EP2078898A1 - Burner and method for reducing self-induced flame oscillations - Google Patents

Burner and method for reducing self-induced flame oscillations Download PDF

Info

Publication number
EP2078898A1
EP2078898A1 EP08000497A EP08000497A EP2078898A1 EP 2078898 A1 EP2078898 A1 EP 2078898A1 EP 08000497 A EP08000497 A EP 08000497A EP 08000497 A EP08000497 A EP 08000497A EP 2078898 A1 EP2078898 A1 EP 2078898A1
Authority
EP
European Patent Office
Prior art keywords
fluid
burner
mass flow
fuel
jet nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08000497A
Other languages
German (de)
French (fr)
Inventor
David Barkowski
Matthias Dr. Hase
Werner Dr. Krebs
Berthold Köstlin
Martin Lenze
Martin Stapper
Jaap Dr. Van Kampen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08000497A priority Critical patent/EP2078898A1/en
Priority to EP08749689.9A priority patent/EP2232147B1/en
Priority to US12/812,301 priority patent/US20100323309A1/en
Priority to PCT/EP2008/054969 priority patent/WO2009086943A1/en
Publication of EP2078898A1 publication Critical patent/EP2078898A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03282High speed injection of air and/or fuel inducing internal recirculation

Definitions

  • the present invention relates to a method for reducing self-induced flame vibrations and a burner with which this method can be carried out.
  • Self-induced flame vibrations often occur in combustion chambers and are referred to in this context as Brennschbrummen.
  • a feedback between pressure changes in the combustion chamber and mass flow fluctuations of fuel and air are responsible.
  • the combustion chamber vibrations are an undesirable side effect of the combustion process, since they cause an increased mechanical and thermal loading of the burner components and the combustion chamber components.
  • the combustion chamber hum caused an increased noise in the environment of the respective combustion chamber.
  • a reduction in the combustion chamber humming or a minimization of self-induced flame vibrations has been achieved in part by using Helmholtz resonators.
  • Another possibility is to supply the burner used an increased pilot gas quantity. Pilot gas or pilot fuel is usually used to stabilize the flame. However, an increased supply of pilot gas also leads to increased NO x emissions.
  • the first object is achieved by a method according to claim 1.
  • the second object is achieved by a burner according to claim 9 solved.
  • the dependent claims contain further, advantageous embodiments of the invention.
  • a second fluid mass flow is injected into a first fluid mass flow which flows through a jet nozzle from a fluid inlet opening to a fluid outlet opening at at least one axial flow position of the jet nozzle downstream of the fluid inlet opening.
  • one of the two fluid mass flows comprises air.
  • the other fluid mass flow includes a fuel.
  • the second fluid mass flow can be injected into the first fluid mass flow at a plurality of positions of the circumference of the jet nozzle.
  • the second fluid mass flow can be injected into a plurality of axially offset positions of the circumference of the jet nozzle in the first fluid mass flow. This causes the flow in the jet nozzle is not always weakened at the same circumferential position.
  • the fluid mass flow comprising a fuel can be, for example, an air-fuel mixture.
  • the fuel used may in particular be gaseous fuel, for example natural gas or a synthesis gas.
  • natural gas the fuel mass flows are significantly lower than the air mass flows, is Even in the case of an injection perpendicular to the flow direction of the air not to expect a significant increase in pressure loss.
  • the method can also be applied to liquid fuels.
  • a third fluid mass flow can be injected into the first fluid mass flow.
  • the second fluid mass flow may comprise a fuel and the first fluid mass flow may comprise air.
  • the third fluid mass flow may also comprise air, steam or another gas, for example an inert gas.
  • the second and / or the third fluid mass flow can be injected into the first fluid mass flow at an angle between 0 ° and 90 °.
  • the second fluid mass flow may be injected into the first fluid mass flow at an angle of 90 ° and the third fluid mass flow may be injected into the first fluid mass flow at an angle of 45 °.
  • the first and the third fluid mass flow may be an air mass flow and the second fluid mass flow may be a fuel mass flow.
  • the burner according to the invention comprises at least one jet nozzle with a main fluid inlet opening and a fluid outlet opening, wherein the main fluid inlet opening is connected to a fluid supply line.
  • the burner according to the invention is characterized in that at least one fluid secondary inlet opening, which is connected to a fluid supply line, is arranged on at least one axial axial position of the jet nozzle downstream of the main fluid inlet opening.
  • the fluid supply line connected to the fluid main inlet opening can be used, for example, as a fuel feed line, as an air feed line or be designed as a fuel-air mixture supply line.
  • the main fluid inlet port is connected to an air supply line.
  • the fluid supply line connected to at least one secondary fluid inlet opening can preferably be designed as a fuel supply line. However, it can also be configured as an air supply line, as a steam supply line, as a nitrogen supply line or as a fuel-air mixture supply line.
  • the secondary fluid inlet openings are arranged at a plurality of axial positions of the jet nozzle.
  • the secondary fluid inlet openings which may be arranged at different axial positions, may in particular be air inlet openings.
  • fluid sub-inlet openings may be disposed at a plurality of positions along the circumference of the jet nozzle.
  • secondary fluid inlet openings are arranged at a plurality of positions offset in the axial direction from each other along the circumference of the jet nozzle. This causes the flow in the jet nozzle is not always weakened at the same circumferential position.
  • the main fluid inlet port may be connected to an air supply line and a part of the fluid sub-inlet ports may be connected to a fuel supply line.
  • a first part of the fluid sub-inlet openings can be connected to a fuel feed line and a second part of the fluid sub-inlet openings can be connected to an air feed line.
  • the fluid sub-inlet openings and the main fluid inlet opening can each have a central axis.
  • the center axes of the fluid sub-inlet openings may have an angle between 0 ° and 90 ° to the central axis of the main fluid inlet opening and / or to the center axis of the jet nozzle.
  • the center axes of a first part of the fluid sub-inlet ports may be at an angle of 90 ° to the central axis of the main fluid inlet port and / or to the central axis of the jet nozzle and the center axes of a second part of the fluid secondary inlet openings are at an angle of 45 ° to the central axis of the main fluid inlet opening and / or to the central axis of the jet nozzle.
  • the fluid sub-inlet openings and the main fluid inlet opening may each have a central axis, and the center axes of the fluid sub-inlet openings may have an angle between 0 ° and 90 ° to a radial direction with respect to the center axis of the main fluid inlet opening.
  • This can be injected tangentially along the circumference of the jet nozzle and in this way a wall film can be produced on the inner surface of the jet nozzle.
  • An injection along the circumference of the jet nozzle can also be used to generate vortices in the jet nozzle.
  • a plurality of fluid supply lines connected to fluid side inlet openings may be connected to one another via a ring distributor arranged along the circumference of the jet nozzle.
  • a fuel nozzle can be arranged in the main fluid inlet opening or directly in front of the main fluid inlet opening.
  • the fuel nozzle may include a fuel distributor disposed in or immediately in front of the main fluid inlet port.
  • At least one secondary fluid inlet opening may be designed as an annular gap extending along the circumference of the jet nozzle.
  • the burner according to the invention may comprise a plurality of jet nozzles, wherein the annular gaps of the various jet nozzles are arranged at respectively different axial positions. By varying the axial positions of the annular gaps, an additional design parameter against thermoacoustic flame oscillations is obtained.
  • the burner according to the invention may comprise a plurality of, for example, annularly arranged with respect to the central axis of the burner, jet nozzles. It may further include one or more pilot burners.
  • FIG. 1 schematically shows a section through a jet burner 1 perpendicular to a central axis 4 of the burner 1.
  • the burner 1 comprises a housing 6 which has a circular cross-section. Within the housing 6 a certain number of jet nozzles 2 is arranged substantially annular. Each jet nozzle 2 has a circular cross section.
  • the burner 1 may comprise a pilot burner.
  • FIG. 2 schematically shows a section through a jet burner 101, wherein the section is perpendicular to the central axis of the burner 101.
  • the burner 101 also has a housing 6, which has a circular cross section and in which a number of inner and outer jet nozzles 2, 3 is arranged.
  • the jet nozzles 2, 3 each have a circular cross-section, wherein the outer jet nozzles 2 have an equal or larger cross-sectional area than the inner jet nozzles 3.
  • the outer jet nozzles 2 are arranged substantially annularly within the housing 6 and form an outer ring.
  • the inner jet nozzles 3 are also arranged annularly within the housing 6.
  • the inner jet nozzles 3 form an inner ring, which is arranged concentrically to the outer jet nozzle ring.
  • FIGS. 1 and 2 merely show examples of the arrangement of jet nozzles 2, 3 within a jet burner 1, 101. Of course, alternative arrangements, as well as the use of a different number of jet nozzles 2, 3 are possible.
  • FIG. 3 schematically shows a section through a portion of a jet burner 1 according to the invention in the longitudinal direction, ie along the central axis 4 of the burner 1.
  • the burner 1 has at least one arranged in a housing 6 jet nozzle 2 on.
  • the central axis of the jet nozzle 2 is indicated by the reference numeral 5.
  • the jet nozzle 2 comprises a main fluid inlet opening 8 and a fluid outlet opening 9.
  • the combustion chamber 18 adjoins the fluid outlet opening 9.
  • the jet nozzle 2 is arranged in the housing 6 such that the main fluid inlet opening 8 faces the rear wall 24 of the burner 1.
  • the housing 6 further comprises a radially outer housing part 27 with respect to the central axis 4 of the burner 1.
  • the jet nozzle 2 is fluidically connected to a compressor.
  • the compressed air coming from the compressor is conducted via an annular gap 22 to the main fluid inlet opening 8 and / or directed via an air inlet opening 23 radially with respect to the central axis 5 of the jet nozzle 2 to the main fluid inlet opening 8.
  • the compressed air flows through the annular gap 22 in the direction of the arrow indicated by the reference numeral 15, ie parallel to the central axis 5 of the jet nozzle 2.
  • the in the direction of arrow 15th flowing air is then deflected at the rear wall 24 of the burner 1 by 180 ° and then flows through the main fluid inlet 8 into the jet nozzle 2.
  • the flow direction of the air within the jet nozzle 2 is indicated by an arrow 10.
  • the compressed air coming from the compressor can also be supplied through an opening 23 which is arranged in the housing 6 of the burner 1 radially with respect to the central axis 5 of the jet nozzle 2.
  • the flow direction of the compressed air flowing through the opening 23 is indicated by an arrow 26.
  • the compressed air is then deflected by 90 ° and then flows through the main fluid inlet 8 into the jet nozzle. 2
  • the burner 1 according to the invention can in principle also without the outer housing part 27 or without an outer housing 27 be configured.
  • the compressed air can flow directly into the "plenum", ie the area between the rear wall 24 and the main fluid inlet opening 8.
  • the burner 1 according to the invention can furthermore be designed without the rear wall 24.
  • the jet nozzle 2 is surrounded radially by a ring distributor 7, which is supplied with fuel 12 via a fuel feed line 13.
  • the annular distributor 7 has a number of fluid secondary inlet openings 14, through which fuel can be injected into the air mass flow flowing through the jet nozzle 2.
  • the direction of flow of the fuel 12 injected into the jet nozzle 2 through the fluid sub-inlet openings 14 is indicated by arrows 17.
  • the flow direction 17 of the injected fuel 12 extends perpendicular to the central axis 5 of the jet nozzle 2 and thus also perpendicular to the main flow direction 10 of the compressed air 11 flowing through the jet nozzle 2.
  • Fluid side inlet openings 14 are arranged at three different axial positions, wherein at each axial position in each case two fluid side inlet openings 14 are arranged opposite to each other.
  • a number of fluid sub-inlet openings 14 are arranged along the circumference of the jet nozzle 2. These can in particular also be arranged axially offset from one another.
  • secondary fluid inlet openings 14 may be arranged at only one or at further axial positions along the circumference of the jet nozzle 2.
  • FIG. 4 schematically shows a section through a burner 201, a further development of in the FIG. 3 shown Burner 1 represents.
  • the compressed air 11 coming from a compressor can in turn be supplied to the jet nozzle 2 either via an annular gap 22 or, as in FIG FIG. 3 is shown, are injected via an air inlet opening perpendicular to the central axis 5 of the jet nozzle.
  • the compressed air 11 is supplied via an annular gap 22 of the jet nozzle 2.
  • the injection perpendicular to the central axis 5 is therefore indicated only by a dashed arrow 26.
  • burner 201 in addition to the fluid sub-inlet openings 14, is injected through the fuel in the jet nozzle 2, further fluid side inlet openings 25, is injected through the additional compressed air in the flow direction indicated by arrows 16 in the jet nozzle 2.
  • additional fluid sub-inlet openings 25 are connected to the annular gap 22. This means that part of the compressed air coming from the compressor 11 is passed through the annular gap 22 to the rear wall 24 of the burner, where it is deflected by 180 ° and then passes through the main fluid inlet opening 8 into the jet nozzle 2. This air mass flow flows through the jet nozzle 2 in the direction indicated by an arrow 10 direction.
  • the fluid sub-inlet openings 25 can be arranged at different axial positions of the jet nozzle 2.
  • the fluid secondary inlet openings 25, through which compressed air is injected into the jet nozzle 2 are arranged such that a fluid secondary inlet opening 25 is arranged downstream of a fluid secondary inlet opening 14 through which fuel 12 is injected into the jet nozzle 2 in the flow direction 10 downstream.
  • the fluid secondary inlet openings 25 along the circumference of the Blasting nozzle 2 are arranged offset radially. In this way, the flow is not always weakened at the same circumferential position.
  • the fluid side inlet openings 14 and 25 are arranged such that the fuel 12 is injected through the fluid secondary inlet openings 14 perpendicular to the flow direction 10 of the compressed air 11 flowing through the main fluid inlet opening 8 into the jet nozzle 2. Further compressed air is injected through the fluid sub-inlet openings 25 at an angle of about 45 ° to the main flow direction 10 in the jet nozzle 2. Both the fuel 12 and the additional compressed air can be injected at any other angle between 0 ° and 90 ° to the main flow direction 10 at different axial positions in the jet nozzle 2. Since, for example, for natural gas, the fuel mass flows are significantly lower than the air mass flows, no significant increase in the pressure loss is to be expected even in the case of a vertical fuel injection. The fuel 12 can also be injected counter to the air flow direction 10.
  • the fuel can be supplied via one or more fuel supply lines 13 and transported via a ring distributor 7 to the individual jet nozzles 2.
  • these can advantageously be arranged along the circumference of the burner. It is also advantageous if the injection of the fuel into the air jet at more than one axial position of the jet pipe 2 is completed. In addition, for a better mixing at several circumferential positions of the jet pipe 2 can be injected.
  • FIGS. 5 to 7 each show sections through a portion of a burner 301 along the central axis 4 of the burner 301.
  • the burner 301 has at least one, but advantageously a plurality, substantially annularly arranged around the central axis 4 jet nozzles 2. With respect to possible arrangements of the jet nozzles 2, 3 is on the Figures 1 and 2 and the remarks made in this connection.
  • a fuel nozzle 19 is arranged.
  • fuel 12 is injected into the jet nozzle 2.
  • the fuel 12 is preferably injected at an angle of approximately 45 ° to the flow direction 10 of the compressed air 11 flowing into the jet nozzle through the main fluid inlet opening 8.
  • the flow direction of the injected fuel nozzle 19 through the fuel 12 is indicated by arrows 17.
  • the fuel 12 can also be injected at a different angle between 0 ° and 90 ° to the flow direction 10 of the compressed air 11 in the jet nozzle 2.
  • the compressed air coming from a compressor is injected through an air inlet opening 23 perpendicular to the central axis 5 of the jet nozzle 2 in the burner 301.
  • the flow direction of the opening 23 passing compressed air 11 is indicated by an arrow 26.
  • the compressed air 11 now flows through the annular gap 22 to the fluid sub-inlet openings 25 and passes through them into the jet nozzle 2.
  • the majority of the compressed air 11 is introduced into the jet nozzle 2 through the main fluid inlet opening 8 in the flow direction 10.
  • FIG. 7 shows an alternative embodiment of the in the FIG. 5 shown burner 301.
  • the fluid sub-inlet openings 25 are arranged so that the compressed air injected through the fluid sub-inlet openings 25 into the blasting nozzle 2 is injected into the blasting tube 2 at an angle of approximately 45 ° to the central axis 5 of the latter.
  • another Eindüswinkel between 0 ° and 90 ° is possible and useful.
  • the air used for the axially stepped Heileindüsung of the present embodiment can be removed either from the annular gap 22 or directly from a surrounding the burner 301 plenum and are injected into the fuel-air mixture in the jet nozzle.
  • the air can be introduced as a jet in the cross flow or as a wall film.
  • the advantage of jet-in-cross-flow injection is a contribution to increased mixing of the fuel-air mixture, while wall-film formation is primarily a measure against potential flashback.
  • the air can be injected tangentially with respect to the circumference of the jet nozzle 2 in this. In this case, a wall film can be produced on the entire inner surface of the jet nozzle 2. Tangential injection can also be used to generate turbulence in the jet nozzle 2.
  • jet-in-cross-flow injection with a wall-film injection by arranging the nozzles very shortly one behind the other.
  • the jet-in-cross flow injection provides for improved mixing, especially in the core region of the jet, and the film of the second jet strengthens the flow boundary layer and thus prevents a flashback.
  • This embodiment is particularly advantageous for a central co-flow injection in the Hauptbrennscherindüsung, for example for synthesis gas. With a high proportion of air in the axial staging, it is possible to adjust the nozzle diameter of the jet nozzle so that the flow velocity in the nozzle remains substantially the same.
  • FIGS. 8 and 9 schematically show various variants of a burner 401 longitudinally along the central axis 4 of the burner 401.
  • the burner 401 has a number of jet nozzles 2, which are arranged substantially annularly around the central axis 4 of the burner 401.
  • jet nozzles 2, 3 is on the Figures 1 and 2 and the remarks made in this connection.
  • Each jet nozzle 2 comprises a main fluid inlet opening 8 and a fluid outlet opening 9.
  • the fluid outlet opening 9 opens into the combustion chamber 18.
  • a fuel nozzle 19 is arranged in the main fluid inlet opening 8.
  • the fuel nozzle 19 comprises a fuel distributor 20 with the aid of which fuel 12 can be injected into the jet nozzle 2 at different radial positions and different circumferential positions of the main fluid inlet opening 8.
  • the flow direction of the injected fuel 12 is indicated by arrows 17.
  • annular gap 21 is arranged at a further downstream with respect to the flow directions 10 and 17 located axial position of the jet nozzle 2. Air is injected into the jet nozzle 2 through the annular gap 21. The flow direction the injected air is indicated by arrows 16. The air is injected almost parallel to the central axis 5 of the jet nozzle 2 in this. Unlike the one in the FIG. 8 shown variant is in the FIG. 9 the annular gap 21 is disposed at a position further downstream of the main fluid inlet port 8. In both in the FIGS. 8 and 9 The compressed air used can be passed from a compressor either through an annular gap 22 in the flow direction 15 to the main fluid inlet opening 8 of the jet nozzle 2 and / or injected perpendicular to the central axis 5 in the flow direction 26.
  • FIGS. 8 and 9 embodiments shown include the possibility of the downstream with respect to the flow direction 15 of the compressed air coming from the compressor nozzle part, which also depends on the fuel distribution, stuck from the rear wall 24 of the burner in the burner 401 and this through the front, combustion chamber side part to position, for example by spacers in the annulus. In extreme cases, the downstream nozzle part sits directly in the bottom of the flame tube.
  • the burner 1, 101, 201, 301, 401 according to the invention can be configured in all exemplary embodiments and variants without the outer housing part 27 or without the outer housing 27.
  • the compressed air can flow directly into the "plenum", ie the area between the rear wall 24 and the main fluid inlet opening 8.
  • the burner 1, 101, 201, 301, 401 according to the invention can furthermore be designed without the rear wall 24.
  • annular gaps 21 By varying the axial positions of the annular gaps 21, an additional design parameter against thermoacoustic flame oscillations is obtained. It is also possible to provide the different jet nozzles 2 of a burner 401 with annular gaps 21 at different axial positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Gas Burners (AREA)

Abstract

The method involves implementing a fluid mass flow through a jet nozzle (2) from a fluid inlet opening (8) to a fluid outlet opening (9). Another fluid mass flow is injected at an axial position of the jet nozzle, where the position lies downstream with respect to the fluid inlet opening, and one of the fluid mass flows includes compressed air (11) and the other fluid mass flow includes a fuel (12) e.g. natural gas. A third fluid mass flow is injected in the former fluid mass flow, where the third fluid mass flow includes steam, nitrogen or fuel-air-mixture. An independent claim is also included for a burner comprising a jet nozzle.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Verringerung von selbstinduzierten Flammenschwingungen und einen Brenner, mit dem dieses Verfahren durchgeführt werden kann.The present invention relates to a method for reducing self-induced flame vibrations and a burner with which this method can be carried out.

Selbstinduzierte Flammenschwingungen treten vielfach in Brennkammern auf und werden in diesem Zusammenhang auch als Brennkammerbrummen bezeichnet. Für die Ausbildung von Brennkammerschwingungen sind eine Rückkopplung zwischen Druckänderungen in der Brennkammer und Massenstromschwankungen von Brennstoff und Luft verantwortlich. Die Brennkammerschwingungen stellen einen unerwünschten Nebeneffekt des Verbrennungsvorganges dar, da sie eine erhöhte mechanische und thermische Belastung der Brennerbauteile und der Brennkammerbauteile bewirken. Zudem verursacht das Brennkammerbrummen eine erhöhte Lärmbelastung in der Umgebung der jeweiligen Brennkammer.Self-induced flame vibrations often occur in combustion chambers and are referred to in this context as Brennkammerbrummen. For the formation of combustion chamber vibrations, a feedback between pressure changes in the combustion chamber and mass flow fluctuations of fuel and air are responsible. The combustion chamber vibrations are an undesirable side effect of the combustion process, since they cause an increased mechanical and thermal loading of the burner components and the combustion chamber components. In addition, the combustion chamber hum caused an increased noise in the environment of the respective combustion chamber.

Eine Verringerung des Brennkammerbrummens beziehungsweise eine Minimierung von selbstinduzierten Flammenschwingungen wird bisher teilweise mithilfe von Helmholtz-Resonatoren erreicht. Eine weitere Möglichkeit besteht darin, dem verwendeten Brenner eine erhöhte Pilotgasmenge zuzuführen. Pilotgas beziehungsweise Pilotbrennstoff wird üblicherweise zur Stabilisierung der Flamme eingesetzt. Eine erhöhte Zuführung von Pilotgas führt allerdings auch zu erhöhten NOx-Emissionen.A reduction in the combustion chamber humming or a minimization of self-induced flame vibrations has been achieved in part by using Helmholtz resonators. Another possibility is to supply the burner used an increased pilot gas quantity. Pilot gas or pilot fuel is usually used to stabilize the flame. However, an increased supply of pilot gas also leads to increased NO x emissions.

Es ist daher eine Aufgabe der vorliegenden Erfindung, ein vorteilhaftes Verfahren zur Verringerung von selbstinduzierten Flammenschwingungen zur Verfügung zu stellen. Es ist eine weitere Aufgabe der vorliegenden Erfindung, einen vorteilhaften Brenner zur Verfügung zu stellen.It is therefore an object of the present invention to provide an advantageous method for reducing self-induced flame vibrations. It is another object of the present invention to provide an advantageous burner.

Die erste Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst. Die zweite Aufgabe wird durch einen Brenner nach Anspruch 9 gelöst. Die abhängigen Ansprüche beinhalten weitere, vorteilhafte Ausgestaltungen der Erfindung.The first object is achieved by a method according to claim 1. The second object is achieved by a burner according to claim 9 solved. The dependent claims contain further, advantageous embodiments of the invention.

In dem erfindungsgemäßen Verfahren zur Verringerung von selbstinduzierten Flammenschwingungen wird in einen ersten Fluidmassenstrom, der eine Strahldüse von einer Fluideinlassöffnung zu einer Fluidauslassöffnung durchströmt, an mindestens einer in Bezug auf die Fluideinlassöffnung stromabwärts gelegenen axialen Position der Strahldüse ein zweiter Fluidmassenstrom eingedüst. Dabei umfasst einer der beiden Fluidmassenströme Luft. Der andere Fluidmassenstrom umfasst einen Brennstoff. Indem der Brennstoff und/oder die Luft an mehreren axialen Positionen in einen die Strahldüse durchströmenden Hauptfluidmassenstrom eingedüst wird, wird das Antwortverhalten zum Beispiel des Brennstoffmassenstroms so verschmiert, dass sich eine Resonanz nur noch für einen geringen Anteil des Massenstroms einstellen kann. Durch das erfindungsgemäße Verfahren wird eine Verschmierung der Verzögerungszeit zwischen Eindüsung und Verbrennung erreicht. Das erfindungsgemäße Verfahren kann insbesondere bei dem Betrieb eines Strahlbrenners umgesetzt werden, wobei die positiven Eigenschaften eines Strahlbrenners erhalten bleiben.In the method according to the invention for reducing self-induced flame oscillations, a second fluid mass flow is injected into a first fluid mass flow which flows through a jet nozzle from a fluid inlet opening to a fluid outlet opening at at least one axial flow position of the jet nozzle downstream of the fluid inlet opening. In this case, one of the two fluid mass flows comprises air. The other fluid mass flow includes a fuel. By injecting the fuel and / or the air at several axial positions into a main fluid mass flow flowing through the jet nozzle, the response of, for example, the fuel mass flow is so smeared that resonance can only occur for a small proportion of the mass flow. By the method according to the invention, a smearing of the delay time between injection and combustion is achieved. The inventive method can be implemented in particular in the operation of a jet burner, wherein the positive properties of a jet burner are maintained.

Vorzugsweise kann der zweite Fluidmassenstrom an mehreren Positionen des Umfanges der Strahldüse in den ersten Fluidmassenstrom eingedüst werden. Insbesondere kann der zweite Fluidmassenstrom an mehreren in axialer Richtung zueinander versetzt angeordneten Positionen des Umfanges der Strahldüse in den ersten Fluidmassenstrom eingedüst werden. Dies bewirkt, dass die Strömung in der Strahldüse nicht immer an der gleichen Umfangsposition geschwächt wird.Preferably, the second fluid mass flow can be injected into the first fluid mass flow at a plurality of positions of the circumference of the jet nozzle. In particular, the second fluid mass flow can be injected into a plurality of axially offset positions of the circumference of the jet nozzle in the first fluid mass flow. This causes the flow in the jet nozzle is not always weakened at the same circumferential position.

Bei dem einen Brennstoff umfassenden Fluidmassenstrom kann es sich beispielsweise um ein Luft-Brennstoff-Gemisch handeln. Bei dem verwendeten Brennstoff kann es sich insbesondere um gasförmigen Brennstoff, beispielsweise um Erdgas oder um ein Synthesegas, handeln. Da für Erdgas die Brennstoffmassenströme deutlich geringer sind als die Luftmassenströme, ist auch im Falle einer Eindüsung senkrecht zur Strömungsrichtung der Luft nicht mit einer signifikanten Erhöhung des Druckverlustes zu rechnen. Des Weiteren kann das Verfahren auch auf flüssige Brennstoffe angewandt werden.The fluid mass flow comprising a fuel can be, for example, an air-fuel mixture. The fuel used may in particular be gaseous fuel, for example natural gas or a synthesis gas. As for natural gas, the fuel mass flows are significantly lower than the air mass flows, is Even in the case of an injection perpendicular to the flow direction of the air not to expect a significant increase in pressure loss. Furthermore, the method can also be applied to liquid fuels.

Zusätzlich zu dem zweiten Fluidmassenstrom kann ein dritter Fluidmassenstrom in den ersten Fluidmassenstrom eingedüst werden. Beispielsweise kann der zweite Fluidmassenstrom einen Brennstoff umfassen und der erste Fluidmassenstrom Luft umfassen. Der dritte Fluidmassenstrom kann ebenfalls Luft, Dampf oder ein anderes Gas, beispielsweise ein Inertgas, umfassen. Vorzugsweise können der zweite und/oder der dritte Fluidmassenstrom in einem Winkel zwischen 0° und 90° in den ersten Fluidmassenstrom eingedüst werden. Zum Beispiel kann der zweite Fluidmassenstrom in einem Winkel von 90° in den ersten Fluidmassenstrom eingedüst werden und der dritte Fluidmassenstrom in einem Winkel von 45° in den ersten Fluidmassenstrom eingedüst werden. Dabei kann es sich beispielsweise bei dem ersten und dem dritten Fluidmassenstrom um einen Luftmassenstrom handeln und bei dem zweiten Fluidmassenstrom um einen Brennstoffmassenstrom handeln. Der Vorteil der Strahl-in-Querströmungseindüsung ist ein Beitrag zu einer erhöhten Mischung des Luft-Brennstoff-Gemisches, während eine Wandfilmbildung vor allem eine Maßnahme gegen Flammenrückschlag ist.In addition to the second fluid mass flow, a third fluid mass flow can be injected into the first fluid mass flow. For example, the second fluid mass flow may comprise a fuel and the first fluid mass flow may comprise air. The third fluid mass flow may also comprise air, steam or another gas, for example an inert gas. Preferably, the second and / or the third fluid mass flow can be injected into the first fluid mass flow at an angle between 0 ° and 90 °. For example, the second fluid mass flow may be injected into the first fluid mass flow at an angle of 90 ° and the third fluid mass flow may be injected into the first fluid mass flow at an angle of 45 °. For example, the first and the third fluid mass flow may be an air mass flow and the second fluid mass flow may be a fuel mass flow. The advantage of jet-in-cross-flow injection is a contribution to increased mixing of the air-fuel mixture, while wall-film formation is primarily a flash back-off measure.

Der erfindungsgemäße Brenner umfasst mindestens eine Strahldüse mit einer Fluidhaupteinlassöffnung und einer Fluidauslassöffnung, wobei die Fluidhaupteinlassöffnung mit einer Fluidzuleitung verbunden ist. Der erfindungsgemäße Brenner ist dadurch gekennzeichnet, dass an mindestens einer in Bezug auf die Fluidhaupteinlassöffnung stromabwärts gelegenen axialen Position der Strahldüse mindestens eine Fluidnebeneinlassöffnung, die mit einer Fluidzuleitung verbunden ist, angeordnet ist.The burner according to the invention comprises at least one jet nozzle with a main fluid inlet opening and a fluid outlet opening, wherein the main fluid inlet opening is connected to a fluid supply line. The burner according to the invention is characterized in that at least one fluid secondary inlet opening, which is connected to a fluid supply line, is arranged on at least one axial axial position of the jet nozzle downstream of the main fluid inlet opening.

Die mit der Fluidhaupteinlassöffnung verbundene Fluidzuleitung kann beispielsweise als Brennstoffzuleitung, als Luftzuleitung oder als Brennstoff-Luft-Gemischzuleitung ausgestaltet sein. Vorzugsweise ist die Fluidhaupteinlassöffnung mit einer Luftzuleitung verbunden. Die mit mindestens einer Fluidnebeneinlassöffnung verbundene Fluidzuleitung kann vorzugsweise als Brennstoffzuleitung ausgestaltet sein. Sie kann jedoch auch als Luftzuleitung, als Dampfzuleitung, als Stickstoffzuleitung oder als Brennstoff-Luft-Gemischzuleitung ausgestaltet sein.The fluid supply line connected to the fluid main inlet opening can be used, for example, as a fuel feed line, as an air feed line or be designed as a fuel-air mixture supply line. Preferably, the main fluid inlet port is connected to an air supply line. The fluid supply line connected to at least one secondary fluid inlet opening can preferably be designed as a fuel supply line. However, it can also be configured as an air supply line, as a steam supply line, as a nitrogen supply line or as a fuel-air mixture supply line.

Es ist grundsätzlich vorteilhaft, wenn die Fluidnebeneinlassöffnungen an mehreren axialen Positionen der Strahldüse angeordnet sind. Bei den Fluidnebeneinlassöffnungen, die an verschiedenen axialen Positionen angeordnet sein können, kann es sich insbesondere um Lufteinlassöffnungen handeln. Zudem können Fluidnebeneinlassöffnungen an mehreren Positionen entlang des Umfanges der Strahldüse angeordnet sein. In diesem Fall ist es vorteilhaft, wenn Fluidnebeneinlassöffnungen an mehreren in axialer Richtung zueinander versetzt angeordneten Positionen entlang des Umfanges der Strahldüse angeordnet sind. Dies bewirkt, dass die Strömung in der Strahldüse nicht immer an der gleichen Umfangsposition geschwächt wird.It is fundamentally advantageous if the secondary fluid inlet openings are arranged at a plurality of axial positions of the jet nozzle. The secondary fluid inlet openings, which may be arranged at different axial positions, may in particular be air inlet openings. In addition, fluid sub-inlet openings may be disposed at a plurality of positions along the circumference of the jet nozzle. In this case, it is advantageous if secondary fluid inlet openings are arranged at a plurality of positions offset in the axial direction from each other along the circumference of the jet nozzle. This causes the flow in the jet nozzle is not always weakened at the same circumferential position.

Vorzugsweise kann die Fluidhaupteinlassöffnung mit einer Luftzuleitung verbunden sein und ein Teil der Fluidnebeneinlassöffnungen mit einer Brennstoffzuleitung verbunden sein. Insbesondere kann ein erster Teil der Fluidnebeneinlassöffnungen mit einer Brennstoffzuleitung verbunden sein und ein zweiter Teil der Fluidnebeneinlassöffnungen mit einer Luftzuleitung verbunden sein.Preferably, the main fluid inlet port may be connected to an air supply line and a part of the fluid sub-inlet ports may be connected to a fuel supply line. In particular, a first part of the fluid sub-inlet openings can be connected to a fuel feed line and a second part of the fluid sub-inlet openings can be connected to an air feed line.

Weiterhin können die Fluidnebeneinlassöffnungen und die Fluidhaupteinlassöffnung jeweils eine Mittelachse aufweisen. Dabei können die Mittelachsen der Fluidnebeneinlassöffnungen einen Winkel zwischen 0° und 90° zu der Mittelachse der Fluidhaupteinlassöffnung und/oder zu der Mittelachse der Strahldüse aufweisen. Vorteilhafterweise können die Mittelachsen eines ersten Teiles der Fluidnebeneinlassöffnungen einen Winkel von 90° zu der Mittelachse der Fluidhaupteinlassöffnung und/oder zu der Mittelachse der Strahldüse aufweisen und die Mittelachsen eines zweites Teiles der Fluidnebeneinlassöffnungen einen Winkel von 45° zu der Mittelachse der Fluidhaupteinlassöffnung und/oder zu der Mittelachse der Strahldüse aufweisen. Der Vorteil der Strahl-in-Querströmungseindüsung ist ein Beitrag zu einer erhöhten Mischung des Luft-Brennstoff-Gemisches, während eine Wandfilmbildung vor allem eine Maßnahme gegen Flammenrückschlag ist.Furthermore, the fluid sub-inlet openings and the main fluid inlet opening can each have a central axis. In this case, the center axes of the fluid sub-inlet openings may have an angle between 0 ° and 90 ° to the central axis of the main fluid inlet opening and / or to the center axis of the jet nozzle. Advantageously, the center axes of a first part of the fluid sub-inlet ports may be at an angle of 90 ° to the central axis of the main fluid inlet port and / or to the central axis of the jet nozzle and the center axes of a second part of the fluid secondary inlet openings are at an angle of 45 ° to the central axis of the main fluid inlet opening and / or to the central axis of the jet nozzle. The advantage of jet-in-cross-flow injection is a contribution to increased mixing of the air-fuel mixture, while wall-film formation is primarily a flash back-off measure.

Die Fluidnebeneinlassöffnungen und die Fluidhaupteinlassöffnung können jeweils eine Mittelachse aufweisen und die Mittelachsen der Fluidnebeneinlassöffnungen können einen Winkel zwischen 0° und 90° zu einer radialen Richtung in Bezug auf die Mittelachse der Fluidhaupteinlassöffnung aufweisen. Dadurch kann tangential entlang des Umfanges der Strahldüse eingedüst und auf diese Weise ein Wandfilm an der inneren Oberfläche der Strahldüse erzeugt werden. Ein Eindüsen entlang des Umfanges der Strahldüse kann auch zur Erzeugung von Wirbeln in der Strahldüse genutzt werden.The fluid sub-inlet openings and the main fluid inlet opening may each have a central axis, and the center axes of the fluid sub-inlet openings may have an angle between 0 ° and 90 ° to a radial direction with respect to the center axis of the main fluid inlet opening. This can be injected tangentially along the circumference of the jet nozzle and in this way a wall film can be produced on the inner surface of the jet nozzle. An injection along the circumference of the jet nozzle can also be used to generate vortices in the jet nozzle.

Mehrere mit Fluidnebeneinlassöffnungen verbundene Fluidzuleitungen können über einen entlang des Umfanges der Strahldüse angeordneten Ringverteiler mit einander verbunden sein.A plurality of fluid supply lines connected to fluid side inlet openings may be connected to one another via a ring distributor arranged along the circumference of the jet nozzle.

Zudem kann eine Brennstoffdüse in der Fluidhaupteinlassöffnung oder unmittelbar vor der Fluidhaupteinlassöffnung angeordnet sein. Die Brennstoffdüse kann einen Brennstoffverteiler umfassen, der in oder unmittelbar vor der Fluidhaupteinlassöffnung angeordnet ist.In addition, a fuel nozzle can be arranged in the main fluid inlet opening or directly in front of the main fluid inlet opening. The fuel nozzle may include a fuel distributor disposed in or immediately in front of the main fluid inlet port.

Mindestens eine Fluidnebeneinlassöffnung kann als entlang des Umfanges der Strahldüse verlaufender Ringspalt ausgestaltet sein. In diesem Fall kann der erfindungsgemäße Brenner mehrere Strahldüsen umfassen, wobei die Ringspalte der verschiedenen Strahldüsen an jeweils unterschiedlichen axialen Positionen angeordnet sind. Durch die Variation der axialen Positionen der Ringspalte wird ein zusätzlicher Designparameter gegen thermoakustische Flammenschwingungen gewonnen.At least one secondary fluid inlet opening may be designed as an annular gap extending along the circumference of the jet nozzle. In this case, the burner according to the invention may comprise a plurality of jet nozzles, wherein the annular gaps of the various jet nozzles are arranged at respectively different axial positions. By varying the axial positions of the annular gaps, an additional design parameter against thermoacoustic flame oscillations is obtained.

Der erfindungsgemäße Brenner kann mehrere, beispielsweise ringförmig in Bezug auf die Mittelachse des Brenners angeordnete, Strahldüsen umfassen. Er kann einen weiterhin einen oder mehrere Pilotbrenner umfassen.The burner according to the invention may comprise a plurality of, for example, annularly arranged with respect to the central axis of the burner, jet nozzles. It may further include one or more pilot burners.

Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung werden im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren näher beschrieben.

Fig. 1
zeigt schematisch einen Schnitt durch einen Strahlbrenner quer zu dessen Längsrichtung.
Fig. 2
zeigt schematisch einen Schnitt durch einen weiteren Strahlbrenner quer zu dessen Längsrichtung.
Fig. 3
zeigt schematisch einen Schnitt durch einen Teil eines Strahlbrenners in Längsrichtung.
Fig. 4
zeigt schematisch einen Schnitt durch einen Teil eines weiteren Strahlbrenners in Längsrichtung.
Fig. 5
zeigt schematisch einen Schnitt durch einen Teil eines alternativen Strahlbrenners in Längsrichtung.
Fig. 6
zeigt schematisch einen Schnitt in Längsrichtung durch einen weiteren Strahlbrenner.
Fig. 7
zeigt schematisch einen Schnitt durch einen Teil eines Strahlbrenners in Längsrichtung.
Fig. 8
zeigt schematisch einen Strahlbrenner in Längsrichtung, der einen Ringspalt aufweist.
Fig. 9
zeigt schematisch eine alternative Anordnung des Ringspaltes des in der Figur 8 gezeigten Strahlbrenners.
Further features, properties and advantages of the present invention will be described in more detail below with reference to exemplary embodiments with reference to the accompanying figures.
Fig. 1
schematically shows a section through a jet burner transversely to its longitudinal direction.
Fig. 2
schematically shows a section through another jet burner transversely to its longitudinal direction.
Fig. 3
schematically shows a section through a portion of a jet burner in the longitudinal direction.
Fig. 4
schematically shows a section through a part of another jet burner in the longitudinal direction.
Fig. 5
schematically shows a section through a portion of an alternative jet burner in the longitudinal direction.
Fig. 6
shows schematically a longitudinal section through another jet burner.
Fig. 7
schematically shows a section through a portion of a jet burner in the longitudinal direction.
Fig. 8
schematically shows a jet burner in the longitudinal direction, which has an annular gap.
Fig. 9
schematically shows an alternative arrangement of the annular gap of in the FIG. 8 shown jet burner.

Im Folgenden wird ein erstes Ausführungsbeispiel der Erfindung anhand der Figuren 1 bis 4 näher erläutert. Die Figur 1 zeigt schematisch einen Schnitt durch einen Strahlbrenner 1 senkrecht zu einer Mittelachse 4 des Brenners 1. Der Brenner 1 umfasst ein Gehäuse 6, welches einen kreisförmigen Querschnitt aufweist. Innerhalb des Gehäuses 6 ist eine bestimmte Anzahl an Strahldüsen 2 im Wesentlichen ringförmig angeordnet. Jede Strahldüse 2 weist dabei einen kreisförmigen Querschnitt auf. Außerdem kann der Brenner 1 einen Pilotbrenner umfassen.In the following, a first embodiment of the invention will be described with reference to FIG FIGS. 1 to 4 explained in more detail. The FIG. 1 schematically shows a section through a jet burner 1 perpendicular to a central axis 4 of the burner 1. The burner 1 comprises a housing 6 which has a circular cross-section. Within the housing 6 a certain number of jet nozzles 2 is arranged substantially annular. Each jet nozzle 2 has a circular cross section. In addition, the burner 1 may comprise a pilot burner.

Die Figur 2 zeigt schematisch einen Schnitt durch einen Strahlbrenner 101, wobei der Schnitt senkrecht zur Mittelachse des Brenners 101 verläuft. Der Brenner 101 weist ebenfalls ein Gehäuse 6 auf, welches einen kreisförmigen Querschnitt besitzt und in welchem eine Anzahl innerer und äußerer Strahldüsen 2, 3 angeordnet ist. Die Strahldüsen 2, 3 weisen jeweils einen kreisförmigen Querschnitt auf, wobei die äußeren Strahldüsen 2 eine gleich große oder größere Querschnittsfläche besitzen als die inneren Strahldüsen 3. Die äußeren Strahldüsen 2 sind im Wesentlichen ringförmig innerhalb des Gehäuses 6 angeordnet und bilden einen äußeren Ring. Die inneren Strahldüsen 3 sind ebenfalls innerhalb des Gehäuses 6 ringförmig angeordnet. Die inneren Strahldüsen 3 bilden einen inneren Ring, der konzentrisch zu dem äußeren Strahldüsenring angeordnet ist.The FIG. 2 schematically shows a section through a jet burner 101, wherein the section is perpendicular to the central axis of the burner 101. The burner 101 also has a housing 6, which has a circular cross section and in which a number of inner and outer jet nozzles 2, 3 is arranged. The jet nozzles 2, 3 each have a circular cross-section, wherein the outer jet nozzles 2 have an equal or larger cross-sectional area than the inner jet nozzles 3. The outer jet nozzles 2 are arranged substantially annularly within the housing 6 and form an outer ring. The inner jet nozzles 3 are also arranged annularly within the housing 6. The inner jet nozzles 3 form an inner ring, which is arranged concentrically to the outer jet nozzle ring.

Die Figuren 1 und 2 zeigen lediglich Beispiele für die Anordnung von Strahldüsen 2, 3 innerhalb eines Strahlbrenners 1, 101. Selbstverständlich sind alternative Anordnungen, ebenso wie die Verwendung einer anderen Anzahl an Strahldüsen 2, 3 möglich.The Figures 1 and 2 merely show examples of the arrangement of jet nozzles 2, 3 within a jet burner 1, 101. Of course, alternative arrangements, as well as the use of a different number of jet nozzles 2, 3 are possible.

Die Figur 3 zeigt schematisch einen Schnitt durch einen Teil eines erfindungsgemäßen Strahlbrenners 1 in Längsrichtung, also entlang der Mittelachse 4 des Brenners 1. Der Brenner 1 weist mindestens eine in einem Gehäuse 6 angeordnete Strahldüse 2 auf. Die Mittelachse der Strahldüse 2 ist durch die Bezugsziffer 5 gekennzeichnet. Die Strahldüse 2 umfasst eine Fluidhaupteinlassöffnung 8 und eine Fluidauslassöffnung 9. An die Fluidauslassöffnung 9 schließt sich die Brennkammer 18 an. Zudem ist die Strahldüse 2 so in dem Gehäuse 6 angeordnet, dass die Fluidhaupteinlassöffnung 8 der Rückwand 24 des Brenners 1 zugewandt ist. Das Gehäuse 6 umfasst weiterhin einen radial in Bezug auf die Mittelachse 4 des Brenners 1 äußeren Gehäuseteil 27.The FIG. 3 schematically shows a section through a portion of a jet burner 1 according to the invention in the longitudinal direction, ie along the central axis 4 of the burner 1. The burner 1 has at least one arranged in a housing 6 jet nozzle 2 on. The central axis of the jet nozzle 2 is indicated by the reference numeral 5. The jet nozzle 2 comprises a main fluid inlet opening 8 and a fluid outlet opening 9. The combustion chamber 18 adjoins the fluid outlet opening 9. In addition, the jet nozzle 2 is arranged in the housing 6 such that the main fluid inlet opening 8 faces the rear wall 24 of the burner 1. The housing 6 further comprises a radially outer housing part 27 with respect to the central axis 4 of the burner 1.

Die Strahldüse 2 ist strömungstechnisch mit einem Kompressor verbunden. Die von dem Kompressor kommende Druckluft wird über einen Ringspalt 22 zur Fluidhaupteinlassöffnung 8 geleitet und/oder über eine Lufteinlassöffnung 23 radial in Bezug auf die Mittelachse 5 der Strahldüse 2 zur Fluidhaupteinlassöffnung 8 geleitet. In dem Fall, dass die Druckluft durch den Ringspalt 22 der Strahldüse 2 zugeführt wird, strömt die komprimierte Luft durch den Ringspalt 22 in Richtung des mit der Bezugsziffer 15 gekennzeichneten Pfeils, also parallel zur Mittelachse 5 der Strahldüse 2. Die in Richtung des Pfeils 15 strömende Luft wird dann an der Rückwand 24 des Brenners 1 um 180° umgelenkt und strömt anschließend durch die Fluidhaupteinlassöffnung 8 in die Strahldüse 2. Die Strömungsrichtung der Luft innerhalb der Strahldüse 2 ist durch einen Pfeil 10 gekennzeichnet.The jet nozzle 2 is fluidically connected to a compressor. The compressed air coming from the compressor is conducted via an annular gap 22 to the main fluid inlet opening 8 and / or directed via an air inlet opening 23 radially with respect to the central axis 5 of the jet nozzle 2 to the main fluid inlet opening 8. In the event that the compressed air is supplied through the annular gap 22 of the jet nozzle 2, the compressed air flows through the annular gap 22 in the direction of the arrow indicated by the reference numeral 15, ie parallel to the central axis 5 of the jet nozzle 2. The in the direction of arrow 15th flowing air is then deflected at the rear wall 24 of the burner 1 by 180 ° and then flows through the main fluid inlet 8 into the jet nozzle 2. The flow direction of the air within the jet nozzle 2 is indicated by an arrow 10.

Zusätzlich oder alternativ zu einer Zufuhr der Druckluft durch den Ringspalt 22 kann die von dem Kompressor kommende Druckluft auch durch eine Öffnung 23, die in dem Gehäuse 6 des Brenners 1 radial in Bezug auf die Mittelachse 5 der Strahldüse 2 angeordnet ist, zugeleitet werden. Die Strömungsrichtung der durch die Öffnung 23 strömenden Druckluft ist durch einen Pfeil 26 gekennzeichnet. In diesem Fall wird die Druckluft anschließend um 90° umgelenkt und strömt dann durch die Fluidhaupteinlassöffnung 8 in die Strahldüse 2.Additionally or alternatively to a supply of compressed air through the annular gap 22, the compressed air coming from the compressor can also be supplied through an opening 23 which is arranged in the housing 6 of the burner 1 radially with respect to the central axis 5 of the jet nozzle 2. The flow direction of the compressed air flowing through the opening 23 is indicated by an arrow 26. In this case, the compressed air is then deflected by 90 ° and then flows through the main fluid inlet 8 into the jet nozzle. 2

Der erfindungsgemäße Brenner 1 kann grundsätzlich auch ohne den äußeren Gehäuseteil 27 beziehungsweise ohne äußeres Gehäuse 27 ausgestaltet sein. In diesem Fall kann die Druckluft direkt in das "Plenum", also den Bereich zwischen der Rückwand 24 und der Fluidhaupteinlassöffnung 8, strömen. Der erfindungsgemäße Brenner 1 kann weiterhin auch ohne die Rückwand 24 ausgestaltet sein.The burner 1 according to the invention can in principle also without the outer housing part 27 or without an outer housing 27 be configured. In this case, the compressed air can flow directly into the "plenum", ie the area between the rear wall 24 and the main fluid inlet opening 8. The burner 1 according to the invention can furthermore be designed without the rear wall 24.

Die Strahldüse 2 ist radial von einem Ringverteiler 7 umgeben, der über eine Brennstoffzuleitung 13 mit Brennstoff 12 versorgt wird. Der Ringverteiler 7 weist eine Anzahl an Fluidnebeneinlassöffnungen 14 auf, durch welche Brennstoff in den durch die Strahldüse 2 strömenden Luftmassenstrom eingedüst werden kann. Die Strömungsrichtung des durch die Fluidnebeneinlassöffnungen 14 in die Strahldüse 2 eingedüsten Brennstoffes 12 ist durch Pfeile 17 gekennzeichnet. Die Strömungsrichtung 17 des eingedüsten Brennstoffes 12 verläuft dabei senkrecht zur Mittelachse 5 der Strahldüse 2 und damit auch senkrecht zur Hauptströmungsrichtung 10 der durch die Strahldüse 2 strömenden Druckluft 11.The jet nozzle 2 is surrounded radially by a ring distributor 7, which is supplied with fuel 12 via a fuel feed line 13. The annular distributor 7 has a number of fluid secondary inlet openings 14, through which fuel can be injected into the air mass flow flowing through the jet nozzle 2. The direction of flow of the fuel 12 injected into the jet nozzle 2 through the fluid sub-inlet openings 14 is indicated by arrows 17. The flow direction 17 of the injected fuel 12 extends perpendicular to the central axis 5 of the jet nozzle 2 and thus also perpendicular to the main flow direction 10 of the compressed air 11 flowing through the jet nozzle 2.

In der Figur 3 sind an drei verschiedenen axialen Positionen Fluidnebeneinlassöffnungen 14 angeordnet, wobei an jeder axialen Position jeweils zwei Fluidnebeneinlassöffnungen 14 einander gegenüberliegend angeordnet sind. Vorteilhafterweise sind eine Anzahl an Fluidnebeneinlassöffnungen 14 entlang des Umfanges der Strahldüse 2 angeordnet. Diese können insbesondere auch axial versetzt zueinander angeordnet sein. Grundsätzlich können Fluidnebeneinlassöffnungen 14 an lediglich einer oder an noch weiteren axialen Positionen entlang des Umfanges der Strahldüse 2 angeordnet sein.In the FIG. 3 Fluid side inlet openings 14 are arranged at three different axial positions, wherein at each axial position in each case two fluid side inlet openings 14 are arranged opposite to each other. Advantageously, a number of fluid sub-inlet openings 14 are arranged along the circumference of the jet nozzle 2. These can in particular also be arranged axially offset from one another. In principle, secondary fluid inlet openings 14 may be arranged at only one or at further axial positions along the circumference of the jet nozzle 2.

Im Inneren der Strahldüse 2 bildet sich durch das Eindüsen des Brennstoffes 12 in die durch die Strahldüse 2 strömende Druckluft 11 ein Brennstoff-Luft-Gemisch aus, welches die Strahldüse 2 durch die Fluidauslassöffnung 9 in Richtung der Brennkammer 18 verlässt.By injecting the fuel 12 into the compressed air 11 flowing through the jet nozzle 2, a fuel-air mixture, which leaves the jet nozzle 2 through the fluid outlet opening 9 in the direction of the combustion chamber 18, forms inside the jet nozzle 2.

Die Figur 4 zeigt schematisch einen Schnitt durch einen Brenner 201, der eine Weiterentwicklung des in der Figur 3 gezeigten Brenners 1 darstellt. Die von einem Kompressor kommende Druckluft 11 kann der Strahldüse 2 wiederum entweder über einen Ringspalt 22 zugeführt werden oder, wie in der Figur 3 gezeigt ist, über eine Lufteinlassöffnung senkrecht zur Mittelachse 5 der Strahldüse eingedüst werden. Vorzugsweise wird in dieser Ausführungsvariante die Druckluft 11 über einen Ringspalt 22 der Strahldüse 2 zugeführt. Das Eindüsen senkrecht zur Mittelachse 5 ist daher lediglich durch einen gestrichelten Pfeil 26 angedeutet.The FIG. 4 schematically shows a section through a burner 201, a further development of in the FIG. 3 shown Burner 1 represents. The compressed air 11 coming from a compressor can in turn be supplied to the jet nozzle 2 either via an annular gap 22 or, as in FIG FIG. 3 is shown, are injected via an air inlet opening perpendicular to the central axis 5 of the jet nozzle. Preferably, in this embodiment, the compressed air 11 is supplied via an annular gap 22 of the jet nozzle 2. The injection perpendicular to the central axis 5 is therefore indicated only by a dashed arrow 26.

Zusätzlich zu den im Zusammenhang mit der Figur 3 bereits beschriebenen Merkmalen weist der in der Figur 4 gezeigte Brenner 201 neben den Fluidnebeneinlassöffnungen 14, durch die Brennstoff in die Strahldüse 2 eingedüst wird, weitere Fluidnebeneinlassöffnungen 25 auf, durch die zusätzliche Druckluft in der durch Pfeile 16 gekennzeichneten Strömungsrichtung in die Strahldüse 2 eingedüst wird. Diese zusätzlichen Fluidnebeneinlassöffnungen 25 sind mit dem Ringspalt 22 verbunden. Das bedeutet, dass ein Teil der vom Kompressor kommenden Druckluft 11 durch den Ringspalt 22 zur Rückwand 24 des Brenners geleitet wird, dort um 180° umgelenkt wird und anschließend durch die Fluidhaupteinlassöffnung 8 in die Strahldüse 2 gelangt. Dieser Luftmassenstrom durchströmt die Strahldüse 2 in Richtung der durch einen Pfeil 10 gekennzeichneten Richtung. Ein anderer Teil der vom Kompressor kommenden Druckluft wird von dem Ringspalt 22 durch die Fluidnebeneinlassöffnungen 25 in Richtung der durch die Pfeile 16 gekennzeichneten Strömungsrichtung in die Strahldüse 2 eingedüst. Die Fluidnebeneinlassöffnungen 25 können dabei an verschiedenen axialen Positionen der Strahldüse 2 angeordnet sein. In der Figur 4 sind die Fluidnebeneinlassöffnungen 25, durch welche Druckluft in die Strahldüse 2 eingedüst wird, so angeordnet, dass jeweils in Strömungsrichtung 10 stromabwärts hinter einer Fluidnebeneinlassöffnung 14, durch die Brennstoff 12 in die Strahldüse 2 eingedüst wird, eine Fluidnebeneinlassöffnung 25 angeordnet ist. Beliebige andere Anordnungen sind selbstverständlich möglich. Es ist allerdings vorteilhaft, wenn die Fluidnebeneinlassöffnungen 25 entlang des Umfanges der Strahldüse 2 radial versetzt angeordnet sind. Auf diese Weise wird die Strömung nicht immer an der gleichen Umfangsposition geschwächt.In addition to those related to the FIG. 3 already described features in the FIG. 4 shown burner 201 in addition to the fluid sub-inlet openings 14, is injected through the fuel in the jet nozzle 2, further fluid side inlet openings 25, is injected through the additional compressed air in the flow direction indicated by arrows 16 in the jet nozzle 2. These additional fluid sub-inlet openings 25 are connected to the annular gap 22. This means that part of the compressed air coming from the compressor 11 is passed through the annular gap 22 to the rear wall 24 of the burner, where it is deflected by 180 ° and then passes through the main fluid inlet opening 8 into the jet nozzle 2. This air mass flow flows through the jet nozzle 2 in the direction indicated by an arrow 10 direction. Another part of the compressed air coming from the compressor is injected from the annular gap 22 through the fluid sub-inlet openings 25 in the direction of the flow direction indicated by the arrows 16 in the jet nozzle 2. The fluid sub-inlet openings 25 can be arranged at different axial positions of the jet nozzle 2. In the FIG. 4 the fluid secondary inlet openings 25, through which compressed air is injected into the jet nozzle 2, are arranged such that a fluid secondary inlet opening 25 is arranged downstream of a fluid secondary inlet opening 14 through which fuel 12 is injected into the jet nozzle 2 in the flow direction 10 downstream. Any other arrangements are of course possible. However, it is advantageous if the fluid secondary inlet openings 25 along the circumference of the Blasting nozzle 2 are arranged offset radially. In this way, the flow is not always weakened at the same circumferential position.

In der Figur 4 sind die Fluidnebeneinlassöffnungen 14 und 25 so angeordnet, dass der Brennstoff 12 durch die Fluidnebeneinlassöffnungen 14 senkrecht zur Strömungsrichtung 10 der durch die Fluidhaupteinlassöffnung 8 in die Strahldüse 2 strömenden Druckluft 11 eingedüst wird. Weitere Druckluft wird durch die Fluidnebeneinlassöffnungen 25 in einem Winkel von etwa 45° zur Hauptströmungsrichtung 10 in die Strahldüse 2 eingedüst. Sowohl der Brennstoff 12 als auch die zusätzliche Druckluft können in einem beliebigen anderen Winkel zwischen 0° und 90° zur Hauptströmungsrichtung 10 an verschiedenen axialen Positionen in die Strahldüse 2 eingedüst werden. Da beispielsweise für Erdgas die Brennstoffmassenströme deutlich geringer sind als die Luftmassenströme, ist auch im Falle einer senkrechten Brennstoffeindüsung nicht mit einer signifikanten Erhöhung des Druckverlustes zu rechnen. Der Brennstoff 12 kann auch entgegen der Luftströmungsrichtung 10 eingedüst werden.In the FIG. 4 the fluid side inlet openings 14 and 25 are arranged such that the fuel 12 is injected through the fluid secondary inlet openings 14 perpendicular to the flow direction 10 of the compressed air 11 flowing through the main fluid inlet opening 8 into the jet nozzle 2. Further compressed air is injected through the fluid sub-inlet openings 25 at an angle of about 45 ° to the main flow direction 10 in the jet nozzle 2. Both the fuel 12 and the additional compressed air can be injected at any other angle between 0 ° and 90 ° to the main flow direction 10 at different axial positions in the jet nozzle 2. Since, for example, for natural gas, the fuel mass flows are significantly lower than the air mass flows, no significant increase in the pressure loss is to be expected even in the case of a vertical fuel injection. The fuel 12 can also be injected counter to the air flow direction 10.

Grundsätzlich kann der Brennstoff über ein oder mehrere Brennstoffzuleitungen 13 zugeführt und über einen Ringverteiler 7 zu den einzelnen Strahldüsen 2 transportiert werden. Im Falle des Vorliegens mehrerer Brennstoffzuleitungen 13 können diese vorteilhafterweise entlang des Umfanges des Brenners angeordnet werden. Es ist weiterhin vorteilhaft, wenn die Eindüsung des Brennstoffes in den Luftstrahl an mehr als einer axialen Position des Strahlrohres 2 vollzogen wird. Zudem kann für eine bessere Durchmischung an mehreren Umfangspositionen des Strahlrohres 2 eingedüst werden.In principle, the fuel can be supplied via one or more fuel supply lines 13 and transported via a ring distributor 7 to the individual jet nozzles 2. In the case of the presence of a plurality of fuel supply lines 13, these can advantageously be arranged along the circumference of the burner. It is also advantageous if the injection of the fuel into the air jet at more than one axial position of the jet pipe 2 is completed. In addition, for a better mixing at several circumferential positions of the jet pipe 2 can be injected.

Im Folgenden wird ein zweites Ausführungsbeispiel anhand der Figuren 5 bis 7 näher beschrieben. Elemente, die Elementen entsprechen, die bereits im ersten Ausführungsbeispiel beschrieben wurden, sind mit denselben Bezugsziffern versehen und werden nicht erneut im Detail beschrieben.In the following, a second embodiment based on the FIGS. 5 to 7 described in more detail. Elements corresponding to elements already described in the first embodiment are given the same reference numerals and will not be described again in detail.

Die Figuren 5 bis 7 zeigen jeweils Schnitte durch einen Teil eines Brenners 301 entlang der Mittelachse 4 des Brenners 301. Der Brenner 301 weist mindestens eine, vorteilhafterweise jedoch mehrere, im Wesentlichen ringförmig um die Mittelachse 4 angeordnete Strahldüsen 2 auf. In Bezug auf mögliche Anordnungen der Strahldüsen 2, 3 wird auf die Figuren 1 und 2 und die in diesem Zusammenhang gemachten Ausführungen verwiesen.The FIGS. 5 to 7 each show sections through a portion of a burner 301 along the central axis 4 of the burner 301. The burner 301 has at least one, but advantageously a plurality, substantially annularly arranged around the central axis 4 jet nozzles 2. With respect to possible arrangements of the jet nozzles 2, 3 is on the Figures 1 and 2 and the remarks made in this connection.

Im Bereich der Fluidhaupteinlassöffnung 8 der Strahldüse 2 ist in den Figuren 5 bis 7 eine Brennstoffdüse 19 angeordnet. Durch die Brennstoffdüse 19 wird Brennstoff 12 in die Strahldüse 2 eingedüst. Vorzugsweise wird der Brennstoff 12 in einem Winkel von etwa 45° zur Strömungsrichtung 10 der durch die Fluidhaupteinlassöffnung 8 in die Strahldüse einströmende Druckluft 11 eingedüst. Die Strömungsrichtung des durch die Brennstoffdüse 19 eingedüsten Brennstoffes 12 ist durch Pfeile 17 gekennzeichnet. Der Brennstoff 12 kann ebenso in einem anderen Winkel zwischen 0° und 90° zur Strömungsrichtung 10 der Druckluft 11 in die Strahldüse 2 eingedüst werden.In the region of the fluid main inlet opening 8 of the jet nozzle 2 is in the FIGS. 5 to 7 a fuel nozzle 19 is arranged. Through the fuel nozzle 19, fuel 12 is injected into the jet nozzle 2. The fuel 12 is preferably injected at an angle of approximately 45 ° to the flow direction 10 of the compressed air 11 flowing into the jet nozzle through the main fluid inlet opening 8. The flow direction of the injected fuel nozzle 19 through the fuel 12 is indicated by arrows 17. The fuel 12 can also be injected at a different angle between 0 ° and 90 ° to the flow direction 10 of the compressed air 11 in the jet nozzle 2.

An verschiedenen axialen Positionen der Strahldüse 2 sind weitere Fluidnebeneinlassöffnungen 25 angeordnet, durch die Druckluft in die Strahldüse 2 eingedüst werden kann. Die Druckluft wird dabei über einen Ringspalt 22 zu den Fluidnebeneinlassöffnungen 25 geleitet. In den Figuren 5 und 6 wird die Druckluft durch die Fluidnebeneinlassöffnungen 25 senkrecht zur Mittelachse 5 der Strahldüse in die Strahldüse 2 eingedüst. Dabei strömt in der Figur 5 die von einem Kompressor kommende Druckluft in Richtung des Pfeils 15 durch den Ringspalt 22.At different axial positions of the jet nozzle 2 further fluid sub-inlet openings 25 are arranged, can be injected by the compressed air into the jet nozzle 2. The compressed air is passed through an annular gap 22 to the fluid sub-inlet openings 25. In the Figures 5 and 6 the compressed air is injected into the jet nozzle 2 through the fluid sub-inlet openings 25 perpendicular to the central axis 5 of the jet nozzle. It flows in the FIG. 5 Coming from a compressor compressed air in the direction of arrow 15 through the annular gap 22nd

In der Figur 6 wird die von einem Kompressor kommende Druckluft durch eine Lufteinlassöffnung 23 senkrecht zur Mittelachse 5 der Strahldüse 2 in den Brenner 301 eingedüst. Die Strömungsrichtung der die Öffnung 23 passierenden Druckluft 11 ist durch einen Pfeil 26 gekennzeichnet. Die Druckluft 11 strömt nun durch den Ringspalt 22 zu den Fluidnebeneinlassöffnungen 25 und gelangt über diese in die Strahldüse 2. Der Hauptanteil der Druckluft 11 wird jedoch durch die Fluidhaupteinlassöffnung 8 in Strömungsrichtung 10 in die Strahldüse 2 eingeleitet.In the FIG. 6 the compressed air coming from a compressor is injected through an air inlet opening 23 perpendicular to the central axis 5 of the jet nozzle 2 in the burner 301. The flow direction of the opening 23 passing compressed air 11 is indicated by an arrow 26. The compressed air 11 now flows through the annular gap 22 to the fluid sub-inlet openings 25 and passes through them into the jet nozzle 2. However, the majority of the compressed air 11 is introduced into the jet nozzle 2 through the main fluid inlet opening 8 in the flow direction 10.

Die Figur 7 zeigt eine alternative Ausgestaltung des in der Figur 5 gezeigten Brenners 301. Im Unterschied zu der Figur 5 sind in der Figur 7 die Fluidnebeneinlassöffnungen 25 so angeordnet, dass die durch die Fluidnebeneinlassöffnungen 25 in die Strahldüse 2 eingedüste Druckluft in einem Winkel von etwa 45° zur Mittelachse 5 des Strahlrohres 2 in dieses eingedüst wird. Grundsätzlich ist auch ein anderer Eindüswinkel zwischen 0° und 90° möglich und sinnvoll.The FIG. 7 shows an alternative embodiment of the in the FIG. 5 shown burner 301. In contrast to the FIG. 5 are in the FIG. 7 the fluid sub-inlet openings 25 are arranged so that the compressed air injected through the fluid sub-inlet openings 25 into the blasting nozzle 2 is injected into the blasting tube 2 at an angle of approximately 45 ° to the central axis 5 of the latter. Basically, another Eindüswinkel between 0 ° and 90 ° is possible and useful.

Die für die axial gestufte Lufteindüsung des vorliegenden Ausführungsbeispieles verwendete Luft kann entweder aus dem Ringspalt 22 oder direkt aus einem den Brenner 301 umgebenden Plenum entnommen werden und in das Brennstoff-Luft-Gemisch in der Strahldüse eingedüst werden. Die Luft kann dabei als Strahl in die Querströmung oder als Wandfilm eingebracht werden. Der Vorteil einer Strahl-in-Querströmungseindüsung ist ein Beitrag zu einer erhöhten Mischung des Brennstoff-LuftGemisches, während eine Wandfilmbildung vor allem eine Maßnahme gegen einen möglichen Flammenrückschlag ist. Weiterhin kann die Luft tangential in Bezug auf den Umfang der Strahldüse 2 in diese eingedüst werden. Dabei kann auf der kompletten inneren Oberfläche der Strahldüse 2 ein Wandfilm erzeugt werden. Ein tangentiales Eindüsen kann zudem zur Wirbelerzeugung in der Strahldüse 2 genutzt werden.The air used for the axially stepped Lufteindüsung of the present embodiment can be removed either from the annular gap 22 or directly from a surrounding the burner 301 plenum and are injected into the fuel-air mixture in the jet nozzle. The air can be introduced as a jet in the cross flow or as a wall film. The advantage of jet-in-cross-flow injection is a contribution to increased mixing of the fuel-air mixture, while wall-film formation is primarily a measure against potential flashback. Furthermore, the air can be injected tangentially with respect to the circumference of the jet nozzle 2 in this. In this case, a wall film can be produced on the entire inner surface of the jet nozzle 2. Tangential injection can also be used to generate turbulence in the jet nozzle 2.

Denkbar ist auch eine Strahl-in-Querströmungseindüsung mit einer Wandfilmeindüsung zu kombinieren, indem die Düsen sehr kurz hintereinander angeordnet sind. Die Strahl-in-Querströmungseindüsung sorgt für eine verbesserte Mischung, vor allem auch im Kernbereich des Strahls, und der Film der zweiten Düse stärkt die Strömungsgrenzschicht und verhindert somit einen Flammenrückschlag. Diese Ausgestaltung ist insbesondere vorteilhaft für eine zentrale Co-Flow-Eindüsung in der Hauptbrennstoffeindüsung, zum Beispiel für Synthesegas. Bei einem hohen Luftanteil in der axialen Stufung ist es möglich, die Düsendurchmesser der Strahldüse so anzupassen, dass die Strömungsgeschwindigkeit in der Düse im Wesentlichen gleich bleibt.It is also conceivable to combine a jet-in-cross-flow injection with a wall-film injection by arranging the nozzles very shortly one behind the other. The jet-in-cross flow injection provides for improved mixing, especially in the core region of the jet, and the film of the second jet strengthens the flow boundary layer and thus prevents a flashback. This embodiment is particularly advantageous for a central co-flow injection in the Hauptbrennstoffeindüsung, for example for synthesis gas. With a high proportion of air in the axial staging, it is possible to adjust the nozzle diameter of the jet nozzle so that the flow velocity in the nozzle remains substantially the same.

Im Folgenden wird ein drittes Ausführungsbeispiel anhand der Figuren 8 und 9 näher beschrieben. Elemente, die Elementen der ersten Ausführungsbeispiele entsprechen, sind mit denselben Bezugsziffern versehen und werden nicht erneut im Detail beschrieben.In the following, a third embodiment based on the FIGS. 8 and 9 described in more detail. Elements corresponding to elements of the first embodiments are given the same reference numerals and will not be described again in detail.

Die Figuren 8 und 9 zeigen schematisch verschiedene Varianten eines Brenners 401 in Längsrichtung entlang der Mittelachse 4 des Brenners 401. Der Brenner 401 weist eine Anzahl Strahldüsen 2 auf, die im Wesentlichen ringförmig um die Mittelachse 4 des Brenners 401 angeordnet sind. In Bezug auf mögliche Anordnungen der Strahldüsen 2, 3 wird auf die Figuren 1 und 2 und die in diesem Zusammenhang gemachten Ausführungen verwiesen.The FIGS. 8 and 9 schematically show various variants of a burner 401 longitudinally along the central axis 4 of the burner 401. The burner 401 has a number of jet nozzles 2, which are arranged substantially annularly around the central axis 4 of the burner 401. With respect to possible arrangements of the jet nozzles 2, 3 is on the Figures 1 and 2 and the remarks made in this connection.

Jede Strahldüse 2 umfasst eine Fluidhaupteinlassöffnung 8 und eine Fluidauslassöffnung 9. Die Fluidauslassöffnung 9 mündet in die Brennkammer 18. In der Fluidhaupteinlassöffnung 8 ist eine Brennstoffdüse 19 angeordnet. Die Brennstoffdüse 19 umfasst einen Brennstoffverteiler 20, mit dessen Hilfe an verschiedenen radialen Positionen und verschiedenen Umfangspositionen der Fluidhaupteinlassöffnung 8 Brennstoff 12 in die Strahldüse 2 eingedüst werden kann. Die Strömungsrichtung des eingedüsten Brennstoffes 12 ist durch Pfeile 17 gekennzeichnet.Each jet nozzle 2 comprises a main fluid inlet opening 8 and a fluid outlet opening 9. The fluid outlet opening 9 opens into the combustion chamber 18. A fuel nozzle 19 is arranged in the main fluid inlet opening 8. The fuel nozzle 19 comprises a fuel distributor 20 with the aid of which fuel 12 can be injected into the jet nozzle 2 at different radial positions and different circumferential positions of the main fluid inlet opening 8. The flow direction of the injected fuel 12 is indicated by arrows 17.

An einer weiteren stromabwärts in Bezug auf die Strömungsrichtungen 10 und 17 gelegenen axialen Position der Strahldüse 2 ist ein Ringspalt 21 angeordnet. Durch den Ringspalt 21 wird Luft in die Strahldüse 2 eingedüst. Die Strömungsrichtung der eingedüsten Luft ist durch Pfeile 16 gekennzeichnet. Die Luft wird dabei nahezu parallel zu der Mittelachse 5 der Strahldüse 2 in diese eingedüst. Im Unterschied zu der in der Figur 8 gezeigten Variante ist in der Figur 9 der Ringspalt 21 an einer stromabwärts von der Fluidhaupteinlassöffnung 8 weiter entfernt gelegenen Position angeordnet. In beiden in den Figuren 8 und 9 gezeigten Varianten kann die verwendete Druckluft von einem Kompressor entweder durch einen Ringspalt 22 in Strömungsrichtung 15 zur Fluidhaupteinlassöffnung 8 der Strahldüse 2 geleitet werden und/oder senkrecht zur Mittelachse 5 in Strömungsrichtung 26 eingedüst werden.At a further downstream with respect to the flow directions 10 and 17 located axial position of the jet nozzle 2, an annular gap 21 is arranged. Air is injected into the jet nozzle 2 through the annular gap 21. The flow direction the injected air is indicated by arrows 16. The air is injected almost parallel to the central axis 5 of the jet nozzle 2 in this. Unlike the one in the FIG. 8 shown variant is in the FIG. 9 the annular gap 21 is disposed at a position further downstream of the main fluid inlet port 8. In both in the FIGS. 8 and 9 The compressed air used can be passed from a compressor either through an annular gap 22 in the flow direction 15 to the main fluid inlet opening 8 of the jet nozzle 2 and / or injected perpendicular to the central axis 5 in the flow direction 26.

Die in den Figuren 8 und 9 gezeigten Ausführungsvarianten beinhalten die Möglichkeit, den stromabwärts in Bezug auf die Strömungsrichtung 15 der vom Kompressor kommenden Druckluft gelegenen Düsenteil, an dem auch die Brennstoffverteilung hängt, von der Rückwand 24 des Brenners aus in den Brenner 401 zu stecken und diesen durch den vorderen, brennkammerseitigen Teil zu positionieren, zum Beispiel durch Abstandhalter in dem Ringraum. Im Extremfall sitzt der stromabwärts gelegene Düsenteil direkt im Flammrohrboden.The in the FIGS. 8 and 9 embodiments shown include the possibility of the downstream with respect to the flow direction 15 of the compressed air coming from the compressor nozzle part, which also depends on the fuel distribution, stuck from the rear wall 24 of the burner in the burner 401 and this through the front, combustion chamber side part to position, for example by spacers in the annulus. In extreme cases, the downstream nozzle part sits directly in the bottom of the flame tube.

Der erfindungsgemäße Brenner 1, 101, 201, 301, 401 kann in allen Ausführungsbeispielen und Ausführungsvarianten auch ohne den äußeren Gehäuseteil 27 beziehungsweise ohne äußeres Gehäuse 27 ausgestaltet sein. In diesem Fall kann die Druckluft direkt in das "Plenum", also den Bereich zwischen der Rückwand 24 und der Fluidhaupteinlassöffnung 8, strömen. Der erfindungsgemäße Brenner 1, 101, 201, 301, 401 kann weiterhin auch ohne die Rückwand 24 ausgestaltet sein.The burner 1, 101, 201, 301, 401 according to the invention can be configured in all exemplary embodiments and variants without the outer housing part 27 or without the outer housing 27. In this case, the compressed air can flow directly into the "plenum", ie the area between the rear wall 24 and the main fluid inlet opening 8. The burner 1, 101, 201, 301, 401 according to the invention can furthermore be designed without the rear wall 24.

Durch eine Variation der axialen Positionen der Ringspalte 21 wird ein zusätzlicher Designparameter gegen thermoakustische Flammenschwingungen gewonnen. Außerdem besteht die Möglichkeit, die unterschiedlichen Strahldüsen 2 eines Brenners 401 mit Ringspalten 21 an unterschiedlichen axialen Positionen zu versehen.By varying the axial positions of the annular gaps 21, an additional design parameter against thermoacoustic flame oscillations is obtained. It is also possible to provide the different jet nozzles 2 of a burner 401 with annular gaps 21 at different axial positions.

Claims (23)

Verfahren zur Verringerung von selbstinduzierten Flammenschwingungen,
worin in einen ersten Fluidmassenstrom,
der eine Strahldüse (2, 3) von einer Fluideinlassöffnung (8) zu einer Fluidauslassöffnung (9) durchströmt,
an mindestens einer in Bezug auf die Fluideinlassöffnung (8) stromabwärts gelegenen axialen Position der Strahldüse (2, 3) ein zweiter Fluidmassenstrom eingedüst wird,
wobei einer der beiden Fluidmassenströme Luft (11) umfasst und der andere Fluidmassenstrom einen Brennstoff (12) umfasst.
Method for reducing self-induced flame vibrations,
wherein in a first fluid mass flow,
a jet nozzle (2, 3) flows from a fluid inlet opening (8) to a fluid outlet opening (9),
a second fluid mass flow is injected at at least one axial position of the jet nozzle (2, 3) downstream of the fluid inlet opening (8),
wherein one of the two fluid mass flows comprises air (11) and the other fluid mass flow comprises a fuel (12).
Verfahren nach Anspruch 1,
worin der zweite Fluidmassenstrom an mehreren Positionen des Umfanges der Strahldüse (2, 3) in den ersten Fluidmassenstrom eingedüst wird.
Method according to claim 1,
wherein the second fluid mass flow is injected into the first fluid mass flow at a plurality of positions of the circumference of the jet nozzle (2, 3).
Verfahren nach Anspruch 2,
worin der zweite Fluidmassenstrom an mehreren in axialer Richtung zueinander versetzt angeordneten Positionen des Umfanges der Strahldüse (2, 3) in den ersten Fluidmassenstrom eingedüst wird.
Method according to claim 2,
wherein the second fluid mass flow is injected into a plurality of axially offset positions of the circumference of the jet nozzle (2, 3) in the first fluid mass flow.
Verfahren nach einem der Ansprüche 1 bis 3,
worin der einen Brennstoff umfassende Fluidmassenstrom ein Luft-Brennstoff-Gemisch ist.
Method according to one of claims 1 to 3,
wherein the fluid mass flow comprising a fuel is an air-fuel mixture.
Verfahren nach einem der Ansprüche 1 bis 4,
worin der erste Fluidmassenstrom Luft (11) umfasst,
der zweite Fluidmassenstrom einen Brennstoff (12) umfasst und
zusätzlich ein dritter Fluidmassenstrom in den ersten Fluidmassenstrom eingedüst wird.
Method according to one of claims 1 to 4,
wherein the first fluid mass flow comprises air (11),
the second fluid mass flow comprises a fuel (12) and
in addition, a third fluid mass flow is injected into the first fluid mass flow.
Verfahren nach Anspruch 5,
worin der dritte Fluidmassenstrom Luft (11), Dampf, Stickstoff oder ein Brennstoff-Luft-Gemisch umfasst.
Method according to claim 5,
wherein the third fluid mass flow comprises air (11), steam, nitrogen or a fuel-air mixture.
Verfahren nach einem der Ansprüche 1 bis 6,
worin der zweite und/oder der dritte Fluidmassenstrom in einem Winkel zwischen 0° und 90° in den ersten Fluidmassenstrom eingedüst wird.
Method according to one of claims 1 to 6,
wherein the second and / or the third fluid mass flow is injected at an angle between 0 ° and 90 ° in the first fluid mass flow.
Verfahren nach Anspruch 7,
worin der zweite Fluidmassenstrom in einem Winkel von 90° in den ersten Fluidmassenstrom eingedüst wird und der dritte Fluidmassenstrom in einem Winkel von 45° in den ersten Fluidmassenstrom eingedüst wird.
Method according to claim 7,
wherein the second fluid mass flow is injected at an angle of 90 ° in the first fluid mass flow and the third fluid mass flow is injected at an angle of 45 ° in the first fluid mass flow.
Brenner (1, 101, 201, 301, 401),
der mindestens eine Strahldüse (2, 3) mit einer Fluidhaupteinlassöffnung (8) und einer Fluidauslassöffnung (9) umfasst,
wobei die Fluidhaupteinlassöffnung (8) mit einer Fluidzuleitung (22) verbunden ist,
dadurch gekennzeichnet, dass
an mindestens einer in Bezug auf die Fluidhaupteinlassöffnung (8) stromabwärts gelegenen axialen Position der Strahldüse (2, 3) mindestens eine Fluidnebeneinlassöffnung (14, 21, 25),
die mit einer Fluidzuleitung (7, 13, 22) verbunden ist, angeordnet ist.
Burner (1, 101, 201, 301, 401),
the at least one jet nozzle (2, 3) having a main fluid inlet opening (8) and a fluid outlet opening (9),
the fluid main inlet opening (8) being connected to a fluid supply line (22),
characterized in that
at least one fluid secondary inlet opening (14, 21, 25) at at least one axial axial position of the jet nozzle (2, 3) downstream of the main fluid inlet opening (8),
which is connected to a fluid supply line (7, 13, 22) is arranged.
Brenner (1, 101, 201, 301, 401) nach Anspruch 9,
dadurch gekennzeichnet, dass
die mit der Fluidhaupteinlassöffnung (8) verbundene Fluidzuleitung (22) als Brennstoffzuleitung, als Luftzuleitung oder als Brennstoff-Luft-Gemischzuleitung ausgestaltet ist.
Burner (1, 101, 201, 301, 401) according to claim 9,
characterized in that
the fluid supply line (22) connected to the fluid main inlet opening (8) is designed as a fuel supply line, as an air supply line or as a fuel-air mixture supply line.
Brenner (1, 101, 201, 301, 401) nach Anspruch 9 oder 10,
dadurch gekennzeichnet, dass
die mit mindestens einer Fluidnebeneinlassöffnung (14, 21, 25) verbundene Fluidzuleitung (7, 13, 22) als Brennstoffzuleitung, als Luftzuleitung, als Dampfzuleitung, als Stickstoffzuleitung oder als Brennstoff-Luft-Gemischzuleitung ausgestaltet ist.
Burner (1, 101, 201, 301, 401) according to claim 9 or 10,
characterized in that
the fluid supply line (7, 13, 22) connected to at least one secondary fluid inlet opening (14, 21, 25) is configured as a fuel feed line, as an air feed line, as a steam feed line, as a nitrogen feed line or as a fuel-air mixture feed line.
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 11,
dadurch gekennzeichnet, dass
Fluidnebeneinlassöffnungen (14, 21, 25) an mehreren Positionen entlang des Umfanges der Strahldüse (2, 3) angeordnet sind.
Burner (1, 101, 201, 301, 401) according to one of claims 9 to 11,
characterized in that
Fluid side inlet openings (14, 21, 25) at a plurality of positions along the circumference of the jet nozzle (2, 3) are arranged.
Brenner (1, 101, 201, 301, 401) nach Anspruch 12,
dadurch gekennzeichnet, dass
Fluidnebeneinlassöffnungen (14, 21, 25) an mehreren in axialer Richtung zueinander versetzt angeordneten Positionen entlang des Umfanges der Strahldüse (2, 3) angeordnet sind.
Burner (1, 101, 201, 301, 401) according to claim 12,
characterized in that
Fluid Nebeneinöffnungen openings (14, 21, 25) at a plurality of mutually axially offset positions along the circumference of the jet nozzle (2, 3) are arranged.
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 13,
dadurch gekennzeichnet, dass
die Fluidhaupteinlassöffnung (8) mit einer Luftzuleitung verbunden ist und ein Teil der Fluidnebeneinlassöffnungen (14, 21, 25) mit einer Brennstoffzuleitung (7, 13, 19) verbunden ist.
Burner (1, 101, 201, 301, 401) according to one of claims 9 to 13,
characterized in that
the fluid main inlet opening (8) is connected to an air supply line and a part of the fluid sub-inlet openings (14, 21, 25) is connected to a fuel supply line (7, 13, 19).
Brenner (1, 101, 201, 301, 401) nach Anspruch 14,
dadurch gekennzeichnet, dass
ein erster Teil der Fluidnebeneinlassöffnungen (14) mit einer Brennstoffzuleitung (7, 13, 19) verbunden ist und ein zweiter Teil der Fluidnebeneinlassöffnungen (25) mit einer Luftzuleitung (22) verbunden ist.
Burner (1, 101, 201, 301, 401) according to claim 14,
characterized in that
a first part of the fluid sub-inlet openings (14) is connected to a fuel supply line (7, 13, 19) and a second part of the fluid sub-inlet openings (25) is connected to an air supply line (22).
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 15,
dadurch gekennzeichnet, dass
die Fluidnebeneinlassöffnungen (14, 21, 25) und die Fluidhaupteinlassöffnung (8) jeweils eine Mittelachse aufweisen und die Mittelachsen der Fluidnebeneinlassöffnungen (14, 21, 25) einen Winkel zwischen 0° und 90° zu der Mittelachse der Fluidhaupteinlassöffnung (8) und/oder zu der Mittelachse (5) der Strahldüse (2, 3) aufweisen.
Burner (1, 101, 201, 301, 401) according to one of Claims 9 to 15, characterized
characterized in that
the fluid sub-inlet openings (14, 21, 25) and the main fluid inlet opening (8) each have a central axis and the central axes of the fluid sub-inlet openings (14, 21, 25) are at an angle between 0 ° and 90 ° to the central axis of the main fluid inlet opening (8) and / or to the central axis (5) of the jet nozzle (2, 3).
Brenner (1, 101, 201, 301, 401) nach Anspruch 16,
dadurch gekennzeichnet, dass
die Mittelachsen eines ersten Teiles der Fluidnebeneinlassöffnungen (14, 21, 25) einen Winkel von 90° zu der Mittelachse der Fluidhaupteinlassöffnung (8) und/oder zu der Mittelachse (5) der Strahldüse (2, 3) aufweisen und
die Mittelachsen eines zweiten Teiles der Fluidnebeneinlassöffnungen (14, 21, 25) einen Winkel von 45° zu der Mittelachse der Fluidhaupteinlassöffnung und/oder zu der Mittelachse (5) der Strahldüse (2, 3) aufweisen.
Burner (1, 101, 201, 301, 401) according to claim 16,
characterized in that
the center axes of a first part of the fluid sub-inlet openings (14, 21, 25) have an angle of 90 ° to the central axis of the main fluid inlet opening (8) and / or to the central axis (5) of the jet nozzle (2, 3) and
the center axes of a second part of the fluid secondary inlet openings (14, 21, 25) have an angle of 45 ° to the central axis of the main fluid inlet opening and / or to the central axis (5) of the jet nozzle (2, 3).
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 17,
dadurch gekennzeichnet, dass
die Fluidnebeneinlassöffnungen (14, 21, 25) und die Fluidhaupteinlassöffnung (8) jeweils eine Mittelachse aufweisen und die Mittelachsen der Fluidnebeneinlassöffnungen (14, 21, 25) einen Winkel zwischen 0° und 90° zu einer radialen Richtung in Bezug auf die Mittelachse der Fluidhaupteinlassöffnung (8) aufweisen.
Burner (1, 101, 201, 301, 401) according to one of claims 9 to 17,
characterized in that
the fluid sub-inlet openings (14, 21, 25) and the main fluid inlet opening (8) each have a central axis and the central axes of the fluid sub-inlet openings (14, 21, 25) are at an angle between 0 ° and 90 ° to a radial direction with respect to the central axis of the main fluid inlet opening (8).
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 18,
dadurch gekennzeichnet, dass
mehrere mit Fluidnebeneinlassöffnungen (14, 21, 25) verbundene Fluidzuleitungen (14, 25) über einen entlang des Umfanges der Strahldüse (2, 3) angeordneten Ringverteiler (7) miteinander verbunden sind.
Burner (1, 101, 201, 301, 401) according to one of claims 9 to 18,
characterized in that
a plurality of Fluideinbeneinlassöffnungen (14, 21, 25) connected fluid supply lines (14, 25) via a along the circumference of the jet nozzle (2, 3) arranged ring manifold (7) are interconnected.
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 19,
dadurch gekennzeichnet, dass
eine Brennstoffdüse (19) in oder unmittelbar vor der Fluidhaupteinlassöffnung (8) angeordnet ist.
Burner (1, 101, 201, 301, 401) according to one of claims 9 to 19,
characterized in that
a fuel nozzle (19) is disposed in or immediately in front of the main fluid inlet port (8).
Brenner (1, 101, 201, 301, 401) nach Anspruch 20,
dadurch gekennzeichnet, dass
die Brennstoffdüse (19) einen Brennstoffverteiler (20) umfasst, der in oder unmittelbar vor der Fluidhaupteinlassöffnung (8) angeordnet ist.
Burner (1, 101, 201, 301, 401) according to claim 20,
characterized in that
the fuel nozzle (19) comprises a fuel distributor (20) which is arranged in or immediately before the fluid main inlet opening (8).
Brenner (1, 101, 201, 301, 401) nach einem der Ansprüche 9 bis 21,
dadurch gekennzeichnet, dass
mindestens eine Fluidnebeneinlassöffnung (14, 21, 25) als entlang des Umfanges der Strahldüse (2, 3) verlaufender Ringspalt (21) ausgestaltet ist.
Burner (1, 101, 201, 301, 401) according to one of claims 9 to 21,
characterized in that
at least one secondary fluid inlet opening (14, 21, 25) is designed as an annular gap (21) extending along the circumference of the jet nozzle (2, 3).
Brenner (1, 101, 201, 301, 401) nach Anspruch 22,
dadurch gekennzeichnet, dass
der Brenner (1, 101, 201, 301, 401) als Strahlbrenner ausgebildet ist und mehrere Strahldüsen (2, 3) umfasst und
die Ringspalte (21) der verschiedenen Strahldüsen (2, 3) an jeweils unterschiedlichen axialen Positionen angeordnet sind.
Burner (1, 101, 201, 301, 401) according to claim 22,
characterized in that
the burner (1, 101, 201, 301, 401) is designed as a jet burner and comprises a plurality of jet nozzles (2, 3) and
the annular gaps (21) of the various jet nozzles (2, 3) are arranged at respectively different axial positions.
EP08000497A 2008-01-11 2008-01-11 Burner and method for reducing self-induced flame oscillations Withdrawn EP2078898A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08000497A EP2078898A1 (en) 2008-01-11 2008-01-11 Burner and method for reducing self-induced flame oscillations
EP08749689.9A EP2232147B1 (en) 2008-01-11 2008-04-24 Burner and method for reducing self-induced flame oscillations
US12/812,301 US20100323309A1 (en) 2008-01-11 2008-04-24 Burner and Method for Reducing Self-Induced Flame Oscillations
PCT/EP2008/054969 WO2009086943A1 (en) 2008-01-11 2008-04-24 Burner and method for reducing self-induced flame oscillations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08000497A EP2078898A1 (en) 2008-01-11 2008-01-11 Burner and method for reducing self-induced flame oscillations

Publications (1)

Publication Number Publication Date
EP2078898A1 true EP2078898A1 (en) 2009-07-15

Family

ID=39420374

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08000497A Withdrawn EP2078898A1 (en) 2008-01-11 2008-01-11 Burner and method for reducing self-induced flame oscillations
EP08749689.9A Active EP2232147B1 (en) 2008-01-11 2008-04-24 Burner and method for reducing self-induced flame oscillations

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08749689.9A Active EP2232147B1 (en) 2008-01-11 2008-04-24 Burner and method for reducing self-induced flame oscillations

Country Status (3)

Country Link
US (1) US20100323309A1 (en)
EP (2) EP2078898A1 (en)
WO (1) WO2009086943A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216599A2 (en) * 2009-02-04 2010-08-11 General Electric Company Premixed direct injection nozzle
EP2236932A1 (en) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Burner and method for operating a burner, in particular for a gas turbine
EP2282122A1 (en) * 2009-08-03 2011-02-09 Siemens Aktiengesellschaft Stabilising the flame of a pre-mix burner
EP2587158A1 (en) * 2011-10-31 2013-05-01 Siemens Aktiengesellschaft Combustion chamber for a gas turbine and burner assembly
US20150159877A1 (en) * 2013-12-06 2015-06-11 General Electric Company Late lean injection manifold mixing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534781B2 (en) * 2012-05-10 2017-01-03 General Electric Company System and method having multi-tube fuel nozzle with differential flow
US9803555B2 (en) * 2014-04-23 2017-10-31 General Electric Company Fuel delivery system with moveably attached fuel tube
DE102015003920A1 (en) * 2014-09-25 2016-03-31 Dürr Systems GmbH Burner head of a burner and gas turbine with such a burner
JP7379265B2 (en) * 2020-04-22 2023-11-14 三菱重工業株式会社 Burner assembly, gas turbine combustor and gas turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2350227A1 (en) * 1973-10-05 1975-04-17 Handschack & Co Heinz Burner gas mixing nozzle - has end rings for adjusting gas and air flows, slidable relative to double-walled cylinder
DE2856399A1 (en) * 1978-01-04 1979-07-12 Secr Defence Brit FUEL-AIR MIXING DEVICE
US5339635A (en) * 1987-09-04 1994-08-23 Hitachi, Ltd. Gas turbine combustor of the completely premixed combustion type
EP1172610A1 (en) * 2000-07-13 2002-01-16 Mitsubishi Heavy Industries, Ltd. Fuel nozzle for premix turbine combustor
US20040231586A1 (en) * 2001-09-19 2004-11-25 Jacques Dugue Method and device for mixing two reactant gases
WO2006069861A1 (en) * 2004-12-23 2006-07-06 Alstom Technology Ltd Premix burner comprising a mixing section

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123285A (en) * 1964-03-03 Diffuser with boundary layer control
US1826776A (en) * 1928-07-20 1931-10-13 Charles O Gunther Liquid fuel burner and method of atomizing liquids
US2424654A (en) * 1944-06-03 1947-07-29 Lindberg Eng Co Fluid mixing device
US3070317A (en) * 1958-05-21 1962-12-25 Hunter Variable rate multiple fuel nozzle
US2974090A (en) * 1959-11-24 1961-03-07 Allied Chem High velocity combustion-jet motivater coke oven battery
NL154819B (en) * 1967-05-10 1977-10-17 Shell Int Research DEVICE FOR APPLYING A LOW VISCOSITY LAYER OF LIQUID BETWEEN A FLOW OF HIGH VISCOSITY LIQUID AND THE WALL OF A PIPELINE.
US3705492A (en) * 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
US3986347A (en) * 1973-12-06 1976-10-19 Phillips Petroleum Company Combustor process for low-level NOx and CO emissions
US4255927A (en) * 1978-06-29 1981-03-17 General Electric Company Combustion control system
US4474477A (en) * 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
JPH0660640B2 (en) * 1985-09-09 1994-08-10 清之 堀井 Device for generating a spiral fluid flow in a pipeline
DE3545524C2 (en) * 1985-12-20 1996-02-29 Siemens Ag Multi-stage combustion chamber for the combustion of nitrogenous gas with reduced NO¶x¶ emission and method for its operation
US5004484A (en) * 1988-08-31 1991-04-02 Barrett, Haentjens & Co. Air stripping of liquids using high intensity turbulent mixer
US5338113A (en) * 1990-09-06 1994-08-16 Transsonic Uberschall-Anlagen Gmbh Method and device for pressure jumps in two-phase mixtures
US5492404A (en) * 1991-08-01 1996-02-20 Smith; William H. Mixing apparatus
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
US5893641A (en) * 1998-05-26 1999-04-13 Garcia; Paul Differential injector
DE19905572A1 (en) * 1999-02-11 2000-08-31 Bayer Ag Device for mixing and reacting multiphase gaseous and liquid mixtures and use of this device
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
US6427435B1 (en) * 2000-05-20 2002-08-06 General Electric Company Retainer segment for swirler assembly
US6623267B1 (en) * 2002-12-31 2003-09-23 Tibbs M. Golladay, Jr. Industrial burner
JP4728176B2 (en) * 2005-06-24 2011-07-20 株式会社日立製作所 Burner, gas turbine combustor and burner cooling method
EP1950494A1 (en) * 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Combustion chamber for a gas turbine
EP2006606A1 (en) * 2007-06-21 2008-12-24 Siemens Aktiengesellschaft Swirling-free stabilising of the flame of a premix burner
EP2236932A1 (en) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Burner and method for operating a burner, in particular for a gas turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2350227A1 (en) * 1973-10-05 1975-04-17 Handschack & Co Heinz Burner gas mixing nozzle - has end rings for adjusting gas and air flows, slidable relative to double-walled cylinder
DE2856399A1 (en) * 1978-01-04 1979-07-12 Secr Defence Brit FUEL-AIR MIXING DEVICE
US5339635A (en) * 1987-09-04 1994-08-23 Hitachi, Ltd. Gas turbine combustor of the completely premixed combustion type
EP1172610A1 (en) * 2000-07-13 2002-01-16 Mitsubishi Heavy Industries, Ltd. Fuel nozzle for premix turbine combustor
US20040231586A1 (en) * 2001-09-19 2004-11-25 Jacques Dugue Method and device for mixing two reactant gases
WO2006069861A1 (en) * 2004-12-23 2006-07-06 Alstom Technology Ltd Premix burner comprising a mixing section

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216599A2 (en) * 2009-02-04 2010-08-11 General Electric Company Premixed direct injection nozzle
EP2216599A3 (en) * 2009-02-04 2014-05-21 General Electric Company Premixed direct injection nozzle
EP2236932A1 (en) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Burner and method for operating a burner, in particular for a gas turbine
WO2010106034A3 (en) * 2009-03-17 2011-05-26 Siemens Aktiengesellschaft Method for operating a burner and burner, in particular for a gas turbine
US9032736B2 (en) 2009-03-17 2015-05-19 Siemens Aktiengesellschaft Method for operating a burner and burner, in particular for a gas turbine
EP2282122A1 (en) * 2009-08-03 2011-02-09 Siemens Aktiengesellschaft Stabilising the flame of a pre-mix burner
EP2587158A1 (en) * 2011-10-31 2013-05-01 Siemens Aktiengesellschaft Combustion chamber for a gas turbine and burner assembly
WO2013064383A1 (en) * 2011-10-31 2013-05-10 Siemens Aktiengesellschaft Combustion chamber for a gas turbine and burner arrangement
US20150159877A1 (en) * 2013-12-06 2015-06-11 General Electric Company Late lean injection manifold mixing system

Also Published As

Publication number Publication date
EP2232147A1 (en) 2010-09-29
WO2009086943A1 (en) 2009-07-16
EP2232147B1 (en) 2015-10-28
US20100323309A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
EP2232147B1 (en) Burner and method for reducing self-induced flame oscillations
DE2143012C3 (en) Burner arrangement in a gas turbine combustor
EP1802915B1 (en) Gas turbine burner
DE112005002065B4 (en) A gas turbine combustor
EP0769655B1 (en) Air-blast spray nozzle
DE3889539T2 (en) GAS TURBINE COMBUSTION CHAMBER WITH TANGENTIAL FUEL INJECTION AND ADDITIONAL FUEL JETS.
DE3029095C2 (en) Double fuel injector for a gas turbine engine
DE102006011326C5 (en) circular burner
EP0433790A1 (en) Burner
DE10205839A1 (en) Process for reducing combustion-driven vibrations in combustion systems and premix burner for carrying out the process
EP2423597B1 (en) Premix burner for a gas turbine
EP2470834B1 (en) Burner, in particular for gas turbines
WO2005078348A1 (en) Premixing burner arrangement for operating a burner chamber and method for operating a burner chamber
EP3087323A1 (en) Burner, gas turbine having such a burner, and fuel nozzle
DE19905995A1 (en) Injection lance or nozzle for liquid and gaseous fuel in combustion chamber is part of secondary or tertiary burner around which flows hot gas jet in main flow direction
DE102011052594A1 (en) Multi-purpose flange for a secondary fuel nozzle of a gas turbine combustor
DE2641605C2 (en) Device for supplying air and fuel
DE19654008A1 (en) Burner for liquid or gas fuel
DE4424597B4 (en) incinerator
DE19507088B4 (en) premix
DE112019006023T5 (en) Combustion chamber for a gas turbine and gas turbine with such a combustion chamber
DE2552864A1 (en) PROCEDURE AND BURNER FOR BURNING LIQUID FUEL
DE102017118166B4 (en) Burner head, burner system and use of the burner system
DE19542373B4 (en) Burner head for gas burners
DE4325906C2 (en) Device for the regeneration of a particle filter used in the exhaust tract of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100116