A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
EP2095501A1 (en) Transconductance amplifier with a filter for rejecting noise outside the useful band
EP1646147A1 (en) Analog filter for time discrete signals based on passive components
FR2606954A1 (en) FULLY DIFFERENTIAL CMOS OPERATIONAL POWER AMPLIFIER
FR2836305A1 (en) AB CLASS DIFFERENTIAL MIXER
FR2827097A1 (en) High frequency mixer with image rejection circuit having transconductance circuit two feed wires placed providing input signal and switching stage with central MOS mixer between transconductance circuit/load.
FR2532115A1 (en) CIRCUIT COMPRISING A VARIABLE TRANSCONDUCTANCE ELEMENT
EP2095502A1 (en) Transconductance amplifier with improved linearity
EP0658977A1 (en) Variable gain amplifier
FR2829316A1 (en) CONTROL ATTENUATOR
FR2732837A1 (en) Integrated circuit differential amplifier with less noise
FR2585201A1 (en) DIFFERENTIAL OPERATIONAL AMPLIFIER FOR INTEGRATED CIRCUITS IN MOS TECHNOLOGY
FR2800938A1 (en) SWITCHING DRIVE CIRCUIT, SWITCHING CIRCUIT USING SUCH DRIVE CIRCUIT, AND DIGITAL-TO-ANALOG CONVERTER CIRCUIT USING THE SWITCHING CIRCUIT
EP0913931B1 (en) High gain amplifier with limited output dynamic
EP1762854B1 (en) Measuring device for very short current impulses
EP1885057B1 (en) Frequency compensation of an amplifier including at least two gain stages
FR3071116A1 (en) DEVICE THAT MODIFIES THE VALUE OF IMPEDANCE OF A REFERENCE RESISTANCE
FR2911449A1 (en) SAMPLE FILTER WITH FINITE IMPULSE RESPONSE
Uehara et al. A 100 MHz A/D interface for PRML magnetic disk read channels
FR2785107A1 (en) LOW INPUTANCE CURRENT AMPLIFIER
CA2260915A1 (en) A method and device for continuous-time filtering in digital cmos process
FR2838890A1 (en) Switched capacitor filter circuit for signal processing, has noise compensation transistor connected in series to switching transistor so as to remove noise during application of polarity inverted signal to gate
FR2823921A1 (en) TRANSCONDUCTANCE STAGE AND WIRELESS COMMUNICATION DEVICE PROVIDED WITH SUCH A STAGE
EP0480815B1 (en) Integrated amplifier circuit with one input signal connection
EP1011191B1 (en) Filter device for eliminating a DC component
FR2756436A1 (en) Transconductance amplifier for mobile radio telephone signal filtering

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEI, JAMES

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

RIC1 Information provided on ipc code assigned before grant

Ipc: H03F 1/32 20060101ALI20160226BHEP

Ipc: H03F 3/45 20060101ALI20160226BHEP

Ipc: H03F 1/22 20060101ALI20160226BHEP

Ipc: H03F 3/00 20060101ALI20160226BHEP

Ipc: H03F 1/26 20060101AFI20160226BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160802