EP2072761A2 - Pressure measurement device - Google Patents

Pressure measurement device Download PDF

Info

Publication number
EP2072761A2
EP2072761A2 EP08170228A EP08170228A EP2072761A2 EP 2072761 A2 EP2072761 A2 EP 2072761A2 EP 08170228 A EP08170228 A EP 08170228A EP 08170228 A EP08170228 A EP 08170228A EP 2072761 A2 EP2072761 A2 EP 2072761A2
Authority
EP
European Patent Office
Prior art keywords
measuring device
pressure measuring
channel
sensor element
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08170228A
Other languages
German (de)
French (fr)
Other versions
EP2072761A3 (en
Inventor
Dirk Hofmann
Eduard Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMTS Technology GmbH and Co KG
Original Assignee
Bosch Mahle Turbo Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Mahle Turbo Systems GmbH and Co KG filed Critical Bosch Mahle Turbo Systems GmbH and Co KG
Publication of EP2072761A2 publication Critical patent/EP2072761A2/en
Publication of EP2072761A3 publication Critical patent/EP2072761A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • DE 102 02 322 A1 refers to an internal combustion engine with an exhaust gas turbocharger and a method for operating such an internal combustion engine.
  • the internal combustion engine includes an exhaust gas turbocharger having a compressor and a turbine. Their geometry is variable, and a turbine bypassing bypass is provided, in which a wastegate valve controls the flow.
  • a pressure sensor is provided which determines the pressure in or upstream of the turbine and transmits it to an electronic control unit. This controls when a predetermined limit value for the pressure of the turbine geometry such that damage to the turbine is excluded.
  • the pressure sensor is provided within a turbine housing upstream of a turbine wheel of the turbine.
  • the pressure sensor can also be installed in an exhaust pipe between turbine and internal combustion engine.
  • DE 10 2005 056 517 A1 refers to a method for determining the speed of a compressor, in particular a turbocharger.
  • a method is proposed for determining the rotational speed of a compressor, in particular a turbocharger of an internal combustion engine, in which the pressure in a region downstream of the compressor is detected and a corresponding pressure signal is provided.
  • the speed of the compressor is obtained from a periodic fluctuation of at least a portion of the pressure signal.
  • the pressure is detected immediately downstream of the compressor.
  • the principle is based on detecting the pressure fluctuations caused by the individual blades of the compressor impeller.
  • a pressure measuring device in particular a pressure sensor, recessed and to connect it to a duct with a compressor volume, in particular of the compressor part of an exhaust gas turbocharger.
  • This solution can be realized, for example, by making the channel cylindrical.
  • the geometry of this channel is adapted to the respective installation situation and is usually designed in such a way that the frequency ranges to be expected at the respective compressor part of an exhaust-gas turbocharger are taken into account for the pulsations which are to be detected by the pressure-measuring device.
  • the channel can be designed in a simple embodiment, for example as a funnel.
  • An improved embodiment lies in a channel whose walls have a contour which corresponds to the course of the exponential function.
  • the core idea underlying the invention is to arrange the pressure measuring device, in particular the pressure sensor, recessed with respect to a boundary wall.
  • the pressure measuring device which is designed in particular as a pressure sensor, is arranged with respect to the compressor housing, which is formed for example as a spiral housing, set back in relation to the boundary wall in the housing.
  • the channel may be formed as a funnel-shaped connecting channel, further, a recess in which the pressure measuring device, in particular configured as a pressure sensor, in the compressor housing (volute) of the compressor part the exhaust gas turbocharger is arranged to be provided with an additional heat sink, or the pressure measuring device itself have an additional heat sink.
  • the pressure measuring device which is designed in particular as a pressure sensor, set back with respect to the housing wall the compressor housing (spiral housing) of the compressor part is arranged and communicates via a continuously tapered connecting channel with the gas volume whose pulsations are to be measured, in connection.
  • the walls bounding the connecting channel are curved in accordance with an exponential function.
  • the inventively proposed solution can be achieved on the one hand, that the temperature, which is exposed to the pressure measuring device, in particular designed as a pressure sensor, considerably below the temperature level in the order of 200 ° C, at which damage could occur. Furthermore, it can be achieved by the solution proposed according to the invention that the pulsation signal of the gas volume is transmitted to the sensor element, in particular the pressure sensor, with as little damping as possible.
  • the representation in FIG. 1 is a compressor part of a trained as exhaust gas turbocharger charging device to remove.
  • FIG. 1 shows a charging device 10, which is designed in particular as an exhaust gas turbocharger, a compressor part 12.
  • the compressor part 12 in turn comprises a compressor impeller 19 which rotates about its axis and a in FIG. 1 not shown shaft is driven by a turbine part of the preferably designed as an exhaust gas turbocharger charging device 10.
  • the compressor impeller 19 rotates about the axis and compresses incoming air 18 from an inlet pressure p 1 to an outlet pressure p 2 .
  • the air heats up to a temperature at the exit from the compressor impeller 19, which is on the order of 200 ° C.
  • the outlet pressure p 2 and the outlet temperature just mentioned the compressed air enters a volume 22 of the compressor part 12.
  • a diffuser channel 20 is executed, which opens into a volute 14, as which the compressor housing is preferably carried out.
  • a pressure measuring device 24 is inserted in the wall 16, which limits the compressor housing 14 in the region of the volume 22 of compressed air.
  • This comprises at least one signal line 26, via which a in accordance with the representation in FIG. 1 only schematically indicated sensor element 25 with an evaluation or an engine control unit or the like is in communication.
  • FIG. 2 shows the installation conditions of the pressure sensor in the compressor housing of the charging device in an enlarged scale.
  • FIG. 2 shows that the pressure measuring device 24 is inserted.
  • the pressure measuring device 24 comprises a signal line 26 running within the housing, via which the sensor element 25 is contacted.
  • FIG. 2 shows that the sensor element 25 is located approximately in the plane of the wall 16, which encloses the volume 22.
  • the volume 22 is - as in FIG. 1 already described - the compressed fresh air, which exits the compressor impeller 19 of the compressor part 12 with the state p 2 , ⁇ 2 . This means that in FIG.
  • FIG. 3 shows a first embodiment of the invention proposed solution.
  • FIG. 3 In contrast to the previously described FIG. 2 is in accordance with the invention according to the solution proposed in the first embodiment FIG. 3 the pressure measuring device designed as a recessed sensor element 34 with respect to the volume 22 limiting wall 16.
  • a distance 44 - indicated by the double arrow in FIG. 3 - prevails.
  • the sensor element 34 arranged backward from the mouth of the channel 36 is no longer directly exposed to the volume (p 2 , ⁇ 2 , as described above) but is protected by the channel 36, in particular from the elevated temperature of the volume 22.
  • the in FIG. 3 shown channel 36, which connects the volume 22 and designed as a recessed sensor element 34 pressure measuring device, is cylindrical.
  • the mouth of the cylindrically shaped channel 36 is preferably provided in the wall 16 with a rounded inlet to direct the flow as unattenuated and unfiltered on the executed as a recessed sensor element 34 pressure measuring device.
  • the housing of the pressure measuring device 24 has a recess 30, in which the electronics of the pressure measuring device is housed.
  • Reference numeral 38 designates the cylindrical shape of the channel 36 for the application of the set back arranged sensor element 34 with the volume 22, the gas dynamics is to be sensed.
  • FIG. 4 shows a further embodiment of the proposed solution according to the invention.
  • the pressure measuring device designed as a set back sensor element 34 with the volume 22 whose gas dynamics is to be sensed is likewise connected via the channel 36, which has a funnel shape 40.
  • channel walls 42 of channel 36 in funnel shape 40 include a cone angle with respect to each other.
  • the channel 36 in funnel shape 40 may have a circular cross-section which tapers continuously from the mouth of the channel 36 in the wall 16 in the direction of the recessed arranged sensor element 34 of the pressure measuring device 24.
  • the distance at which the pressure measuring device designed as set backwards sensor element 34 is arranged in the wall 16 with respect to the mouth of the funnel-shaped channel 36 is indicated by reference numeral 44.
  • FIG. 5 is a further embodiment of the present invention proposed pressure measuring device.
  • FIG. 5 shows that the pressure measuring device designed as set backwards is likewise arranged at a distance 44 with respect to the mouth of the channel 36 in funnel shape 40.
  • the channel 36 which extends through the wall 16 of the compressor housing 14 of the compressor part 12 in the direction of the recess 30 of the pressure measuring device 24, has a continuously tapering cross-section.
  • the pressure measuring device 24 is cooled by a number of cooling fins 46.
  • the cooling ribs 46 instead of the cooling ribs 46, at least one heat sink in a geometry other than the rib shape of the pressure measuring device 24 can also be assigned.
  • An arrangement of a heat sink 46 or of cooling fins 46 offers the possibility of even further lowering the temperature level to which the pressure measuring device designed as a recessed sensor element 34 is subjected.
  • funnel shape 40 shown may be embodied in a cone angle of 15, 20 or more degrees of angle to channel walls 42 arranged to each other and advantageously enables the transmission of a pulsation signal with the least possible attenuation from the volume 22 to the recessed at the end of the channel 36 in funnel shape 40 arranged sensor element 34.
  • the geometry data of the channel 36 in funnel shape 40 are chosen so that this usually the respective compressor part 12 of the charging device 10 expected frequency range for take into account the pulsations that are detected with the pressure measuring device designed as a set-back sensor element 34.
  • FIG. 6 shows a further embodiment of the invention proposed pressure measuring device with a connecting channel in exponential form.
  • FIG. 6 extends between the volume 22 delimiting wall 16 of the compressor housing 14 and arranged as set back sensor element 34 pressure measuring device of the channel 36, on the one hand, based on its mouth point in the wall 16, in the direction of the recessed arranged sensor element 34 a continuous cross-sectional tapering 48 and on the other hand 52 corresponding rounded expansible walls 50 in corresponding exponential form.
  • a particularly low-attenuation transmission of the pulsations of the volume 22 takes place in the channel 36 having rounded walls 50 in accordance with the exponential form 52 which in connection with the FIGS.
  • the "exponential channel” represents an embodiment of the channel 36, which also has a recessed to the rearwardly disposed sensor element 34 continuously cross-section 48.
  • the pressure measuring device designed as a recessed sensor element 34 is executed symmetrically to the axis of symmetry 54 and also makes it possible to arrange the pressure measuring device designed as a recessed sensor element 34 at a distance 44 from the mouth of the wall 16.
  • the distance 44 around which the pressure-measuring device designed as a recessed sensor element 34 is located refers to the side of the wall 16 which is assigned to the volume 22. Because of the rounded walls 50, an almost undamped transmission of the gas dynamics or of pulsations within the volume 22 can be transmitted substantially loss-free to the recessed sensor element 34, which is a preferred Embodiment of the present invention proposed pressure measuring device represents.
  • the exponential channel is identified by reference numeral 52 and is significantly characterized by the exponential function following rounded walls 50 on the one hand and by the continuously tapering cross-section 48 on the other.
  • the heat sink 46 may be formed in rib shape or be formed by the housing or parts of this, in order to achieve an additional temperature reduction can.
  • the pressure measuring device according to the invention which is designed as a backward-arranged sensor element 34, is preferably accommodated in a channel whose damping is minimized by the channel geometry.
  • a funnel shape 40 with circular cross-sectional tapering 48 can also be used in the direction of the sensor element 34 of the pressure measuring device arranged at a distance 44 from the wall 16 24 can be achieved.

Abstract

Pressure measuring device comprises a sensor element (34) arranged at a distance (44) from a wall (16) which limits a volume (22) of a gaseous medium. Preferred Features: The sensor element is arranged within a channel (36) which opens into the wall. The channel has a cylinder or funnel shape. The channel has a continuously tapering cross-section in the direction of the sensor element.

Description

Stand der TechnikState of the art

DE 102 02 322 A1 bezieht sich auf eine Brennkraftmaschine mit einem Abgasturbolader und ein Verfahren zum Betrieb einer solchen Brennkraftmaschine. Die Brennkraftmaschine umfasst einen Abgasturbolader, der einen Verdichter und eine Turbine aufweist. Deren Geometrie ist veränderbar, ferner ist ein die Turbine überbrückender Bypass vorgesehen, in welchem ein Wastegate-Ventil den Durchfluss steuert. Es ist ein Drucksensor vorgesehen, der den Druck in oder stromaufwärts der Turbine bestimmt und einem elektronischen Steuergerät übermittelt. Dieses steuert bei Überschreiten eines vorgegebenen Grenzwertes für den Druck die Turbinengeometrie derart, dass eine Schädigung der Turbine ausgeschlossen ist. Der Drucksensor ist innerhalb eines Turbinengehäuses stromaufwärts eines Turbinenrades der Turbine vorgesehen. Der Drucksensor kann auch in einer Abgasleitung zwischen Turbine und Brennkraftmaschine eingebaut sein. DE 102 02 322 A1 refers to an internal combustion engine with an exhaust gas turbocharger and a method for operating such an internal combustion engine. The internal combustion engine includes an exhaust gas turbocharger having a compressor and a turbine. Their geometry is variable, and a turbine bypassing bypass is provided, in which a wastegate valve controls the flow. A pressure sensor is provided which determines the pressure in or upstream of the turbine and transmits it to an electronic control unit. This controls when a predetermined limit value for the pressure of the turbine geometry such that damage to the turbine is excluded. The pressure sensor is provided within a turbine housing upstream of a turbine wheel of the turbine. The pressure sensor can also be installed in an exhaust pipe between turbine and internal combustion engine.

DE 10 2005 056 517 A1 bezieht sich auf ein Verfahren zur Bestimmung der Drehzahl eines Verdichters, insbesondere eines Turboladers. Gemäß dieser Lösung wird ein Verfahren zur Bestimmung der Drehzahl eines Verdichters, insbesondere eines Turboladers einer Brennkraftmaschine vorgeschlagen, bei dem der Druck in einem Bereich stromabwärts von dem Verdichter erfasst und ein entsprechendes Drucksignal bereitgestellt wird. Die Drehzahl des Verdichters wird aus einer periodischen Schwankung mindestens eines Anteils des Drucksignals gewonnen. Mit diesem Verfahren wird der Druck unmittelbar stromabwärts von dem Verdichter erfasst. Das Prinzip beruht darauf, die Druckschwankungen nachzuweisen, die durch die einzelnen Schaufeln des Verdichterlaufrades hervorgerufen werden. DE 10 2005 056 517 A1 refers to a method for determining the speed of a compressor, in particular a turbocharger. According to this solution, a method is proposed for determining the rotational speed of a compressor, in particular a turbocharger of an internal combustion engine, in which the pressure in a region downstream of the compressor is detected and a corresponding pressure signal is provided. The speed of the compressor is obtained from a periodic fluctuation of at least a portion of the pressure signal. With this method, the pressure is detected immediately downstream of the compressor. The principle is based on detecting the pressure fluctuations caused by the individual blades of the compressor impeller.

Bei der Drehzahlerfassung mittels eines Drucksensors ergibt sich zwischen dem eingesetzten Messprinzip und den Eigenschaften typischer Drucksensortypen, die zum Beispiel als piezoresistive Aufnehmer ausgebildet sein können, ein Konflikt. Einerseits ist eine Positionierung nahe am Innenvolumen des Verdichters notwendig, um die Druckpulsationen möglichst ungedämpft erfassen zu können. Auf der anderen Seite können dort in bestimmten Betriebspunkten Gastemperaturen von typischerweise bis zu 200 °C auftreten, welche das Sensorelement zerstören würden.In the case of speed detection by means of a pressure sensor, a conflict arises between the measuring principle used and the properties of typical pressure sensor types, which may be designed, for example, as piezoresistive transducers. On the one hand, a positioning close to the internal volume of the compressor is necessary in order to be able to detect the pressure pulsations as undamped as possible. On the other hand, there can be certain operating points Gas temperatures of typically up to 200 ° C occur, which would destroy the sensor element.

Offenbarung der ErfindungDisclosure of the invention

Erfindungsgemäß wird vorgeschlagen, eine Druckmesseinrichtung, insbesondere einen Drucksensor, zurückversetzt zu montieren und mit einem Kanal mit einem Verdichtervolumen, insbesondere des Verdichterteiles eines Abgasturboladers, zu verbinden. Diese Lösung kann zum Beispiel dadurch realisiert werden, dass der Kanal zylindrisch ausgelegt wird. In einer vorteilhaften Ausführungsform und um sicherzustellen, dass das Pulsationssignal zur Druckmesseinrichtung mit möglichst geringer Dämpfung übertragen werden kann, wird vorgeschlagen, diesen Kanal in einer sich verjüngenden Form auszuführen. Die Geometrie dieses Kanals ist an die jeweilige Einbausituation angepasst und wird üblicherweise derart ausgelegt, dass die am jeweils zu überwachenden Verdichterteil eines Abgasturboladers zu erwartenden Frequenzbereiche für die Pulsationen berücksichtigt sind, die mit der Druckmesseinrichtung erfasst werden sollen. Der Kanal kann in einer einfachen Ausführungsform zum Beispiel als Trichter gestaltet werden. Eine verbesserte Ausführungsform liegt in einem Kanal, dessen Wände eine Kontur haben, die dem Verlauf der Exponentialfunktion entspricht.According to the invention, it is proposed to mount a pressure measuring device, in particular a pressure sensor, recessed and to connect it to a duct with a compressor volume, in particular of the compressor part of an exhaust gas turbocharger. This solution can be realized, for example, by making the channel cylindrical. In an advantageous embodiment and to ensure that the pulsation signal can be transmitted to the pressure measuring device with the lowest possible attenuation, it is proposed to carry out this channel in a tapered shape. The geometry of this channel is adapted to the respective installation situation and is usually designed in such a way that the frequency ranges to be expected at the respective compressor part of an exhaust-gas turbocharger are taken into account for the pulsations which are to be detected by the pressure-measuring device. The channel can be designed in a simple embodiment, for example as a funnel. An improved embodiment lies in a channel whose walls have a contour which corresponds to the course of the exponential function.

Der der Erfindung zugrunde liegende Kerngedanke liegt darin, die Druckmesseinrichtung, insbesondere den Drucksensor, zurückversetzt in Bezug auf eine Begrenzungswand anzuordnen. Darunter ist zu verstehen, dass die Druckmesseinrichtung, welche insbesondere als Drucksensor ausgebildet ist, in Bezug auf das Verdichtergehäuse, welches zum Beispiel als Spiralgehäuse ausgebildet ist, in Bezug auf dessen Begrenzungswand in das Gehäuse zurückversetzt angeordnet ist. Aufgrund der zurückversetzten Anordnung der Druckmesseinrichtung kann der eingangs erwähnte Kanal zum Beispiel als zylindrischer Verbindungskanal beschaffen sein, der Kanal kann als trichterförmiger Verbindungskanal ausgebildet sein, ferner kann eine Ausnehmung, in der die Druckmesseinrichtung, insbesondere ausgestaltet als Drucksensor, im Verdichtergehäuse (Spiralgehäuse) des Verdichterteils des Abgasturboladers angeordnet ist, mit einem zusätzlichen Kühlkörper versehen sein, oder die Druckmesseinrichtung selbst einen zusätzlichen Kühlkörper aufweisen.The core idea underlying the invention is to arrange the pressure measuring device, in particular the pressure sensor, recessed with respect to a boundary wall. This is to be understood that the pressure measuring device, which is designed in particular as a pressure sensor, is arranged with respect to the compressor housing, which is formed for example as a spiral housing, set back in relation to the boundary wall in the housing. Due to the set-back arrangement of the pressure measuring device of the above-mentioned channel, for example, be designed as a cylindrical connecting channel, the channel may be formed as a funnel-shaped connecting channel, further, a recess in which the pressure measuring device, in particular configured as a pressure sensor, in the compressor housing (volute) of the compressor part the exhaust gas turbocharger is arranged to be provided with an additional heat sink, or the pressure measuring device itself have an additional heat sink.

In einer besonders bevorzugten Ausführungsvariante ist die Druckmesseinrichtung, welche insbesondere als Drucksensor ausgestaltet ist, zurückversetzt in Bezug auf die Gehäusewand des Verdichtergehäuses (Spiralgehäuse) des Verdichterteiles angeordnet und steht über einen sich stetig verjüngenden Verbindungskanal mit dem Gasvolumen, dessen Pulsationen zu messen sind, in Verbindung. Besonders bevorzugt sind die den Verbindungskanal begrenzenden Wände nach einer Exponentialfunktion gekrümmt ausgebildet. Mit einem derart beschaffenen Verbindungskanal zwischen dem Gasvolumen, dessen Dynamik zu messen ist, und der Druckmesseinrichtung werden beste, da weitgehend ungedämpfte und daher tatsächlich vorliegende Signale gemessen.In a particularly preferred embodiment, the pressure measuring device, which is designed in particular as a pressure sensor, set back with respect to the housing wall the compressor housing (spiral housing) of the compressor part is arranged and communicates via a continuously tapered connecting channel with the gas volume whose pulsations are to be measured, in connection. Particularly preferably, the walls bounding the connecting channel are curved in accordance with an exponential function. With such a connecting channel between the gas volume whose dynamics is to be measured, and the pressure measuring device are best, since largely undamped and therefore actually present signals measured.

Durch die erfindungsgemäß vorgeschlagene Lösung kann einerseits erreicht werden, dass die Temperatur, welcher die Druckmesseinrichtung, insbesondere als Drucksensor ausgebildet, ausgesetzt ist, erheblich unter dem Temperaturniveau in der Größenordnung von 200 °C liegt, bei welchem Beschädigungen auftreten könnten. Des Weiteren kann durch die erfindungsgemäß vorgeschlagene Lösung erreicht werden, dass das Pulsationssignal des Gasvolumens mit möglichst geringer Dämpfung an das Sensorelement, insbesondere den Drucksensor, übertragen wird.The inventively proposed solution can be achieved on the one hand, that the temperature, which is exposed to the pressure measuring device, in particular designed as a pressure sensor, considerably below the temperature level in the order of 200 ° C, at which damage could occur. Furthermore, it can be achieved by the solution proposed according to the invention that the pulsation signal of the gas volume is transmitted to the sensor element, in particular the pressure sensor, with as little damping as possible.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.With reference to the drawing, the invention will be described below in more detail.

Es zeigt:It shows:

Figur 1FIG. 1
die Darstellung eines Verdichtergehäuses eines Verdichterteiles einer Aufladeeinrichtung,the representation of a compressor housing of a compressor part of a charging device,
Figur 2FIG. 2
eine Anordnung einer bisher eingesetzten Druckmesseinrichtung,an arrangement of a previously used pressure measuring device,
Figur 3FIG. 3
eine zurückversetzt angeordnete Druckmesseinrichtung mit einem zylindrisch ausgebildeten Verbindungskanal zum zu sensierenden Gasvolumen,a recessed arranged pressure measuring device with a cylindrically shaped connecting channel to be sensed gas volume,
Figur 4FIG. 4
eine weitere Ausführungsform einer zurückversetzt angeordneten Druckmesseinrichtung mit trichterförmigem Verbindungskanal,a further embodiment of a recessed arranged pressure measuring device with funnel-shaped connecting channel,
Figur 5FIG. 5
einen Kühlkörper zur Kühlung der zurückversetzt angeordneten Druckmesseinrichtung gemäß der Darstellung in Figur 4, unda heat sink for cooling the recessed arranged pressure measuring device as shown in FIG FIG. 4 , and
Figur 6FIG. 6
eine zurückversetzt angeordnete Druckmesseinrichtung mit einem sich verjüngenden Strömungsquerschnitt mit gerundeten Kanalwänden.a recessed arranged pressure measuring device with a tapered flow cross-section with rounded channel walls.
Ausführungsformenembodiments

Der Darstellung in Figur 1 ist ein Verdichterteil einer als Abgasturbolader ausgebildeten Aufladeeinrichtung zu entnehmen.The representation in FIG. 1 is a compressor part of a trained as exhaust gas turbocharger charging device to remove.

Wie aus der stark vereinfachten schematischen Wiedergabe in Figur 1 hervorgeht, umfasst eine Aufladeeinrichtung 10, die insbesondere als Abgasturbolader ausgeführt ist, einen Verdichterteil 12. Der Verdichterteil 12 seinerseits umfasst ein Verdichterlaufrad 19, welches um seine Achse rotiert und über eine in Figur 1 nicht dargestellte Welle von einem Turbinenteil der bevorzugt als Abgasturbolader ausgebildeten Aufladeeinrichtung 10 angetrieben ist. Das Verdichterlaufrad 19 rotiert um die Achse und verdichtet einströmende Luft 18 von einem Eintrittsdruck p1 auf einen Austrittsdruck p2. Bei der Verdichtung der einströmenden Luft 18 erwärmt sich die Luft auf eine Temperatur bei Austritt aus dem Verdichterlaufrad 19, die in der Größenordnung von 200 °C liegt. Mit dem Austrittsdruck p2 und der eben erwähnten Austrittstemperatur tritt die verdichtete Luft in ein Volumen 22 des Verdichterteiles 12 ein. Abströmseitig in Bezug auf das Verdichterlaufrad 19 ist ein Diffusorkanal 20 ausgeführt, der in ein Spiralgehäuse 14, als welches das Verdichtergehäuse bevorzugt ausgeführt ist, mündet. Eine Wandung 16, die einerseits das Verdichtergehäuse 14 in Spiralform darstellt und andererseits das Volumen 22 begrenzt, ist in der schematischen Darstellung gemäß Figur 1 durch Bezugszeichen 16 identifiziert.As from the highly simplified schematic representation in FIG. 1 shows a charging device 10, which is designed in particular as an exhaust gas turbocharger, a compressor part 12. The compressor part 12 in turn comprises a compressor impeller 19 which rotates about its axis and a in FIG. 1 not shown shaft is driven by a turbine part of the preferably designed as an exhaust gas turbocharger charging device 10. The compressor impeller 19 rotates about the axis and compresses incoming air 18 from an inlet pressure p 1 to an outlet pressure p 2 . During the compression of the incoming air 18, the air heats up to a temperature at the exit from the compressor impeller 19, which is on the order of 200 ° C. With the outlet pressure p 2 and the outlet temperature just mentioned, the compressed air enters a volume 22 of the compressor part 12. Downstream with respect to the compressor impeller 19, a diffuser channel 20 is executed, which opens into a volute 14, as which the compressor housing is preferably carried out. A wall 16, which on the one hand represents the compressor housing 14 in a spiral shape and on the other hand limits the volume 22, is shown schematically in FIG FIG. 1 identified by reference numeral 16.

Wie Figur 1 des Weiteren zeigt, ist in die Wand 16, welche das Verdichtergehäuse 14 im Bereich des Volumens 22 von verdichteter Luft begrenzt, eine Druckmesseinrichtung 24 eingelassen. Diese umfasst mindestens eine Signalleitung 26, über welche ein gemäß der Darstellung in Figur 1 nur schematisch angedeutetes Sensorelement 25 mit einer Auswerteelektronik oder einem Motorsteuergerät oder dergleichen in Verbindung steht.As FIG. 1 Furthermore, in the wall 16, which limits the compressor housing 14 in the region of the volume 22 of compressed air, a pressure measuring device 24 is inserted. This comprises at least one signal line 26, via which a in accordance with the representation in FIG. 1 only schematically indicated sensor element 25 with an evaluation or an engine control unit or the like is in communication.

Figur 2 zeigt die Einbauverhältnisse des Drucksensors in das Verdichtergehäuse der Aufladeeinrichtung in einem vergrößerten Maßstab. FIG. 2 shows the installation conditions of the pressure sensor in the compressor housing of the charging device in an enlarged scale.

Wie der schematischen Darstellung in Figur 2 entnehmbar ist, ist in die Wand 16, die das Volumen 22 begrenzt, die Druckmesseinrichtung 24 eingesetzt. Die Druckmesseinrichtung 24 umfasst eine innerhalb des Gehäuses verlaufende Signalleitung 26, über welche das Sensorelement 25 kontaktiert ist. Aus Figur 2 geht hervor, dass das Sensorelement 25 in etwa in der Ebene der Wand 16 liegt, die das Volumen 22 umschließt. Das Volumen 22 ist - wie in Figur 1 bereits beschrieben - die verdichtete Frischluft, die mit dem Zustand p2, ϑ 2 aus dem Verdichterlaufrad 19 des Verdichterteiles 12 austritt. Dies bedeutet, dass das in Figur 2 dargestellte Sensorelement 25 der Druckmesseinrichtung 24 im Bereich der Wand 16 dem Volumen 22 und damit dem in diesem herrschenden Druck p2 und dessen Temperatur ϑ 2, die in der Größenordnung von etwa 200 °C liegt, unmittelbar ausgesetzt ist. Während mit der Anordnung gemäß Figur 2 zwar eine ungedämpfte Sensierung der Gasdynamik innerhalb des Volumens 22 möglich ist, verkürzt die Temperatur des Volumens 22, die in der Größenordnung von etwa 200 °C liegt, die Lebensdauer des in Figur 2 dargestellten Sensorelementes 25 der Druckmesseinrichtung 24 erheblich.As the schematic representation in FIG. 2 can be removed, in the wall 16, which limits the volume 22, the pressure measuring device 24 is inserted. The pressure measuring device 24 comprises a signal line 26 running within the housing, via which the sensor element 25 is contacted. Out FIG. 2 shows that the sensor element 25 is located approximately in the plane of the wall 16, which encloses the volume 22. The volume 22 is - as in FIG. 1 already described - the compressed fresh air, which exits the compressor impeller 19 of the compressor part 12 with the state p 2 , θ 2 . This means that in FIG. 2 represented sensor element 25 of the pressure measuring device 24 in the region of the wall 16 the volume 22 and thus the pressure prevailing in this p 2 and its temperature θ 2 , which is in the order of about 200 ° C, is directly exposed. While with the arrangement according to FIG. 2 Although an undamped sensing of the gas dynamics within the volume 22 is possible, reduces the temperature of the volume 22, which is in the order of about 200 ° C, the life of the in FIG. 2 shown sensor element 25 of the pressure measuring device 24 considerably.

Der Darstellung gemäß Figur 3 ist eine erste Ausführungsform der erfindungsgemäß vorgeschlagenen Lösung zu entnehmen.The representation according to FIG. 3 shows a first embodiment of the invention proposed solution.

In Gegenüberstellung der zuvor beschriebenen Figur 2 ist in der ersten Ausführungsform der erfindungsgemäß vorgeschlagenen Lösung gemäß Figur 3 die Druckmesseinrichtung als zurückversetztes Sensorelement 34 in Bezug auf die das Volumen 22 begrenzende Wand 16 ausgeführt. Dies bedeutet, dass zwischen der Mündungsstelle des Kanals 36 in der Wand 16 und der Position des zurückversetzt angeordneten Sensorelementes 34 ein Abstand 44 - angedeutet durch den Doppelpfeil in Figur 3 - herrscht. Damit ist das zurückversetzt von der Mündung des Kanals 36 angeordnete Sensorelement 34 dem Volumen (p2, ϑ 2, wie vorstehend beschrieben) nicht mehr unmittelbar ausgesetzt, sondern durch den Kanal 36 insbesondere vor der erhöhten Temperatur des Volumens 22 geschützt. Der in Figur 3 dargestellte Kanal 36, der das Volumen 22 und die als zurückversetztes Sensorelement 34 ausgeführte Druckmesseinrichtung verbindet, ist zylindrisch ausgebildet. Wenngleich in Figur 3 nicht näher dargestellt, wird die Mündung des zylindrisch ausgebildeten Kanals 36 in der Wand 16 bevorzugt mit einem gerundeten Einlauf versehen, um die Strömung möglichst ungedämpft und ungefiltert auf die als zurückversetztes Sensorelement 34 ausgeführte Druckmesseinrichtung zu leiten. Das Gehäuse der Druckmesseinrichtung 24 weist eine Ausnehmung 30 auf, in die die Elektronik der Druckmesseinrichtung untergebracht ist. Bezugszeichen 38 bezeichnet die Zylinderform des Kanals 36 zur Beaufschlagung des zurückversetzt angeordneten Sensorelementes 34 mit dem Volumen 22, dessen Gasdynamik zu sensieren ist.In contrast to the previously described FIG. 2 is in accordance with the invention according to the solution proposed in the first embodiment FIG. 3 the pressure measuring device designed as a recessed sensor element 34 with respect to the volume 22 limiting wall 16. This means that between the mouth of the channel 36 in the wall 16 and the position of the recessed arranged sensor element 34, a distance 44 - indicated by the double arrow in FIG. 3 - prevails. Thus, the sensor element 34 arranged backward from the mouth of the channel 36 is no longer directly exposed to the volume (p 2 , θ 2 , as described above) but is protected by the channel 36, in particular from the elevated temperature of the volume 22. The in FIG. 3 shown channel 36, which connects the volume 22 and designed as a recessed sensor element 34 pressure measuring device, is cylindrical. Although in FIG. 3 not shown in detail, the mouth of the cylindrically shaped channel 36 is preferably provided in the wall 16 with a rounded inlet to direct the flow as unattenuated and unfiltered on the executed as a recessed sensor element 34 pressure measuring device. The housing of the pressure measuring device 24 has a recess 30, in which the electronics of the pressure measuring device is housed. Reference numeral 38 designates the cylindrical shape of the channel 36 for the application of the set back arranged sensor element 34 with the volume 22, the gas dynamics is to be sensed.

Figur 4 zeigt eine weitere Ausführungsvariante der erfindungsgemäß vorgeschlagenen Lösung. FIG. 4 shows a further embodiment of the proposed solution according to the invention.

Wie Figur 4 zu entnehmen ist, ist die als zurückversetztes Sensorelement 34 ausgeführte Druckmesseinrichtung mit dem Volumen 22, dessen Gasdynamik sensiert werden soll, ebenfalls über den Kanal 36 verbunden, der eine Trichterform 40 aufweist. Dies bedeutet, dass Kanalwände 42 des Kanals 36 in Trichterform 40 einen Kegelwinkel in Bezug aufeinander einschließen. Der Kanal 36 in Trichterform 40 kann einen kreisrunden Querschnitt aufweisen, der sich ausgehend von der Mündungsstelle des Kanals 36 in der Wand 16 in Richtung auf das zurückversetzt angeordnete Sensorelement 34 der Druckmesseinrichtung 24 kontinuierlich verjüngt. Der Abstand, in welchem die als zurückversetzt angeordnetes Sensorelement 34 ausgeführte Druckmesseinrichtung in Bezug auf die Mündungsstelle des Kanals 36 mit Trichterform 40 in der Wand 16 angeordnet ist, ist durch Bezugszeichen 44 bezeichnet.As FIG. 4 2, the pressure measuring device designed as a set back sensor element 34 with the volume 22 whose gas dynamics is to be sensed is likewise connected via the channel 36, which has a funnel shape 40. This means that channel walls 42 of channel 36 in funnel shape 40 include a cone angle with respect to each other. The channel 36 in funnel shape 40 may have a circular cross-section which tapers continuously from the mouth of the channel 36 in the wall 16 in the direction of the recessed arranged sensor element 34 of the pressure measuring device 24. The distance at which the pressure measuring device designed as set backwards sensor element 34 is arranged in the wall 16 with respect to the mouth of the funnel-shaped channel 36 is indicated by reference numeral 44.

Der Darstellung gemäß Figur 5 ist eine weitere Ausführungsform der erfindungsgemäß vorgeschlagenen Druckmesseinrichtung zu entnehmen.The representation according to FIG. 5 is a further embodiment of the present invention proposed pressure measuring device.

Figur 5 zeigt, dass die als zurückversetzt angeordnetes Sensorelement 34 ausgeführte Druckmesseinrichtung ebenfalls in einem Abstand 44 in Bezug auf die Mündung des Kanals 36 in Trichterform 40 angeordnet ist. Der Kanal 36, der sich durch die Wand 16 des Verdichtergehäuses 14 des Verdichterteiles 12 in Richtung auf die Ausnehmung 30 der Druckmesseinrichtung 24 erstreckt, weist einen sich kontinuierlich verjüngenden Querschnitt auf. Wie Figur 5 des Weiteren zu entnehmen ist, wird die Druckmesseinrichtung 24 durch eine Anzahl von Kühlrippen 46 gekühlt. Anstelle der Kühlrippen 46 kann auch mindestens ein Kühlkörper in einer anderen Geometrie als der Rippenform der Druckmesseinrichtung 24 zugeordnet sein. Eine Anordnung eines Kühlkörpers 46 beziehungsweise von Kühlrippen 46 bietet die Möglichkeit, das Temperaturniveau, welchem die als zurückversetztes Sensorelement 34 ausgeführte Druckmesseinrichtung ausgesetzt ist, noch weiter abzusenken. Die in den Figuren 4 und 5 dargestellte Trichterform 40 kann beispielsweise in einem Kegelwinkel von 15, 20 oder mehr Winkelgraden an zueinander angeordneten Kanalwänden 42 ausgeführt sein und ermöglicht in vorteilhafter Weise die Übertragung eines Pulsationssignales mit möglichst geringer Dämpfung aus dem Volumen 22 an das zurückversetzt am Ende des Kanals 36 in Trichterform 40 angeordneten Sensorelementes 34. Die Geometriedaten des Kanals 36 in Trichterform 40 werden so gewählt, dass diese den am jeweiligen Verdichterteil 12 der Aufladeeinrichtung 10 üblicherweise zu erwartenden Frequenzbereich für die Pulsationen berücksichtigen, die mit der als zurückversetztes Sensorelement 34 ausgebildeten Druckmesseinrichtung erfasst werden. FIG. 5 FIG. 5 shows that the pressure measuring device designed as set backwards is likewise arranged at a distance 44 with respect to the mouth of the channel 36 in funnel shape 40. The channel 36, which extends through the wall 16 of the compressor housing 14 of the compressor part 12 in the direction of the recess 30 of the pressure measuring device 24, has a continuously tapering cross-section. As FIG. 5 Furthermore, the pressure measuring device 24 is cooled by a number of cooling fins 46. Instead of the cooling ribs 46, at least one heat sink in a geometry other than the rib shape of the pressure measuring device 24 can also be assigned. An arrangement of a heat sink 46 or of cooling fins 46 offers the possibility of even further lowering the temperature level to which the pressure measuring device designed as a recessed sensor element 34 is subjected. The in the FIGS. 4 and 5 For example, funnel shape 40 shown may be embodied in a cone angle of 15, 20 or more degrees of angle to channel walls 42 arranged to each other and advantageously enables the transmission of a pulsation signal with the least possible attenuation from the volume 22 to the recessed at the end of the channel 36 in funnel shape 40 arranged sensor element 34. The geometry data of the channel 36 in funnel shape 40 are chosen so that this usually the respective compressor part 12 of the charging device 10 expected frequency range for take into account the pulsations that are detected with the pressure measuring device designed as a set-back sensor element 34.

Figur 6 zeigt eine weitere Ausführungsform der erfindungsgemäß vorgeschlagenen Druckmesseinrichtung mit einem Verbindungskanal in Exponentialform. FIG. 6 shows a further embodiment of the invention proposed pressure measuring device with a connecting channel in exponential form.

Wie der Darstellung gemäß Figur 6 zu entnehmen ist, verläuft zwischen der das Volumen 22 begrenzenden Wand 16 des Verdichtergehäuses 14 und der als zurückversetzt angeordnetes Sensorelement 34 ausgeführten Druckmesseinrichtung der Kanal 36, der einerseits, bezogen auf seine Mündungsstelle in der Wand 16, in Richtung auf das zurückversetzt angeordnete Sensorelement 34 eine kontinuierliche Querschnittsverjüngung 48 aufweist und andererseits in entsprechender Exponentialform 52 gerundete Wände 50 umfasst. Über die gerundeten Wände 50, welche den Exponential-Kanal 52, der symmetrisch zu seiner Symmetrieachse 54 ausgebildet ist, begrenzen, erfolgt ein besonders dämpfungsarmes Übertragen der Pulsationen des Volumens 22 in den gemäß der Exponentialform 52 gerundete Wände 50 aufweisenden Kanal 36. In Bezug auf die in Zusammenhang mit den Figuren 4 und 5 erläuterte Trichterform 40 des Verbindungskanals 36 zwischen dem Volumen 22 und der als zurückversetzt angeordnetes Sensorelement 34 ausgeführten Druckmesseinrichtung stellt die in Figur 6 dargestellte Ausführungsform des Verbindungskanals die ideale Auslegung dar. Der "Exponential-Kanal" stellt eine Auslegungsform des Kanals 36 dar, der ebenfalls einen sich zum zurückversetzt angeordneten Sensorelement 34 kontinuierlich verjüngenden Querschnitt 48 aufweist.As shown in the illustration FIG. 6 can be seen, extends between the volume 22 delimiting wall 16 of the compressor housing 14 and arranged as set back sensor element 34 pressure measuring device of the channel 36, on the one hand, based on its mouth point in the wall 16, in the direction of the recessed arranged sensor element 34 a continuous cross-sectional tapering 48 and on the other hand 52 corresponding rounded expansible walls 50 in corresponding exponential form. Via the rounded walls 50, which delimit the exponential channel 52, which is formed symmetrically with respect to its axis of symmetry 54, a particularly low-attenuation transmission of the pulsations of the volume 22 takes place in the channel 36 having rounded walls 50 in accordance with the exponential form 52 which in connection with the FIGS. 4 and 5 explained funnel shape 40 of the connecting channel 36 between the volume 22 and the arranged as set back sensor element 34 pressure measuring device provides the in FIG. 6 The "exponential channel" represents an embodiment of the channel 36, which also has a recessed to the rearwardly disposed sensor element 34 continuously cross-section 48.

Dieser ist symmetrisch zur Symmetrieachse 54 ausgeführt und ermöglicht ebenfalls, die als zurückversetzt angeordnetes Sensorelement 34 ausgeführte Druckmesseinrichtung in einem Abstand 44 von der Mündungsstelle der Wand 16 anzuordnen. Der Abstand 44, um den die als zurückversetztes Sensorelement 34 ausgeführte Druckmesseinrichtung angeordnet ist, bezieht sich auf die Seite der Wand 16, die dem Volumen 22 zuweist. Aufgrund der gerundeten Wände 50 kann eine nahezu ungedämpfte Übertragung der Gasdynamik beziehungsweise von Pulsationen innerhalb des Volumens 22 im Wesentlichen verlustfrei an das zurückversetzt angeordnete Sensorelement 34 übertragen werden, welches eine bevorzugte Ausführungsform der erfindungsgemäß vorgeschlagenen Druckmesseinrichtung darstellt. Der Exponential-Kanal ist durch Bezugszeichen 52 gekennzeichnet und durch die einer Exponentialfunktion folgenden gerundeten Wände 50 einerseits und durch den sich kontinuierlich verjüngenden Querschnitt 48 andererseits maßgeblich charakterisiert.This is executed symmetrically to the axis of symmetry 54 and also makes it possible to arrange the pressure measuring device designed as a recessed sensor element 34 at a distance 44 from the mouth of the wall 16. The distance 44 around which the pressure-measuring device designed as a recessed sensor element 34 is located refers to the side of the wall 16 which is assigned to the volume 22. Because of the rounded walls 50, an almost undamped transmission of the gas dynamics or of pulsations within the volume 22 can be transmitted substantially loss-free to the recessed sensor element 34, which is a preferred Embodiment of the present invention proposed pressure measuring device represents. The exponential channel is identified by reference numeral 52 and is significantly characterized by the exponential function following rounded walls 50 on the one hand and by the continuously tapering cross-section 48 on the other.

Es besteht auch die Möglichkeit, einen Kühlkörper 46 mit einem Kanal 52 zu kombinieren, dessen Wände eine der Exponentialfunktion folgende Rundung aufweisen. Der Kühlkörper 46 kann dabei in Rippenform ausgebildet sein oder aber durch das Gehäuse oder Teilen von diesem gebildet werden, um eine zusätzliche Temperaturabsenkung erreichen zu können. Bevorzugt wird die als zurückversetzt angeordnetes Sensorelement 34 ausgebildete, erfindungsgemäße Druckmesseinrichtung in einem Kanal untergebracht, dessen Dämpfung durch die Kanalgeometrie minimiert ist. Neben der bereits mehrfach erwähnten Exponentialfunktion, welche die Rundung der den Kanal begrenzenden Wände charakterisiert, kann, wie vorstehend ebenfalls bereits angeklungen, auch eine Trichterform 40 mit kreisrunder Querschnittsverjüngung 48 in Richtung auf das in einem Abstand 44 von der Wand 16 angeordnete Sensorelement 34 der Druckmesseinrichtung 24 erreicht werden.It is also possible to combine a heat sink 46 with a channel 52, whose walls have one of the exponential function following rounding. The heat sink 46 may be formed in rib shape or be formed by the housing or parts of this, in order to achieve an additional temperature reduction can. The pressure measuring device according to the invention, which is designed as a backward-arranged sensor element 34, is preferably accommodated in a channel whose damping is minimized by the channel geometry. In addition to the exponential function already mentioned several times, which characterizes the rounding of the walls delimiting the channel, a funnel shape 40 with circular cross-sectional tapering 48, as already mentioned above, can also be used in the direction of the sensor element 34 of the pressure measuring device arranged at a distance 44 from the wall 16 24 can be achieved.

Claims (11)

Druckmesseinrichtung (24, 34) für eine Aufladeeinrichtung (10), insbesondere einen Abgasturbolader, zur Erfassung eines Druckes p2 eines gasförmigen Mediums (18) in einem Volumen (22) des gasförmigen Mediums (18) eines Verdichterteiles (12) der Aufladeeinrichtung (10), dadurch gekennzeichnet, dass die Druckmesseinrichtung (24) ein Sensorelement (34) aufweist, welches in einem Abstand (44) von einer das Volumen (22) begrenzenden Wand (16) angeordnet ist.Pressure measuring device (24, 34) for a charging device (10), in particular an exhaust gas turbocharger, for detecting a pressure p 2 of a gaseous medium (18) in a volume (22) of the gaseous medium (18) of a compressor part (12) of the charging device (10 ), characterized in that the pressure measuring device (24) has a sensor element (34) which is arranged at a distance (44) from a wall (16) delimiting the volume (22). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass das Sensorelement (34) innerhalb eines Kanals (36, 38, 40, 52) angeordnet ist, der in die das Volumen (22) begrenzende Wand (16) mündet.Pressure measuring device (24, 34) according to claim 1, characterized in that the sensor element (34) within a channel (36, 38, 40, 52) is arranged, which opens into the volume (22) bounding wall (16). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kanal (36) in Zylinderform (38) ausgeführt ist.Pressure measuring device (24, 34) according to claim 1, characterized in that the channel (36) in cylindrical form (38) is executed. Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kanal (36) in Trichterform (40) ausgeführt ist.Pressure measuring device (24, 34) according to claim 1, characterized in that the channel (36) in funnel shape (40) is executed. Druckmesseinrichtung (24, 34) gemäß Anspruch 2, dadurch gekennzeichnet, dass der Kanal (36, 52) einen sich kontinuierlich verjüngenden Querschnitt (48) in Richtung auf ein zurückversetzt angeordnetes Sensorelement (34) aufweist.Pressure measuring device (24, 34) according to claim 2, characterized in that the channel (36, 52) has a continuously tapering cross-section (48) in the direction of a recessed arranged sensor element (34). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kanal (36, 38, 40, 52) gerundete Wände (50) nach Art der Exponentialfunktion (52) aufweist.Pressure measuring device (24, 34) according to claim 1, characterized in that the channel (36, 38, 40, 52) has rounded walls (50) in the manner of the exponential function (52). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Druckmesseinrichtung (24, 34) über einen Kühlkörper (46), Kühlrippen oder das Gehäuse gekühlt ist.Pressure measuring device (24, 34) according to claim 1, characterized in that the pressure measuring device (24, 34) via a heat sink (46), cooling fins or the housing is cooled. Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kanal (36, 38, 40, 52) insbesondere einen gerundeten Einlauf (50) aufweist.Pressure measuring device (24, 34) according to claim 1, characterized in that the channel (36, 38, 40, 52) in particular a rounded inlet (50). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass das zurückversetzte Sensorelement (34) koaxial zur Symmetrieachse (54) des Kanals (36, 52) angeordnet ist und in einem Abstand (44) zum Kanal (36, 52) angeordnet ist, bezogen auf eine dem Volumen (22) des gasförmigen Mediums (18) zuweisende Seite einer Wand (16) des Verdichtergehäuses (14).Pressure measuring device (24, 34) according to claim 1, characterized in that the recessed sensor element (34) coaxially to the axis of symmetry (54) of the channel (36, 52) is arranged and at a distance (44) to the channel (36, 52) is, relative to a the volume (22) of the gaseous medium (18) facing side of a wall (16) of the compressor housing (14). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kanal (36, 38, 40, 52) symmetrisch zu einer Achse (54) ausgeführt ist.Pressure measuring device (24, 34) according to claim 1, characterized in that the channel (36, 38, 40, 52) is designed symmetrically to an axis (54). Druckmesseinrichtung (24, 34) gemäß Anspruch 1, dadurch gekennzeichnet, dass dieses ein bezogen auf eine Wand (16) zurückversetzt angeordnetes Sensorelement (34) umfasst, das in einem sich kontinuierlich verjüngenden Kanal (40, 42, 52) aufgenommen ist und einen Kühlkörper (46) aufweist oder über ein Gehäuseteil gekühlt ist.Pressure measuring device (24, 34) according to claim 1, characterized in that this comprises a relative to a wall (16) set back recessed sensor element (34) which is received in a continuously tapered channel (40, 42, 52) and a heat sink (46) or is cooled by a housing part.
EP08170228A 2007-12-21 2008-11-28 Pressure measurement device Withdrawn EP2072761A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710062185 DE102007062185A1 (en) 2007-12-21 2007-12-21 Pressure measuring device

Publications (2)

Publication Number Publication Date
EP2072761A2 true EP2072761A2 (en) 2009-06-24
EP2072761A3 EP2072761A3 (en) 2010-10-20

Family

ID=40430018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08170228A Withdrawn EP2072761A3 (en) 2007-12-21 2008-11-28 Pressure measurement device

Country Status (2)

Country Link
EP (1) EP2072761A3 (en)
DE (1) DE102007062185A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202322A1 (en) 2002-01-23 2003-07-31 Daimler Chrysler Ag Internal combustion engine with exhaust gas turbocharger has controller that controls turbine geometry if pressure in or upstream of turbine exceeds threshold to prevent turbine damage
DE102005056517A1 (en) 2005-11-28 2007-05-31 Robert Bosch Gmbh Compressor e.g. exhaust gas turbocharger, rotation speed determining method for use in e.g. diesel internal combustion engine, involves obtaining rotation speed of compressor from periodic fluctuation of portion of pressure signal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840098A1 (en) * 1998-09-03 2000-03-09 Asea Brown Boveri Method and device for relieving the thrust of a turbocharger
US6293103B1 (en) * 2000-09-21 2001-09-25 Caterpillar Inc. Turbocharger system to inhibit reduced pressure in intake manifold
DE10059701A1 (en) * 2000-12-01 2002-06-06 Alstom Switzerland Ltd Probe for measuring pressure vibrations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202322A1 (en) 2002-01-23 2003-07-31 Daimler Chrysler Ag Internal combustion engine with exhaust gas turbocharger has controller that controls turbine geometry if pressure in or upstream of turbine exceeds threshold to prevent turbine damage
DE102005056517A1 (en) 2005-11-28 2007-05-31 Robert Bosch Gmbh Compressor e.g. exhaust gas turbocharger, rotation speed determining method for use in e.g. diesel internal combustion engine, involves obtaining rotation speed of compressor from periodic fluctuation of portion of pressure signal

Also Published As

Publication number Publication date
DE102007062185A1 (en) 2009-06-25
EP2072761A3 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
DE602005004530T2 (en) EMISSION CONTROL DEVICE
EP2029976B1 (en) Mass flow sensor device with a flow guiding channel
EP2095085B1 (en) Adapter for pressure sensors
EP2690266B1 (en) Turbine for a combustion engine
EP1502016B1 (en) Device and method for determining a malfunction in a filter
DE102006007347A1 (en) Compressor for an internal combustion engine
DE102007012056A1 (en) System and method for improving performance of a fluid sensor for an internal combustion engine
DE102005056517A1 (en) Compressor e.g. exhaust gas turbocharger, rotation speed determining method for use in e.g. diesel internal combustion engine, involves obtaining rotation speed of compressor from periodic fluctuation of portion of pressure signal
DE102006060313A1 (en) Method for operating an internal combustion engine
EP2161569A2 (en) Method for calibrating a NOx/lambda sensor
DE10230531B4 (en) Device for determining at least one parameter of a medium flowing in a conduit
DE102006009295A1 (en) Exhaust gas turbocharger for an internal combustion engine
WO2013117271A1 (en) Method for avoiding pump surges in a compressor
EP2602164B1 (en) Arrangement of a suction device for an auxiliary apparatus
DE102009048684B4 (en) Kit with an air filter cartridge and a restrictor element
EP2982841B1 (en) Method for monitoring the state of a particulate filter, exhaust system and measuring device
EP2169209B1 (en) Assembly of an air mass flow measuring device in an intake system of a combustion engine
EP2072761A2 (en) Pressure measurement device
DE102018203936B4 (en) Exhaust system for an internal combustion engine and corresponding internal combustion engine
DE102005032924A1 (en) Exhaust-gas turbo charger`s operating state detecting method for motor vehicle, involves filtering specific frequency spectrum from pressure signal, applying evaluation logic, and evaluating frequency spectrum by utilizing Schmitt trigger
WO2019185555A1 (en) Apparatus for dehumidifying a pressure sensor inlet line of a particle filter, and motor vehicle having the same
EP3769052B1 (en) Sensor assembly
DE102010046851A1 (en) Detecting device for use in exhaust gas system for detecting nitrogen oxide contents in gas mixture from diesel combustion engine, has wall guiding gas stream to outlet opening after passing gas to sensor that is arranged in hollow body
EP3748139B1 (en) Separation device
DE102017006596A1 (en) Sensor device for an exhaust tract of an internal combustion engine, in particular for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110623

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110421