EP2094945B1 - Fluid motor having improved braking effect - Google Patents

Fluid motor having improved braking effect Download PDF

Info

Publication number
EP2094945B1
EP2094945B1 EP07856909.2A EP07856909A EP2094945B1 EP 2094945 B1 EP2094945 B1 EP 2094945B1 EP 07856909 A EP07856909 A EP 07856909A EP 2094945 B1 EP2094945 B1 EP 2094945B1
Authority
EP
European Patent Office
Prior art keywords
motor
pressure chamber
pressure
chamber
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07856909.2A
Other languages
German (de)
French (fr)
Other versions
EP2094945A1 (en
Inventor
Dieter Peters
Peter Krebs
Joachim Wiendahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N&G Facility Management GmbH and Co KG
Original Assignee
N&G Facility Management GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39167586&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2094945(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by N&G Facility Management GmbH and Co KG filed Critical N&G Facility Management GmbH and Co KG
Priority to PL07856909T priority Critical patent/PL2094945T3/en
Publication of EP2094945A1 publication Critical patent/EP2094945A1/en
Application granted granted Critical
Publication of EP2094945B1 publication Critical patent/EP2094945B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/008Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation

Definitions

  • the invention relates to a motor drivable by a fluid pressure medium.
  • the invention relates to a motor in which a runner arranged in an engine compartment is drivable with a pressure medium and in which an axially movable spring-loaded brake element forms a friction pairing for braking the rotor with its end face.
  • Fluid motors are preferably operated with compressed air or with a hydraulic fluid. For the drive performed during the relaxation of the pressure medium used work is utilized.
  • vane motor This comprises a rotating in an engine compartment rotor with radial lamellae. As the rotor rotates, the volumes of the interstices largely sealed by the fins and the wall of the engine compartment change. The introduced in these spaces print medium expands here and drives the runner so.
  • Such motors have proven to be very reliable for a variety of applications, for example.
  • a braking device is necessary, which can slow down and shut down the vane rotor when no pressure medium is supplied. In particular, when used in hoists such a crash of the load is avoided.
  • the braking device is coupled to the engine via a shaft, but is located as a separate part outside the engine compartment, d. H. outside the room where the pressure medium expands.
  • a driven by compressed air vane motor In the EP 1 099 040 is described a driven by compressed air vane motor.
  • a cylindrical motor sleeve In a cylindrical motor sleeve is a vane rotor eccentrically rotatably mounted.
  • the motor is driven by supplying compressed air, which relaxes when enlarging chambers formed between fins.
  • a separate braking device On a shaft of the motor, a separate braking device is provided.
  • the vane rotor contains longitudinal bores, which are filled with a lubricant of pasty consistency.
  • the DE 1 102 488 discloses a pneumatic motor for hoists, the drive shaft is braked when stopping or missing the driving compressed air by a friction brake.
  • a friction brake For this purpose is located on a motor shaft stub a brake disc having a centrally located pressure cylinder and is pressed by spring tension against a wear ring of the motor housing.
  • the compressed air supplied from an inlet is fed into a pressure cylinder of the brake disk, whereby it lifts against the resistance of the springs from the wear ring and thus enables the operation of the engine.
  • a hydraulic engine is shown.
  • a rotor turns in an engine compartment.
  • the rotor is axially movable and is pressed by springs with a conical portion against a housing-fixed friction surface.
  • the engine compartment is connected to the conical friction pair via channels with valves arranged therein.
  • the pressure medium from the engine compartment passes to the friction pair and causes an axial displacement of the rotor, which leads to the separation of the friction pair and thus to release the brake.
  • a vane rotor with integrated brake direction.
  • a vane rotor can be driven by compressed air in an engine compartment.
  • a braking element is displaceable and loaded by springs arranged axially directly next to the vane rotor.
  • the vane rotor thus forms on its front side with the braking element a friction pairing.
  • the friction pairing is arranged in the engine compartment so that the compressed air acting there during operation acts on the brake element and displaces it against the spring action in such a way that the brake is released.
  • a pneumatic braking device for a compressed air hoist is disclosed. Axially next to the rotor of a multi-disk motor is provided as a separate unit, a braking device with a rotatably mounted on the motor shaft brake disc. The brake disc is pressed by spring force on a housing-fixed brake ring, so that forms a pressure chamber in the interior of the brake ring. By applying pressure to the pressure chamber with compressed air, the brake disk can be axially displaced on the shaft so that the friction pairing between the brake disk and a housing-fixed brake ring is released.
  • the publication WO0 / 04276 A shows a vane motor with a vane rotor.
  • the vane rotor is connected via a motor shaft with a separate braking device for braking the rotor.
  • the engine according to the invention has an inner engine compartment and a rotor rotatable therein. This is driven by a pressure medium. While the term “engine compartment” refers firstly to the entire outwardly closed inner region of the engine, the part (or the section of the axial length of the engine compartment) in which the pressure medium expands or relaxes (in the case of hydraulic pressure media, the designation “relaxes "more precisely, in the following, however, is always spoken of” expansion “for the sake of simplicity) and so the runner drives here referred to as the work area.
  • the inner engine compartment is preferably cylindrical, d. H. it has - at least in sections - over its longitudinal axis a constant cross section, preferably (but not necessary) on a circular cross-section.
  • the rotor is preferably a vane rotor; however, the concept may also be used for other types of fluid expansion motors with other types of rotors.
  • a brake element for braking the rotor is arranged.
  • Brake element and rotor are axially movable against each other, d. H. that either the rotor is movable in the direction of a (fixed) brake element, or a brake element with respect to an axially fixed rotor, or both elements are axially movable.
  • One or both elements have springs that urge the elements toward one another to form a spring-loaded friction pair. Since the brake element is not rotatable about the axis, causes the friction pairing a braking, with sufficient friction up to the stopping of the rotor.
  • the friction pairing is preferably formed on one or both end surfaces of the rotor. This need not be exclusively radial surfaces, but different fits, eg. B. a two-sided cone, are possible.
  • the considerations leading to the invention include the recognition that the braking effect depends on the friction force, and thus on the friction coefficient of the materials on the friction pair and the applied spring force. Of these, it is particularly preferred because of the good adjustability to increase the spring force.
  • an increase in the spring force is limited by the fact that the pressure medium during operation of the engine must still be able to release the brake.
  • the maximum force available for this purpose is determined by the pressure of the medium on the one hand and the effective area on the other hand. In order to achieve a higher force at constant pressure, it is proposed here to increase the area.
  • a special pressure chamber is provided.
  • the pressure chamber is formed so that its extension in cross-section is greater than the cross-sectional extent of the engine compartment at its working area, so it is at least partially disposed further outward with respect to the longitudinal axis.
  • the pressure chamber is preferably designed as an annular space, wherein its outer diameter is then greater than the diameter of the engine compartment. The pressure chamber is thus located radially outside the working area of the engine compartment, so that a significantly larger area is provided.
  • the pressure chamber is limited at least on one side by at least one of the elements of the friction pair (brake element / rotor).
  • a pressure built up in the pressure chamber acts on this element or these elements and leads to a force on the brake element and / or the rotor.
  • the pressure chamber is in this case arranged so that the applied force leads to the separation of the friction pair, that is directed against the spring force.
  • the pressure chamber according to the invention is arranged so that the pressure medium passes during operation of the engine in the pressure chamber. So if pressure medium is supplied to drive the rotor, so this gets into the pressure chamber and causes the separation of the friction pair and thus the release of the brake.
  • the pressure medium can pass from a suitable feed directly into the pressure chamber. It is also possible that the pressure medium passes through a connection from the working area of the engine compartment in the pressure chamber.
  • the pressure space created according to the invention can in this case support a pressure chamber already arranged directly on the friction pair (i.e., between the brake element and the adjacent end face of the rotor). With sufficient dimensions, however, he can also apply alone the force that is needed to release the brake.
  • a construction is achieved in which, on the one hand, large braking forces and, on the other hand, an automatic release of a friction brake is achieved by the pressure medium supplied to the engine during operation. Due to the large cross-section extent of the pressure chamber is an additional, relatively large area for the effect of the pressure medium available. So even for great braking performance does not have the benefit of the design after WO97 / 02406 be omitted, in which an automatic solution of the brake takes place when the rotor. Nevertheless, the construction is not significantly more complicated by the additional pressure chamber. There are no additional moving parts required and the overall axial length of the construction can even remain the same. Thus, the production of a compact, inexpensive engine with the described advantages is possible.
  • a connection of the pressure chamber is provided in a manner that the function of the pressure chamber is ensured in a reversible motor when operating in both operating directions.
  • the engine initially has a fluid port to which the pressure medium is supplied, and an exhaust, at which the expanded medium is discharged.
  • a reversible motor ie, a motor that is operable in two directions of rotation
  • two different fluid connections when using the motor in a hoist called "lift side" and sink side "
  • the pressure medium is supplied depending on the desired direction of rotation of the one or the other fluid port.
  • the pressure chamber can in various ways with the fluid connections (or the fluid connection, if the engine has only one ):
  • a fluid connection of the pressure chamber with a fluid connection is possible, preferably via a direct, valve-free supply line.
  • a valve-free connection should only be made with one of two fluid connections to avoid a short circuit.
  • the motor may be designed so that it is not symmetrical with respect to the two fluid ports, so that it provides a higher performance when operating on a first fluid port (in hoists this would be the lift side) than when operating on the second fluid port (drain side). It is possible to connect the pressure chamber with both the lift and the sink side. In this case, a connection with the sink side is preferred.
  • One of the fluid connections can be connected via a throttle element for limiting the volume flow with a fluid supply.
  • the pressure chamber can be connected to the corresponding supply line to the throttle element.
  • the pressure chamber can be connected to both fluid connections, wherein at least one valve is provided in the connection to avoid a short circuit.
  • a shuttle valve is used here, so that the Pressure chamber is always connected to the connection at the highest pressure and when venting always with one of the connections, so that when venting both connections via the control valve an immediate venting is ensured.
  • the pressure chamber is connected to the working area of the engine compartment. This results in operation in both directions, an overpressure.
  • the connection is preferably a direct, valve-free connection, for example a puncture channel, a line or even a targeted leak of a fit.
  • the pressure chamber is connected to the engine compartment via a conduit with only one opening to the engine compartment.
  • a conduit with only one opening to the engine compartment.
  • connection opening which is arranged on the front side next to the rotor.
  • this opening is formed in the brake element.
  • the conduit may preferably be a direct, valve-free conduit.
  • this - from the axial point of view - is arranged in the same quadrant of the engine compartment, as a (first) fluid connection.
  • the opening is arranged in the region of +/- 30 ° from the fluid connection (measured in each case at the center of the fluid connection and the opening).
  • connection opening near one of the fluid connections is sufficient for trouble-free operation in both operating directions. If the engine has a preferential direction (usually the lifting side for hoists), then it makes sense to arrange the connection opening in the region of the corresponding preferred fluid connection. In the case of loaded hoists, when a load is lowered, compression results in the fluid exit, thereby providing the brake release required Printing is supported. In a motor without preferential direction, it has proven to be useful to arrange the connecting opening in the center, ie at the same distance from the fluid connections for both directions of rotation.
  • connection opening on the front side next to the rotor As a further advantage of the arrangement of the connection opening on the front side next to the rotor, a good start-up behavior has been shown.
  • the minimum time delay which results from the action of the pressure medium initially on the working area of the engine surface of the brake element and then only by starting the engine in the pressure chamber, allows a gradual, stepless driving the motor.
  • a gap or a leak can be deliberately left to connect the pressure chamber with the working area of the engine compartment.
  • a connection can be created in a very simple way. The necessary cross-section is low anyway, since it does not come to a constant flow through the connection in operation, but the pressure in the pressure chamber is maintained static.
  • the pressure chamber is formed between the brake element (or an element connected with respect to the axial movement thereof) on the one hand and the housing (or a housing-fixed element) on the other.
  • the brake element when exposed to the pressure medium, the brake element is moved relative to the housing.
  • the pressure chamber is designed as an annular space.
  • An annulus of relatively large diameter has the advantage that a uniform force is applied and thus the risk of a possible tilting of the thus displaced element is low. Due to the free choice of the diameter graduation of the stepped piston braking moments in the required size can be realized within achievable engine power.
  • a wall which encloses at least the working area of the engine compartment and the brake element.
  • This wall has in longitudinal section at least one step.
  • the wall preferably comprises two juxtaposed cylinder sections of different diameter connected by the step.
  • the braking element received within the area enclosed by the wall has a matching step.
  • the pressure chamber is then formed between radially arranged surfaces of the stages.
  • FIG. 1 is a motor (vane motor) 10 according to a first embodiment shown in longitudinal section.
  • a housing 12 comprises a motor bush 14 and a front-side cover 16 and a further end-side cover 19 with a brake pad 21st
  • the engine bushing 14 defines an inner engine compartment 18.
  • a separate engine bushing may be omitted and the inner engine compartment 18 may be formed by the housing wall.
  • a vane rotor 20 and a brake member 22 are arranged in the inner engine compartment 18.
  • the motor socket 14 comprises a step 24 which is formed between two circular cylindrical sections of different diameters.
  • a first portion 26 has a larger inner diameter than a second, subsequent thereto section.
  • the vane rotor 20 is arranged in the region of the second portion with the smaller inner diameter. As is known to those skilled in the art of laminar motors, the vane rotor 20 is eccentrically located within this range. As in Fig. 1 shown is the axis of rotation 28, which has at one end a bearing pin 30 and at the other end a driven pin 32 relative to the longitudinal center axis of the motor bushing 14 downwardly displaced. This is also in the Fig. 2 shown cross section recognizable.
  • the vane rotor 20 has a number of radially displaceable, outwardly spring-loaded blades 34.
  • the lamellae abut the motor bushing 14 and thus delimit gaps 36.
  • the lamellae are over the entire axial length of a working area 40 (see FIG Fig. 1 ) of the engine 10 is provided.
  • the motor bushing 14 has a first compressed air inlet 42, a second compressed air inlet 44 and an exhaust 46.
  • compressed air is supplied through the compressed air inlet 42.
  • the compressed air expands in the increasing with the rotation gaps 36 between the fins 34 until it is discharged at the exhaust 46 under a residual pressure.
  • the brake element 22 is arranged axially adjacent to the vane rotor 20. With a mounted on the surface brake pad 48, it forms a friction pair with the end face 50 of the vane rotor 20.
  • Spring elements 52 of which Fig. 1 only two can be seen acting on the brake member 22 and act on it with a force in the axial direction, which presses the elements of the friction pair 48, 50 to each other.
  • the brake element is held by pins 51, so that it can move axially, but can not rotate relative to the housing 12.
  • Another friction pair is formed between the axially displaceable vane rotor 20 and provided with a brake lining 21 cover 19, so that the vane rotor 20 is braked on both sides.
  • a pressure chamber 60 is formed between the axial surfaces of a stepped portion of the braking element 22 and the stage 24 of the motor bushing 14.
  • the pressure chamber 60 has, as out Fig. 3 seen, the shape of a circumferential annular space. As from the comparison of Fig. 2, Fig. 3 shows, the pressure chamber 60 in the direction transverse to the longitudinal center axis of the motor bushing 14 has a greater extent than the working area 40 of the motor 10.
  • the pressure chamber 60 extends to a radius R2 (FIG. Fig. 3 ), while in the working area 40, the motor bushing 14 has only a smaller inner diameter R1 (FIG. Fig. 2 ) having.
  • the connection of the pressure chamber 60 takes place in the first embodiment via a line 62 which is formed as a channel within the braking element 22. It connects the pressure chamber 60 with an opening 64 in the surface of the brake element 22 facing the slat rotor 20.
  • the line 62 is designed as a direct, valve-free connection of only one opening 64 to the pressure chamber 60.
  • Fig. 5 is shown in schematic form the engine 10 with its pneumatic circuit.
  • the wiring is shown here for the sake of clarity reduced to the essentials; Further control functions such as emergency stop and overload shearing for a hoist are therefore not shown here.
  • the inner engine compartment 18 is connected with its first compressed air inlet 42 to the lifting side h of a control valve 70 and with its second compressed air inlet 44 on the sink side s.
  • the vane rotor 20 is braked by the friction pairing between the brake pad 48 and the end face 50 shown symbolically here.
  • the brake is released by compressed air supply to a gap 72 between the brake element 22 and the end face 50, which in Fig. 4b illustrated and explained below, and - through the channel 62 - to the pressure chamber 60, wherein in the two pressure chambers 60 ; 72 constructed pressure the brake element 22 against the spring 52 acts.
  • the exhaust 46 of the engine is connected to a muffler 74.
  • the control valve 70 has in the example shown via an actuating lever 76 which is displaceable s in a medium idle position in the operating mode s or opposite in the lifting mode h, wherein in a slide valve 80 by shifting relative to the terminals different valve functions between a compressed air supply P and a Venting port R (connected to the muffler 74) on the one hand and a supply port A for the lifting side and B for the drain side are realized on the other hand:
  • the compressed air port of the lift side A is connected to the compressed air supply P, while the drain side is vented (connection BR by crossing position of the valve 80).
  • the supply A is connected to the valve output of the lifting side h via the parallel connection of a throttle element 82 with a check valve 84, wherein the check valve 84 acts so that in the lifting operation, the compressed air can flow through the check valve 84 to the lifting side h, so that the throttle 82 the Fluid flow is not limited, but next to the valve 84 acts as an additional connection.
  • the drain side s is directly connected to the compressed air supply P, while the lift side h is vented via the throttle element 82 (connection AR, the check valve 84 blocks).
  • the throttle element limits the volume flow of the pressure medium. It can be realized in a very simple way as a bottleneck in the conduction path, for example as a perforated plate.
  • the throttle element 82 serves to limit the lowering speed. Because in this mode of operation, the motor is supplied with compressed air on the one hand by the compressed air connection 44, which expands to the outlet on the exhaust 46.
  • the engine due to a load to be lowered on the hoist acts as a compressor that compresses the air from the exhaust 46 to the compressed air connection 42 (lifting side) with the decreasing blade interspaces 36.
  • This compressed air is passed to the control valve to the port h and vented through the throttle element 82. Due to the limitation of the volume flow at the throttle element 82, this results in a braking effect due to the backflow, which leads to a braked lowering of the load.
  • Fig. 4a shows the braked motor 10.
  • the vane rotor 20 is braked by contact of the braking element 22.
  • the motor 10 is thus stopped.
  • Fig. 2 For starting the engine, compressed air is now supplied via the compressed air inlet 42. How out Fig. 2 As can be seen, the compressed air enters a blade interstice 36. Since the vane rotor 20 is stopped, it does not initially turn the vane rotor 20. Instead, the pressure in the gap 36 (and by leaks on the blades soon on the entire surface) acts on the axially displaceable brake element 22 so that it begins to dissolve against the force of the spring elements 52 from the vane rotor 20, so that a pressure chamber 72 (s. Fig. 4b ).
  • the compressed air also enters the pressure chamber 60.
  • leakages may remain in the fit between the motor bushing 14 and the brake element 22, through which the pressure medium enters the pressure chamber 60 (dotted arrows in FIG Fig. 4a ).
  • recordings for seals 65 are provided. If no seal is used at this point, so eliminates a seal at this point and it comes to the in Fig. 4a shown by dotted arrows path of the pressure medium in the pressure chamber 60th
  • the pressure medium passes through the opening 64 in the brake element 22 and the line 62 connected thereto in the pressure chamber 60.
  • the opening 64 appears in the idle state ( Fig. 4a ) first closed.
  • the pressure medium still passes through during operation, since on the one hand the contact between the vane rotor 20 and the brake element 22 is not completely sealed.
  • the introduction of the pressure medium already causes a first movement of the brake element 22, so that then the opening 64 is free.
  • a slightly raised ring can also be left in the manufacture of the vane rotor 22 on its end face 50, which ensures against the brake element 22 when it rests against the opening 64 (not shown).
  • the arrangement of the opening 64 is from the synopsis Fig.1 . Fig. 2 exactly visible. In the radial direction, it lies as if out Fig. 1 recognizable, in the interior of the braking element 22 through the work area 40 of the engine compartment facing surface, ie not right on the edge.
  • the location of the opening 64 relative to the compressed air inlets 42, 44 and the exhaust 46 is off Fig. 2 seen.
  • the opening 64 is arranged in the region of the compressed air inlet 42 of the lifting side. As tests have shown, the arrangement is particularly well in the area of this compressed air inlet. It is therefore preferred that the opening 64 be as in FIG Fig. 2 is arranged in the same quadrant of the engine compartment as the compressed air inlet 42. More preferably, the angle between the center of the compressed air inlet 42 and the center of the opening 64 is not more than 30 °.
  • This arrangement of the opening 64 is particularly advantageous for operation in the lifting direction (compressed air on compressed air inlet 42). As tests have shown but results in a loaded hoist even when supplying the compressed air through the compressed air inlet 44, a sufficient pressure build-up in the region of the opening 64, so that the pressure chamber 60 is filled sufficiently quickly, because when lowering the load - almost by pumping action - Area of the opening 64, a higher pressure than at the compressed air inlet 44th
  • the pressure medium acts on the radial surfaces of the brake element 22, namely on the one hand on the inner, on the friction pair 48, 50 involved surface and on the other hand on the formed on the step 54 additional annular surface.
  • the total force acting on the brake element 22 corresponds to the product of the pressure of the pressure medium and the surface.
  • the lifting of the braking element 22 - and the start of the engine 10 - takes place even with rapid application of the compressed air inlet 42 always gradually. Because first, the brake element 22 is slightly displaced solely by the pressure on the front side of the vane rotor 20 and thus reduces the braking effect. Only with (slight) time delay, the compressed air also flows into the pressure chamber 60, so that the braking effect can then be completely canceled.
  • the brake element 22 remains spaced from the vane rotor 20 as long as the pressure medium is supplied. When switching off the pressure medium falls automatically by the force of the spring elements 52, the brake again.
  • Fig. 6 is a second embodiment of a vane motor 100 is shown, which has proven in experiments to be particularly advantageous.
  • the motor 100 according to the second embodiment largely corresponds to the motor 10 according to the first embodiment. It has predominantly the same elements as the motor 10. These elements are therefore designated by the same reference numerals. Reference is therefore made to the above description for these elements. In the following, only differences between the embodiments will be mentioned.
  • the engine 100 unlike the engine 10, does not have an opening 64 in the end face of the brake member 22, and correspondingly, does not have a passage 62 connecting the engine inner space 18 to the pressure space 60. Instead, the pressure chamber 60 is closed by the fit and in particular the seals 65 with respect to the inner engine compartment 18.
  • the subject of the considerations here is the operation of the engine of a hoist in the operating mode sinks with appropriate load.
  • this may lead to a too slow venting of the pressure chamber 60, and a correspondingly delayed engagement of the brake come.
  • an external ventilation for the pressure chamber 60 is provided.
  • the pressure chamber 60 is directly connected to the lifting side (compressed air connection 42).
  • the lifting operation of the pressure chamber 60 is vented from there and also vented when switching back to idle.
  • the release of the brake is initially carried out mainly by venting the pressure chamber 72, and then by venting the pressure chamber 60 due to the backpressure arising before the throttle element 82.
  • lowering the slide valve 80 is moved to the middle position, thus creating a vent before lifting and lowering side. In this case, a venting of the pressure chamber 60 via the lifting side, as soon as the backwater is reduced in front of the throttle element 82.
  • Fig. 8 For applications in which the backpressure before the throttle element 82 proves to be too large, so that there is an after-running of the engine after interrupting in the operating mode sinks, as in Fig. 8 alternatively shown the pressure chamber 60 are also connected in front of the throttle element 82, so that a venting takes place directly when switching the slide valve 80.
  • the pressure space 60 (as in FIG Fig. 9 shown) connected to the sink side.
  • the ventilation then takes place via the drain side as soon as the brake has released itself slightly due to pressure build-up in the pressure chamber 72.
  • lowering mode takes place when interrupting and switching the slide valve 80 in the middle position a direct vent, since there is no throttle element on the sink side, but the sink side is vented directly to the exhaust 46 in the middle position.
  • a shuttle valve 86 is provided here.
  • lifting mode the Ventilation of the pressure chamber 60 directly from the lifting side, wherein the valve 86 prevents a short circuit to the drain side.
  • the ventilation takes place directly from the drain side, whereby in turn the valve 86 prevents a direct short circuit to the lifting side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Braking Arrangements (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Rotary Pumps (AREA)

Description

Die Erfindung betrifft einen durch ein fluides Druckmedium antreibbaren Motor. Insbesondere betrifft die Erfindung einen Motor, bei dem ein in einem Motorraum angeordneter Läufer mit einem Druckmedium antreibbar ist und bei dem ein axial bewegliches federbelastetes Bremselement zur Bremsung des Läufers mit dessen Stirnseite eine Reibpaarung bildet.The invention relates to a motor drivable by a fluid pressure medium. In particular, the invention relates to a motor in which a runner arranged in an engine compartment is drivable with a pressure medium and in which an axially movable spring-loaded brake element forms a friction pairing for braking the rotor with its end face.

Fluidmotoren werden vorzugsweise mit Druckluft oder mit einer Hydraulikflüssigkeit betrieben. Für den Antrieb wird die bei der Entspannung des verwendeten Druckmediums verrichtete Arbeit ausgenutzt.Fluid motors are preferably operated with compressed air or with a hydraulic fluid. For the drive performed during the relaxation of the pressure medium used work is utilized.

Ein bekannter Motortyp ist der Lamellenmotor. Dieser umfaßt einen in einem Motorraum drehenden Läufer mit radialen Lamellen. Bei Drehung des Läufers verändern sich die Volumina der durch die Lamellen und die Wandung des Motorraums weitgehend abgedichteten Zwischenräume. Das in diese Zwischenräume eingebrachte Druckmedium expandiert hierbei und treibt den Läufer so an.One known type of engine is the vane motor. This comprises a rotating in an engine compartment rotor with radial lamellae. As the rotor rotates, the volumes of the interstices largely sealed by the fins and the wall of the engine compartment change. The introduced in these spaces print medium expands here and drives the runner so.

Derartige Motoren haben sich als sehr zuverlässig für eine Vielzahl von Anwendungen erwiesen, bspw. für den Einsatz in Hebezeugen. Für viele Einsatzzwecke ist eine Bremseinrichtung notwendig, die den Lamellenläufer abbremsen und stillsetzen kann, wenn kein Druckmedium zugeführt wird. Insbesondere beim Einsatz in Hebezeugen wird so ein Abstürzen der Last vermieden.Such motors have proven to be very reliable for a variety of applications, for example. For use in hoists. For many purposes, a braking device is necessary, which can slow down and shut down the vane rotor when no pressure medium is supplied. In particular, when used in hoists such a crash of the load is avoided.

In einer Vielzahl von bekannten Hebezeugen ist die Bremseinrichtung zwar mit dem Motor über eine Welle gekoppelt, befindet sich aber als separates Teil außerhalb des Motorraums, d. h. außerhalb des Raums, in dem das Druckmedium expandiert.In a variety of known hoists, the braking device is coupled to the engine via a shaft, but is located as a separate part outside the engine compartment, d. H. outside the room where the pressure medium expands.

In der EP 1 099 040 ist ein mit Druckluft betriebener Lamellenmotor beschrieben. In einer zylindrischen Motorhülse ist ein Lamellenläufer exzentrisch drehbar gelagert. Der Motor wird durch Zuführung von Druckluft angetrieben, die sich bei der Vergrößerung von zwischen Lamellen gebildeten Kammern entspannt. An einer Welle des Motors ist eine separate Bremseinrichtung vorgesehen. Zur Schmierung des Motors enthält der Lamellenläufer Längsbohrungen, die mit einem Schmierstoff von pastöser Konsistenz gefüllt sind.In the EP 1 099 040 is described a driven by compressed air vane motor. In a cylindrical motor sleeve is a vane rotor eccentrically rotatably mounted. The motor is driven by supplying compressed air, which relaxes when enlarging chambers formed between fins. On a shaft of the motor, a separate braking device is provided. For lubrication of the motor, the vane rotor contains longitudinal bores, which are filled with a lubricant of pasty consistency.

Die DE 1 102 488 offenbart einen Druckluftmotor für Hebezeuge, dessen Antriebswelle beim Abstellen oder Ausbleiben der antreibenden Druckluft durch eine Reibungsbremse festgebremst wird. Hierfür befindet sich auf einem Motorwellenstummel eine Bremsscheibe, die einen zentrisch gelegenen Druckzylinder aufweist und durch Federspannung gegen einen Verschleißring des Motorengehäuses gepresst wird. Die von einem Einlass zugeführte Druckluft wird in einen Druckzylinder der Bremsscheibe zugeführt, wodurch diese gegen den Widerstand der Federn vom Verschleißring abhebt und so den Betrieb des Motors ermöglicht.The DE 1 102 488 discloses a pneumatic motor for hoists, the drive shaft is braked when stopping or missing the driving compressed air by a friction brake. For this purpose is located on a motor shaft stub a brake disc having a centrally located pressure cylinder and is pressed by spring tension against a wear ring of the motor housing. The compressed air supplied from an inlet is fed into a pressure cylinder of the brake disk, whereby it lifts against the resistance of the springs from the wear ring and thus enables the operation of the engine.

In der WO95/02762 ist ein hydraulischer Motor gezeigt. Ein Rotor dreht sich in einem Motorraum. Der Rotor ist axial beweglich und wird durch Federn mit einem konischen Abschnitt gegen eine gehäusefeste Reibfläche gedrückt. Der Motorraum ist mit der konischen Reibpaarung über Kanäle mit darin angeordneten Ventilen verbunden. Im Betrieb gelangt das Druckmedium aus dem Motorraum zu der Reibpaarung und bewirkt eine axiale Verschiebung des Rotors, die zum Trennen der Reibpaarung und somit zum Lösen der Bremse führt.In the WO95 / 02762 a hydraulic engine is shown. A rotor turns in an engine compartment. The rotor is axially movable and is pressed by springs with a conical portion against a housing-fixed friction surface. The engine compartment is connected to the conical friction pair via channels with valves arranged therein. In operation, the pressure medium from the engine compartment passes to the friction pair and causes an axial displacement of the rotor, which leads to the separation of the friction pair and thus to release the brake.

In der WO97/02406 der Anmelderin ist ein Lamellenläufer mit integrierter Bremsenrichtung gezeigt. Ein Lamellenläufer ist in einem Motorraum durch Druckluft antreibbar. Ein Bremselement ist verschiebbar und durch Federn belastet axial direkt neben dem Lamellenläufer angeordnet. Der Lamellenläufer bildet so an seiner Stirnseite mit dem Bremselement eine Reibpaarung. Die Reibpaarung ist im Motorraum angeordnet, so dass die im Betrieb dort wirkende Druckluft auf das Bremselement wirkt und dieses entgegen der Federwirkung so verschiebt, dass die Bremse gelöst wird. Diese Konstruktion hat sich in der Praxis außerordentlich bewährt. Sie führt insbesondere zu einer kompakten Bauweise.In the WO97 / 02406 The applicant is shown a vane rotor with integrated brake direction. A vane rotor can be driven by compressed air in an engine compartment. A braking element is displaceable and loaded by springs arranged axially directly next to the vane rotor. The vane rotor thus forms on its front side with the braking element a friction pairing. The friction pairing is arranged in the engine compartment so that the compressed air acting there during operation acts on the brake element and displaces it against the spring action in such a way that the brake is released. This construction has proven extremely successful in practice. It leads in particular to a compact design.

Die Druckschrift US 3 125 200 A beschreibt ein Druckluft-Hebezeug mit einem pneumatischen Motor, der über ein zweistufiges Planeten-Reduktionsgetriebe ein Zahnrad antreibt. Der Läufer des Motors ist über eine Welle mit dem Getriebe verbunden. In, dem dem Motor gegenüberliegend angeordneten Ende des Gehäuses ist ein Bremsmechanismus angeordnet mit einer Bremsscheibe an der Welle, die beidseitig zwischen Bremselementen gebremst ist. Eines der Bremselemente ist durch einen federbelasteten Bremskolben beaufschlagt, der mit einer Abstandsplatte eine ringförmig, abgedichtete Kammer bildet. Durch Einleiten von Druckluft in die Kammer kann der Bremskolben gegen die Wirkung der Feder verschoben werden, so dass die Bremse entlastet wird.The publication US Pat. No. 3,125,200 describes a pneumatic hoist with a pneumatic motor that drives a gearwheel via a two-stage planetary reduction gearbox. The rotor of the motor is connected to the transmission via a shaft. In, the motor opposite to the arranged end of the housing, a brake mechanism is arranged with a brake disc on the shaft, which is braked on both sides between brake elements. One of the brake elements is acted upon by a spring-loaded brake piston which forms a ring-shaped, sealed chamber with a spacer plate. By introducing compressed air into the chamber, the brake piston can be displaced against the action of the spring, so that the brake is relieved.

In der Druckschrift US 2 927 669 A ist ein Druckluftmotor für ein Hebezeug beschrieben. Eine Bremsscheibe mit einem Druckzylinder ist axial beweglich federbelastet angeordnet. Druckluft zum Betrieb des Motors wird durch eine Bohrung in der Motorwelle geleitet, um die Bremse im Betrieb zu lösen.In the publication US 2,927,669 A is described a compressed air motor for a hoist. A brake disc with a pressure cylinder is arranged axially movable spring-loaded. Compressed air for operating the motor is passed through a hole in the motor shaft to release the brake during operation.

In der US 4 434 974 A ist eine pneumatische Bremseinrichtung für ein DruckluftHebezeug offenbart. Axial neben dem Läufer eines Lamellenmotors ist als getrennt Einheit eine Bremseinrichtung mit einer an der Motorwelle drehfest angebrachten Bremsscheibe vorgesehen. Die Bremsscheibe wird durch Federkraft auf einen gehäusefesten Bremsring gedrückt, so dass sich im Inneren des Bremsrings ein Druckraum bildet. Durch Beaufschlagung des Druckraums mit Druckluft kann die Bremsscheibe auf der Welle axial verschoben werden, so dass sich die Reibpaarung zwischen der Bremsscheibe und einem gehäusefesten Bremsring löst.In the US 4 434 974 A a pneumatic braking device for a compressed air hoist is disclosed. Axially next to the rotor of a multi-disk motor is provided as a separate unit, a braking device with a rotatably mounted on the motor shaft brake disc. The brake disc is pressed by spring force on a housing-fixed brake ring, so that forms a pressure chamber in the interior of the brake ring. By applying pressure to the pressure chamber with compressed air, the brake disk can be axially displaced on the shaft so that the friction pairing between the brake disk and a housing-fixed brake ring is released.

Die Druckschrift WO0/04276 A zeigt einen Lamellenmotor mit einem Lamellenläufer. Der Lamellenläufer ist über eine Motorwelle mit einer separaten Bremseinrichtung zur Bremsung des Rotors verbunden.The publication WO0 / 04276 A shows a vane motor with a vane rotor. The vane rotor is connected via a motor shaft with a separate braking device for braking the rotor.

Es ist Aufgabe der Erfindung, einen Motor vorzuschlagen, bei dem auf einfache Weise die Bremswirkung gegenüber bekannten Konstruktionen noch verbessert wird.It is an object of the invention to provide a motor in which in a simple way the braking effect over known constructions is still improved.

Diese Aufgabe wird gelöst durch einen Motor gemäß Anspruch 1. Abhängige Ansprüche beziehen sich auf vorteilhafte Ausführungsformen der Erfindung.This object is achieved by a motor according to claim 1. Dependent claims relate to advantageous embodiments of the invention.

Der erfindungsgemäße Motor weist einen inneren Motorraum und einen darin drehbaren Läufer auf. Dieser ist durch ein Druckmedium antreibbar. Während mit dem Begriff Motorraum zunächst der gesamte nach außen abgeschlossene innere Bereich des Motors bezeichnet wird, wird der Teil (bzw. der Abschnitt der axialen Länge des Motorraums), in dem das Druckmedium expandiert bzw. entspannt (bei hydraulischen Druckmedien ist die Bezeichnung "entspannt" exakter, im folgenden wird aber zur Vereinfachung stets von "Expansion" gesprochen) und so den Läufer antreibt hier als Arbeitsbereich bezeichnet. Der innere Motorraum ist bevorzugt zylindrisch, d. h. er weist - wenigstens abschnittsweise - über seine Längsachse einen gleichbleibenden Querschnitt, bevorzugt (aber nicht notwendig) einen Kreisquerschnitt auf. Bei dem Läufer handelt es sich bevorzugt um einen Lamellenläufer; ebenso kann das Konzept aber auch für andere Typen von Fluidexpansionsmotoren mit anderen Arten von Läufern verwendet werden.The engine according to the invention has an inner engine compartment and a rotor rotatable therein. This is driven by a pressure medium. While the term "engine compartment" refers firstly to the entire outwardly closed inner region of the engine, the part (or the section of the axial length of the engine compartment) in which the pressure medium expands or relaxes (in the case of hydraulic pressure media, the designation "relaxes "more precisely, in the following, however, is always spoken of" expansion "for the sake of simplicity) and so the runner drives here referred to as the work area. The inner engine compartment is preferably cylindrical, d. H. it has - at least in sections - over its longitudinal axis a constant cross section, preferably (but not necessary) on a circular cross-section. The rotor is preferably a vane rotor; however, the concept may also be used for other types of fluid expansion motors with other types of rotors.

Axial neben dem Läufer ist ein Bremselement zum Bremsen des Läufers angeordnet. Bremselement und Läufer sind axial gegeneinander beweglich, d. h. dass entweder der Läufer in Richtung auf ein (feststehendes) Bremselement beweglich ist, oder ein Bremselement gegenüber einem axial feststehenden Läufer, oder beide Elemente axial beweglich sind. Eines oder beide Elemente weisen Federn auf, die die Elemente aufeinander drücken, so dass sie eine federbelastete Reibpaarung bilden. Da das Bremselement nicht um die Achse rotierbar ist, bewirkt die Reibpaarung eine Bremsung, bei ausreichender Reibung bis hin zum Stillsetzen des Läufers.Axial next to the rotor, a brake element for braking the rotor is arranged. Brake element and rotor are axially movable against each other, d. H. that either the rotor is movable in the direction of a (fixed) brake element, or a brake element with respect to an axially fixed rotor, or both elements are axially movable. One or both elements have springs that urge the elements toward one another to form a spring-loaded friction pair. Since the brake element is not rotatable about the axis, causes the friction pairing a braking, with sufficient friction up to the stopping of the rotor.

Die Reibpaarung wird bevorzugt an einer oder an beiden Stirnflächen des Läufers gebildet. Hierbei muss es sich nicht ausschließlich um radial angeordnete Flächen handeln, sondern verschiedene Passformen, z. B. ein beidseitiger Konus, sind möglich.The friction pairing is preferably formed on one or both end surfaces of the rotor. This need not be exclusively radial surfaces, but different fits, eg. B. a two-sided cone, are possible.

Die zur Erfindung führenden Überlegungen umfassen die Erkenntnis, dass die Bremswirkung abhängig ist von der Reibungskraft, und damit von dem Reibungskoeffizienten der Materialien an der Reibpaarung und der aufgebrachten Federkraft. Hiervon ist es wegen der guten Einstellbarkeit besonders bevorzugt, die Federkraft zu erhöhen. Allerdings sind einer Erhöhung der Federkraft dadurch Grenzen gesetzt, dass das Druckmedium im Betrieb des Motors noch in der Lage sein muss, die Bremse zu lösen. Für die maximale Kraft, die hierfür zur Verfügung steht, ist der Druck des Mediums einerseits und die wirksame Fläche andererseits maßgeblich. Um bei gleichbleibendem Druck eine höhere Kraft zu erzielen, wird hier vorgeschlagen, die Fläche zu vergrößern.The considerations leading to the invention include the recognition that the braking effect depends on the friction force, and thus on the friction coefficient of the materials on the friction pair and the applied spring force. Of these, it is particularly preferred because of the good adjustability to increase the spring force. However, an increase in the spring force is limited by the fact that the pressure medium during operation of the engine must still be able to release the brake. The maximum force available for this purpose is determined by the pressure of the medium on the one hand and the effective area on the other hand. In order to achieve a higher force at constant pressure, it is proposed here to increase the area.

Erfindungsgemäß ist daher ein spezieller Druckraum vorgesehen. Der Druckraum ist so ausgebildet, dass seine Erstreckung im Querschnitt größer ist als die Querschnittserstreckung des Motorraums an seinem Arbeitsbereich, er also mit Bezug auf die Längsachse mindestens zum Teil weiter außen angeordnet ist. Zu vergleichen sind hier einerseits der Querschnitt des Motorraums an der Stelle, an der das Druckmedium durch Expansion den Läufer antreibt (Arbeitsbereich), besonders bevorzugt mindestens in seinen axial mittleren Bereich, und andererseits die äußere Erstreckung des Druckraums, ebenfalls im Querschnitt betrachtet. Für den - bevorzugten - Fall eines kreiszylindrischen Motorraums bedeutet dies, dass als Querschnittserstreckung der innere Durchmesser der Berandung des Motorraums zu betrachten ist. Der Druckraum ist bevorzugt als Ringraum ausgebildet, wobei sein äußerer Durchmesser dann größer ist als der Durchmesser des Motorraums. Der Druckraum liegt somit radial außerhalb des Arbeitsbereichs des Motorraums, so dass eine deutlich vergrößerte Fläche bereitgestellt wird.According to the invention, therefore, a special pressure chamber is provided. The pressure chamber is formed so that its extension in cross-section is greater than the cross-sectional extent of the engine compartment at its working area, so it is at least partially disposed further outward with respect to the longitudinal axis. To compare here are on the one hand, the cross section of the engine compartment at the point at which the pressure medium by expansion drives the rotor (working area), more preferably at least in its axially central region, and on the other hand, the outer extension of the pressure chamber, also viewed in cross section. For the - preferred - case of a circular-cylindrical engine compartment, this means that the internal diameter of the boundary of the engine compartment is to be regarded as the cross-sectional extension. The pressure chamber is preferably designed as an annular space, wherein its outer diameter is then greater than the diameter of the engine compartment. The pressure chamber is thus located radially outside the working area of the engine compartment, so that a significantly larger area is provided.

Der Druckraum wird mindestens einseitig von mindestens einem der Elemente der Reibpaarung (Bremselement/Läufer) begrenzt. Ein im Druckraum aufgebauter Druck wirkt auf dieses Element bzw. diese Elemente und führt zu einer Kraft auf das Bremselement und/oder den Läufer. Der Druckraum ist hierbei so angeordnet, dass die aufgebrachte Kraft zur Trennung der Reibpaarung führt, also entgegen der Federkraft gerichtet ist. So kann durch Aufbauen eines Drucks im Druckraum eine Trennung der Reibpaarung zwischen Bremselement und Läufer erreicht werden, so dass die Abbremsung des Läufers aufgehoben wird.The pressure chamber is limited at least on one side by at least one of the elements of the friction pair (brake element / rotor). A pressure built up in the pressure chamber acts on this element or these elements and leads to a force on the brake element and / or the rotor. The pressure chamber is in this case arranged so that the applied force leads to the separation of the friction pair, that is directed against the spring force. Thus, by building up a pressure in the pressure chamber, a separation of the friction pair between the brake element and rotor can be achieved, so that the deceleration of the rotor is canceled.

Der Druckraum ist erfindungsgemäß so angeordnet, dass das Druckmedium im Betrieb des Motors in den Druckraum gelangt. Wird also Druckmedium zugeführt um den Läufer anzutreiben, so gelangt dieses auch in den Druckraum und bewirkt die Trennung der Reibpaarung und damit das Lösen der Bremse. Das Druckmedium kann hierbei aus einer geeigneten Zuführung direkt in den Druckraum gelangen. Ebenso ist es möglich, dass das Druckmedium durch eine Verbindung vom Arbeitsbereich des Motorraums in den Druckraum gelangt.The pressure chamber according to the invention is arranged so that the pressure medium passes during operation of the engine in the pressure chamber. So if pressure medium is supplied to drive the rotor, so this gets into the pressure chamber and causes the separation of the friction pair and thus the release of the brake. The pressure medium can pass from a suitable feed directly into the pressure chamber. It is also possible that the pressure medium passes through a connection from the working area of the engine compartment in the pressure chamber.

Der erfindungsgemäß geschaffene Druckraum kann hierbei unterstützend zu einem bereits direkt an der Reibpaarung (d.h. zwischen Bremselement und der danebenliegenden Stirnseite des Läufers) angeordneten Druckraum wirken. Bei ausreichender Dimensionierung kann er allerdings auch alleine die Kraft aufbringen, die zum Lösen der Bremse benötigt wird.The pressure space created according to the invention can in this case support a pressure chamber already arranged directly on the friction pair (i.e., between the brake element and the adjacent end face of the rotor). With sufficient dimensions, however, he can also apply alone the force that is needed to release the brake.

Mit dem erfindungsgemäßen Motor wird eine Konstruktion erreicht, bei der einerseits große Bremskräfte und andererseits eine automatische Lösung einer Reibbremse durch das im Betrieb dem Motor zugeführte Druckmedium erzielt wird. Durch die im Querschnitt große Erstreckung des Druckraums steht eine zusätzliche, relativ große Fläche für die Wirkung des Druckmediums zur Verfügung. So muss auch für große Bremsleistungen nicht auf den Vorteil der Konstruktion nach WO97/02406 verzichtet werden, bei der eine automatische Lösung der Bremse bei Beaufschlagung des Läufers erfolgt. Dennoch wird die Konstruktion durch den zusätzlichen Druckraum nicht erheblich aufwendiger. Es sind keine zusätzlichen beweglichen Teile erforderlich und die axiale Gesamtlänge der Konstruktion kann sogar gleich bleiben. So ist die Herstellung eines kompakten, kostengünstigen Motors mit den beschriebenen Vorteilen möglich.With the motor according to the invention, a construction is achieved in which, on the one hand, large braking forces and, on the other hand, an automatic release of a friction brake is achieved by the pressure medium supplied to the engine during operation. Due to the large cross-section extent of the pressure chamber is an additional, relatively large area for the effect of the pressure medium available. So even for great braking performance does not have the benefit of the design after WO97 / 02406 be omitted, in which an automatic solution of the brake takes place when the rotor. Nevertheless, the construction is not significantly more complicated by the additional pressure chamber. There are no additional moving parts required and the overall axial length of the construction can even remain the same. Thus, the production of a compact, inexpensive engine with the described advantages is possible.

Gemäß einer wesentlichen Weiterbildung der Erfindung ist ein Anschluss des Druckraumes in einer Weise vorgesehen, dass bei einem umsteuerbaren Motor beim Betrieb in beiden Betriebsrichtungen die Funktion des Druckraums gewährleistet bleibt. Generell verfügt der Motor zunächst über einen Fluidanschluss, an dem das Druckmedium zugeführt wird, und einen Auspuff, an dem das expandierte Medium abgegeben wird. Bei einem umsteuerbaren Motor (d. h. einem Motor, der in zwei Drehrichtungen betreibbar ist) sind zwei verschiedene Fluidanschlüsse (bei Verwendung des Motors in einem Hebezeug bezeichnet als "Hebenseite" und Senkenseite") vorgesehen, wobei das Druckmedium je nach gewünschter Drehrichtung dem einen oder dem anderen Fluidanschluss zugeführt wird.According to a significant development of the invention, a connection of the pressure chamber is provided in a manner that the function of the pressure chamber is ensured in a reversible motor when operating in both operating directions. In general, the engine initially has a fluid port to which the pressure medium is supplied, and an exhaust, at which the expanded medium is discharged. In a reversible motor (ie, a motor that is operable in two directions of rotation) are two different fluid connections (when using the motor in a hoist called "lift side" and sink side ") provided, wherein the pressure medium is supplied depending on the desired direction of rotation of the one or the other fluid port.

Um eine Belüftung des Druckraums zum ordnungsgemäßen Lösen der Bremse im Betrieb und Entlüftung des Druckraums zum Einfallen der Bremse bei Unterbrechung des Betriebes zu gewährleisten, kann der Druckraum auf verschiedene Weise mit den Fluidanschlüssen (bzw. dem Fluidanschluss, falls der Motor nur über einen einzigen verfügt) verbunden sein:In order to ensure ventilation of the pressure chamber for proper release of the brake during operation and venting of the pressure chamber to engage the brake during interruption of the operation, the pressure chamber can in various ways with the fluid connections (or the fluid connection, if the engine has only one ):

Einerseits ist eine fluidmäßige Verbindung des Druckraums mit einem Fluidanschluss möglich, bevorzugt über eine direkte, ventilfreie Zuleitung. Eine solche ventilfreie Verbindung sollte nur mit einem von zwei Fluid-anschlüssen hergestellt werden, um einen Kurzschluss zu vermeiden.On the one hand, a fluid connection of the pressure chamber with a fluid connection is possible, preferably via a direct, valve-free supply line. Such a valve-free connection should only be made with one of two fluid connections to avoid a short circuit.

Der Motor kann so ausgelegt sein, dass er bezüglich der beiden Fluidanschlüsse nicht symmetrisch aufgebaut ist, so dass er beim Betrieb an einem ersten Fluidanschluss eine höhere Leistung liefert (bei Hebezeugen wäre dies die Hebenseite) als bei Betrieb am zweiten Fluidanschluss (Senkenseite). Es ist eine Verbindung des Druckraums sowohl mit der Heben- als auch mit der Senkenseite möglich. Bevorzugt ist hierbei eine Verbindung mit der Senkenseite.The motor may be designed so that it is not symmetrical with respect to the two fluid ports, so that it provides a higher performance when operating on a first fluid port (in hoists this would be the lift side) than when operating on the second fluid port (drain side). It is possible to connect the pressure chamber with both the lift and the sink side. In this case, a connection with the sink side is preferred.

Einer der Fluidanschlüsse kann über ein Drosselelement zur Begrenzung des Volumenstroms mit einer Fluidzuführung verbunden sein. Hierbei kann der Druckraum mit der entsprechenden Zuleitung nach dem Drosselelement verbunden sein. Um ein Nachlaufen des Motors zu verringern, ist es jedoch vorteilhafter, den Druckraum vor dem Drosselelement mit der Fluidzuführung zu verbinden, so dass ein eventueller Rückstau an dem Drosselelement nicht zu einer verzögerten Entlüftung des Druckraums und so zum Nachlaufen des Motors führt.One of the fluid connections can be connected via a throttle element for limiting the volume flow with a fluid supply. Here, the pressure chamber can be connected to the corresponding supply line to the throttle element. In order to reduce running down of the engine, however, it is more advantageous to connect the pressure chamber upstream of the throttle element with the fluid supply, so that a possible backflow at the throttle element does not lead to a delayed venting of the pressure chamber and thus to running of the engine.

Als weitere Alternative kann der Druckraum mit beiden Fluidanschlüssen verbunden sein, wobei zur Vermeidung eines Kurzschlusses mindestens ein Ventil in der Verbindung vorgesehen ist. Bevorzugt wird hier ein Wechselventil eingesetzt, so dass der Druckraum bei Belüftung stets mit dem Anschluss verbunden ist, an dem der höchste Druck herrscht und bei Entlüftung stets mit einem der Anschlüsse, so daß bei Entlüftung beider Anschlüsse über das Steuerventil eine sofortige Entlüftung sichergestellt ist.As a further alternative, the pressure chamber can be connected to both fluid connections, wherein at least one valve is provided in the connection to avoid a short circuit. Preferably, a shuttle valve is used here, so that the Pressure chamber is always connected to the connection at the highest pressure and when venting always with one of the connections, so that when venting both connections via the control valve an immediate venting is ensured.

Gemäß einer weiteren Ausführungsform ist der Druckraum mit dem Arbeitsbereich des Motorraums verbunden. Hier ergibt sich beim Betrieb in beiden Richtungen ein Überdruck. Die Verbindung ist hierbei bevorzugt eine direkte, ventilfreie Verbindung, bspw. ein Stichkanal, eine Leitung oder auch eine gezielte Undichtigkeit einer Passung.Bei der Verbindung des Druckraums mit dem Arbeitsbereich des Motorraums (statt des Anschlusses an die Fluidanschlüsse) wird ohne jeden Zusatzaufwand die Funktion der Bremse auch bei Umsteuerbarkeit des Motors beibehalten.According to a further embodiment, the pressure chamber is connected to the working area of the engine compartment. This results in operation in both directions, an overpressure. In this connection, the connection is preferably a direct, valve-free connection, for example a puncture channel, a line or even a targeted leak of a fit. When the pressure chamber is connected to the working area of the engine compartment (instead of the connection to the fluid connections), the function is performed without any additional expenditure the brake maintained even with Umsteuerbarkeit the engine.

Hierbei ist es bevorzugt, dass der Druckraum mit dem Motorraum über eine Leitung mit nur einer Öffnung zum Motorraum verbunden ist. So ist auch ohne Ventile sichergestellt, dass es nicht zu einem Kurzschluss (d. h. das Druckmedium strömt vom Einlass direkt über den Druckraum zum Auslass, ohne den Motor zu treiben) kommt.It is preferred that the pressure chamber is connected to the engine compartment via a conduit with only one opening to the engine compartment. Thus, even without valves, it is ensured that there is no short circuit (i.e., the pressure medium flows from the inlet directly across the pressure chamber to the outlet without driving the motor).

Soweit eine Leitung zum Leiten des Druckmediums vom Motorraum in den Druckraum vorgesehen ist, ist bevorzugt, dass diese an einer Verbindungsöffnung angeschlossen ist, die stirnseitig neben dem Läufer angeordnet ist. Besonders bevorzugt ist diese Öffnung im Bremselement gebildet. Wie beschrieben kann es sich bei der Leitung bevorzugt um eine direkte, ventilfreie Leitung handeln. Für die Anordnung der Verbindungsöffnung ist bevorzugt, dass diese - aus axialer Sicht - im selben Quadranten des Motorraums angeordnet ist, wie ein (erster) Fluidanschluss. Besonders bevorzugt ist die Öffnung im Bereich von +/- 30° vom Fluidanschluss angeordnet (gemessen jeweils an der Mitte des Fluidanschlusses und der Öffnung). Es hat sich gezeigt, dass auch bei umsteuerbaren Motoren mit zwei Fluidanschlüssen eine Anordnung der Verbindungsöffnung nahe einem der Fluidanschlüsse für den störungsfreien Betrieb in beiden Betriebsrichtungen ausreichend ist. Weist der Motor eine Vorzugsrichtung auf (bei Hebezeugen üblicherweise die Heben-Seite), so ist es sinnvoll, die Verbindungsöffnung im Bereich des entsprechenden bevorzugten Fluidanschlusses anzuordnen. Im Fall von belasteten Hebezeugen ergibt sich beim Absenken einer Last eine Kompression zum Fluidausgang hin, so dass hierdurch die Bereitstellung des für das Lösen der Bremse erforderlichen Drucks unterstützt wird. Bei einem Motor ohne Vorzugsrichtung hat es sich als sinnvoll erwiesen, die Verbindungsöffnung mittig, d. h. mit gleichem Abstand zu den Fluidanschlüssen für beide Drehrichtungen, anzuordnen.As far as a line is provided for guiding the pressure medium from the engine compartment into the pressure chamber, it is preferred that this is connected to a connection opening which is arranged on the front side next to the rotor. Particularly preferably, this opening is formed in the brake element. As described, the conduit may preferably be a direct, valve-free conduit. For the arrangement of the connection opening is preferred that this - from the axial point of view - is arranged in the same quadrant of the engine compartment, as a (first) fluid connection. Particularly preferably, the opening is arranged in the region of +/- 30 ° from the fluid connection (measured in each case at the center of the fluid connection and the opening). It has been found that, even with reversible motors with two fluid connections, an arrangement of the connection opening near one of the fluid connections is sufficient for trouble-free operation in both operating directions. If the engine has a preferential direction (usually the lifting side for hoists), then it makes sense to arrange the connection opening in the region of the corresponding preferred fluid connection. In the case of loaded hoists, when a load is lowered, compression results in the fluid exit, thereby providing the brake release required Printing is supported. In a motor without preferential direction, it has proven to be useful to arrange the connecting opening in the center, ie at the same distance from the fluid connections for both directions of rotation.

Als weiterer Vorteil der Anordnung der Verbindungsöffnung stirnseitig neben dem Läufer hat sich ein gutes Anlaufverhalten gezeigt. Die minimale zeitliche Verzögerung, die sich durch die Wirkung des Druckmediums zunächst auf die am Arbeitsbereich des Motors befindliche Fläche des Bremselementes und danach erst durch Anlaufen des Motors auch im Druckraum ergibt, ermöglicht ein allmähliches, stufenloses Ansteuern des Motors.As a further advantage of the arrangement of the connection opening on the front side next to the rotor, a good start-up behavior has been shown. The minimum time delay, which results from the action of the pressure medium initially on the working area of the engine surface of the brake element and then only by starting the engine in the pressure chamber, allows a gradual, stepless driving the motor.

Gemäß einer Weiterbildung der Erfindung ist die Passung des Bremselementes gegenüber einer Wandung des Motorraums so, dass das Druckmedium zwischen diesen beiden hindurch in den Druckraum gelangt. Hier kann also gezielt ein Spalt bzw. eine Undichtigkeit gelassen werden, um den Druckraum mit dem Arbeitsbereich des Motorraums zu verbinden. Auf diese Weise kann - ohne dass spezielle Kanäle notwendig sind - auf sehr einfache Weise eine Verbindung geschaffen werden. Der notwendige Querschnitt ist ohnehin gering, da es im Betrieb nicht zu einer ständigen Durchströmung der Verbindung kommt, sondern der Druck im Druckraum statisch aufrechterhalten bleibt.According to one embodiment of the invention, the fit of the brake element with respect to a wall of the engine compartment so that the pressure medium passes between these two into the pressure chamber. In this case, a gap or a leak can be deliberately left to connect the pressure chamber with the working area of the engine compartment. In this way - without special channels are necessary - a connection can be created in a very simple way. The necessary cross-section is low anyway, since it does not come to a constant flow through the connection in operation, but the pressure in the pressure chamber is maintained static.

Gemäß einer Weiterbildung der Erfindung ist der Druckraum gebildet zwischen dem Bremselement (oder einem hinsichtlich der axialen Bewegung mit diesem verbundenen Element) einerseits und dem Gehäuse (oder einem gehäusefesten Element) andererseits. So wird bei Beaufschlagung mit dem Druckmedium das Bremselement gegenüber dem Gehäuse verschoben.According to one embodiment of the invention, the pressure chamber is formed between the brake element (or an element connected with respect to the axial movement thereof) on the one hand and the housing (or a housing-fixed element) on the other. Thus, when exposed to the pressure medium, the brake element is moved relative to the housing.

Bevorzugt ist der Druckraum als Ringraum ausgebildet. Ein Ringraum von relativ großem Durchmesser hat den Vorteil, dass eine gleichmäßige Kraftwirkung erfolgt und somit die Gefahr eines eventuellen Verkantens des hierdurch verschobenen Elements gering ist. Durch die freie Wahl der Durchmesserabstufung des Stufenkolbens können im Rahmen erreichbarer Motorleistungen Bremsmomente in erforderlicher Größe realisiert werden.Preferably, the pressure chamber is designed as an annular space. An annulus of relatively large diameter has the advantage that a uniform force is applied and thus the risk of a possible tilting of the thus displaced element is low. Due to the free choice of the diameter graduation of the stepped piston braking moments in the required size can be realized within achievable engine power.

Gemäß einer Weiterbildung der Erfindung wird vorgeschlagen, dass eine Wandung vorgesehen ist, die mindestens den Arbeitsbereich des Motorraums und das Bremselement umschließt. Diese Wandung weist im Längsschnitt mindestens eine Stufe auf. Im bevorzugten Fall eines zylinderförmigen Arbeitsbereiches umfaßt die Wandung bevorzugt zwei aneinander gesetzte Zylinderabschnitte mit unterschiedlichem Durchmesser, die durch die Stufe verbunden sind. Auch das innerhalb des von der Wandung umschlossenen Bereiches aufgenommene Bremselement weist eine passende Stufe auf. Der Druckraum ist dann zwischen radial angeordneten Flächen der Stufen gebildet. So kann auf konstruktiv sehr einfache Weise ein Druckraum gebildet werden, der bei Beaufschlagung zu einer axialen Verschiebung des Bremselements führt.According to one embodiment of the invention, it is proposed that a wall is provided which encloses at least the working area of the engine compartment and the brake element. This wall has in longitudinal section at least one step. In the preferred case of a cylindrical working area, the wall preferably comprises two juxtaposed cylinder sections of different diameter connected by the step. Also, the braking element received within the area enclosed by the wall has a matching step. The pressure chamber is then formed between radially arranged surfaces of the stages. Thus, a pressure chamber can be formed in a structurally very simple manner, which leads to an axial displacement of the braking element when acted upon.

Nachfolgend werden Ausführungsformen der Erfindung anhand von Zeichnungen näher beschrieben. In den Zeichnungen zeigen:

Fig. 1
eine Ansicht eines Längsschnittes durch eine erste Ausführungsform eines Lamellenmotors;
Fig. 2
eine Ansicht eines Querschnittes durch den Lamellenmotor aus Fig. 1 entlang der Linie A .. A';
Fig. 3
eine Ansicht eines Querschnittes durch den Lamellenmotor aus Fig. 1 entlang der Linie B .. B' und
Fig. 4a, 4b
Prinzipskizzen zur Lösung der Bremse bei einem mit dem in Fig. 1 gezeigten vergleichbaren Lamellenmotor.
Fig. 5
in schematischer Darstellung als pneumatisches Schaltbild den Motor aus Fig. 1 mit einer Steuerung;
Fig. 6
eine Ansicht eines Längsschnittes durch eine zweite Ausführungsform eines Lamellenmotors;
Fig. 7-10
schematische Darstellungen als pneumatisches Schaltbild des Lamellenmotors aus Fig. 6 mit einer Steuerung in verschiedenen Verbindungsarten.
Hereinafter, embodiments of the invention will be described in more detail with reference to drawings. In the drawings show:
Fig. 1
a view of a longitudinal section through a first embodiment of a vane motor;
Fig. 2
a view of a cross section through the vane motor Fig. 1 along the line A .. A ';
Fig. 3
a view of a cross section through the vane motor Fig. 1 along the line B .. B 'and
Fig. 4a, 4b
Schematic diagrams for solving the brake in a with the in Fig. 1 shown comparable vane motor.
Fig. 5
in a schematic representation as a pneumatic circuit diagram of the engine Fig. 1 with a controller;
Fig. 6
a view of a longitudinal section through a second embodiment of a vane motor;
Fig. 7-10
schematic representations as a pneumatic circuit diagram of the vane motor from Fig. 6 with a controller in different types of connection.

In Fig. 1 ist ein Motor (Lamellenmotor) 10 gemäß einer ersten Ausführungsform im Längsschnitt gezeigt. Ein Gehäuse 12 umfaßt eine Motorbuchse 14 sowie einen stirnseitigen Deckel 16 und einen weiteren stirnseitigen Deckel 19 mit einem Bremsbelag 21.In Fig. 1 is a motor (vane motor) 10 according to a first embodiment shown in longitudinal section. A housing 12 comprises a motor bush 14 and a front-side cover 16 and a further end-side cover 19 with a brake pad 21st

Die Motorbuchse 14 begrenzt einen inneren Motorraum 18. In einer alternativen Ausgestaltung (nicht dargestellt) kann auch auf eine separate Motorbuchse verzichtet und der innere Motorraum 18 durch die Gehäusewand gebildet werden. Im inneren Motorraum 18 sind ein Lamellenläufer 20 und ein Bremselement 22 angeordnet.The engine bushing 14 defines an inner engine compartment 18. In an alternative embodiment (not shown), a separate engine bushing may be omitted and the inner engine compartment 18 may be formed by the housing wall. In the inner engine compartment 18, a vane rotor 20 and a brake member 22 are arranged.

Die Motorbuchse 14 umfaßt eine Stufe 24, die zwischen zwei kreiszylinderförmigen Abschnitten unterschiedlichen Durchmessers gebildet ist. Ein erster Abschnitt 26 weist einen größeren Innendurchmesser auf als ein zweiter, hieran anschließender Abschnitt.The motor socket 14 comprises a step 24 which is formed between two circular cylindrical sections of different diameters. A first portion 26 has a larger inner diameter than a second, subsequent thereto section.

Der Lamellenläufer 20 ist im Bereich des zweiten Abschnitts mit dem geringeren Innendurchmesser angeordnet. Wie dem Fachmann für Lamellenmotoren bekannt ist, ist der Lamellenläufer 20 innerhalb dieses Bereiches exzentrisch angeordnet. Wie in Fig. 1 gezeigt ist die Drehachse 28, die an einem Ende einen Lagerzapfen 30 und am anderen Ende einen Abtriebszapfen 32 aufweist gegenüber der Längsmittelachse der Motorbuchse 14 nach unten verschoben. Dies ist auch in dem in Fig. 2 gezeigten Querschnitt erkennbar.The vane rotor 20 is arranged in the region of the second portion with the smaller inner diameter. As is known to those skilled in the art of laminar motors, the vane rotor 20 is eccentrically located within this range. As in Fig. 1 shown is the axis of rotation 28, which has at one end a bearing pin 30 and at the other end a driven pin 32 relative to the longitudinal center axis of the motor bushing 14 downwardly displaced. This is also in the Fig. 2 shown cross section recognizable.

Wie aus Fig. 2 weiter ersichtlich, weist der Lamellenläufer 20 eine Anzahl von radial verschieblichen, nach außen federbelasteten Lamellen 34 auf. Die Lamellen liegen an der Motorbuchse 14 an und begrenzen so Zwischenräume 36. Die Lamellen sind über die gesamte axiale Länge eines Arbeitsbereiches 40 (siehe Fig. 1) des Motors 10 vorgesehen.How out Fig. 2 also visible, the vane rotor 20 has a number of radially displaceable, outwardly spring-loaded blades 34. The lamellae abut the motor bushing 14 and thus delimit gaps 36. The lamellae are over the entire axial length of a working area 40 (see FIG Fig. 1 ) of the engine 10 is provided.

Am Umfang des Arbeitsbereiches 40 weist die Motorbuchse 14 einen ersten Drucklufteinlass 42, einen zweiten Drucklufteinlass 44 und einen Auspuff 46 auf. Beim Betrieb in der Vorzugsrichtung (Drehung links herum in Fig. 2) wird Druckluft durch den Drucklufteinlass 42 zugeführt. Bei Drehung des Lamellenläufers 20 expandiert die Druckluft in den mit der Rotation größer werdenden Zwischenräumen 36 zwischen den Lamellen 34 bis sie am Auspuff 46 unter einem Restdruck abgegeben wird.At the periphery of the working area 40, the motor bushing 14 has a first compressed air inlet 42, a second compressed air inlet 44 and an exhaust 46. When operating in the preferred direction (turn to the left in Fig. 2 ) compressed air is supplied through the compressed air inlet 42. Upon rotation of the vane rotor 20, the compressed air expands in the increasing with the rotation gaps 36 between the fins 34 until it is discharged at the exhaust 46 under a residual pressure.

Beim Betrieb in entgegengesetzter Drehrichtung (rechtsdrehend in Fig. 2) wird Druckluft durch den Drucklufteinlass 44 zugeführt. Wie aus Fig. 2 ersichtlich, ist der Auspuff 46 nicht symmetrisch zwischen den Drucklufteinlässen 42, 44 angeordnet, sondern in größerem Abstand vom ersten Drucklufteinlass 42. Dies führt dazu, dass die durch diesen Drucklufteinlass 42 angesteuerte erste Drehrichtung zur Vorzugsrichtung wird (bspw. bei einem Hebezeug: Heben-Richtung), bei der das Leistungsvermögen des Motors 10 höher ist als bei der Gegenrichtung.When operating in the opposite direction of rotation (clockwise in Fig. 2 ) Compressed air is supplied through the compressed air inlet 44. How out Fig. 2 can be seen, the exhaust 46 is not arranged symmetrically between the compressed air inlets 42, 44, but in The result is that the first direction of rotation driven by this compressed air inlet 42 becomes the preferred direction (for example, in the case of a hoist: lifting direction), in which the power of the motor 10 is higher than in the opposite direction.

Wie in Fig. 1 gezeigt ist das Bremselement 22 axial direkt neben dem Lamellenläufer 20 angeordnet. Mit einem auf der Oberfläche angebrachten Bremsbelag 48 bildet es eine Reibpaarung mit der Stirnfläche 50 des Lamellenläufers 20. Federelemente 52, von denen in Fig. 1 nur zwei zu sehen sind, wirken auf das Bremselement 22 und beaufschlagen es mit einer Kraft in axialer Richtung, die die Elemente der Reibpaarung 48, 50 aufeinander drückt. Das Bremselement ist durch Zapfen 51 gehalten, so dass es sich axial bewegen, aber gegenüber dem Gehäuse 12 nicht verdrehen kann. Eine weitere Reibpaarung ist gebildet zwischen dem axial verschieblichen Lamellenläufer 20 und dem mit einem Bremsbelag 21 versehenen Deckel 19, so daß der Lamellenläufer 20 beidseitig gebremst ist.As in Fig. 1 shown, the brake element 22 is arranged axially adjacent to the vane rotor 20. With a mounted on the surface brake pad 48, it forms a friction pair with the end face 50 of the vane rotor 20. Spring elements 52, of which Fig. 1 only two can be seen acting on the brake member 22 and act on it with a force in the axial direction, which presses the elements of the friction pair 48, 50 to each other. The brake element is held by pins 51, so that it can move axially, but can not rotate relative to the housing 12. Another friction pair is formed between the axially displaceable vane rotor 20 and provided with a brake lining 21 cover 19, so that the vane rotor 20 is braked on both sides.

Passend zu der in der Motorbuchse 14 vorgesehenen Stufe 24 ist auch das in der Motorbuchse 14 aufgenommene Bremselement 22 mit einer Stufe 54 versehen. Zwischen den axialen Flächen eines abgestuften Teils des Bremselements 22 und der Stufe 24 der Motorbuchse 14 ist ein Druckraum 60 gebildet. Der Druckraum 60 hat, wie aus Fig. 3 ersichtlich, die Form eines umlaufenden Ringraumes. Wie aus dem Vergleich von Fig. 2, Fig. 3 hervorgeht, weist der Druckraum 60 in Richtung quer zur Längsmittelachse der Motorbuchse 14 eine größere Erstreckung auf als der Arbeitsbereich 40 des Motors 10. Der Druckraum 60 erstreckt sich bis zu einem Radius R2 (Fig. 3), während im Arbeitsbereich 40 die Motorbuchse 14 lediglich einen kleineren Innendurchmesser R1 (Fig. 2) aufweist.Matching to the provided in the motor socket 14 stage 24 and the recorded in the motor socket 14 brake element 22 is provided with a step 54. Between the axial surfaces of a stepped portion of the braking element 22 and the stage 24 of the motor bushing 14, a pressure chamber 60 is formed. The pressure chamber 60 has, as out Fig. 3 seen, the shape of a circumferential annular space. As from the comparison of Fig. 2, Fig. 3 shows, the pressure chamber 60 in the direction transverse to the longitudinal center axis of the motor bushing 14 has a greater extent than the working area 40 of the motor 10. The pressure chamber 60 extends to a radius R2 (FIG. Fig. 3 ), while in the working area 40, the motor bushing 14 has only a smaller inner diameter R1 (FIG. Fig. 2 ) having.

Der Anschluss des Druckraumes 60 erfolgt bei der ersten Ausführungsform über eine Leitung 62, die als Kanal innerhalb des Bremselements 22 gebildet ist. Sie verbindet den Druckraum 60 mit einer Öffnung 64 in der dem Lamellenläufer 20 zugewandten Fläche des Bremselements 22. Die Leitung 62 ist als direkte, ventilfreie Verbindung von nur einer Öffnung 64 mit dem Druckraum 60 ausgebildet.The connection of the pressure chamber 60 takes place in the first embodiment via a line 62 which is formed as a channel within the braking element 22. It connects the pressure chamber 60 with an opening 64 in the surface of the brake element 22 facing the slat rotor 20. The line 62 is designed as a direct, valve-free connection of only one opening 64 to the pressure chamber 60.

In Fig. 5 ist in schematischer Form der Motor 10 mit seiner pneumatischen Beschaltung gezeigt. Die Beschaltung ist hier der Übersichtlichkeit halber auf das Wesentliche reduziert dargestellt; weitere Steuerungsfunktionen wie z.B. Not-Aus und eine Überlastscherung für ein Hebezeug sind daher hier nicht gezeigt.In Fig. 5 is shown in schematic form the engine 10 with its pneumatic circuit. The wiring is shown here for the sake of clarity reduced to the essentials; Further control functions such as emergency stop and overload shearing for a hoist are therefore not shown here.

Der innere Motorraum 18 ist mit seinem ersten Drucklufteinlass 42 an die Hebenseite h eines Steuerventils 70 angeschlossen und mit seinem zweiten Drucklufteinlass 44 an der Senkenseite s. Der Lamellenläufer 20 wird durch die hier symbolisch dargestellte Reibpaarung zwischen dem Bremsbelag 48 und der Stirnfläche 50 gebremst. Gelöst wird die Bremse durch Druckluftzufuhr an einen Zwischenraum 72 zwischen dem Bremselement 22 und der Stirnfläche 50, der in Fig. 4b dargestellt und unten erläutert ist, sowie - durch den Kanal 62 - zum Druckraum 60, wobei der in den beiden Druckräumen 60; 72 aufgebaute Druck das Bremselement 22 entgegen der Feder 52 wirkt. Der Auspuff 46 des Motors ist an einen Schalldämpfer 74 angeschlossen.The inner engine compartment 18 is connected with its first compressed air inlet 42 to the lifting side h of a control valve 70 and with its second compressed air inlet 44 on the sink side s. The vane rotor 20 is braked by the friction pairing between the brake pad 48 and the end face 50 shown symbolically here. The brake is released by compressed air supply to a gap 72 between the brake element 22 and the end face 50, which in Fig. 4b illustrated and explained below, and - through the channel 62 - to the pressure chamber 60, wherein in the two pressure chambers 60 ; 72 constructed pressure the brake element 22 against the spring 52 acts. The exhaust 46 of the engine is connected to a muffler 74.

Das Steuerventil 70 verfügt im dargestellten Beispiel über einen Betätigungshebel 76, der auf einer mittleren Leerlaufstellung in die Betriebsart Senken s oder entgegengesetzt in die Betriebsart Heben h verschiebbar ist, wobei in einem Schiebeventil 80 durch Verschieben gegenüber den Anschlüssen verschiedene Ventilfunktionen zwischen einer Druckluftzufuhr P und einem Entlüftungsanschluss R (verbunden mit dem Schalldämpfer 74) einerseits und einem Zufuhranschluss A für die Hebenseite und B für die Senkenseite andererseits realisiert werden:The control valve 70 has in the example shown via an actuating lever 76 which is displaceable s in a medium idle position in the operating mode s or opposite in the lifting mode h, wherein in a slide valve 80 by shifting relative to the terminals different valve functions between a compressed air supply P and a Venting port R (connected to the muffler 74) on the one hand and a supply port A for the lifting side and B for the drain side are realized on the other hand:

Im gezeigten Leerlauf sind die Anschlüsse A und B entlüftet, d.h. mit R verbunden. In der Betriebsart Heben (linke Ventilfunktion in Fig. 5) ist der Druckluftanschluss der Hebenseite A mit der Druckluftzuführung P verbunden, während die Senkenseite entlüftet wird (Verbindung B-R durch Kreuzstellung des Ventils 80). Die Zuführung A ist mit dem Ventilausgang der Hebenseite h über die Parallelschaltung eines Drosselelements 82 mit einem Rückschlagventil 84 verbunden, wobei das Rückschlagventil 84 so wirkt, dass im Hebenbetrieb die Druckluft über das Rückschlagventil 84 zur Hebenseite h strömen kann, so dass die Drossel 82 den Fluidstrom nicht begrenzt, sondern neben dem Ventil 84 als zusätzliche Verbindung wirkt.In the illustrated idle ports A and B are vented, ie connected to R. In lifting mode (left valve function in Fig. 5 ), the compressed air port of the lift side A is connected to the compressed air supply P, while the drain side is vented (connection BR by crossing position of the valve 80). The supply A is connected to the valve output of the lifting side h via the parallel connection of a throttle element 82 with a check valve 84, wherein the check valve 84 acts so that in the lifting operation, the compressed air can flow through the check valve 84 to the lifting side h, so that the throttle 82 the Fluid flow is not limited, but next to the valve 84 acts as an additional connection.

In der Betriebsart Senken (rechte Ventilfunktion in Fig. 5) ist die Senkenseite s direkt mit der Druckluftzufuhr P verbunden, während die Hebenseite h über das Drosselelement 82 entlüftet ist (Verbindung A-R, wobei das Rückschlagventil 84 sperrt). Das Drosselelement begrenzt hierbei den Volumenstrom des Druckmediums. Es kann auf sehr einfache Weise als Engstelle im Leitungsweg realisiert sein, beispielsweise als Lochplatte. In der Betriebsart Senken dient das Drosselelement 82 zur Begrenzung der Absenkgeschwindigkeit. Denn in dieser Betriebsart wird dem Motor einerseits durch den Druckluftanschluss 44 Druckluft zugeführt, die bis zum Auslass am Auspuff 46 expandiert. Andererseits aber wirkt der Motor aufgrund einer abzusenkenden Last am Hebezeug als Kompressor, der mit den sich verkleinernden Lamellenzwischenräumen 36 die Luft vom Auspuff 46 zum Druckluftanschluss 42 (Hebenseite) komprimiert. Diese komprimierte Luft wird an das Steuerventil zum Anschluss h geleitet und über das Drosselelement 82 entlüftet. Durch die Begrenzung des Volumenstroms am Drosselelement 82 entsteht hierbei aufgrund des Rückstaus eine Bremswirkung, die zu einem gebremsten Absenken der Last führt.In lowering mode (right valve function in Fig. 5 ), the drain side s is directly connected to the compressed air supply P, while the lift side h is vented via the throttle element 82 (connection AR, the check valve 84 blocks). The throttle element limits the volume flow of the pressure medium. It can be realized in a very simple way as a bottleneck in the conduction path, for example as a perforated plate. In the lowering mode, the throttle element 82 serves to limit the lowering speed. Because in this mode of operation, the motor is supplied with compressed air on the one hand by the compressed air connection 44, which expands to the outlet on the exhaust 46. On the other hand, the engine due to a load to be lowered on the hoist acts as a compressor that compresses the air from the exhaust 46 to the compressed air connection 42 (lifting side) with the decreasing blade interspaces 36. This compressed air is passed to the control valve to the port h and vented through the throttle element 82. Due to the limitation of the volume flow at the throttle element 82, this results in a braking effect due to the backflow, which leads to a braked lowering of the load.

Im Betrieb des Motors 10 erfolgt bei Beaufschlagung eines der beiden Drucklufteinlässe 42,44 mit Druckluft automatisch ein Lösen der Bremse, während bei nachlassender Druckluftversorgung der Lamellenläufer 20 zwischen dem Bremsbelag 48 des Bremselementes 22 und dem Bremsbelag 21 des feststehenden Deckels 19 automatisch stillgesetzt wird. Dieser Mechanismus wird nachfolgend anhand der schematischen Schaubilder Fig. 4a, 4b dargestellt. Hierbei ist darauf hinzuweisen, dass die Darstellung in Fig. 4a, 4b schematischer Natur ist und dazu dienen soll, das allgemeine Funktionsprinzip zu erläutern. Daher sind einige Details weggelassen und insbesondere die Spaltmaße übertrieben groß dargestellt.When operating the motor 10 takes place upon application of one of the two compressed air inlets 42,44 with compressed air automatically releasing the brake, while decreasing compressed air supply the vane rotor 20 between the brake pad 48 of the brake element 22 and the brake pad 21 of the fixed lid 19 is automatically stopped. This mechanism will be described below with reference to the schematic diagrams Fig. 4a, 4b shown. It should be noted that the illustration in Fig. 4a, 4b is schematic in nature and should serve to explain the general operating principle. Therefore, some details are omitted and in particular the gap dimensions exaggerated.

Fig. 4a zeigt den gebremsten Motor 10. Der Lamellenläufer 20 ist durch Anlage des Bremselements 22 gebremst. Durch die Kraft der Federelemente 52 ist der Motor 10 somit stillgesetzt. Fig. 4a shows the braked motor 10. The vane rotor 20 is braked by contact of the braking element 22. By the force of the spring elements 52, the motor 10 is thus stopped.

Zum Anfahren des Motors wird nun Druckluft über den Drucklufteinlass 42 zugeführt. Wie aus Fig. 2 ersichtlich gelangt die Druckluft in einen Lamellenzwischenraum 36. Da der Lamellenläufer 20 stillgesetzt ist, kommt es zunächst nicht zur Drehung des Lamellenläufers 20. Stattdessen wirkt der Druck im Zwischenraum 36 (und durch Undichtigkeiten an den Lamellen bald auch auf der gesamten Fläche) auf das axial verschiebliche Bremselement 22, so dass dieses beginnt, sich gegen die Kraft der Federelemente 52 vom Lamellenläufer 20 zu lösen, so dass sich ein Druckraum 72 (s. Fig. 4b) bildet.For starting the engine, compressed air is now supplied via the compressed air inlet 42. How out Fig. 2 As can be seen, the compressed air enters a blade interstice 36. Since the vane rotor 20 is stopped, it does not initially turn the vane rotor 20. Instead, the pressure in the gap 36 (and by leaks on the blades soon on the entire surface) acts on the axially displaceable brake element 22 so that it begins to dissolve against the force of the spring elements 52 from the vane rotor 20, so that a pressure chamber 72 (s. Fig. 4b ).

Allerdings wirkt durch die Federelemente 52 eine solche Kraft auf das Bremselement 22, dass der auf die Fläche des Reibbelags 48 wirkende Druck alleine nicht ausreichen würde, um die Bremse vollständig zu lösen.However, acts by the spring elements 52 such a force on the brake member 22 that the force acting on the surface of the friction lining 48 alone pressure would not be sufficient to completely release the brake.

Gleichzeitig gelangt die Druckluft allerdings auch in den Druckraum 60. Dies kann auf zwei verschiedene Arten erfolgen. Einerseits können in der Passung zwischen der Motorbuchse 14 und dem Bremselement 22 Undichtigkeiten verbleiben, durch die das Druckmedium in den Druckraum 60 gelangt (gepunktete Pfeile in Fig. 4a). Bei der bevorzugten Konstruktion gemäß Fig. 1 sind hierbei Aufnahmen für Dichtungen 65 vorgesehen. Wird an dieser Stelle keine Dichtung eingesetzt, so entfällt eine Abdichtung an dieser Stelle und es kommt zu dem in Fig. 4a durch gepunktete Pfeile dargestellten Weg des Druckmediums in den Druckraum 60.At the same time, however, the compressed air also enters the pressure chamber 60. This can be done in two different ways. On the one hand, leakages may remain in the fit between the motor bushing 14 and the brake element 22, through which the pressure medium enters the pressure chamber 60 (dotted arrows in FIG Fig. 4a ). In the preferred construction according to Fig. 1 in this case recordings for seals 65 are provided. If no seal is used at this point, so eliminates a seal at this point and it comes to the in Fig. 4a shown by dotted arrows path of the pressure medium in the pressure chamber 60th

Alternativ oder ergänzend hierzu gelangt das Druckmedium auch durch die Öffnung 64 im Bremselement 22 und die daran angeschlossene Leitung 62 in den Druckraum 60. Die Öffnung 64 erscheint zwar im Ruhezustand (Fig. 4a) zunächst verschlossen. Das Druckmedium gelangt aber im Betrieb dennoch hindurch, da einerseits die Anlage zwischen Lamellenläufer 20 und Bremselement 22 nicht vollständig dichtend ist. Andererseits bewirkt das Einleiten des Druckmediums bereits eine erste Bewegung des Bremselements 22, so dass dann die Öffnung 64 frei wird. In einer bevorzugten Ausgestaltung (in Fig. 1 aufgrund der geringen Abmaße nicht erkennbar) kann auch bei der Herstellung des Lamellenläufers 22 an dessen Stirnfläche 50 innen ein leicht erhöhter Ring belassen werden, der bei der Anlage gegen das Bremselement 22 dafür sorgt, daß die Öffnung 64 nicht vollständig verschlossen ist (nicht dargestellt).Alternatively or additionally, the pressure medium passes through the opening 64 in the brake element 22 and the line 62 connected thereto in the pressure chamber 60. Although the opening 64 appears in the idle state ( Fig. 4a ) first closed. However, the pressure medium still passes through during operation, since on the one hand the contact between the vane rotor 20 and the brake element 22 is not completely sealed. On the other hand, the introduction of the pressure medium already causes a first movement of the brake element 22, so that then the opening 64 is free. In a preferred embodiment (in Fig. 1 can not be seen due to the small dimensions), a slightly raised ring can also be left in the manufacture of the vane rotor 22 on its end face 50, which ensures against the brake element 22 when it rests against the opening 64 (not shown). ,

Die Anordnung der Öffnung 64 ist aus der Zusammenschau Fig.1, Fig. 2 genau ersichtlich. In radialer Richtung liegt sie, wie aus Fig. 1 erkennbar, im Inneren der durch das Bremselement 22 dem Arbeitsbereich 40 des Motorraums zugewandten Fläche, d.h. nicht direkt am Rand. Die Lage der Öffnung 64 relativ zu den Drucklufteinlässen 42, 44 und dem Auspuff 46 ist aus Fig. 2 ersichtlich. Hier ist die Öffnung 64 im Bereich des Drucklufteinlass 42 der Hebenseite angeordnet. Wie Versuche ergeben haben, eignet sich die Anordnung im Bereich dieses Drucklufteinlasses besonders gut. Es wird daher bevorzugt, dass die Öffnung 64 wie in Fig. 2 gezeigt im selben Quadranten des Motorraums angeordnet ist wie der Drucklufteinlass 42. Besonders bevorzugt beträgt der Winkel zwischen der Mitte des Drucklufteinlasses 42 und der Mitte der Öffnung 64 nicht mehr als 30°.The arrangement of the opening 64 is from the synopsis Fig.1 . Fig. 2 exactly visible. In the radial direction, it lies as if out Fig. 1 recognizable, in the interior of the braking element 22 through the work area 40 of the engine compartment facing surface, ie not right on the edge. The location of the opening 64 relative to the compressed air inlets 42, 44 and the exhaust 46 is off Fig. 2 seen. Here, the opening 64 is arranged in the region of the compressed air inlet 42 of the lifting side. As tests have shown, the arrangement is particularly well in the area of this compressed air inlet. It is therefore preferred that the opening 64 be as in FIG Fig. 2 is arranged in the same quadrant of the engine compartment as the compressed air inlet 42. More preferably, the angle between the center of the compressed air inlet 42 and the center of the opening 64 is not more than 30 °.

Diese Anordnung der Öffnung 64 ist besonders für den Betrieb in Hebenrichtung (Druckluft auf Drucklufteinlass 42) vorteilhaft. Wie Versuche gezeigt haben ergibt sich aber bei einem belasteten Hebezeug auch bei Zuführung der Druckluft über den Drucklufteinlass 44 ein ausreichender Druckaufbau im Bereich der Öffnung 64, so daß der Druckraum 60 hinreichend schnell gefüllt wird, weil beim Senken der Last - quasi durch Pumpwirkung - im Bereich der Öffnung 64 ein höherer Druck entsteht als am Drucklufteinlass 44.This arrangement of the opening 64 is particularly advantageous for operation in the lifting direction (compressed air on compressed air inlet 42). As tests have shown but results in a loaded hoist even when supplying the compressed air through the compressed air inlet 44, a sufficient pressure build-up in the region of the opening 64, so that the pressure chamber 60 is filled sufficiently quickly, because when lowering the load - almost by pumping action - Area of the opening 64, a higher pressure than at the compressed air inlet 44th

Das Druckmedium wirkt auf die radialen Flächen des Bremselements 22, nämlich einerseits auf die innere, an der Reibpaarung 48, 50 beteiligte Fläche und andererseits auf die an der Stufe 54 gebildete zusätzliche Ringfläche. Die auf das Bremselement 22 insgesamt wirkende Kraft entspricht dem Produkt aus dem Druck des Druckmediums und der Fläche. Durch geeignete Dichtungsmaßnahmen (Dichtungssitz 66 in Fig. 1) wird verhindert, dass das Druckmedium auch hinter das Bremselement 22 gelangt. So ist es insgesamt möglich, dass allein durch den Druck des Druckmediums das Bremselement 22 gelöst wird.The pressure medium acts on the radial surfaces of the brake element 22, namely on the one hand on the inner, on the friction pair 48, 50 involved surface and on the other hand on the formed on the step 54 additional annular surface. The total force acting on the brake element 22 corresponds to the product of the pressure of the pressure medium and the surface. By suitable sealing measures (seal seat 66 in Fig. 1 ) prevents the pressure medium also passes behind the brake element 22. Thus, it is altogether possible that the brake element 22 is released solely by the pressure of the pressure medium.

Das Abheben des Bremselements 22 - und das Anfahren des Motors 10 - erfolgt selbst bei schneller Beaufschlagung des Drucklufteinlasses 42 stets allmählich. Denn zuerst wird allein durch den Druck an der Stirnseite des Lamellenläufers 20 das Bremselement 22 geringfügig verschoben und damit die Bremswirkung verringert. Erst mit (geringer) zeitlicher Verzögerung strömt die Druckluft auch in den Druckraum 60, so dass die Bremswirkung dann völlig aufgehoben werden kann.The lifting of the braking element 22 - and the start of the engine 10 - takes place even with rapid application of the compressed air inlet 42 always gradually. Because first, the brake element 22 is slightly displaced solely by the pressure on the front side of the vane rotor 20 and thus reduces the braking effect. Only with (slight) time delay, the compressed air also flows into the pressure chamber 60, so that the braking effect can then be completely canceled.

Im Betrieb bleibt das Bremselement 22 beabstandet vom Lamellenläufer 20, solange das Druckmedium zugeführt wird. Beim Abschalten des Druckmediums fällt durch die Kraft der Federelemente 52 automatisch die Bremse wieder ein.In operation, the brake element 22 remains spaced from the vane rotor 20 as long as the pressure medium is supplied. When switching off the pressure medium falls automatically by the force of the spring elements 52, the brake again.

Durch den Druckraum 60 ist somit eine Vergrößerung der Fläche geschaffen, auf der der Druck des Druckmediums auf das Bremselement 22 wirken kann. So ist es möglich, durch geeignete, stärkere Federn 52 eine gewünschte, erhöhte Bremskraft vorzugeben.By the pressure chamber 60 thus an enlargement of the area is created on which the pressure of the pressure medium can act on the brake element 22. It is thus possible to specify a desired, increased braking force by means of suitable, stronger springs 52.

In Fig. 6 ist eine zweite Ausführungsform eines Lamellenmotors 100 dargestellt, die sich in Versuchen als besonders vorteilhaft erwiesen hat. Der Motor 100 gemäß der zweiten Ausführungsform entspricht weitgehend dem Motor 10 gemäß der ersten Ausführungsform. Er weist überwiegend dieselben Element auf wie der Motor 10. Diese Elemente sind daher mit denselben Bezugszeichen bezeichnet. Es wird daher bezüglich dieser Elemente auf obige Beschreibung verwiesen. Im folgenden werden lediglich Unterschiede zwischen den Ausführungsformen erwähnt.In Fig. 6 is a second embodiment of a vane motor 100 is shown, which has proven in experiments to be particularly advantageous. The motor 100 according to the second embodiment largely corresponds to the motor 10 according to the first embodiment. It has predominantly the same elements as the motor 10. These elements are therefore designated by the same reference numerals. Reference is therefore made to the above description for these elements. In the following, only differences between the embodiments will be mentioned.

Der Motor 100 verfügt im Gegensatz zu Motor 10 nicht über eine Öffnung 64 in der Stirnfläche des Bremselements 22, und entsprechend auch nicht über einen Kanal 62, der den inneren Motorraum 18 mit dem Druckraum 60 verbindet. Statt dessen ist der Druckraum 60 durch die Passung und insbesondere die Dichtungen 65 gegenüber dem inneren Motorraum 18 abgeschlossen.The engine 100, unlike the engine 10, does not have an opening 64 in the end face of the brake member 22, and correspondingly, does not have a passage 62 connecting the engine inner space 18 to the pressure space 60. Instead, the pressure chamber 60 is closed by the fit and in particular the seals 65 with respect to the inner engine compartment 18.

Beim Motor 100 erfolgt die Be- und Entlüftung des Druckraums 60 durch eine externe Zuleitung (nicht dargestellt in Fig. 6). Diese Zuleitung kann, wie in Fig.. 7 - 10 dargestellt und nachfolgend erläutert auf verschiedene Arten verbunden sein.When the engine 100, the ventilation of the pressure chamber 60 by an external supply line (not shown in FIG Fig. 6 ). This supply line can, as in Fig. 7 - 10 represented and explained below be connected in various ways.

Gegenstand der Überlegungen ist hierbei der Betrieb des Motors eines Hebezeugs in der Betriebsart Senken mit entsprechender Last. Hierbei sollte gewährleistet sein, dass bei einer Unterbrechung des Senkbetriebes (d.h. Umschalten des Schiebeventils 80 von der "Senken"-Stellung in die Mittelstellung) bei angehängter Last unmittelbar eine Bremsung erfolgt und es möglichst nicht zu einem Nachlaufen des Motors kommt. Hierbei kann es bei der oben diskutierten ersten Ausführungsform im Fall nicht ausreichender Verbindung des Druckraums 60 mit dem Innenraum 18 des Motors zu einer zu langsamen Entlüftung des Druckraums 60, und einem entsprechend verspäteten Einfallen der Bremse kommen. Um dies zu vermeiden, ist in den verschiedenen Anschlussarten nach Fig. 7 - 10 eine externe Be- und Entlüftung für den Druckraum 60 vorgesehen.The subject of the considerations here is the operation of the engine of a hoist in the operating mode sinks with appropriate load. In this case, it should be ensured that, in the event of an interruption of the lowering operation (ie switching over of the slide valve 80 from the "lowering" position to the middle position), braking is applied immediately when the load is attached and, as far as possible, the engine does not run after it. In the case of the above-discussed first embodiment, in the case of insufficient connection of the pressure chamber 60 with the interior 18 of the engine, this may lead to a too slow venting of the pressure chamber 60, and a correspondingly delayed engagement of the brake come. To avoid this, is in the various connection types Fig. 7 - 10 an external ventilation for the pressure chamber 60 is provided.

Bei der ersten Anschlussart gemäß Fig. 7 ist der Druckraum 60 direkt mit der Hebenseite (Druckluftanschluss 42) verbunden. Im Hebebetrieb wird der Druckraum 60 von dort belüftet und beim Zurückschalten in den Leerlauf ebenso entlüftet. Im Senkenbetrieb erfolgt das Lösen der Bremse zunächst hauptsächlich durch Belüftung des Druckraums 72, und danach durch Belüftung des Druckraums 60 aufgrund des vor dem Drosselelement 82 entstehenden Rückstaus. Beim Unterbrechen der Betriebsart Senken wird das Schiebeventil 80 in die Mittelstellung verschoben und so eine Entlüftung vor Heben- und Senkenseite geschaffen. Hierbei erfolgt eine Entlüftung des Druckraums 60 über die Hebenseite, sobald der Rückstau vor dem Drosselelement 82 abgebaut ist.For the first connection according to Fig. 7 the pressure chamber 60 is directly connected to the lifting side (compressed air connection 42). In the lifting operation of the pressure chamber 60 is vented from there and also vented when switching back to idle. In lowering mode, the release of the brake is initially carried out mainly by venting the pressure chamber 72, and then by venting the pressure chamber 60 due to the backpressure arising before the throttle element 82. When interrupting the operating mode lowering the slide valve 80 is moved to the middle position, thus creating a vent before lifting and lowering side. In this case, a venting of the pressure chamber 60 via the lifting side, as soon as the backwater is reduced in front of the throttle element 82.

Für Anwendungen, in denen sich der Rückstau vor dem Drosselelement 82 als zu groß erweist, so dass es zu einem Nachlaufen des Motors nach Unterbrechen in der Betriebsart Senken kommt, kann wie in Fig. 8 alternativ gezeigt der Druckraum 60 auch vor dem Drosselelement 82 angeschlossen werden, so dass eine Entlüftung direkt beim Umschalten des Schiebeventils 80 erfolgt.For applications in which the backpressure before the throttle element 82 proves to be too large, so that there is an after-running of the engine after interrupting in the operating mode sinks, as in Fig. 8 alternatively shown the pressure chamber 60 are also connected in front of the throttle element 82, so that a venting takes place directly when switching the slide valve 80.

Alternativ und derzeit bevorzugt ist der Druckraum 60 (wie in Fig. 9 dargestellt) mit der Senkenseite verbunden. In der Betriebsart Heben erfolgt die Belüftung dann über die Senkenseite, sobald die Bremse sich durch Druckaufbau im Druckraum 72 leicht gelöst hat. Im Senkbetrieb erfolgt bei Unterbrechung und Umschalten des Schiebeventils 80 in die Mittelstellung eine direkte Entlüftung, da es auf der Senkenseite kein Drosselelement gibt, sondern die Senkenseite in der Mittelstellung direkt zum Auspuff 46 entlüftet ist.Alternatively, and currently preferred, the pressure space 60 (as in FIG Fig. 9 shown) connected to the sink side. In lifting mode, the ventilation then takes place via the drain side as soon as the brake has released itself slightly due to pressure build-up in the pressure chamber 72. In lowering mode takes place when interrupting and switching the slide valve 80 in the middle position a direct vent, since there is no throttle element on the sink side, but the sink side is vented directly to the exhaust 46 in the middle position.

Als weitere mögliche Anschlussart ist in Fig. 10 der Anschluss des Druckraums 60 sowohl an die Heben- als auch die Senkenseite dargestellt. Um einen Kurzschluss zu vermeiden, ist hier ein Wechselventil 86 vorgesehen. In der Betriebsart Heben erfolgt die Belüftung des Druckraums 60 unmittelbar von der Hebenseite, wobei das Ventil 86 einen Kurzschluss zur Senkenseite verhindert. In der Betriebsart Senken erfolgt die Belüftung hingegen direkt von der Senkenseite, wobei wiederum das Ventil 86 einen direkten Kurzschluss zur Hebenseite verhindert. Beim Unterbrechen des Senkbetriebes erfolgt die Entlüftung des Druckraums 60 über die Heben- oder die Senkenseite, die bei Mittelstellung des Schiebeventils 80 beide direkt entlüftet sind.As another possible connection type is in Fig. 10 the connection of the pressure chamber 60 shown on both the lifting and the sink side. To avoid a short circuit, a shuttle valve 86 is provided here. In lifting mode, the Ventilation of the pressure chamber 60 directly from the lifting side, wherein the valve 86 prevents a short circuit to the drain side. In the lowering mode, on the other hand, the ventilation takes place directly from the drain side, whereby in turn the valve 86 prevents a direct short circuit to the lifting side. When interrupting the lowering operation, the venting of the pressure chamber 60 via the lifting or the sink side, which are both directly vented at mid-position of the slide valve 80.

Die Erfindung ist, wie für den Fachmann erkennbar ist, nicht auf die gezeigten und beschriebenen Ausführungen beschränkt. Insbesondere sind die folgenden Modifikationen denkbar:

  • Bei der Konstruktion eines Motors gemäß Fig. 1 ist eine gestufte, einstückige Motorbuchse 14 vorgesehen. Alternativ kann das Gehäuse des Motors auch anders aufgebaut sein, um einen inneren Motorraum zu schaffen.
  • Während vorstehend ein mit Druckluft beschriebener Lamellenmotor beschrieben wurde, kann das Erfindungsprinzip für den Fachmann ohne weiteres erkennbar auch auf andere Motortypen (z. B. Zahnradmotor) und andere Antriebsmedien (bspw. Hydraulikflüssigkeit) angewendet werden.
  • Während vorstehend der Druckraum 60 jeweils alternativ über den Kanal 62 oder über eine externe Zuleitung angeschlossen ist, können auch beide Anschlussarten kombiniert werden.
  • Die in Fig. 5 und 7-10 schematisch gezeigte Hebelsteuerung kann durch andere Steuerungsarten, bspw. eine Druckluftsteuerung ersetzt werden, mit der das Schiebeventil 80 in die entsprechenden Schaltstellungen verschoben wird.
As can be appreciated by one skilled in the art, the invention is not limited to the embodiments shown and described. In particular, the following modifications are conceivable:
  • In the construction of an engine according to Fig. 1 a stepped, one-piece engine bushing 14 is provided. Alternatively, the housing of the engine may be constructed differently to provide an internal engine compartment.
  • While a vane motor described above with compressed air has been described above, the principle of the invention can readily be applied to other types of motor (eg gear motor) and other drive media (eg hydraulic fluid).
  • While above, the pressure chamber 60 is alternatively connected via the channel 62 or via an external supply line, both types of connection can be combined.
  • In the Fig. 5 and 7-10 schematically shown lever control can be replaced by other types of control, eg. A compressed air control, with the slide valve 80 is moved to the corresponding switching positions.

Claims (14)

  1. Motor with
    - an internal motor chamber (18),
    - and a rotor (20) rotatable therein, wherein the rotor is drivable by having a pressure medium applied to it, wherein the pressure medium expands in a working area (40) of the motor chamber,
    - and a braking element (22) for braking the rotor (20), which is axially arranged directly adjacent to the rotor (20), wherein the braking element (22) and the rotor (20) are axially moveable with respect to each other and form a spring-loaded friction pair (48, 50), at least at one front end face of the rotor (20),
    - a pressure chamber (60) having an extension in cross-section larger than the cross-sectional extension of the motor chamber (18) at its working area (40),
    - wherein the pressure chamber (60) is at least unilaterally axially delimited by the braking element (22) and/or the rotor (20), so that a pressure in the pressure chamber (60) results in a force to separate the friction pair (48, 50) against the spring force,
    - and wherein the pressure chamber (60) is arranged in such a way that the pressure medium passes into the pressure chamber (60), when the motor is in operation.
  2. Motor according to claim 1, wherein
    - when feeding the pressure medium to the rotor (20), the pressure medium acting on the braking element (22) being in contact with the front end face of the rotor (20) provides a force for separation of the friction pair (48, 50)
    - and the pressure in the pressure chamber (60) provides an additional force for separation of the friction pair (48, 50) opposite to the spring force.
  3. Motor according to claim 1 or 2, wherein
    - at the motor chamber (18) a first fluid port (42), a second fluid port (44) and an exhaust (46) are provided, which are arranged over the circumference of the working area (40) of the motor chamber at a distance to each other, wherein the motor (10) is drivable in a first sense of rotation by supplying fluid to the first fluid port (42) and in a second sense of rotation by supplying fluid to the second fluid port (44),
    - wherein the pressure chamber (60) is connected with the first fluid port (42) and/or the second fluid port (44) in such a way that in the operation of the motor (10) the pressure medium passes into the pressure chamber (60).
  4. Motor according to claim 3, wherein
    - the connection of the pressure chamber (60) with either the first or the second fluid port (42, 44) is a valve-free supply line.
  5. Motor according to claim 3 or 4, wherein
    - a supply line (A) is connected with one of the fluid ports (42) via a throttling element (82) to limit the volume flow of the pressure medium,
    - and the pressure chamber (60) is connected to the supply line (A) upstream of the throttling element (82).
  6. Motor according to claim 3, wherein
    - the pressure chamber (60) is connected with the two fluid ports (42, 44),
    - wherein at least one valve (86) is provided in the connection to avoid shorting.
  7. Motor according to one of the preceding claims, wherein
    - at the motor chamber (18) a first fluid port (42), a second fluid port (44) and an exhaust (46) are provided, which are arranged over the circumference of the working area (40) of the motor chamber at a distance to each other, wherein the motor (10) is drivable in a first sense of rotation by supplying fluid to the first fluid port (42) and in a second sense of rotation by supplying fluid to the second fluid port (44),
    - wherein the pressure chamber (60) is connected with the working area (40) of the motor chamber (18) via a direct, valve-free connection (62, 64), so that the pressure medium passes into the pressure chamber (60) in the operation in both senses of rotation.
  8. Motor according to claim 7, wherein
    - the fit of the braking element (22) with respect to a side wall (14) of the motor chamber (18) is such that the pressure medium can pass between the braking element (22) and the side wall (14) into the pressure chamber (60).
  9. Motor according to one of claims 6, 7, wherein
    - at least one line (62) is provided for feeding the pressure medium from the working area (40) into the pressure chamber (60),
    - wherein the line (62) is connected to a connecting opening (64) arranged in the braking element (22) at the end face adjacent to the rotor (20).
  10. Motor according to claim 9, wherein
    - the line (62) has only one connecting opening (64).
  11. Motor according to claim 9 or 10, wherein
    - at the working area (40) at least one first fluid port (42) is provided for supplying the pressure medium to be applied to the rotor (20),
    - wherein the connecting opening (64) is arranged in the same quadrant of the motor chamber (18) as the first fluid port (42) as seen in the axial direction.
  12. Motor according to one of the preceding claims, wherein
    - the pressure chamber (60) is formed between the braking element (22) and the housing (12, 14).
  13. Motor according to one of the preceding claims, wherein
    - the pressure chamber (60) is an annular space axially delimited by the braking element (22),
    - wherein the annular space (60) has an outer diameter (R2) greater than the transverse extension (R1) of the working area (40) of the motor chamber.
  14. Motor according to one of the preceding claims, wherein
    - a side wall (14) is provided surrounding the working area (40) of the motor chamber and the braking element (22),
    - wherein the side wall (14) has at least one step (24) in the longitudinal section,
    - wherein the pressure chamber (60) is formed in the area of the step (24).
EP07856909.2A 2006-12-21 2007-12-19 Fluid motor having improved braking effect Active EP2094945B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07856909T PL2094945T3 (en) 2006-12-21 2007-12-19 Fluid motor having improved braking effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061854A DE102006061854B4 (en) 2006-12-21 2006-12-21 Fluid motor with improved braking effect
PCT/EP2007/011186 WO2008077561A1 (en) 2006-12-21 2007-12-19 Fluid motor having improved braking effect

Publications (2)

Publication Number Publication Date
EP2094945A1 EP2094945A1 (en) 2009-09-02
EP2094945B1 true EP2094945B1 (en) 2014-07-02

Family

ID=39167586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856909.2A Active EP2094945B1 (en) 2006-12-21 2007-12-19 Fluid motor having improved braking effect

Country Status (13)

Country Link
US (1) US8221103B2 (en)
EP (1) EP2094945B1 (en)
JP (1) JP5052622B2 (en)
KR (1) KR101413034B1 (en)
CN (1) CN101578427B (en)
BR (1) BRPI0720373B1 (en)
DE (1) DE102006061854B4 (en)
ES (1) ES2498666T3 (en)
NO (1) NO339461B1 (en)
PL (1) PL2094945T3 (en)
RU (1) RU2451186C2 (en)
TW (1) TWI407009B (en)
WO (1) WO2008077561A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055109A1 (en) 2009-12-21 2011-06-22 N&G Facility Management GmbH & Co.KG, 58455 Drive unit for a hoist operated with a pressure medium
US8821139B2 (en) * 2010-08-03 2014-09-02 Eaton Corporation Balance plate assembly for a fluid device
WO2012037580A2 (en) * 2010-09-13 2012-03-22 Graco Minnesota Inc. Rotary air motor locking assembly
CN102071974B (en) * 2011-01-30 2013-04-24 陈树忠 Braking integrated pneumatic motor
US9212626B2 (en) * 2013-07-10 2015-12-15 Derrick T. Miller, Jr. Engine propulsion system
DE102018102392A1 (en) 2018-02-02 2019-08-08 J.D. Neuhaus Holding Gmbh & Co. Kg Slat motor with adjustment possibility

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125200A (en) * 1964-03-17 Pneumatic hoist
DE1102488B (en) * 1957-07-09 1961-03-16 Heinrich De Fries G M B H Air motor for hoists or the like.
US2927669A (en) * 1957-07-09 1960-03-08 Hans Putzer Compressed-air motor for a hoisting gear
US3602315A (en) * 1969-07-15 1971-08-31 Herman C Tuttle Portable hand tool
SU1204747A1 (en) * 1980-02-14 1986-01-15 Институт Горного Дела Со Ан Ссср Pneumatic motor
US4434974A (en) * 1981-11-27 1984-03-06 Cooper Industries, Inc. Pneutmatic hoist brake and control
US4981423A (en) * 1989-10-03 1991-01-01 Trw Inc. Hydraulic motor with wobble-stick and brake assembly
FI93764C (en) * 1993-07-13 1995-05-26 Finn Rotor Oy rotator
ES2113800B1 (en) * 1994-11-08 1999-01-01 Canosa Reboredo Elena IMPROVEMENTS IN HYDRAULIC SPEED DRIVERS.
US5486142A (en) * 1994-11-21 1996-01-23 Martin Marietta Corporation Hydrostatic transmission including a simplified ratio controller
DE29510799U1 (en) * 1995-07-04 1996-10-31 Neuhaus J D Fa Lamellar rotor with brake
WO2000004276A1 (en) 1998-07-17 2000-01-27 J. D. Neuhaus Gmbh & Co. Kg Pneumatic motor lubrication
US6068460A (en) 1998-10-28 2000-05-30 Eaton Corporation Two speed gerotor motor with pressurized recirculation
US6743002B1 (en) * 2003-02-03 2004-06-01 Eaton Corporation Rotary fluid pressure device and improved integral brake assembly

Also Published As

Publication number Publication date
BRPI0720373A8 (en) 2015-11-24
ES2498666T3 (en) 2014-09-25
BRPI0720373B1 (en) 2019-04-02
CN101578427B (en) 2013-01-16
KR101413034B1 (en) 2014-07-02
US8221103B2 (en) 2012-07-17
RU2009128047A (en) 2011-01-27
TW200840938A (en) 2008-10-16
BRPI0720373A2 (en) 2013-12-31
NO20092675L (en) 2009-07-14
RU2451186C2 (en) 2012-05-20
WO2008077561A1 (en) 2008-07-03
EP2094945A1 (en) 2009-09-02
CN101578427A (en) 2009-11-11
DE102006061854B4 (en) 2009-01-02
NO339461B1 (en) 2016-12-12
JP2010513780A (en) 2010-04-30
PL2094945T3 (en) 2014-12-31
JP5052622B2 (en) 2012-10-17
KR20090109092A (en) 2009-10-19
DE102006061854A1 (en) 2008-06-26
TWI407009B (en) 2013-09-01
US20100178186A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
EP2094945B1 (en) Fluid motor having improved braking effect
EP2470808B1 (en) Dual clutch assembly for a transmission having two input shafts
DE19942685B4 (en) scroll compressor
EP2137378B1 (en) Pump or motor
DE19833216C2 (en) Hydraulic clutch actuator
EP2220373A1 (en) Pump assembly for synchronous pressurization of two fluid circuits
DE2757240C2 (en) Hydrodynamic double brake
DE3803187C2 (en) Vane compressor with variable delivery rate
DE60027233T2 (en) Device for braking a rotor relative to a stator
DE2134994A1 (en) Two-stage external-axis rotary lobe machine for elastic working media
WO1999017030A1 (en) Radial oscillating motor
DE60029425T2 (en) ENGINE WITH SYMMETRIC BRAKING SYSTEM
DE2544507C3 (en) Overload protection device for presses or the like
EP1682789B1 (en) Hydrodynamic clutch and method for influencing the torque that can be picked up by the hydrodynamic clutch
EP1682790A1 (en) Starting unit
DE102007032935A1 (en) Aperture arrangement in particular for a hydrodynamic brake
DE10353554A1 (en) starter
EP2742246A1 (en) Sliding valve with a valve slide which can be acted upon by an actuator
DE3526319C2 (en)
DE102019127388A1 (en) Fluid supply of under vane chambers of a vane pump
DE1503362B2 (en) Holding brake for a rotary piston engine
AT517131B1 (en) pump
DE102013222591B4 (en) Pump arrangement with vacuum pump and lubricant
DE102007050972A1 (en) Gas-operated rotary vane motor i.e. compressed air motor, for seat-belt tightener, has control valve movable into open position for defining maximum exhaust cross section by pressure developed in starting phase against counteracting force
DE102012202995A1 (en) Actuating device of disc clutch used in motor car, has input masses that are radially supported at support ring, such that centripetal force produced by input masses is converted into working power in open position of actuating piston

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 676054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013263

Country of ref document: DE

Effective date: 20140814

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2498666

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140925

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007013263

Country of ref document: DE

Representative=s name: KALKOFF & PARTNER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013263

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007013263

Country of ref document: DE

Representative=s name: KALKOFF & PARTNER PATENTANWAELTE, DE

Effective date: 20150306

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007013263

Country of ref document: DE

Owner name: J.D. NEUHAUS HOLDING GMBH & CO. KG, DE

Free format text: FORMER OWNER: N&G FACILITY MANAGEMENT GMBH & CO.KG, 58455 WITTEN, DE

Effective date: 20150306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20150501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150407

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: J.D. NEUHAUS HOLDING GMBH & CO.KG

Effective date: 20150611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: J.D. NEUHAUS HOLDING GMBH & CO. KG, DE

Effective date: 20150907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 676054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071219

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 17

Ref country code: NL

Payment date: 20231219

Year of fee payment: 17

Ref country code: FR

Payment date: 20231214

Year of fee payment: 17

Ref country code: DE

Payment date: 20231220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231117

Year of fee payment: 17

Ref country code: BE

Payment date: 20231218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 17