EP2084253B1 - Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame - Google Patents

Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame Download PDF

Info

Publication number
EP2084253B1
EP2084253B1 EP07816285.6A EP07816285A EP2084253B1 EP 2084253 B1 EP2084253 B1 EP 2084253B1 EP 07816285 A EP07816285 A EP 07816285A EP 2084253 B1 EP2084253 B1 EP 2084253B1
Authority
EP
European Patent Office
Prior art keywords
ultra
thin layer
gold
formula
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07816285.6A
Other languages
German (de)
French (fr)
Other versions
EP2084253A1 (en
Inventor
Samuele Tosatti
Stefan Zürcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolex SA filed Critical Rolex SA
Priority to EP07816285.6A priority Critical patent/EP2084253B1/en
Publication of EP2084253A1 publication Critical patent/EP2084253A1/en
Application granted granted Critical
Publication of EP2084253B1 publication Critical patent/EP2084253B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/68Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/20Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/54Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • C10M105/60Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom
    • C10M105/62Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/70Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • C10M2207/085Aldehydes; Ketones used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • C10M2215/0425Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/0806Amides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/2203Heterocyclic nitrogen compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a new ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, a process for preparing this ultra-thin layer and the use thereof as an epilame.
  • the proper functioning of a watch movement depends, among other things, on its lubrication.
  • the durability of the lubricant depends in particular on its maintenance in the operating zone: every watchmaker, however, has noticed that a drop of lubricant spreads rapidly over a clean part.
  • the deposition of an epilame layer generally in the form of a hydrophobic and oleophobic invisible molecular layer, avoids the spreading of the lubricant and its components.
  • the spreading of a liquid depends on the interaction forces between the liquid, the surface and the surrounding air (cf. JC Berg, “Wettability", Marcel Dekker, New York, 1993 and AW Adamson, “Physical Chemistry of Surfaces", Wiley ).
  • the parameter that characterizes the interaction forces between a liquid and the air is the surface tension, ⁇ LV .
  • a surface energy ⁇ SV between a solid and the surrounding air and a parameter ⁇ LS between the solid and the liquid is similarly defined.
  • the Young equation also shows that if the surface tension of the liquid is lower than the surface energy, the contact angle is zero and the liquid wets the surface. This is what happens for a lubricant deposited on a clean metal surface: in In fact, a lubricant has a surface tension of 35-40 mN / m, whereas a common metal surface has a higher surface energy.
  • the deposition of the compound on the substrate is carried out by soaking it in a solution of perfluorinated solvent loaded with polymer.
  • the solvent used is generally tetradecafluorohexane (C 6 F 14 ) which, once volatilized, is a greenhouse gas since it remains stable for 3200 years in the air and has a greenhouse potential of 7400 equivalents. CO 2 .
  • the object of the invention is to propose compounds that can be used as epilame and that can be attached to a solid substrate surface.
  • the invention indeed proposes a novel ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, and a process for preparing this ultra-thin layer which uses a non-fluorinated solvent, by for example a mixture of water and 2-propanol. Thanks to the catechol foot of the compounds used, this ultra-thin layer is firmly fixed to the surface of the solid substrate. This ultra-thin layer has satisfactory properties for use as an epilame, particularly a contact angle in advance with water and a spread of a drop of oil, quite comparable to those of the layer obtained from the reference product Fixodrop FK-BS.
  • the group A serves in particular to allow the attachment of the compounds to the surface of the solid substrate through the catechol group and the solubilization of the amphiphilic molecule A-B in the dipping solution.
  • Group B gives the ultra-thin layer its hydrophobic and oleophobic properties.
  • Interesting groups A are those selected from one of the following groups:
  • the compounds of formulas A-B can be obtained from known compounds using techniques and reactions well known to the organic chemist.
  • 1- (3,4-dihydroxyphenethyl) -3-octadecylurea can be obtained by reacting octadecylisocyanate and 3-hydroxy-tyramine hydrochloric acid in solution in DMF in the presence of N-methyl-morpholine.
  • the solid substrate on the surface of which the self-assembly is made can be any solid substrate involved in the operation of a mechanical movement, in particular consisting of a material selected from among gold, silver, silver steel, including 20AP steel, aluminum, brass, bronze, cuproberyllium, titanium dioxide, ruby, sapphire, silicon, nickel and nickel-phosphorus, as well as other surfaces metal, such as iron, chromium, tantalum, yttrium, silicon, germanium, copper, platinum, and metallic or ceramic oxides, such as zirconia and niobium (niobium oxide), this list not being limiting.
  • the substrate may also be a substrate in one of these materials or another whose surface has been coated or coated, for example by a galvanic deposition of gold, gold-copper-cadmium and gold, nickel, rhodium, tin-nickel, or treated by anodizing, as in the case of parts made of aluminum alloy or titanium, or modified by a surface treatment such as oxidation, carburization or nitriding.
  • the thickness of the ultra-thin layer measured in ellipsometry is 0.5 to 10 nm, which value will be higher for the definition of ultra-thin, preferably 1 to 4 nm.
  • the contact angle in advance with the water must generally be at least 100 °.
  • the contact angle in advance with the water must generally be at least 100 °.
  • epilame a film whose contact angle may be substantially less than 100 °, for example between 90 and 100 °, but still prevents spreading, which remains less than 2%.
  • the ultra-thin layer of formula A-B remains functional as epilame after two watch washes.
  • the invention also relates to a timepiece characterized in that it comprises an ultra-thin layer as defined above.
  • the invention also relates to a process for preparing the ultra-thin layer defined above, characterized in that it comprises immersing the substrate in a solution of the compound of formula AB, for example in water, or a mixture of water and protic solvent such as, for example, 2-propanol, or a mixture of an aprotic solvent and a solvent protic such as 2-propanol.
  • a solution of the compound of formula AB for example in water, or a mixture of water and protic solvent such as, for example, 2-propanol, or a mixture of an aprotic solvent and a solvent protic such as 2-propanol.
  • Octadecylisocyanate (668 mg, 2.26 mmol) was dripped into a solution of 3-hydroxy-tyramine hydrochloric acid (428 mg, 2.26 mmol) and N-methyl-morpholine (372 ⁇ l). ) in DMF (5 ml). The mixture was stirred under a nitrogen atmosphere for 6 hours. Water (50 ml) was added and the white precipitate formed was filtered and washed with water (10 ml) and acetone (10 ml). Recrystallization from acetone (160 ml) at -20 ° C gave 870 mg of white powder.
  • the gold, polished steel, aluminum, titania and ruby samples were cleaned in a UV / ozone chamber for 30 minutes and immersed overnight in the SuSoS1 solution. The samples were then immersed in 2-propanol for 10 seconds, rinsed with 2-propanol and dried with a stream of nitrogen. In the case of steel, the surfaces were slightly polished with a wipe impregnated with 2-propanol, rinsed with additional 2-propanol and dried with a stream of nitrogen (see Table 1A below). Or
  • X-ray photoelectron spectroscopy (XPS) analysis shows that SuSoS1 molecules are present on all surfaces by the detection of N elements.
  • An ultra-thin layer of SuSoS1 is coated with substrates of gold, polished steel and ruby as described in Example 2.
  • the surface appearance is excellent and no markings can be distinguished due to the deposit .
  • Fixodrop FK-BS An ultra-thin layer of Fixodrop FK-BS is coated with gold, polished steel and ruby substrates as specified by the manufacturer by dipping the substrates in a solution of tetradecafluorohexane.
  • the thickness of this layer measured by ellipsometry on gold is 1.0 nm for SuSoS1 and 1.7 nm for Fixodrop.
  • the spreading of the lubricants on a surface is characterized by measuring the average diameter of a drop of typically 0.5 mm in diameter immediately after the drop has been deposited and after 20 minutes.
  • the spread corresponds to the relative variation of the average diameter after 20 minutes.
  • a good performance of a lubricant corresponds to a spread of 2% or less. Spreading greater than 10% is noticeable in the eye and is not acceptable.
  • the oil used for the tests is a watch oil "941" (Moebius and Fils house, mixture of alkyl-aryl-monooleate and two C 10 -C 13 di-esters, viscosity of 110 cSt at 20 ° C, surface tension of 32.8 mN / m).
  • the spread obtained is compared on surfaces of steel, ruby, aluminum, titanium dioxide, and gold coated with the SuSoS1 molecule, as well as a gold surface coated with the commercial product Fixodrop FK -BS of the Moebius and Son house as indicated by the manufacturer.
  • the spread is in all cases less than 2%, and is comparable to that measured for the Fixodrop, as shown in the table below.
  • the contact angle obtained on the ultra-thin layers made with the molecule SuSoS1 is greater than 100 °, the surface energy is less than 20 mJ m -2 , and the spread is less than 2%.
  • the layers are resistant to ruby, aluminum and titanium dioxide washings, but less well to gold and steel.
  • the properties of the ultra-thin layer SuSoS1 are at least as good as those obtained with the commercial product Fixodrop.

Description

La présente invention concerne une nouvelle couche ultra-mince hydrophobe et oléophobe formée par auto-assemblage sur une surface de substrat solide de composés à pied catéchol, un procédé pour préparer cette couche ultra-mince et l'utilisation de celle-ci comme épilame.The present invention relates to a new ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, a process for preparing this ultra-thin layer and the use thereof as an epilame.

Le bon fonctionnement d'un mouvement horloger dépend entre autre de sa lubrification. La durabilité du lubrifiant dépend notamment de son maintien dans la zone de fonctionnement : tout horloger a cependant constaté qu'une goutte de lubrifiant s'étale rapidement sur une pièce propre. Le dépôt d'une couche d'épilame, généralement sous la forme d'une couche moléculaire invisible hydrophobe et oléophobe, permet d'éviter l'étalement du lubrifiant et de ses composants.The proper functioning of a watch movement depends, among other things, on its lubrication. The durability of the lubricant depends in particular on its maintenance in the operating zone: every watchmaker, however, has noticed that a drop of lubricant spreads rapidly over a clean part. The deposition of an epilame layer, generally in the form of a hydrophobic and oleophobic invisible molecular layer, avoids the spreading of the lubricant and its components.

L'étalement d'un liquide dépend des forces d'interaction entre le liquide, la surface et l'air environnant (Cf. J.C. Berg, "Wettability", Marcel Dekker, New York, 1993 et A.W. Adamson, "Physical Chemistry of Surfaces", Wiley ). Le paramètre qui caractérise les forces d'interaction entre un liquide et l'air est la tension superficielle, γLV. On définit de façon similaire une énergie de surface γSV entre un solide et l'air environnant et un paramètre γLS entre le solide et le liquide. Pour une goutte de liquide à l'équilibre sur une surface, l'équation de Young stipule que γSV - γLS = γLV·cosθ, où θ est l'angle de contact de la goutte de liquide par rapport à la surface. L'équation de Young montre également que si la tension superficielle du liquide est plus faible que l'énergie de surface, l'angle de contact est nul et le liquide mouille la surface. C'est ce qui se passe pour un lubrifiant déposé sur une surface métallique propre : en effet, un lubrifiant a une tension superficielle de 35-40 mN/m, alors qu'une surface métallique courante a une énergie de surface plus élevée.The spreading of a liquid depends on the interaction forces between the liquid, the surface and the surrounding air (cf. JC Berg, "Wettability", Marcel Dekker, New York, 1993 and AW Adamson, "Physical Chemistry of Surfaces", Wiley ). The parameter that characterizes the interaction forces between a liquid and the air is the surface tension, γ LV . A surface energy γ SV between a solid and the surrounding air and a parameter γ LS between the solid and the liquid is similarly defined. For a drop of equilibrium liquid on a surface, the Young equation states that γ SV - γ LS = γ LV · cosθ, where θ is the contact angle of the drop of liquid with respect to the surface. The Young equation also shows that if the surface tension of the liquid is lower than the surface energy, the contact angle is zero and the liquid wets the surface. This is what happens for a lubricant deposited on a clean metal surface: in In fact, a lubricant has a surface tension of 35-40 mN / m, whereas a common metal surface has a higher surface energy.

L'énergie de surface dépend de plusieurs facteurs ( J.P. Renaud et P. Dinichert, 1956, "Etats de surface et étalement des huiles d'horlogerie", Bulletin SSC III page 681 ) :

  • la composition chimique et la structure cristallographique du solide, et en particulier de sa surface,
  • les caractéristiques géométriques de la surface et sa rugosité (et donc les défauts et/ou l'état de polissage),
  • la présence de molécules adsorbées physiquement ou liées chimiquement à la surface, qui peuvent aisément masquer le solide et modifier considérablement son énergie de surface.
Surface energy depends on several factors ( JP Renaud and P. Dinichert, 1956, "Surface States and Spreading of Clockworks", Bulletin SSC III page 681 ):
  • the chemical composition and the crystallographic structure of the solid, and in particular of its surface,
  • the geometric characteristics of the surface and its roughness (and therefore the defects and / or the polishing state),
  • the presence of molecules physically adsorbed or chemically bonded to the surface, which can easily hide the solid and significantly alter its surface energy.

L'énergie de surface est souvent déterminée par la dernière couche atomique ou moléculaire. La nature chimique du solide a peu d'importance par rapport à l'état de sa surface et à la contamination qui la recouvre. Sur une surface métallique propre et exempte de contamination organique, l'angle de contact d'avance avec une goutte d'eau est inférieur à 10°. Avec une molécule formant des couches monomoléculaires auto-assemblées (SAM : Self-Assembled Monolayers) montrant un groupe fonctionnel -OH (p.ex. HOC11H22SH), cet angle de contact est d'environ 30°, alors qu'il est d'environ 110° pour un groupe fonctionnel -CH3 (p.ex. C12H25SH) et d'environ 118 ° pour un groupe fonctionnel -CF3 (p.ex. C10F17H4SH).Surface energy is often determined by the last atomic or molecular layer. The chemical nature of the solid is of little importance in relation to the state of its surface and the contamination that covers it. On a clean metal surface free of organic contamination, the contact angle in advance with a drop of water is less than 10 °. With a self-assembled monomolecular layer (SAM) molecule showing a -OH functional group (eg, HOC 11 H 22 SH), this contact angle is about 30 °, whereas it is about 110 ° for a functional group -CH 3 (eg C 12 H 25 SH) and about 118 ° for a functional group -CF 3 (eg C 10 F 17 H 4 SH ).

Les techniques de fabrication utilisées en horlogerie laissaient jusque dans les années 1930 un état de surface minimisant l'étalement des lubrifiants par la présence d'un film abaissant l'énergie de surface ( M. Osowiecki, 1957, "Un nouvel épilame résistant aux lavages", Bulletin SSC III, page 735 ). Ce film disparut avec les perfectionnements apportés aux techniques de lavage, provoquant un étalement plus ou moins rapide des lubrifiants. En 1930, P. Woog de la Compagnie Française de Raffinage développa un produit anti-migration à base d'acide stéarique qu'il nomma "épilame". Celui-ci fut utilisé dans différentes branches de l'industrie jusqu'à la fin des années 60. Le nom est resté et désigne en horlogerie tout produit servant à garantir la tenue des lubrifiants sur une surface..The manufacturing techniques used in watchmaking left until the 1930s a surface condition minimizing the spread of lubricants by the presence of a film lowering the surface energy ( M. Osowiecki, 1957, "A new epilame resistant to washes", Bulletin SSC III, page 735 ). This film disappeared with the improvements made to the washing techniques, causing a more or less rapid spreading of the lubricants. In 1930, P. Woog of the Compagnie Française de Raffinage developed an anti-migration product based on stearic acid which he named "epilame". It was used in various branches of the industry until the end of the 60s. The name has remained and designates in watchmaking any product used to guarantee the resistance of lubricants on a surface.

Le dépôt d'un composé sur une surface fonctionnelle afin d'abaisser l'énergie de surface et de contrôler la mouillabilité et l'adhérence est un procédé assez répandu. Cependant, son application comme film barrière ou antimigration est limité à l'horlogerie ( M. Massin, "Epilames et lubrifiants associés à haute stabilité : propriétés, technologie d'application et résultats en horlogerie", Actes du congrès de Chronométrie Franco-Allemand, page 85, 1970 , et " Conception de la lubrification en micromécanique : réalisations nouvelles par préparation des surfaces associées à des fluides silicones", Actes du congrès des Sociétés Allemande et Française de Chronométrie, page 95, 1971 ), à l'industrie spatiale ( M. Marchetti, "Aspects globaux et locaux de la mise en oeuvre de la lubrication fluide en ambiance spatiale", Thèse de Doctorat INSA, Lyon, 2000 ) et à l'électronique. Les deux premiers domaines ont comme point commun la difficulté de remplacer un lubrifiant usagé ou épuisé.Deposition of a compound on a functional surface to lower surface energy and control wettability and adhesion is a fairly common process. However, its application as barrier film or antimigration is limited to watchmaking ( M. Massin, "Epilames and associated lubricants with high stability: properties, application technology and results in watchmaking", Proceedings of the Franco-German Chronometry Congress, page 85, 1970 , and " Design of lubrication in micromechanics: new achievements by preparing surfaces associated with silicone fluids ", Proceedings of the Congress of the German and French Chronometry Societies, page 95, 1971 ), to the space industry ( M. Marchetti, "Global and Local Aspects of the Implementation of Fluid Lubrication in the Space Environment", PhD Thesis INSA, Lyon, 2000 ) and electronics. The first two areas have in common the difficulty of replacing a used or exhausted lubricant.

Des produits à base d'acide stéarique dilué dans du toluène furent utilisés en horlogerie jusque dans les années 1970 ( M.Osowiecki, référence ci-dessus et P. Ducommun, 1956, "Les huiles d'horlogerie synthétiques", J. Suisse Horl. Bij. 9-10, 117 ). Des recherches entreprises à la fin des années 60 débouchèrent sur deux développements importants. D'une part, un produit à base de silicone fut développé (P. Massin, références ci-dessus) mais ne connût qu'un succès limité. D'autre part, des produits à base de polymères fluorés furent introduits dans le courant des années 70 et sont encore utilisés aujourd'hui. La demande DD 238 812 A1 décrit des couches ultra-minces impliquant la mise en oeuvre de silanes et de perfluoroalcanes.Products based on stearic acid diluted in toluene were used in watchmaking until the 1970s ( M.Osowiecki, reference above and P. Ducommun, 1956, "Synthetic clockwork oils", J. Switzerland Horl. Bij. 9-10, 117 ). Research undertaken in the late 1960s led to two important developments. On the one hand, a product based on silicone was developed (P. Massin, references above) but knew only limited success. On the other hand, products based on fluoropolymers were introduced in the course of the 1970s and are still used today. Requirement DD 238 812 A1 describes ultra-thin layers involving the implementation of silanes and perfluoroalkanes.

Actuellement, la grande majorité des épilames disponibles sur le marché, comme le Fixodrop FK-BS de Moebius, ou la ligne des produits Fluorad (FC-722 et autres) de 3M, consistent en un polymère fluoré dissous dans un solvant perfluoré.Currently, the vast majority of epilams available on the market, such as Moebius' Fixodrop FK-BS, or the 3M Fluorad (FC-722 and others) line, consist of a fluorinated polymer dissolved in a perfluorinated solvent.

Le dépôt du composé sur le substrat s'effectue par trempage de celui-ci dans une solution de solvant perfluoré chargée en polymère. Le solvant utilisé est généralement du tétradécafluorohexane (C6F14) qui est, une fois volatilisé, un gaz à effet de serre puisqu'il reste stable 3200 ans dans l'air et a un potentiel à effet de serre de 7400 equ. CO2.The deposition of the compound on the substrate is carried out by soaking it in a solution of perfluorinated solvent loaded with polymer. The solvent used is generally tetradecafluorohexane (C 6 F 14 ) which, once volatilized, is a greenhouse gas since it remains stable for 3200 years in the air and has a greenhouse potential of 7400 equivalents. CO 2 .

L'invention a pour but de proposer des composés utilisables comme épilame pouvant être fixés à une surface de substrat solide.The object of the invention is to propose compounds that can be used as epilame and that can be attached to a solid substrate surface.

Ces buts sont atteints par l'invention telle que définie dans le jeu de revendications ci-joint.These objects are achieved by the invention as defined in the attached set of claims.

L'invention propose en effet une nouvelle couche ultra-mince hydrophobe et oléophobe formée par auto-assemblage sur une surface de substrat solide de composés à pied catéchol, et un procédé pour préparer cette couche ultra-mince qui utilise un solvant non fluoré, par exemple un mélange d'eau et de 2-propanol. Grâce au pied catéchol des composés utilisés, cette couche ultra-mince est solidement fixée à la surface du substrat solide. Cette couche ultra-mince présente des propriétés satisfaisantes pour une utilisation comme épilame, en particulier un angle de contact d'avance avec l'eau et un étalement d'une goutte d'huile, tout à fait comparables à celles de la couche obtenue à partir du produit commercial de référence Fixodrop FK-BS.The invention indeed proposes a novel ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, and a process for preparing this ultra-thin layer which uses a non-fluorinated solvent, by for example a mixture of water and 2-propanol. Thanks to the catechol foot of the compounds used, this ultra-thin layer is firmly fixed to the surface of the solid substrate. This ultra-thin layer has satisfactory properties for use as an epilame, particularly a contact angle in advance with water and a spread of a drop of oil, quite comparable to those of the layer obtained from the reference product Fixodrop FK-BS.

Les composés à pied catéchol ont pour formule générale

        A-B

dans laquelle

  1. A représente un groupe de formule
    Figure imgb0001
    dans laquelle
    • Z représente C ou N+,
    • X représente C-H ou C-L, L étant un groupe électroattracteur choisi parmi F, Cl, Br, I, CF3, NO2 et N(CH3)3 +.
    • Y représente H ou CH3, ou Y forme avec X un hétérocycle de 5 ou 6 atomes,
    • T représente NH, NH-CO, NH-CO-NH ou NH2 +U-, U-étant choisi parmi F-, Cl-, Br-, I, OH-, NO3 -, HSO4 -, SO4 2-, CO3 2-, HCO3 - ou SCN-, et
  2. B représente un groupe alkyl linéaire aliphatique C1-C20 non substitué.
The catechol foot compounds have the general formula

AB

in which
  1. A represents a group of formula
    Figure imgb0001
    in which
    • Z represents C or N + ,
    • X represents CH or CL, L being an electron-withdrawing group chosen from F, Cl, Br, I, CF 3 , NO 2 and N (CH 3 ) 3 + .
    • Y represents H or CH 3 , or Y forms with X a heterocycle of 5 or 6 atoms,
    • T represents NH, NH-CO, NH-CO-NH or NH 2 + U - , U - being chosen from F - , Cl - , Br - , I, OH - , NO 3 - , HSO 4 - , SO 4 2 - , CO 3 2- , HCO 3 - or SCN - and
  2. B represents an unsubstituted C 1 -C 20 aliphatic linear alkyl group.

Le groupe A sert notamment à permettre la fixation des composés à la surface du substrat solide grâce au groupe catéchol et la solubilisation de la molécule amphiphile A-B dans la solution de trempage.The group A serves in particular to allow the attachment of the compounds to the surface of the solid substrate through the catechol group and the solubilization of the amphiphilic molecule A-B in the dipping solution.

Le groupe B confère à la couche ultra-mince ses propriétés hydrophobes et oléophobes.Group B gives the ultra-thin layer its hydrophobic and oleophobic properties.

Des groupes A intéressants sont ceux choisis parmi l'un des groupes suivantes :

Figure imgb0002
Figure imgb0003
Figure imgb0004
Interesting groups A are those selected from one of the following groups:
Figure imgb0002
Figure imgb0003
Figure imgb0004

Les composés de formules A-B peuvent être obtenus à partir de composés connus en utilisant des techniques et des réactions bien connues du chimiste organicien.The compounds of formulas A-B can be obtained from known compounds using techniques and reactions well known to the organic chemist.

Par exemple, le 1-(3,4-dihydroxyphénéthyl)-3-octadecylurée

Figure imgb0005
peut être obtenu en faisant réagir de l'octadécylisocyanate et 3-hydroxy-tyramine acide chlorhydrique en solution dans le DMF en présence de N-méthyl-morpholine.For example, 1- (3,4-dihydroxyphenethyl) -3-octadecylurea
Figure imgb0005
can be obtained by reacting octadecylisocyanate and 3-hydroxy-tyramine hydrochloric acid in solution in DMF in the presence of N-methyl-morpholine.

Le substrat solide sur la surface duquel se fait l'auto-assemblage peut être n'importe quel substrat solide impliqué dans le fonctionnement d'un mouvement mécanique, en particulier constitué d'une matière choisie parmi l'or, l'argent, l'acier, notamment l'acier 20AP, l'aluminium, le laiton, le bronze, le cuprobéryllium, le dioxyde de titane, le rubis, le saphir, le silicium, le nickel et le nickel-phosphore, ainsi que d'autres surfaces métalliques, tels que le fer, le chrome, le tantale, l'yttrium, le silicium, le germanium, le cuivre, le platine , et d'oxydes métalliques ou céramiques, tels la zircone et la niobie (oxyde de niobium), cette liste n'étant pas limitative. Comme substrat, on peut utiliser aussi des polymères tels que les polyéthylènes, les polystyrols, les polyamides, les polydiméthylsiloxanes, les chlorures de polyvinyle, les résines époxy, cette liste n'étant pas là aussi limitative. Le substrat peut aussi être un substrat en une de ces matières ou une autre dont la surface a été recouverte ou revêtue, par exemple par un dépôt galvanique d'or, d'or-cuivre-cadmium et d'or, de nickel, de rhodium, d'étain-nickel, ou traitée par anodisation, comme dans le cas des pièces en alliage d'aluminium ou de titane, ou modifiée par un traitement de surface comme l'oxydation, la carburation ou la nitruration.The solid substrate on the surface of which the self-assembly is made can be any solid substrate involved in the operation of a mechanical movement, in particular consisting of a material selected from among gold, silver, silver steel, including 20AP steel, aluminum, brass, bronze, cuproberyllium, titanium dioxide, ruby, sapphire, silicon, nickel and nickel-phosphorus, as well as other surfaces metal, such as iron, chromium, tantalum, yttrium, silicon, germanium, copper, platinum, and metallic or ceramic oxides, such as zirconia and niobium (niobium oxide), this list not being limiting. As a substrate, it is also possible to use polymers such as polyethylenes, polystyrols, polyamides, polydimethylsiloxanes, polyvinyl chlorides and epoxy resins, this list not being so limiting. The substrate may also be a substrate in one of these materials or another whose surface has been coated or coated, for example by a galvanic deposition of gold, gold-copper-cadmium and gold, nickel, rhodium, tin-nickel, or treated by anodizing, as in the case of parts made of aluminum alloy or titanium, or modified by a surface treatment such as oxidation, carburization or nitriding.

L'épaisseur de la couche ultra-mince mesurée en ellipsométrie est de 0,5 à 10 nm, valeur supérieure qu'on reteindra pour la définition de ultra-mince, de préférence de 1 à 4 nm.The thickness of the ultra-thin layer measured in ellipsometry is 0.5 to 10 nm, which value will be higher for the definition of ultra-thin, preferably 1 to 4 nm.

Pour être considéré comme épilame, c'est à dire empêcher de façon satisfaisante l'étalement d'huile, l'angle de contact d'avance avec l'eau doit être généralement d'au moins 100°. Sera également considéré comme épilame un film dont l'angle de contact peut être sensiblement inférieur à 100°, par exemple compris entre 90 et 100°, mais qui empêche néanmoins l'étalement, qui reste inférieur à 2 %.To be considered as epilame, that is to say to prevent the spread of oil satisfactorily, the contact angle in advance with the water must generally be at least 100 °. Will also be considered as epilame a film whose contact angle may be substantially less than 100 °, for example between 90 and 100 °, but still prevents spreading, which remains less than 2%.

De préférence la couche ultra-mince de formule A-B reste fonctionnelle comme épilame après deux lavages horlogers.Preferably the ultra-thin layer of formula A-B remains functional as epilame after two watch washes.

L'invention concerne aussi une pièce d'horlogerie caractérisée en ce qu'elle comprend une couche ultra-mince telle que définie ci-dessus.The invention also relates to a timepiece characterized in that it comprises an ultra-thin layer as defined above.

L'invention concerne aussi un procédé de préparation de la couche ultra-mince définie ci-dessus, caractérisé en ce qu'il comprend l'immersion du substrat dans une solution du composé de formule A-B, par exemple dans de l'eau, ou un mélange d'eau et de solvant protique tel que, par exemple, le 2-propanol, ou encore un mélange d'un solvant aprotique et d'un solvant protique tel que le 2-propanol.The invention also relates to a process for preparing the ultra-thin layer defined above, characterized in that it comprises immersing the substrate in a solution of the compound of formula AB, for example in water, or a mixture of water and protic solvent such as, for example, 2-propanol, or a mixture of an aprotic solvent and a solvent protic such as 2-propanol.

L'invention sera mieux comprise à l'aide des exemples ci-après qui ont un caractère illustratif et non limitatif.The invention will be better understood with the aid of the following examples which have an illustrative and nonlimiting character.

Exemple 1 Synthèse de 1-(3,4-dihydroxyphénéthyl)-3-octadecylurée (SuSoS1) Example 1 Synthesis of 1- (3,4-dihydroxyphenethyl) -3-octadecylurea (SuSoS1)

On a fait tomber goutte à goutte de l'octadécylisocyanate (668 mg, 2,26 mmol) dans une solution de 3-hydroxy-tyramine acide chlorhydrique (428 mg, 2,26 mmol) et de N-méthyl-morpholine (372 µl) dans du DMF (5 ml).On a agité le mélange sous atmosphère d'azote pendant 6 heures. On a ajouté de l'eau (50 ml) et on a filtré le précipité blanc formé et lavé avec de l'eau (10 ml) et de l'acétone (10 ml). La recristallisation à partir d'acétone (160 ml) à - 20 °C a donné 870 mg de poudre blanche.
Poids moléculaire : 448,68
% pondéral : C 72,28 ; H 10,78 ; N 6,24 ; O 10,70 sans H : C 84,375 ; N 6,25 ; O 9,373
1H RMN (DMSO-d6, 300 MHz, 300 K, ppm) : 8,72 (s, 1H OH), 8,62 (s, 1H OH), 6,7-6,5 (m, 3H dopamine), 5,82 (t, 1H NH), 5,68 (t, 1H NH), 3, 12 (q, 2H CH2), 2,95 (q, 2H CH2), 2,5 (m, 4H CH2), 1,20 (m, 30H CH2), 0.86 (t, 3H CH3).
Octadecylisocyanate (668 mg, 2.26 mmol) was dripped into a solution of 3-hydroxy-tyramine hydrochloric acid (428 mg, 2.26 mmol) and N-methyl-morpholine (372 μl). ) in DMF (5 ml). The mixture was stirred under a nitrogen atmosphere for 6 hours. Water (50 ml) was added and the white precipitate formed was filtered and washed with water (10 ml) and acetone (10 ml). Recrystallization from acetone (160 ml) at -20 ° C gave 870 mg of white powder.
Molecular weight: 448.68
% by weight: C 72.28; H, 7.78; N, 6.24; O 10.70 without H: C 84.375; N, 6.25; O, 9.373
1 H NMR (DMSO-d6, 300 MHz, 300 K, ppm): 8.72 (s, 1H OH), 8.62 (s, 1H OH), 6.7-6.5 (m, 3H dopamine) , 5.82 (t, 1H NH), 5.68 (t, 1H NH), 3, 12 (q, 2H CH 2 ), 2.95 (q, 2H CH 2 ), 2.5 (m, 4H). CH 2 ), 1.20 (m, 30H CH 2 ), 0.86 (t, 3H CH 3 ).

correspondant au 1-(3,4-dihydroxyphénéthyl)-3-octadecylurée :

Figure imgb0006
corresponding to 1- (3,4-dihydroxyphenethyl) -3-octadecylurea:
Figure imgb0006

Exemple 2 Préparation de solutions de trempage et immersion de différents substrats dans celles-ci. Example 2 Preparation of dipping solutions and immersion of different substrates therein Préparation de la solution de trempage de SuSoS1Preparation of the soaking solution of SuSoS1

On a dissout 23,4 mg de SuSoS1 (0,052 mmol) dans 80 ml de 2-propanol dans une fiole de 100 ml graduée. On a soumis la solution aux ultrasons (avec l'appareil Sonorex super 10 P à 100 %) jusqu'à dissolution complète. On a ajouté de l'eau ultrapure jusqu'à la marque de la fiole et secoué vigoureusement, ce qui a fait augmenter la température de la solution. Après retour de la solution à température ambiante, on a ajouté quelques gouttes d'eau pour ajuster le volume à 100 ml. On a soumis la solution aux ultrasons pendant 10 secondes pour la dégazer et permettre un mélange complet de l'eau et du 2-propanol.23.4 mg of SuSoS1 (0.052 mmol) in 80 ml of 2-propanol was dissolved in a graduated 100 ml flask. The solution was sonicated (with Sonorex super 10P 100%) until completely dissolved. Ultrapure water was added to the vial mark and shaken vigorously, which increased the temperature of the solution. After returning the solution to room temperature, a few drops of water were added to adjust the volume to 100 ml. The solution was sonicated for 10 seconds to degas it and allow complete mixing of water and 2-propanol.

Immersion des substrats d'or, d'acier poli, d'aluminium, d'oxyde de titane et de rubis dans les solutions de trempageImmersion of gold, polished steel, aluminum, titanium oxide and ruby substrates in soaking solutions Protocole expérimental AExperimental Protocol A

Les échantillons d'or, d'acier poli, d'aluminium, d'oxyde de titane et de rubis ont été nettoyés dans une chambre UV/ozone pendant 30 minutes et immergés pendant une nuit dans la solution de SuSoS1. Les échantillons ont été ensuite immergés dans du 2-propanol pendant 10 secondes , rincés avec du 2-propanol et séchés avec un flux d'azote. Dans le cas de l'acier, les surfaces ont été légèrement polies avec une lingette imbibée de 2-propanol, rincées avec du 2-propanol supplémentaire et séchées avec un flux d'azote (voir Tableau 1A ci-après). OuThe gold, polished steel, aluminum, titania and ruby samples were cleaned in a UV / ozone chamber for 30 minutes and immersed overnight in the SuSoS1 solution. The samples were then immersed in 2-propanol for 10 seconds, rinsed with 2-propanol and dried with a stream of nitrogen. In the case of steel, the surfaces were slightly polished with a wipe impregnated with 2-propanol, rinsed with additional 2-propanol and dried with a stream of nitrogen (see Table 1A below). Or

Protocole expérimental BExperimental Protocol B

Les mêmes échantillons ont été immergés pendant 12 heures à température ambiante dans une solution dans une solution de 0.5 mM de la molécule SuSoS1 dans un mélange d'heptane (96%) et de 2-propanol (4%). Les échantillons ont été rincés avec du 2-propanol et séchés sous un flux d'azote sec (voir Tableau 1B ci-après).The same samples were immersed for 12 hours at room temperature in a solution in a solution of 0.5 mM of the molecule SuSoS1 in a mixture of heptane (96%) and 2-propanol (4%). The samples were rinsed with 2-propanol and dried under a stream of dry nitrogen (see Table 1B below).

Exemple 3 Analyse des couches ultra-minces formées par auto-assemblage sur différents substrats Example 3 Analysis of ultra-thin layers formed by self-assembly on different substrates

Les monocouches formées par auto-assemblage sur les différents substrats ont été analysées par

  • ellipsométrie spectroscopique à angle variable (VASE : Variable Angle Spectroscopique Ellipsometry ; cf. Feller et al. (2005). "Influence of poly(propylene sulfide-block-ethylene glycol) di-and triblock copolymer architecture on the formation of molecular adlayers on gold surfaces and their effect on protein résistance: A candidate for surface modification in biosensor research.", Macromolecules 38(25): 10503-10510 ),
  • mesure d'angle de contact dynamique (dCA : Contact Angle dynamique ; cf. Tosatti et al. (2002) "Self-Assembled Monolayers of Dodecyl and Hydroxy-dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces", Langmuir 18(9): 3537-3548 ), comme suit : la mouillabilité de surface a été déterminée en mesurant les angles de contact d'avance et le recul sur une goutte (d'eau) sessile (Contact Angle Measuring System, G2/G40 2.05-D, Krüss GmbH, Hamburg, Germany); l'expérience a été conduite en automatique en augmentant et diminuant la taille de la goutte à une vitesse de 15 ml par minute ; 480 valeurs ont été mesurées pour l'angle de contact d'avance et 240 pour l'angle de contact de recul, sur 3 emplacements différents pour chaque échantillon) ; les données recueillies ont été analysées par la méthode des tangentes 2 (routine d'ajustement du programme de Drop-Shape Analysis en Version DSA 1.80.0.2 for Windows 9x/NT4/2000, (c) 1997 - 2002 KRUESS"), et
  • spectrométrie spectroscopique à rayons X (XPS ; Tosatti et al. ci-dessus).
Monolayers formed by self-assembly on the different substrates were analyzed by
  • variable angle spectroscopic ellipsometry (VASE: Variable Angle Spectroscopique Ellipsometry; Feller et al. (2005). "Influence of poly (propylene sulfide-block-ethylene glycol) di-and triblock copolymer architecture on the formation of molecular adlayers on their surfaces and their effect on protein resistance: A candidate for surface modification in biosensor research.", Macromolecules 38 (25 ): 10503-10510 )
  • dynamic contact angle measurement (dCA: Dynamic angle contact; Tosatti et al. (2002) "Self-Assembled Monolayers of Dodecyl and Hydroxy-dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces", Langmuir 18 (9): 3537-3548 ), as follows: Surface wettability was determined by measuring contact angles in advance and recoil on a sessile (water) drop (Contact Angle Measuring System, G2 / G40 2.05-D, Krüss GmbH, Hamburg , Germany); the experiment was conducted automatically by increasing and decreasing the size of the drop at a rate of 15 ml per minute; 480 values were measured for the advance contact angle and 240 for the recoil contact angle, at 3 different locations for each sample); the data collected were analyzed by the method of tangents 2 (Drop-Shape Analysis program adjustment routine in DSA Version 1.80.0.2 for Windows 9x / NT4 / 2000, (c) 1997 - 2002 KRUESS "), and
  • X-ray spectroscopic spectrometry (XPS, Tosatti et al., supra).

Les différents substrats utilisés sont

  • des plaques de silicium recouverts d'une fine couche d'or
  • des disques d'acier poli
  • des disques de rubis poli
  • des plaques d'aluminium
  • des plaques de silicium recouverts d'une fine couche de dioxyde de titane
The different substrates used are
  • silicon wafers covered with a thin layer of gold
  • polished steel discs
  • polished ruby discs
  • aluminum plates
  • silicon wafers coated with a thin layer of titanium dioxide

Les principaux paramètres mesurés par VASE et CA sont rassemblés dans les Tableaux 1A et 1B ci-après. Tableau 1A Epaisseur mesurée par ellipsométrie et angles de contact d'avance avec l'eau (selon protocole A) Substrat Modification Epaisseur mesurée par ellipsométrie [nm] Angle de contact d'avance avec l'eau [°] Or Propre - environ 50 SuSoS1 1,0 93,4±2,1 Acier poli Propre - < 10 SuSoS1 2,7 108,5±1,0 Aluminium Propre non mesuré < 10 SuSoS1 non mesuré 98,8±0,6 Dioxyde de titane Propre - < 10 SuSoS1 3,4 111,8±0,7 Rubis Propre non mesuré < 10 SuSoS1 non mesuré - Tableau 1B: Epaisseur mesurée par ellipsométrie et angles de contact d'avance avec l'eau (selon protocole B) Substrat Modification Epaisseur mesurée par ellipsométrie [nm] Angle de contact d'avance avec l'eau [°] Or Propre - environ 50 SuSoS1 non mesuré 108±4 Acier poli Propre - < 10 SuSoS1 non mesuré 107±1 Aluminium Propre non mesuré < 10 SuSoS1 non mesuré 105±2 Dioxyde de titane Propre - < 10 SuSoS1 2,9 112±3 Rubis Propre non mesuré < 10 SuSoS1 non mesuré 106±1 The main parameters measured by VASE and CA are summarized in Tables 1A and 1B below. <u> Table 1A Thickness measured by ellipsometry and advance contact angles with water (according to protocol A) </ u> substratum change Thickness measured by ellipsometry [nm] Contact angle in advance with water [°] Gold Clean - about 50 SuSoS1 1.0 93.4 ± 2.1 Polished steel Clean - <10 SuSoS1 2.7 108.5 ± 1.0 Aluminum Clean not measured <10 SuSoS1 not measured 98.8 ± 0.6 Titanium dioxide Clean - <10 SuSoS1 3.4 111.8 ± 0.7 Ruby Clean not measured <10 SuSoS1 not measured - substratum change Thickness measured by ellipsometry [nm] Contact angle in advance with water [°] Gold Clean - about 50 SuSoS1 not measured 108 ± 4 Polished steel Clean - <10 SuSoS1 not measured 107 ± 1 Aluminum Clean not measured <10 SuSoS1 not measured 105 ± 2 Titanium dioxide Clean - <10 SuSoS1 2.9 112 ± 3 Ruby Clean not measured <10 SuSoS1 not measured 106 ± 1

L'analyse par spectroscopie de photoélectrons par rayons X (XPS) montre que les molécules SuSoS1 sont présentes sur toutes les surfaces par la détection des éléments N.X-ray photoelectron spectroscopy (XPS) analysis shows that SuSoS1 molecules are present on all surfaces by the detection of N elements.

Ces résultats montrent qu'on obtient sur tous les substrats testés une couche ultra-mince de SuSoS1.These results show that we obtain on all substrates tested an ultra-thin layer of SuSoS1.

Les valeurs d'angle de contact d'avance avec l'eau sont satisfaisantes pour une utilisation comme épilame (supérieures à 100° ou légèrement inférieures à cette valeur, mais avec des étalements inférieurs à 2% (comme on le verra plus loin.)Advantageous contact angle values with water are satisfactory for use as epilam (greater than 100 ° or slightly less than this value, but with smears less than 2% (as will be discussed later).

Exemple 4 Comparaison des couches ultra-fines formées par auto-assemblage de SuSoS1 et Fixodrop FK-BS sur des surfaces d'or, d'acier poli et de rubis. EXAMPLE 4 Comparison of the ultra-thin layers formed by self-assembly of SuSoS1 and Fixodrop FK-BS on surfaces of gold, polished steel and ruby. 1)Préparation des couches ultra-fines de SuSoS1 et Fixodrop sur les surfaces des différents substrats1) Preparation of the ultra-thin layers of SuSoS1 and Fixodrop on the surfaces of the different substrates

On revêt d'une couche ultra-fine de SuSoS1 des surfaces de substrats d'or, d'acier poli et de rubis comme décrit dans l'exemple 2. L'aspect de surface est excellent et on ne distingue aucune marque due au dépôt.An ultra-thin layer of SuSoS1 is coated with substrates of gold, polished steel and ruby as described in Example 2. The surface appearance is excellent and no markings can be distinguished due to the deposit .

On revêt d'une couche ultra-fine de Fixodrop FK-BS des surfaces de substrats d'or, d'acier poli et de rubis selon les indications du fabricant par trempage des substrats dans une solution de tétradécafluorohexane.An ultra-thin layer of Fixodrop FK-BS is coated with gold, polished steel and ruby substrates as specified by the manufacturer by dipping the substrates in a solution of tetradecafluorohexane.

L'épaisseur de cette couche mesurée par ellipsométrie sur l'or est de 1,0 nm pour SuSoS1 et 1,7 nm pour le Fixodrop.The thickness of this layer measured by ellipsometry on gold is 1.0 nm for SuSoS1 and 1.7 nm for Fixodrop.

2) Mesure d'étalement de lubrifiants 2) Flow measurement of lubricants

On caractérise l'étalement des lubrifiants sur une surface en mesurant le diamètre moyen d'une goutte de typiquement 0,5 mm de diamètre immédiatement après dépôt de la goutte et après 20 minutes. L'étalement correspond à la variation relative du diamètre moyen après 20 minutes. Une bonne tenue d'un lubrifiant correspond à un étalement de 2% ou moins. Un étalement supérieur à 10% se remarque à l'oeil et n'est pas acceptable. L'huile utilisée pour les tests est une huile horlogère "941 "(maison Moebius et Fils, mélange d'alkyl-aryl-monooléate et de deux C10-C13 di-esters, viscosité de 110 cSt à 20°C, tension superficielle de 32.8 mN/m).The spreading of the lubricants on a surface is characterized by measuring the average diameter of a drop of typically 0.5 mm in diameter immediately after the drop has been deposited and after 20 minutes. The spread corresponds to the relative variation of the average diameter after 20 minutes. A good performance of a lubricant corresponds to a spread of 2% or less. Spreading greater than 10% is noticeable in the eye and is not acceptable. The oil used for the tests is a watch oil "941" (Moebius and Fils house, mixture of alkyl-aryl-monooleate and two C 10 -C 13 di-esters, viscosity of 110 cSt at 20 ° C, surface tension of 32.8 mN / m).

On compare l'étalement obtenu sur des surfaces d'acier, de rubis, d'aluminium, de dioxyde de titane, et d'or revêtues de la molécule SuSoS1, ainsi que d'une surface d'or revêtue du produit commercial Fixodrop FK-BS de la maison Moebius et Fils selon les indications du fabricant. Pour la molécule SuSoS1, l'étalement est en tous les cas inférieur à 2%, et est comparable à celui mesuré pour le Fixodrop, comme montré par le tableau ci-après. Tableau 2 Etalement de lubrifiants Surface Couche ultra-mince Huile Moebius 941 Acier SuSoS1 -0,04% Aluminium SuSoS1 +1,29% Dioxyde de titane SuSoS1 +0,23% Rubis SuSoS1 -0,97% Or SuSoS1 +0,09% Or Fixodrop FK-BS -0,90% The spread obtained is compared on surfaces of steel, ruby, aluminum, titanium dioxide, and gold coated with the SuSoS1 molecule, as well as a gold surface coated with the commercial product Fixodrop FK -BS of the Moebius and Son house as indicated by the manufacturer. For the SuSoS1 molecule, the spread is in all cases less than 2%, and is comparable to that measured for the Fixodrop, as shown in the table below. <u> Table 2 Spreading Lubricants </ u> Area Ultra thin layer Moebius 941 Oil Steel SuSoS1 -0.04% Aluminum SuSoS1 + 1.29% Titanium dioxide SuSoS1 + 0.23% Ruby SuSoS1 -0.97% Gold SuSoS1 + 0.09% Gold Fixodrop FK-BS -0.90%

3) Conclusion 3) Conclusion

Pour toutes les surfaces étudiées, l'angle de contact obtenu sur les couches ultra-minces réalisées avec la molécule SuSoS1 est supérieur à 100°, l'énergie de surface est inférieure à 20 mJ m-2, et l'étalement est inférieur à 2%.For all the surfaces studied, the contact angle obtained on the ultra-thin layers made with the molecule SuSoS1 is greater than 100 °, the surface energy is less than 20 mJ m -2 , and the spread is less than 2%.

Les couches résistent bien aux traitements de lavages sur rubis, aluminium, dioxyde de titane, mais moins bien sur or et acier.The layers are resistant to ruby, aluminum and titanium dioxide washings, but less well to gold and steel.

Les propriétés de la couche ultra-mince SuSoS1 sont au moins aussi bonnes que celles obtenues avec le produit commercial Fixodrop.The properties of the ultra-thin layer SuSoS1 are at least as good as those obtained with the commercial product Fixodrop.

Claims (10)

  1. An ultra-thin hydrophobic and oleophobic layer, of which the thickness measured in ellipsometry is 0.5 to 10 nm, formed by self-assembly on a solid substrate surface, of compounds of the general formula

            A-B

    in which
    A represents a group of the formula
    Figure imgb0017
    in which
    Z represents C or N+,
    X represents C-H or C-L, L being an electron-attracting group selected from F, Cl, Br, I, CF3, NO2 and N(CH3)3 +,
    Y represents H or CH3, or Y forms a 5- or 6-atom heterocycle with X,
    T represents NH, CO, NH-CO, NH-CO-NH or NH2 +U-, U- being selected from F-, Cl-, Br-, I-, OH-, NO3 -, HSO4 -, SO4 2-, CO3 2-, HCO3 - or SCN-, and
    B represents an unsubstituted C1-C20 linear aliphatic alkyl group.
  2. An ultra-thin layer as claimed in one of the preceding claims, wherein A is selected from one of the following groups:
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
  3. An ultra-thin layer as claimed in one of the preceding claims characterised by a compound of the following formula:
    Figure imgb0021
  4. An ultra-thin layer as claimed in one of the preceding claims, wherein the solid substrate is composed of a material selected from gold, silver, steel, aluminium, brass, bronze, copper-beryllium, titanium dioxide, ruby, sapphire, silicon, nickel and nickel phosphorus, as well as other metallic surfaces such as iron, chromium, tantalum, yttrium, germanium, copper, platinum, and metal oxides or ceramics, such as zirconia or niobia (niobium oxide), or polymers such as polyethylenes, polystyrenes, polyamides, polydimethylsiloxanes, polyvinyl chlorides, epoxy resins, or a substrate made of one of these materials or another, the surface of which has been covered or coated, for example by an electroplating of gold, of gold-copper-cadmium and of gold, of nickel, of rhodium, of tin-nickel, or treated by anodising, as in the case of parts made of aluminium alloy or titanium alloy, or modified by a surface treatment such as oxidation, carburisation or nitriding.
  5. An ultra-thin layer as claimed in one of the preceding claims, wherein its advancing contact angle with water is at least 100°.
  6. A timepiece, wherein it comprises an ultra-thin layer as claimed in one of the preceding claims.
  7. A method of preparing an ultra-thin layer as claimed in one of claims 1 to 5, wherein it comprises the immersion of the substrate in a solution of the compound of formula A-B in water or a mixture of water and protic solvent.
  8. A method as claimed in claim 7, wherein the protic solvent is 2-propanol.
  9. A method of preparing an ultra-thin layer as claimed in one of claims 1 to 5, wherein it comprises the immersion of the substrate in a solution of the compound of formula A-B in a mixture of aprotic solvent and protic solvent.
  10. Use of an ultra-thin layer as claimed in one of claims 1 to 5 as an epilame.
EP07816285.6A 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame Active EP2084253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07816285.6A EP2084253B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20060405504 EP1927648A1 (en) 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
PCT/CH2007/000602 WO2008064511A1 (en) 2006-12-01 2007-11-29 Ultra-thin hydrophobic and oleophobic layer, its method of manufacture and use in clockmaking as an epilame
EP07816285.6A EP2084253B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Publications (2)

Publication Number Publication Date
EP2084253A1 EP2084253A1 (en) 2009-08-05
EP2084253B1 true EP2084253B1 (en) 2017-03-29

Family

ID=38031431

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20060405504 Withdrawn EP1927648A1 (en) 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP07816284.9A Active EP2084252B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP07816285.6A Active EP2084253B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP20060405504 Withdrawn EP1927648A1 (en) 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP07816284.9A Active EP2084252B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Country Status (5)

Country Link
US (2) US20100068553A1 (en)
EP (3) EP1927648A1 (en)
JP (1) JP5385788B2 (en)
CN (1) CN101611124B (en)
WO (2) WO2008064511A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951630B2 (en) 2006-12-01 2015-02-10 Rolex S.A. Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame and in mechanical engineering as a barrier film
EP1927648A1 (en) * 2006-12-01 2008-06-04 Rolex Sa Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
WO2012085130A1 (en) * 2010-12-23 2012-06-28 Rolex Sa Composition for increasing the lipophobicity of a watch-making component
DE102011088232A1 (en) * 2011-12-12 2013-06-13 Aktiebolaget Skf Bearing cage and bearing cage segment
FR2990433A1 (en) * 2012-05-10 2013-11-15 Surfactis Technologies CATANIONIC SURFACE RECOVERY COMPOSITIONS THROUGH PHOSPHONIC MOLECULES AND AMINES
WO2014009059A1 (en) * 2012-07-10 2014-01-16 The Swatch Group Research And Development Ltd Surface lubrication of an article
EP2865737A1 (en) * 2013-10-28 2015-04-29 The Swatch Group Research and Development Ltd. Fine epilame product
CN107974680A (en) * 2016-10-21 2018-05-01 苏州汉力新材料有限公司 A kind of method that aluminium base basal surface prepares superoleophobic surface
EP3315214B1 (en) 2016-10-25 2020-07-15 The Swatch Group Research and Development Ltd Method for epilame coating of a timepiece or piece of jewellery
EP3398978B1 (en) * 2017-05-05 2020-03-11 The Swatch Group Research and Development Ltd Epilame-coating agent and epilame-coating method using such an epilame-coating agent
EP4075205A1 (en) * 2021-04-16 2022-10-19 ETA SA Manufacture Horlogère Suisse Method for manufacturing a timepiece mobile and timepiece mobile obtained by implementing same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD238812C2 (en) * 1985-06-27 1989-05-03 Ruhla Uhren Veb K METHOD FOR PRODUCING LUBRICATION, SLIDE AND ANTISREAD LAYERS ON BEARINGS AND SLIDING ELEMENTS OF WATCHES
JP3583168B2 (en) * 1994-08-03 2004-10-27 株式会社ネオス Fluorinated benzacetal derivatives
US8815793B2 (en) * 2001-07-20 2014-08-26 Northwestern University Polymeric compositions and related methods of use
WO2003008376A2 (en) * 2001-07-20 2003-01-30 Northwestern University Adhesive dopa-containing polymers and related methods of use
US7618937B2 (en) * 2001-07-20 2009-11-17 Northwestern University Peptidomimetic polymers for antifouling surfaces
US7858679B2 (en) * 2001-07-20 2010-12-28 Northwestern University Polymeric compositions and related methods of use
DE10163892A1 (en) * 2001-12-27 2003-07-17 Basf Ag Derivatives of polymers for metal treatment
JP2006291266A (en) * 2005-04-08 2006-10-26 Daikin Ind Ltd Method of vapor-phase surface treatment with fluorine compound
US8568872B2 (en) * 2005-08-24 2013-10-29 Eth Zurich Catechol functionalized polymers and method for preparing them
JP5597836B2 (en) * 2006-08-04 2014-10-01 ケンジー ナッシュ コーポレイション Biomimetic compound and synthesis method thereof
WO2008064058A2 (en) * 2006-11-21 2008-05-29 Abbott Laboratories Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings
EP1927648A1 (en) * 2006-12-01 2008-06-04 Rolex Sa Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP1927649A1 (en) * 2006-12-01 2008-06-04 SurfaceSolutions GmbH Ultra-thin water and oil repellent layer, manufacturing method and use in mechanics as a barrier film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2084252B1 (en) 2017-03-29
EP1927648A1 (en) 2008-06-04
CN101611124B (en) 2013-11-06
WO2008064511A1 (en) 2008-06-05
JP5385788B2 (en) 2014-01-08
US20100075138A1 (en) 2010-03-25
WO2008064510A1 (en) 2008-06-05
JP2010511099A (en) 2010-04-08
US20100068553A1 (en) 2010-03-18
EP2084253A1 (en) 2009-08-05
CN101611124A (en) 2009-12-23
EP2084252A1 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
EP2084253B1 (en) Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP2102319B1 (en) Ultra-thin water and oil repellent layer, manufacturing method and use in mechanics as a barrier film
US8951630B2 (en) Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame and in mechanical engineering as a barrier film
EP2655577B1 (en) Composition for increasing the lipophobicity of a watch-making component
EP2846931B1 (en) Covering of surfaces intended for clock- and watchmaking using cationic compositions containing phosphonic molecules and amines
JP2013545889A (en) Abrasion resistant coatings, articles and methods
JP2013520570A (en) Method for protecting the surface of silver and silver alloys from discoloration
WO2008052378A2 (en) Timepiece
JP6470815B2 (en) Epiramization of clock or jewelry elements
EP1180552A1 (en) Method for surface treatment of mechanical pieces subjected to wear and corrosion
EP0349044B1 (en) Process for the production of a protective film on a magnesium-based substrate, application to the protection of magnesium alloys, substrates thus obtained
US20140308513A1 (en) Noble metal protective film and method of forming the same
WO2012085134A1 (en) Hydrophobic and lipophobic composition comprising compounds having a bisphosphonic and thiol group
EP3192853B1 (en) Method for treating a surface in order to obtain a hydrophobic and/or oleophobic coating
EP3627237B1 (en) Component made of micro-machinable material for resonator with high quality factor
KR20210046995A (en) Lubricated thin film, and manufacturing method of thereof
EP3192854B1 (en) Item in which the surface is treated with a coupling agent having oleophobic and/or hydrophobic nature
JPH10237672A (en) Diamond-coated steel material and its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007050415

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10M0133060000

Ipc: C10M0105540000

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 105/54 20060101AFI20160804BHEP

Ipc: C10M 105/70 20060101ALI20160804BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161007

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007050415

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS AND SAVOYE SARL, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 879766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007050415

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181112

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181116

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007050415

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191129

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231201

Year of fee payment: 17