EP2075806A1 - Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés - Google Patents

Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés Download PDF

Info

Publication number
EP2075806A1
EP2075806A1 EP07425825A EP07425825A EP2075806A1 EP 2075806 A1 EP2075806 A1 EP 2075806A1 EP 07425825 A EP07425825 A EP 07425825A EP 07425825 A EP07425825 A EP 07425825A EP 2075806 A1 EP2075806 A1 EP 2075806A1
Authority
EP
European Patent Office
Prior art keywords
shield
dry
resin
winding
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07425825A
Other languages
German (de)
English (en)
Inventor
Franco Marini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTicino SpA
Original Assignee
BTicino SpA
Elettromeccanica di Marnate SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTicino SpA, Elettromeccanica di Marnate SpA filed Critical BTicino SpA
Priority to EP07425825A priority Critical patent/EP2075806A1/fr
Publication of EP2075806A1 publication Critical patent/EP2075806A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • H01F27/2885Shielding with shields or electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases

Definitions

  • the present invention relates to a dry-type resin-insulated transformer with shielded side-by-side primary windings.
  • dry-type transformers provide a number of advantages, in that they require no maintenance, involve no pollution risk and have a very low flammability rate.
  • the electric field so developed does not run out within the insulating material, but extends into the surrounding environment and develops dangerous voltage gradients, depending on the potential, shape and distance of the surrounding elements.
  • a safety margin of at least three is used.
  • the safety distance in air has to be at least 3 cm.
  • the insulating bodies that incorporate the various medium-voltage windings must be spaced from each other, from the low-voltage windings and from the grounded metal parts, such as the magnetic core, by a distance from 30 to 150 mm (30 mm at least for voltages of the order of 10 kV and 150 mm for voltages of the order of 50 kV.
  • this aspect involves advantages, because channels are advantageously created for ventilation and natural air circulation between the medium- and low-voltage windings, between the low voltage windings (generally disposed inside the medium-voltage windings) and the columns of the magnetic circuit and around the medium-voltage windings, it also involves a considerable shortcoming in that it requires magnetic and electric parts of larger size, larger weight, higher material costs, which involve larger magnetic and resistive losses in the materials, greater magnetic leakages and, as a result, poorer performance.
  • the technical problem to be solved basically consists in providing, without complicating the winding encapsulating process, a conducting shield that can be perfectly integrated in the encapsulation insulating material, while ensuring reliable adhesion thereto even under thermal stresses, with very small volume requirements.
  • FR 2784787 and JP59207611 provide medium-voltage primary windings and low-voltage secondary windings which are coaxial with the former, internal thereto and individually (separately) incorporated in separate resin bodies.
  • the outer cylindrical surface of the insulating body of the medium-voltage primary winding is coated, by painting or similar processes (obviously carried out after formation of the insulating body), with a grounded semiconducting layer.
  • the treatment can be also performed on the inner cylindrical surface and to both inner and outer cylindrical surfaces of the insulating body that encapsulates the low-voltage secondary winding.
  • conductive plating is provided instead of a semiconducting layer, to be also applied by painting or similar processes.
  • Adhesion of the conducting or semiconducting layer to the resin bodies is particularly problematic and unreliable and requires a burdensome process.
  • EP0923785 provides encapsulation of the medium-voltage primary winding in a thermoplastic resin and later hot application of a few millimeters thick layer of electrically conducting thermoplastic resin.
  • EP0061608 may be also considered, in which a grounded metal shield is attached to the inner cylindrical surface of the insulating body that encapsulates the medium-voltage primary winding.
  • the shield may be also encapsulated.
  • Metal-wire gauze having the shape of a split cylinder (to avoid the formation of closed turns) is suggested as a shield.
  • the present invention eliminates the above drawbacks and provides a dry-type transformer that can be fabricated in a simple and inexpensive manner, wherein a pair of coaxial primary and secondary windings are encapsulated in a common insulating resin body and separated by a first electrically grounded metal shield, which is encapsulated in the resin body in close proximity of the secondary winding, which acts as a positioning guide therefor, whereas a second metal grounded metal shield is encapsulated in the resin body on its outer cylindrical surface.
  • Attachment of the two shields to the resin body is reliable with time even under temperature fluctuations and resulting size changes, the shields being formed of a woven metal mesh which is be encapsulated in the resin during the single casting step required for encapsulating the two windings.
  • a dry-type three-phase transformer typically has three parallel ferromagnetic columns 1, 2, 3 arranged with a convenient center-to-center spacing I (e.g. 350 mm).
  • the magnetic circuit of the columns is closed by two yokes 4, 5.
  • a resin body 6, 7, 8 is disposed coaxially with each of the columns and encapsulates a medium-voltage primary winding and a low-voltage secondary winding arranged coaxially one inside the other, as shown in detail with reference to Figure 2 .
  • the resin bodies are essentially shaped as sections of a cylindrical annulus with an axial cylindrical opening for receiving a column of the magnetic circuit and an axial rib 9 projecting from the outer cylindrical surface, and holding projecting elements for connection to the primary windings allowing connection thereof with each other and with the mains, as is known in the art, as well as terminals for adjusting the turn ratio and adapting the output voltage of the transformer to the voltage drop along the transformer supply line.
  • the dash lines 19, 20, 21 in Figure 1 represent a delta connection of the three primary windings when the terminals 10, 11, 12 are used for connection to a three-phase supply system.
  • Figure 1 also shows that the resin bodies 6, 7, 8 are in juxtaposed relationship and substantially in contact with each other, except for a very small clearance, of the order of 2-3 mm, which is required to allow the transformer to be assembled, and prevent any mechanical interference between the insulating bodies, due to thermal expansions (the linear thermal expansion coefficient of resin is much higher than that of iron in the yokes and still higher, though to a smaller extent, than that of copper or aluminum in the windings).
  • a cylindrical core is placed at the center of a casting mold, which is known in the art to consist of a cylindrical container (preferably composed of multiple separable elements for easier demolding), with a lateral undercut or compartment corresponding to the rib 9 of the resin body, for forming the central axial channel for the passage of a column of the magnetic circuit.
  • a non-stick gel is spread on the inner walls of the mold and on the central core.
  • the low-voltage (LV) secondary winding is placed in the mold.
  • this is composed of two appropriately spaced concentric windings 22, 23, each being formed, in a known and conventional manner, on a very thin cylindrical fiberglass form 24, 25.
  • a rectangular metal gauze sheet is previously stretched around the outermost cylindrical surface of the low voltage assembly (winding 23) to act as a cylindrical shield 28 with overlapping edges.
  • a preferably double-sided adhesive tape is interposed between the overlapping edges of the shield, to maintain the shield in a stretched state on the winding surface, while preventing the formation of a closed electric turn.
  • the LV winding acts as a rigid form for accurate positioning of the shield.
  • the lower 29 and upper edges 30 of the shield 28 are conveniently folded outwards with relatively large radius of curvature and extension, for reasons to be explained in greater detail below.
  • the shield 28 is equipped with a pre-welded terminal 31 on its upper edge 30, for connection to a ground element (such as the magnetic core of the transformer or its mechanical support frame).
  • a ground element such as the magnetic core of the transformer or its mechanical support frame.
  • Figure 3 also shows, by dash lines, the arrangement of the shield 28 and its folded upper edge 30 in the resin body.
  • a second shield 32 also formed of a rectangular metal gauze sheet similar to the one described above, but conveniently calendered to assume the shape of a split truncated cylinder, with a diameter equal to or slightly larger than that of the peripheral surface of the casting mold, is placed in the mold.
  • the upper and lower edges 33, 34 are folded inwards and the edges in the axial (vertical) direction do not overlap but maintain a juxtaposed relationship with a convenient spacing therebetween, for the passage of the terminals of the primary winding (two power terminals and three or more intermediate terminals for turns ratio adjustment).
  • the shield 32 is also equipped with a pre-welded terminal 37 on its upper edge 33, for connection to a ground element (such as the magnetic core of the transformer or its mechanical support frame).
  • a ground element such as the magnetic core of the transformer or its mechanical support frame.
  • Figure 3 shows, by dash lines, the arrangement of the shield 32 and its folded upper edge 33 in the resin body.
  • the plasticity and resilience requirement facilitates accurate positioning of the shield on a convex surface (such as a outer cylindrical surface, namely the outer surface of the secondary winding 23 of Fig. 2 ), but is not compatible with the need of also accurately placing the shield on a concave surface (such as the inner cylindrical surface of the mold).
  • a cylindrical glassfiber element 38 is conveniently provided in the form of a split elastic band with a diameter equal to or slightly greater than the peripheral wall of the mold.
  • the element 38 conveniently stiffened by resin spraying which does not reduce porosity, acts as a core or form for application of the shield 32.
  • the assembly so formed is introduced in the casting mold, so that the shield 32 perfectly adheres to the peripheral wall of the mold.
  • the assembly step is completed by inserting in the mold the medium-voltage winding 39, preassembled and insulated, in a known and conventional manner, on a fiberglass form 40.
  • the terminals of the primary winding are connected to their respective through connectors/insulators 41, 42 and to a terminal block 16 disposed on the mold wall at the rib 9.
  • At least the upper folded edges 30 and 33 of the inner 28 and outer 32 edges respectively shall have a diameter smaller than the diameter of the form 40 and larger than the outer diameter of the winding 39.
  • the upper edges 30 and 33 may be further folded, thereby almost completely shielding the upper end of the winding.
  • the casting mold may be filled with fluid epoxy resin which penetrates all the free cavities in the mold, impregnates the various fiberglass-reinforced forms or cores therein and, after hardening, firmly incorporates the windings and the shields disposed therein, in a single casting step.
  • forms may be provided that can be removed from the mold to form gaps designed to act as ventilation passages.
  • the ventilation passages 41, 42, 43, 44 as shown in Figure 3 may be interposed between the two windings, thereby ensuring effective heat dissipation for the secondary winding, wherein resistive losses, due to the high currents being involved, generally require a much higher heat dissipation than for the primary winding.
  • the cylindrical shape of the windings and the shields may also have a section other than a circular section, such as a quadrangular section with chamfered corners, as schematically shown in Figure 5 , where the peripheral walls 47, 48, 49, 50 of the resin body are advantageously slightly convex.
  • the medium-voltage primary winding may be introduced in the mold before the outer shield and before the secondary winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Insulating Of Coils (AREA)
EP07425825A 2007-12-27 2007-12-27 Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés Withdrawn EP2075806A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07425825A EP2075806A1 (fr) 2007-12-27 2007-12-27 Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07425825A EP2075806A1 (fr) 2007-12-27 2007-12-27 Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés

Publications (1)

Publication Number Publication Date
EP2075806A1 true EP2075806A1 (fr) 2009-07-01

Family

ID=39415049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07425825A Withdrawn EP2075806A1 (fr) 2007-12-27 2007-12-27 Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés

Country Status (1)

Country Link
EP (1) EP2075806A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054570A (zh) * 2010-11-19 2011-05-11 济南济变志亨电力设备有限公司 光伏发电用双分裂干式升压变压器
WO2011126991A1 (fr) * 2010-04-07 2011-10-13 Abb Technology Ag Transformateur sec extérieur
CN102969131A (zh) * 2012-12-11 2013-03-13 上海意兰可电力电子设备有限公司 K-系数变压器
CN103346003A (zh) * 2013-07-17 2013-10-09 国家电网公司 干式电力变压器低压线圈新结构
EP2833378A1 (fr) * 2013-07-31 2015-02-04 ABB Technology AG Transformateur
WO2015058298A1 (fr) * 2013-10-21 2015-04-30 Hammond Power Solutions, Inc. Transformateur électrique muni d'un ensemble de bobine coulée blindée
EP3001437A1 (fr) * 2014-09-29 2016-03-30 Siemens Aktiengesellschaft Système d'exécution
CN105719814A (zh) * 2016-04-08 2016-06-29 国家电网公司 适用于35kV以上干式变压器的含气道结构高压线圈
KR20170028500A (ko) * 2015-09-03 2017-03-14 현대중공업 주식회사 몰드변압기
EP3159904A1 (fr) * 2015-10-20 2017-04-26 ABB Schweiz AG Transformateur de type sec avec un embout de connexion flexible
WO2017067798A1 (fr) * 2015-10-20 2017-04-27 Abb Schweiz Ag Transformateur moulé de type sec à borne de connexion flexible
EP3629349A1 (fr) * 2018-09-25 2020-04-01 ABB Schweiz AG Transformateur de fréquence moyenne
EP3651170A1 (fr) * 2018-11-08 2020-05-13 Thales Systeme de detection et de limitation des effets de perte d'isolement d'un transformateur electrique
EP3836172A1 (fr) * 2019-12-12 2021-06-16 ABB Power Grids Switzerland AG Transformateur de fréquence moyenne doté d'enroulements parallèles
EP3968345A1 (fr) 2020-09-11 2022-03-16 ABB Schweiz AG Bobine primaire et procédé de fabrication d'une bobine primaire
EP4191620A1 (fr) * 2021-12-06 2023-06-07 ABB Schweiz AG Transformateur et procédé de formation d'un transformateur

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315372A (en) * 1928-07-12 1930-04-10 British Thomson Houston Co Ltd Improvements in and relating to electric transformers
DE1258966B (de) * 1964-04-27 1968-01-18 May & Christe Ges Mit Beschrae Luftgekuehlter Kunststofftransformator
EP0061608A1 (fr) 1981-04-01 1982-10-06 Smit Transformatoren B.V. Transformateur ou inductance du type à sec refroidi par air
JPS59207611A (ja) 1983-05-11 1984-11-24 Fuji Electric Corp Res & Dev Ltd モ−ルド変圧器
US4663603A (en) * 1982-11-25 1987-05-05 Holec Systemen En Componenten B.V. Winding system for air-cooled transformers
EP0923785A1 (fr) 1996-09-04 1999-06-23 E.I. Du Pont De Nemours And Company Transformateur haute tension/basse tension a isolation seche thermoplastique
FR2784787A1 (fr) 1998-10-20 2000-04-21 France Transfo Sa Transformateur sec de puissance ou de distribution de l'energie electrique
WO2001008175A1 (fr) 1999-07-22 2001-02-01 Siemens Ltda. Transformateur de distribution
WO2006103193A2 (fr) * 2005-04-01 2006-10-05 Siemens Aktiengesellschaft Transformateur pourvu d'un blindage electrique

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315372A (en) * 1928-07-12 1930-04-10 British Thomson Houston Co Ltd Improvements in and relating to electric transformers
DE1258966B (de) * 1964-04-27 1968-01-18 May & Christe Ges Mit Beschrae Luftgekuehlter Kunststofftransformator
EP0061608A1 (fr) 1981-04-01 1982-10-06 Smit Transformatoren B.V. Transformateur ou inductance du type à sec refroidi par air
US4663603A (en) * 1982-11-25 1987-05-05 Holec Systemen En Componenten B.V. Winding system for air-cooled transformers
JPS59207611A (ja) 1983-05-11 1984-11-24 Fuji Electric Corp Res & Dev Ltd モ−ルド変圧器
EP0923785A1 (fr) 1996-09-04 1999-06-23 E.I. Du Pont De Nemours And Company Transformateur haute tension/basse tension a isolation seche thermoplastique
FR2784787A1 (fr) 1998-10-20 2000-04-21 France Transfo Sa Transformateur sec de puissance ou de distribution de l'energie electrique
WO2001008175A1 (fr) 1999-07-22 2001-02-01 Siemens Ltda. Transformateur de distribution
WO2006103193A2 (fr) * 2005-04-01 2006-10-05 Siemens Aktiengesellschaft Transformateur pourvu d'un blindage electrique

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640314B2 (en) 2010-04-07 2017-05-02 Abb Schweiz Ag Outdoor dry-type transformer
WO2011126991A1 (fr) * 2010-04-07 2011-10-13 Abb Technology Ag Transformateur sec extérieur
CN103026432A (zh) * 2010-04-07 2013-04-03 Abb技术有限公司 室外干式变压器
CN108335880A (zh) * 2010-04-07 2018-07-27 Abb瑞士股份有限公司 室外干式变压器
EP2556521B1 (fr) 2010-04-07 2018-05-30 ABB Schweiz AG Transformateur sec d'extérieure
CN102054570A (zh) * 2010-11-19 2011-05-11 济南济变志亨电力设备有限公司 光伏发电用双分裂干式升压变压器
CN102969131A (zh) * 2012-12-11 2013-03-13 上海意兰可电力电子设备有限公司 K-系数变压器
CN102969131B (zh) * 2012-12-11 2016-05-04 上海意兰可电力电子设备有限公司 K-系数变压器
CN103346003A (zh) * 2013-07-17 2013-10-09 国家电网公司 干式电力变压器低压线圈新结构
CN103346003B (zh) * 2013-07-17 2016-01-06 国家电网公司 干式电力变压器低压10kV线圈新结构
EP2833378A1 (fr) * 2013-07-31 2015-02-04 ABB Technology AG Transformateur
WO2015058298A1 (fr) * 2013-10-21 2015-04-30 Hammond Power Solutions, Inc. Transformateur électrique muni d'un ensemble de bobine coulée blindée
EP3001437A1 (fr) * 2014-09-29 2016-03-30 Siemens Aktiengesellschaft Système d'exécution
KR20170028500A (ko) * 2015-09-03 2017-03-14 현대중공업 주식회사 몰드변압기
EP3159904A1 (fr) * 2015-10-20 2017-04-26 ABB Schweiz AG Transformateur de type sec avec un embout de connexion flexible
CN108369855A (zh) * 2015-10-20 2018-08-03 Abb瑞士股份有限公司 带有柔性连接端子的干式铸造变压器
WO2017067798A1 (fr) * 2015-10-20 2017-04-27 Abb Schweiz Ag Transformateur moulé de type sec à borne de connexion flexible
US10755851B2 (en) 2015-10-20 2020-08-25 Abb Power Grids Switzerland Ag Dry type cast transformer with flexible connection terminal
CN105719814A (zh) * 2016-04-08 2016-06-29 国家电网公司 适用于35kV以上干式变压器的含气道结构高压线圈
US20210398741A1 (en) * 2018-09-25 2021-12-23 Abb Power Grids Switzerland Ag Medium frquency transfomer
EP3629349A1 (fr) * 2018-09-25 2020-04-01 ABB Schweiz AG Transformateur de fréquence moyenne
WO2020064514A1 (fr) * 2018-09-25 2020-04-02 Abb Schweiz Ag Transformateur moyenne fréquence
JP2022502849A (ja) * 2018-09-25 2022-01-11 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフトHitachi Energy Switzerland Ag 中周波変圧器
FR3088475A1 (fr) * 2018-11-08 2020-05-15 Thales Système de détection et de limitation des effets de perte d'isolement d'un transformateur électrique
US11025048B2 (en) 2018-11-08 2021-06-01 Thales System for detecting and limiting the effects of loss of insulation of an electrical transformer
EP3651170A1 (fr) * 2018-11-08 2020-05-13 Thales Systeme de detection et de limitation des effets de perte d'isolement d'un transformateur electrique
EP3836172A1 (fr) * 2019-12-12 2021-06-16 ABB Power Grids Switzerland AG Transformateur de fréquence moyenne doté d'enroulements parallèles
WO2021115966A1 (fr) * 2019-12-12 2021-06-17 Abb Power Grids Switzerland Ag Transformateur moyenne fréquence à enroulements parallèles
EP3968345A1 (fr) 2020-09-11 2022-03-16 ABB Schweiz AG Bobine primaire et procédé de fabrication d'une bobine primaire
WO2022053995A1 (fr) 2020-09-11 2022-03-17 Abb Schweiz Ag Bobine primaire et procédé de fabrication d'une bobine primaire
EP4191620A1 (fr) * 2021-12-06 2023-06-07 ABB Schweiz AG Transformateur et procédé de formation d'un transformateur
WO2023104797A1 (fr) * 2021-12-06 2023-06-15 Abb Schweiz Ag Transformateur et procédé de formation de transformateur

Similar Documents

Publication Publication Date Title
EP2075806A1 (fr) Transformateur à isolation en résine de type sèche avec enroulements primaires côte à côte isolés
EP2586044B1 (fr) Bobine dotée d'un blindage électrique, transformateur comprenant une telle bobine et procédé pour la fabrication d'une telle bobine.
EP2556521B1 (fr) Transformateur sec d'extérieure
EP3109873B1 (fr) Bobine d'inductance et composant électromagnétique
EP1016103B1 (fr) Transformateur d'alimentation/bobine d'induction
US11217377B2 (en) Low inter-winding capacitance coil form
CN105229760A (zh) Hv仪器变压器
JPH04348508A (ja) 静止誘導電気機器
US6970063B1 (en) Power transformer/inductor
UA51823C2 (uk) Електромагнітний пристрій
EP3791413B1 (fr) Ensembles bobine blindés et procédés pour transformateurs de type sec
KR102519248B1 (ko) 드라이 코어를 갖는 중간 주파수 트랜스포머
US3805140A (en) Oil-filled ac-dc thyristor convertor
CN113488321A (zh) 干式变压器及其绕制方法
US3539703A (en) High voltage termination apparatus for high voltage cables and pipetype transmission lines
US10468178B2 (en) Stationary induction apparatus
EP2400512A1 (fr) Transformateur doté d'une fourche blindée
US2880401A (en) Means for controlling crack formations
JP2004119811A (ja) 静止誘導電気機器
KR101549930B1 (ko) 가스절연형 변류기
BR112019017850B1 (pt) Enrolamento de alta tensão e dispositivo de indução eletromagnética de alta tensão
GB2125227A (en) Transformer insulation
JPH04123412A (ja) 静止誘導電気機器
MXPA99006752A (en) Power transformer/inductor
JPH07249526A (ja) ガス絶縁電気機器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BTICINO S.P.A.

17P Request for examination filed

Effective date: 20091216

17Q First examination report despatched

Effective date: 20100126

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110712