EP2072499B1 - Method for manufacturing thiodiglycolic dialkyl esters - Google Patents
Method for manufacturing thiodiglycolic dialkyl esters Download PDFInfo
- Publication number
- EP2072499B1 EP2072499B1 EP08169741A EP08169741A EP2072499B1 EP 2072499 B1 EP2072499 B1 EP 2072499B1 EP 08169741 A EP08169741 A EP 08169741A EP 08169741 A EP08169741 A EP 08169741A EP 2072499 B1 EP2072499 B1 EP 2072499B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solution
- process according
- aqueous
- alkali metal
- buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/14—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
Definitions
- the invention relates to a novel process for the preparation of dialkyl C 1 -C 10 thiodiglycolates.
- Thiodiglycolic acid dialkyl esters are important precursors for the production of specialty chemicals, for example for use in electronically conductive polymers.
- a major disadvantage of variant a) is that for the esterification of thiodiglycolic acid with alcohols with the aid of hydrochloric acid ( Schulze, Zeitschrift fur Chemie 1865, p. 78 ) or with the aid of sulfuric acid ( Seka, Reports 58, 1925, p. 1786 ) crystalline thiodiglycolic acid is needed. This means that the highly water-soluble thiodiglycolic acid must be separated from the water phase. This always leaves a portion of thiodiglycolic acid in the mother liquor and also falls in the isolation as a solid, the thiodiglycolic acid together with inorganic salts, so that it must be recrystallized again. Esterification from the aqueous solution therefore gives unsatisfactory results ( US 2,425,225 ).
- a particular difficulty in the reaction of chloroacetic acid ester with sodium sulfide is that sodium sulfide is a very strong base, while chloroacetic acid esters are very pH sensitive and readily saponify.
- the object of the present invention was to provide a process for preparing a thiodiglycolic acid dialkyl ester which gives the desired product in a simplified manner and with a better yield than in the prior art.
- the invention therefore provides a process for preparing alkyl thiodiglycolates of the general formula (I) R-OOC-CH2-S-CH2-COO-R (I), where R is a radical of branched or unbranched C 1 to C 10 -alkyl, characterized in that a haloacetic acid alkyl ester of the general formula (II) X-CH 2 -COO-R (II), where X is a chlorine or bromine atom and R has the meaning given for compounds of the formula (I), is reacted with an aqueous solution of alkali metal sulfide or alkali metal hydrogen sulfide in the presence of an aqueous pH buffer solution in the pH range between 5 and 8.
- the aqueous buffer solution is a dialkalihydrogenphosphate or alkali metal dihydrogenphosphate or ammonium acetate or ammonium chloride buffer solution.
- dialkalihydrogenphosphate are K 2 HPO 4 or Na 2 HPO 4
- alkali metal hydrogenphosphate are KH 2 PO 4 and NaH 2 PO 4 .
- aqueous solutions of both alkali sulfide (sodium or potassium sulfide) and alkali hydrogen sulfide (sodium or potassium hydrogen sulfide) can be used.
- concentration of the aqueous alkali sulfide solution is between 5 and 20% by weight and that of the alkali metal hydrogen sulphide solution is between 5 and 50% by weight.
- the metered addition of the reagents to the aqueous buffer solution may be carried out with stirring in a manner known per se, e.g. in a heatable jacketed vessel via pumps, through separate lines or via a static mixer.
- the C 1 -C 10 -haloacetic acid alkyl ester is usually added together with the alkali metal or alkali metal hydrogensulfide in a molar ratio of between 1: 1 and 3: 1. This molar ratio is preferably 2: 1.
- the metered addition may take place simultaneously or in portions, but preferably simultaneously.
- the simultaneous dosage is usually over a period of 0.5 to 24 hours.
- the temperature at which the dosage takes place should be in the range between 10 and 60 ° C, preferably 20 to 40 ° C.
- the reaction is carried out in the presence of a phase transfer catalyst.
- the commercially available catalysts are preferably tetrabutylammonium chloride, tributylmethylammonium chloride, methyltrioctylammonium chloride, methyltridecylammonium chloride, polyethylene glycol 400-40,000, crown ethers, tris [2- (2-methoxyethoxy) ethyl] amines or trialkylphosphonium salts.
- the phase transfer catalyst used is particularly preferably tetrabutylammonium chloride or polyethylene glycol 400.
- the crude product is separated from the aqueous buffer solution. This can e.g. done by extraction.
- the reaction solution is mixed with a water-immiscible solvent and the aqueous phase separated from the organic phase.
- the organic phase can then be subsequently, e.g. by distillation, the extractant are separated.
- the residue contains the desired product in yields of 88 to 95% of theory.
- branched or unbranched C 2 -C 4 -dialkyl ethers such as diethyl ether (DEE) and methyl tert-butyl ether (MTBE), or branched or unbranched dialkyl ketones, such as methyl isobutyl ketone (MIBK ), or branched or unbranched C 4 -C 10 hydrocarbons such as pentane, hexane, heptane or Cyclohexane, or aromatic compounds such as benzene, toluene, xylene or dichlorobenzene can be used.
- DEE diethyl ether
- MTBE methyl tert-butyl ether
- MIBK methyl isobutyl ketone
- C 4 -C 10 hydrocarbons such as pentane, hexane, heptane or Cyclohexane
- aromatic compounds such as benzene, toluene, xylene or
- thiodiglycolic acid dialkyl esters with C 1 -C 10 -alkyl radicals in the ester parts can be prepared by using the corresponding C 1 -C 10 -halogacetic acid alkyl ester.
- the C 1 -C 4 -alkyl esters, ie, thiodiglycolic acid dimethyl, thiodiglycolic acid diethyl, thiodiglycolic acid dipropyl or thiodiglycolic acid dibutyl ester, are preferably prepared. Particularly preferred are thiodiglycolic acid and diethyl thioic acid.
- the Thiodiglycolsuredialkylester obtained by the described method can be further processed directly without purification by distillation. Due to the almost quantitative and rapid conversion of sodium sulfide, neither the exhaust air nor the wastewater contains appreciable amounts of hydrogen sulfide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Die Erfindung betrifft ein neues Verfahren zur Herstellung von C1-C10-Thiodiglycolsäuredialkylester.The invention relates to a novel process for the preparation of dialkyl C 1 -C 10 thiodiglycolates.
Thiodiglycolsäuredialkylester sind wichtige Vorprodukte für die Herstellung von Spezialchemikalien zum Beispiel für den Einsatz in elektronisch leitfähigen Polymeren.Thiodiglycolic acid dialkyl esters are important precursors for the production of specialty chemicals, for example for use in electronically conductive polymers.
Die Synthese von Thiodiglycolsäurediester ist prinzipiell bereits seit langem bekannt.The synthesis of thiodiglycolic diester has been known in principle for a long time.
Es gibt im wesentlichen zwei Wege Thiodiglycolsäuredialkylester zu synthetisieren:
- a) Veresterung von Thiodiglycolsäure mit Alkoholen unter saurer Katalyse.
- b) Umsetzung von Chloressigsäureester mit Natriumsulfid.
- a) Esterification of thiodiglycolic acid with alcohols under acidic catalysis.
- b) Reaction of chloroacetic acid ester with sodium sulfide.
Ein wesentlicher Nachteil der Variante a) ist, dass für die Veresterung der Thiodiglycolsäure mit Alkoholen mit Hilfe von Salzsäure (
Um die aufwändige Isolierung der Thiodiglycolsäure als Feststoff zu umgehen, wird in der
Eine besondere Schwierigkeit bei der Umsetzung von Chloressigsäureester mit Natriumsulfid liegt darin, dass Natriumsulfid eine sehr starke Base ist, während Chloressigsäureester sehr pHempfindlich sind und leicht verseifen.A particular difficulty in the reaction of chloroacetic acid ester with sodium sulfide is that sodium sulfide is a very strong base, while chloroacetic acid esters are very pH sensitive and readily saponify.
Leitet man eine wässrige Natriumsulfidlösung in Chloressigsäuremethylester ein, erhält man aufgrund der Verseifung des Edukts und/oder des Produkts nur mäßige Ausbeuten an Thiodiglycolsäuremethylester. In der
Eine Möglichkeit die Verseifung des Chloressigsäureesters zu vermeiden, ist, wie in der
Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung eines Thiodiglycolsäuredialkylesters zur Verfügung zu stellen, welches das gewünschte Produkt auf vereinfachte Weise und mit besserer Ausbeute erbringt, als nach dem bisherigen Stand der Technik.The object of the present invention was to provide a process for preparing a thiodiglycolic acid dialkyl ester which gives the desired product in a simplified manner and with a better yield than in the prior art.
Erstaunlicherweise konnte festgestellt werden, dass durch Einstellen geeigneter Reaktionsbedingungen die Umsetzung von Chloressigsäuremethylester mit Alkalisulfid oder Alkalihydrogensulfid zum Thiodiglycolsäuredimethylester in wässriger Lösung doch sehr hohe Ausbeuten liefert. Entscheidend ist, dass die Sulfidverbindung schnell abreagiert und damit der pH-Wert in der Lösung im Bereich 5 < pH < 8 gehalten wird.Surprisingly, it has been found that by adjusting suitable reaction conditions, the reaction of methyl chloroacetate with alkali metal sulfide or alkali metal hydrogen sulfide to dimethyl thiodiglycolate in aqueous solution yields very high yields. It is crucial that the sulfide compound reacts quickly and thus the pH in the solution in the range 5 <pH <8 is maintained.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Thiodiglycolsäurealkylester der allgemeinen Formel (I)
R-OOC-CH2-S-CH2-COO-R (I),
wobei R für einen Rest von verzweigten oder unverzweigten C1 bis C10-Alkyl steht,
dadurch gekennzeichnet, dass ein Halogenessigsäurealkylester der allgemeinen Formel (II)
X-CH2-COO-R (II),
wobei X für ein Chlor- oder Bromatom steht und R die Bedeutung wie für Verbindungen der Formel (I) angegeben hat,
mit einer wässrigen Lösung von Alkalisulfid oder Alkalihydrogensulfid in Gegenwart einer wässrigen pH-Puffer-Lösung im pH-Bereich zwischen 5 und 8 umgesetzt wird.The invention therefore provides a process for preparing alkyl thiodiglycolates of the general formula (I)
R-OOC-CH2-S-CH2-COO-R (I),
where R is a radical of branched or unbranched C 1 to C 10 -alkyl,
characterized in that a haloacetic acid alkyl ester of the general formula (II)
X-CH 2 -COO-R (II),
where X is a chlorine or bromine atom and R has the meaning given for compounds of the formula (I),
is reacted with an aqueous solution of alkali metal sulfide or alkali metal hydrogen sulfide in the presence of an aqueous pH buffer solution in the pH range between 5 and 8.
Bevorzugt ist die wässrige Pufferlösung eine Dialkalihydrogenphosphat- oder Alkalidihydrogenphosphat- oder Ammoniumacetat- oder Ammoniumchlorid-Pufferlösung. Beispiele für Dialkalihydrogenphosphat sind K2HPO4 oder Na2HPO4, Beispiele für Alkalidihydrogenphosphat sind KH2PO4 und NaH2PO4.Preferably, the aqueous buffer solution is a dialkalihydrogenphosphate or alkali metal dihydrogenphosphate or ammonium acetate or ammonium chloride buffer solution. Examples of dialkalihydrogenphosphate are K 2 HPO 4 or Na 2 HPO 4 , examples of alkali metal hydrogenphosphate are KH 2 PO 4 and NaH 2 PO 4 .
Als Sulfidquelle können wässrige Lösungen sowohl von Alkalisulfid (Natrium- oder Kaliumsulfid) als auch von Alkalihydrogensulfid (Natrium- oder Kaliumhydrogensulfid) eingesetzt werden. Die Konzentration der wässrigen Alkalisulfidlösung liegt dabei zwischen 5 und 20 Gew% und die der Alkalihydrogensulfidlösung liegt zwischen 5 und 50 Gew%.As the sulfide source, aqueous solutions of both alkali sulfide (sodium or potassium sulfide) and alkali hydrogen sulfide (sodium or potassium hydrogen sulfide) can be used. The concentration of the aqueous alkali sulfide solution is between 5 and 20% by weight and that of the alkali metal hydrogen sulphide solution is between 5 and 50% by weight.
Die Zudosierung der Reagenzien zur wässrigen Pufferlösung kann unter Rühren auf an sich bekannte Weise, z.B. in einem beheizbaren Doppelmantelgefäß über Pumpen, durch getrennte Leitungen oder über einen statischen Mischer, erfolgen.The metered addition of the reagents to the aqueous buffer solution may be carried out with stirring in a manner known per se, e.g. in a heatable jacketed vessel via pumps, through separate lines or via a static mixer.
Üblicherweise wird der C1-C10-Halogenessigsäurealkylester zusammen mit dem Alkali- bzw. Alkalihydrogensulfid in einem Molverhältnis zwischen 1:1 bis 3:1 zudosiert. Bevorzugt beträgt dieses Molverhältnis 2:1. Die Zudosierung kann dabei simultan, oder portionsweise, bevorzugt aber simultan erfolgen.The C 1 -C 10 -haloacetic acid alkyl ester is usually added together with the alkali metal or alkali metal hydrogensulfide in a molar ratio of between 1: 1 and 3: 1. This molar ratio is preferably 2: 1. The metered addition may take place simultaneously or in portions, but preferably simultaneously.
Die simultane Dosierung erfolgt dabei in der Regel über einen Zeitraum von 0,5 bis 24 Stunden. Die Temperatur, bei der die Dosierung erfolgt, sollte im Bereich zwischen 10 und 60°C, bevorzugt 20 bis 40°C.The simultaneous dosage is usually over a period of 0.5 to 24 hours. The temperature at which the dosage takes place should be in the range between 10 and 60 ° C, preferably 20 to 40 ° C.
Vorzugsweise wird die Reaktion in Gegenwart eines Phasentransferkatalysators durchgeführt. Bevorzugt sind dabei die kommerziell erhältlichen Katalysatoren Tetrabutylammoniumchlorid, Tributylmethylammoniumchlorid, Methyltrioctylammoniumchlorid, Methyltridecylammoniumchlorid, Polyethylenglycol 400 - 40.000, Kronenether, Tris[2-(2-methoxyethoxy)ethyl]amine oder Trialkylphosphoniumsalze. Besonders bevorzugt wird als Phasentransferkatalysator Tetrabutylammoniumchlorid oder Polyethylenglycol 400 eingesetzt.Preferably, the reaction is carried out in the presence of a phase transfer catalyst. The commercially available catalysts are preferably tetrabutylammonium chloride, tributylmethylammonium chloride, methyltrioctylammonium chloride, methyltridecylammonium chloride, polyethylene glycol 400-40,000, crown ethers, tris [2- (2-methoxyethoxy) ethyl] amines or trialkylphosphonium salts. The phase transfer catalyst used is particularly preferably tetrabutylammonium chloride or polyethylene glycol 400.
Es muss darauf geachtet werden, dass der pH-Wert während der Reaktion zwischen 5 und 8 gehalten wird.Care must be taken that the pH is maintained between 5 and 8 during the reaction.
Nach erfolgter Reaktion wird das Rohprodukt aus der wässrigen Pufferlösung abgetrennt. Dies kann z.B. durch Extraktion erfolgen. Hierzu wird die Reaktionslösung mit einem mit Wasser nicht mischbaren Lösungsmittel versetzt und die wässrige Phase von der organischen Phase abgetrennt. Aus der organischen Phase kann dann anschließend, z.B. durch Destillation, das Extraktionsmittel abgetrennt werden. Der Rückstand enthält das gewünschte Produkt in Ausbeuten von 88 bis 95 % der Theorie.After the reaction, the crude product is separated from the aqueous buffer solution. This can e.g. done by extraction. For this purpose, the reaction solution is mixed with a water-immiscible solvent and the aqueous phase separated from the organic phase. The organic phase can then be subsequently, e.g. by distillation, the extractant are separated. The residue contains the desired product in yields of 88 to 95% of theory.
Als Extraktionsmittel zur Abtrennung des Rohprodukts aus der wässrigen Pufferlösung können verzweigte oder unverzweigte C2-C4-Dialkylether, wie Diethylether (DEE) und Methyl-tert.-butylether (MTBE), oder verzweigte oder unverzweigte Dialkyl-Ketone, wie Methylisobutylketon (MIBK), oder verzweigte oder unverzweigte C4-C10-Kohlenwasserstoffe wie Pentan, Hexan, Heptan oder Cyclohexan, oder aromatische Verbindungen wie Benzol, Toluol, Xylol oder Dichlorbenzol eingesetzt werden. Bevorzugt wird Toluol als Extraktionsmittel eingesetzt.As extracting agents for separating the crude product from the aqueous buffer solution, it is possible to use branched or unbranched C 2 -C 4 -dialkyl ethers, such as diethyl ether (DEE) and methyl tert-butyl ether (MTBE), or branched or unbranched dialkyl ketones, such as methyl isobutyl ketone (MIBK ), or branched or unbranched C 4 -C 10 hydrocarbons such as pentane, hexane, heptane or Cyclohexane, or aromatic compounds such as benzene, toluene, xylene or dichlorobenzene can be used. Preferably, toluene is used as the extraction agent.
Nach dem erfindungsgemäßen Verfahren können Thiodiglycolsäuredialkylester mit C1-C10-Alkylresten in den Esterteilen durch den Einsatz des entsprechenden C1-C10-Halogcnessigsäurealkylesters hergestellt werden. Bevorzugt stellt man die C1-C4-Alkylester, also Thiodiglycolsäuredimethyl-, Thiodiglycolsäurediethyl-, Thiodiglycolsäuredipropyl- oder Thiodiglycolsäuredibutylester her. Besonders bevorzugt sind dabei Thiodiglycolsäuredimethyl- und Thiosäurediglycolsäurediethylester.By the process according to the invention, thiodiglycolic acid dialkyl esters with C 1 -C 10 -alkyl radicals in the ester parts can be prepared by using the corresponding C 1 -C 10 -halogacetic acid alkyl ester. The C 1 -C 4 -alkyl esters, ie, thiodiglycolic acid dimethyl, thiodiglycolic acid diethyl, thiodiglycolic acid dipropyl or thiodiglycolic acid dibutyl ester, are preferably prepared. Particularly preferred are thiodiglycolic acid and diethyl thioic acid.
Die nach beschriebenen Verfahren gewonnenen Thiodiglycolsäuredialkylester können ohne destillative Aufreinigung direkt weiterverarbeitet werden. Aufgrund der nahezu quantitativen und schnellen Umsetzung von Natriumsulfid enthalten weder die Abluft noch das Abwasser nennenswerte Mengen an Schwefelwasserstoff.The Thiodiglycolsuredialkylester obtained by the described method can be further processed directly without purification by distillation. Due to the almost quantitative and rapid conversion of sodium sulfide, neither the exhaust air nor the wastewater contains appreciable amounts of hydrogen sulfide.
Die folgenden Beispiele sollen die Erfindung weiter erläutern.The following examples are intended to further illustrate the invention.
In einem 1 Itr.-Doppelmantelglasreaktor wurden 17,9 g Natriumdihydrogenphosphat-Dihydrat in 84,2 g Wasser gelöst (pH = 3,9) und mit 6,7 g Natronlauge (32%ig) auf pH = 6,0 gestellt. Die Pufferlösung wurde auf 33°C erwärmt und mit 13,0 g Tributylmethylammoniumchloridlösung (75%ig in Wasser) und 40,0 g Chloressigsäuremethylester versetzt. Simultan wurden 611,2 g Natriumsulfidlösung (16%ig in Wasser) sowie 182,1 g Chloressigsäuremethylester innerhalb von 2 h bei 30 - 35°C zudosiert. Anschließend wurden noch weitere 19,3 g Natriumsulfidlösung (16%ig in Wasser) zudosiert und 1 h bei 33°C nachgerührt. Die Reaktionslösung wurde mit 130 ml Toluol versetzt, kräftig gerührt und anschließend wurde die untere Phase abgetrennt. Nach Abdestillieren des Toluols im Vakuum bei ca. 300 mbar wurden 226,6 g einer klaren Flüssigkeit mit 93% Thiodiglycolsäuredimethylester und 6% Toluol erhalten. Dies entspricht einer Ausbeute der Theorie von 93%.17.9 g of sodium dihydrogen phosphate dihydrate were dissolved in 84.2 g of water in a 1 ltr. Jacketed glass reactor (pH = 3.9) and adjusted to pH = 6.0 with 6.7 g of sodium hydroxide solution (32% strength). The buffer solution was heated to 33 ° C and treated with 13.0 g of tributylmethylammonium chloride solution (75% in water) and 40.0 g of methyl chloroacetate. Simultaneously, 611.2 g of sodium sulfide solution (16% strength in water) and 182.1 g of methyl chloroacetate were added within 2 h at 30-35 ° C. Subsequently, a further 19.3 g of sodium sulfide solution (16% in water) were added and stirred at 33 ° C for 1 h. The reaction solution was added with 130 ml of toluene, stirred vigorously and then the lower phase was separated. After distilling off the toluene in vacuo at about 300 mbar 226.6 g of a clear liquid with 93% dimethyl thiodiglycolate and 6% toluene were obtained. This corresponds to a theoretical yield of 93%.
In einem 1 ltr.-Doppelmantelglasreaktor wurden 35,8 g Natriumdihydrogenphosphat-Dihydrat in 168,4 g Wasser gelöst (pH = 3,9) und mit 24,4 g Natronlauge (32%ig) auf pH = 7,0 gestellt. Die Pufferlösung wurde auf 33°C erwärmt und mit 13,0 g Tributylmethylammoniumchloridlösung (75%ig in Wasser) und 40,0 g Chloressigsäuremethylester versetzt. Simultan wurden 269,8 g Natriumhydrogensulfidlösung (26%ig in Wasser) sowie 182,1 g Chloressigsäuremethylester innerhalb von 2 h bei 30 - 35°C zudosiert. Dabei wurde durch simultane Zugabe von Natronlauge (32%ig in Wasser) der pH = 7 gehalten. Anschließend wurden noch weitere 8,5 g Natriumhydrogensulfidlösung (26% in Wasser) zudosiert und 1 h bei 33°C nachgerührt. Die Reaktionslösung wurde mit 130 ml Toluol versetzt und kräftig gerührt. Anschließend wurde die untere Phase abgetrennt. Nach Abdestillieren des Toluols im Vakuum bei ca. 300 mbar wurden 236,4 g einer klaren Flüssigkeit mit 91% Thiodiglycolsäuredimethylester und 6% Toluol erhalten. Dies entspricht einer Ausbeute der Theorie von 95%.In a 1 liter double-walled glass reactor, 35.8 g of sodium dihydrogen phosphate dihydrate were dissolved in 168.4 g of water (pH = 3.9) and adjusted to pH = 7.0 with 24.4 g of sodium hydroxide solution (32% strength). The buffer solution was heated to 33 ° C and treated with 13.0 g of tributylmethylammonium chloride solution (75% in water) and 40.0 g of methyl chloroacetate. Simultaneously, 269.8 g of sodium bisulfite solution (26% in water) and 182.1 g of methyl chloroacetate were added within 2 h at 30-35 ° C. The pH = 7 was maintained by simultaneous addition of sodium hydroxide solution (32% in water). Subsequently, a further 8.5 g of sodium bisulfite solution (26% in water) were metered in and stirred at 33 ° C. for 1 h. The reaction solution was mixed with 130 ml of toluene and stirred vigorously. Subsequently, the lower phase was separated. After distilling off the toluene in vacuo at about 300 mbar, 236.4 g of a clear liquid with 91% dimethyl thiodiglycolate and 6% toluene were obtained. This corresponds to a theoretical yield of 95%.
In einem 1 ltr.-Doppelmantelglasreaktor wurden 17,9 g Natriumdihydrogenphosphat-Dihydrat in 84,2 g Wasser gelöst (pH = 3,9) und mit 6,7 g Natronlauge (32%ig) auf pH = 6,0 gestellt. Die Pufferlösung wurde auf 33°C erwärmt und mit 13,0 g Tributylmethylammoniumchloridlösung (75%ig in Wasser) und 40,0 g Chloressigsäuremethylester versetzt. Simultan wurden 611,2 g Natriumsulfidlösung (16%ig in Wasser) sowie 182,1 g Chloressigsäuremethylester innerhalb von 2 h bei 30 - 35°C zudosiert. Anschließend wurden noch weitere 19,3 g Natriumsulfidlösung (16%ig in Wasser) zudosiert und 1 h bei 33°C nachgerührt. Die Reaktionslösung wurde mit 130 ml Toluol versetzt und kräftig gerührt. Anschließend wurde die untere Phase abgetrennt. Nach Abdestillieren des Toluols im Vakuum bei ca. 300 mbar wurden 226,6 g einer klaren Flüssigkeit mit 93% Thiodiglycolsäuredimethylester und 6% Toluol erhalten. Dies entspricht einer Ausbeute der Theorie von 93%.17.9 g of sodium dihydrogen phosphate dihydrate were dissolved in 84.2 g of water in a 1 liter double-walled glass reactor (pH = 3.9) and adjusted to pH = 6.0 with 6.7 g of sodium hydroxide solution (32% strength). The buffer solution was heated to 33 ° C and treated with 13.0 g of tributylmethylammonium chloride solution (75% in water) and 40.0 g of methyl chloroacetate. Simultaneously, 611.2 g of sodium sulfide solution (16% strength in water) and 182.1 g of methyl chloroacetate were added within 2 h at 30-35 ° C. Subsequently, a further 19.3 g of sodium sulfide solution (16% in Water) and stirred for 1 h at 33 ° C. The reaction solution was mixed with 130 ml of toluene and stirred vigorously. Subsequently, the lower phase was separated. After distilling off the toluene in vacuo at about 300 mbar 226.6 g of a clear liquid with 93% dimethyl thiodiglycolate and 6% toluene were obtained. This corresponds to a theoretical yield of 93%.
In einem 1 Itr.-Doppelmantelglasreaktor wurden 35,8 g Natriumdihydrogenphosphat-Dihydrat in 168,4 g Wasser gelöst (pH = 3,9) und mit 11,4 g Natronlauge (32%ig) auf pH = 6,0 gestellt. Die Pufferlösung wurde auf 33°C erwärmt und mit 13,0 g Polyethylenglycol 400 und 40,0 g Chloressigsäuremethylester versetzt. Simultan wurden 611,2 g Natriumsulfidlösung (16%ig in Wasser) sowie 182,1 g Chloressigsäuremethylester innerhalb von 2 h bei 30 - 35°C zudosiert. Anschließend wurden noch weitere 19,3 g Natriumsulfidlösung (16%ig in Wasser) zudosiert und 2 h bei 33°C nachgerührt. Die Reaktionslösung wurde mit 130 ml Toluol versetzt und kräftig gerührt. Anschließend wurde die untere Phase abgetrennt. Nach Abdestillieren des Toluols im Vakuum bei ca. 300 mbar wurden 227,2 g einer klaren Flüssigkeit mit 88% Thiodiglycolsäuredimethylester, 1% Methylthioglycolat, 1% Chloressigsäurethylester und 6% Toluol erhalten. Dies entspricht einer Ausbeute der Theorie von 90%.In a 1 ltr. Jacketed glass reactor, 35.8 g of sodium dihydrogen phosphate dihydrate were dissolved in 168.4 g of water (pH = 3.9) and adjusted to pH = 6.0 with 11.4 g of sodium hydroxide solution (32% strength). The buffer solution was heated to 33 ° C and treated with 13.0 g of polyethylene glycol 400 and 40.0 g of methyl chloroacetate. Simultaneously, 611.2 g of sodium sulfide solution (16% strength in water) and 182.1 g of methyl chloroacetate were added within 2 h at 30-35 ° C. Subsequently, a further 19.3 g of sodium sulfide solution (16% in water) were metered in and stirred at 33 ° C. for 2 h. The reaction solution was mixed with 130 ml of toluene and stirred vigorously. Subsequently, the lower phase was separated. After distilling off the toluene in vacuo at about 300 mbar, 227.2 g of a clear liquid containing 88% dimethyl thiodiglycolate, 1% methyl thioglycolate, 1% ethyl chloroacetate and 6% toluene were obtained. This corresponds to a theoretical yield of 90%.
In einem 1 1tr.-Doppelmantelglasreaktor wurden 15,8 g Eisessig in 168,4 g Wasser gelöst (pH = 2,3) und mit 19,0 g wässriger Ammoniaklösung (26%ig) auf pH = 6,0 gestellt. Die Pufferlösung wurde auf 33°C erwärmt und mit 16,0 g Tributylmethylammoniumchloridlösung (75%ig in Wasser) und 40,0 g Chloressigsäuremethylester versetzt. Simultan wurden 611,2 g Natriumsulfidlösung (16%ig in Wasser) sowie 182,1 g Chloressigsäuremethylester innerhalb von 2 h bei 30 - 35°C zudosiert. Anschließend wurden noch weitere 19,3 g Natriumsulfidlösung (16%ig in Wasser) zudosiert und 1 h bei 33°C nachgerührt. Die Reaktionslösung wurde mit 130 ml Toluol versetzt und kräftig gerührt. Anschließend wurde die untere Phase abgetrennt. Nach Abdestillieren des Toluols im Vakuum bei ca. 300 mbar wurden 223,8 g einer klaren Flüssigkeit mit 92% Thiodiglycolsäuredimethylester und 6% Toluol erhalten. Dies entspricht einer Ausbeute der Theorie von 90%.In a 1 ltr. Jacketed glass reactor, 15.8 g of glacial acetic acid were dissolved in 168.4 g of water (pH = 2.3) and adjusted to pH = 6.0 with 19.0 g of aqueous ammonia solution (26% strength). The buffer solution was warmed to 33 ° C and treated with 16.0 g of tributylmethylammonium chloride solution (75% in water) and 40.0 g of methyl chloroacetate. Simultaneously, 611.2 g of sodium sulfide solution (16% strength in water) and 182.1 g of methyl chloroacetate were added within 2 h at 30-35 ° C. Subsequently, a further 19.3 g of sodium sulfide solution (16% in water) were added and stirred at 33 ° C for 1 h. The reaction solution was mixed with 130 ml of toluene and stirred vigorously. Subsequently, the lower phase was separated. After distilling off the toluene in vacuo at about 300 mbar 223.8 g of a clear liquid with 92% dimethyl thiodiglycolate and 6% toluene were obtained. This corresponds to a theoretical yield of 90%.
In einem 1 ltr.-Doppelmantelglasreaktor wurden 35,8 g Natriumdihydrogenphosphat-Dihydrat in 168,4 g Wasser gelöst (pH = 3,9) und mit 12,2 g Natronlauge (32%ig) auf pH = 6,0 gestellt. Die Pufferlösung wurde auf 33°C erwärmt und mit 13,0 g Tributylmethylammoniumchloridlösung (75%ig in Wasser) und 40,0 g Chloressigsäureethylester versetzt. Simultan wurden 611,2 g Natriumsulfidlösung (16%ig in Wasser) sowie 275,3 g Chloressigsäureethylester innerhalb von 2 h bei 30 - 35°C zudosiert. Anschließend wurden noch weitere 19,3 g Natriumsulfidlösung (16%ig in Wasser) zudosiert und 1 h bei 33°C nachgerührt. Anschließend wurden noch weitere 19,3 g Natriumsulfidlösung (16%ig in Wasser) zudosiert und 2 h bei 33°C nachgerührt. Die Reaktionslösung wurde mit 130 ml Toluol versetzt und kräftig gerührt. Anschließend wurde die untere Phase abgetrennt. Nach Abdestillieren des Toluols im Vakuum bei ca. 300 mbar wurden 277,2 g einer klaren Flüssigkeit mit 90% Thiodiglycolsäurediethylester und 9% Toluol erhalten. Dies entspricht einer Ausbeute der Theorie von 95%.In a 1 liter double-walled glass reactor, 35.8 g of sodium dihydrogen phosphate dihydrate were dissolved in 168.4 g of water (pH = 3.9) and adjusted to pH = 6.0 with 12.2 g of sodium hydroxide solution (32%). The buffer solution was heated to 33 ° C and treated with 13.0 g of tributylmethylammonium chloride solution (75% in water) and 40.0 g of ethyl chloroacetate. Simultaneously, 611.2 g of sodium sulfide solution (16% in water) and 275.3 g of ethyl chloroacetate were added within 2 h at 30-35 ° C. Subsequently, a further 19.3 g of sodium sulfide solution (16% in water) were added and stirred at 33 ° C for 1 h. Subsequently, a further 19.3 g of sodium sulfide solution (16% in water) were metered in and stirred at 33 ° C. for 2 h. The reaction solution was mixed with 130 ml of toluene and stirred vigorously. Subsequently, the lower phase was separated. After distilling off the toluene in vacuo at about 300 mbar, 277.2 g of a clear liquid with 90% diethyl thiodiglycolate and 9% toluene were obtained. This corresponds to a theoretical yield of 95%.
Claims (10)
- Process for preparing alkyl thiodiglycolates of the general formula (I)
R-OOC-CH2-S-CH2-COO-R (I)
where R is a of branched or unbranched C1 to C10-alkyl radical,
characterized in that an alkyl haloacetate of the general formula (II)
X-CH2-COO-R (II)
where X is a chlorine or bromine atom and R is as defined for compounds of the formula (I)
is reacted with an aqueous solution of alkali metal sulphide or alkali metal hydrogensulphide in the presence of an aqueous pH buffer solution in the pH range between 5 and 8. - Process according to Claim 1, characterized in that the process is performed in the presence of a phase transfer catalyst.
- Process according to either of Claims 1 and 2, characterized in that the aqueous buffer solution comprises a dialkali metal hydrogenphosphate buffer, an alkali metal dihydrogenphosphate buffer, a sodium hydrogencarbonate buffer, an ammonium acetate buffer or an ammonium chloride buffer.
- Process according to any of Claims 1 to 3, characterized in that the pH range is between 6 and 8.
- Process according to any of Claims 1 to 4, characterized in that the aqueous alkali metal sulphide solution used is an aqueous sodium sulphide solution having a content between 5 and 30% by weight or an aqueous sodium hydrogensulphide solution having a content between 5 and 50% by weight.
- Process according to any of Claims 1 to 5, characterized in that the alkyl haloacetate of the formula (II) is a methyl, ethyl, propyl, butyl, pentyl, hexyl or cyclohexyl chloroacetate or a methyl, ethyl, propyl, butyl, pentyl, hexyl or cyclohexyl bromoacetate.
- Process according to any of Claims 1 to 6, characterized in that the alkyl haloacetate of the formula (II) and the alkali metal sulphide or alkali metal hydrogensulphide solution are metered in simultaneously in a molar ratio of 1:1 to 3:1 relative to one another.
- Process according to any of Claims 1 to 7, characterized in that the temperature of the reaction solution is in the range of 0 to 60°C.
- Process according to any of Claims 2 to 8, characterized in that the phase transfer catalyst used is tetrabutylammonium chloride, tributyl-methylammonium chloride, methyltrioctylammonium chloride, methyltridecylammonium chloride, polyethylene glycol 400 - 40 000, crown ethers, tris[2-(2-methoxyethoxy)ethyl]amine or a trialkyl-phosphonium salt.
- Process according to any of Claims 1 to 9, characterized in that the dialkyl C1-C10-thiodiglycolate is removed from the aqueous reaction solution with a water-immiscible organic solvent.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007062282A DE102007062282A1 (en) | 2007-12-21 | 2007-12-21 | Process for the preparation of dialkyl thiodiglycolates |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2072499A1 EP2072499A1 (en) | 2009-06-24 |
EP2072499B1 true EP2072499B1 (en) | 2012-02-22 |
Family
ID=40470102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08169741A Not-in-force EP2072499B1 (en) | 2007-12-21 | 2008-11-24 | Method for manufacturing thiodiglycolic dialkyl esters |
Country Status (9)
Country | Link |
---|---|
US (1) | US7642371B2 (en) |
EP (1) | EP2072499B1 (en) |
JP (1) | JP5324208B2 (en) |
KR (1) | KR101564105B1 (en) |
CN (1) | CN101462992B (en) |
AT (1) | ATE546428T1 (en) |
DE (1) | DE102007062282A1 (en) |
ES (1) | ES2380267T3 (en) |
TW (2) | TWI429622B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020451A1 (en) * | 2005-07-20 | 2007-01-25 | 3M Innovative Properties Company | Moisture barrier coatings |
US20210371985A1 (en) * | 2018-11-06 | 2021-12-02 | Atotech Deutschland Gmbh | Electroless nickel plating solution |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2262686A (en) | 1940-05-31 | 1941-11-11 | Monsanto Chemicals | Production of esters of thiocarboxylic acids |
US2425225A (en) | 1945-05-18 | 1947-08-05 | Cp Hall Co | Production of esters of thiodiglycolic acid |
DE2354098B2 (en) * | 1973-10-29 | 1976-05-13 | Akzo Gmbh, 5600 Wuppertal | METHOD FOR MANUFACTURING MERCAPTOCARBON ACIDS |
JP2693225B2 (en) * | 1989-05-17 | 1997-12-24 | 日本化学工業株式会社 | Sulfur-containing aliphatic carboxylic acid ester and method for producing the acid |
FR2723737B1 (en) * | 1994-08-19 | 1997-01-03 | Atochem Elf Sa | SYNTHESIS OF MERCAPTOCARBOXYL STEEL ESTERS |
US6869729B1 (en) * | 1999-02-01 | 2005-03-22 | John Pope | Single component sulfur-based cathodes for lithium-ion batteries |
EP1179220A2 (en) | 1999-02-01 | 2002-02-13 | Blue Sky Batteries, Inc. | Single component sulfur-based cathodes for lithium and lithium-ion batteries |
US6534668B2 (en) * | 2001-06-29 | 2003-03-18 | Dow Corning Corporation | Preparation of sulfur-containing organosilicon compounds using a buffered phase transfer catalysis process |
US6680398B1 (en) * | 2002-08-16 | 2004-01-20 | Dow Corning Corporation | Method of making mercaptoalkylalkoxysilanes |
-
2007
- 2007-12-21 DE DE102007062282A patent/DE102007062282A1/en not_active Withdrawn
-
2008
- 2008-11-24 EP EP08169741A patent/EP2072499B1/en not_active Not-in-force
- 2008-11-24 AT AT08169741T patent/ATE546428T1/en active
- 2008-11-24 ES ES08169741T patent/ES2380267T3/en active Active
- 2008-12-17 US US12/336,618 patent/US7642371B2/en not_active Expired - Fee Related
- 2008-12-19 JP JP2008324621A patent/JP5324208B2/en not_active Expired - Fee Related
- 2008-12-19 TW TW097149558A patent/TWI429622B/en not_active IP Right Cessation
- 2008-12-19 KR KR1020080129773A patent/KR101564105B1/en not_active IP Right Cessation
- 2008-12-19 TW TW102149163A patent/TW201429936A/en unknown
- 2008-12-22 CN CN200810187874.7A patent/CN101462992B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20090068152A (en) | 2009-06-25 |
CN101462992A (en) | 2009-06-24 |
CN101462992B (en) | 2013-11-06 |
KR101564105B1 (en) | 2015-10-28 |
DE102007062282A1 (en) | 2009-06-25 |
US20090163736A1 (en) | 2009-06-25 |
JP2009149646A (en) | 2009-07-09 |
ATE546428T1 (en) | 2012-03-15 |
US7642371B2 (en) | 2010-01-05 |
TW201429936A (en) | 2014-08-01 |
TWI429622B (en) | 2014-03-11 |
EP2072499A1 (en) | 2009-06-24 |
ES2380267T3 (en) | 2012-05-10 |
TW200948767A (en) | 2009-12-01 |
JP5324208B2 (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996033996A1 (en) | Process for preparing pure enantiomers of tropic acid esters | |
EP3655413B1 (en) | Preparation of glufosinate by converting 3-[n-butoxy(methyl)phosphoryl]-1-cyanopropylacetate to a mixture of n-butyl(3-amino-3-cyanopropyl)-methylphosphinate and (3-amino-3-cyanopropyl)-methylphosphinic acid ammonium salt | |
EP2748148A1 (en) | Method for purifying pyrazoles | |
EP1682527B1 (en) | Method for the production of statins | |
DE3322459A1 (en) | METHOD FOR PRODUCING ARYLAL CANOATE ESTERS AND ARYL ALKAN CARBONIC ACIDS (THIS) | |
EP3573951B1 (en) | Process for the preparaiton of dihydrolipoic acid | |
EP2072499B1 (en) | Method for manufacturing thiodiglycolic dialkyl esters | |
EP2706056B1 (en) | Method for the preparation and treatment of a reaction mixture containing triacetonamine | |
EP0056981A1 (en) | Process for the preparation of optically active 2-chloropropionic acid esters | |
EP0370391A2 (en) | Process for the preparation of 4,5-dichloro-6-ethyl pyrimidine | |
DE1906401A1 (en) | Process for the preparation of 4-acyloxy-azetidin-2-ones | |
EP3507270B1 (en) | Method for producing dialkyldicarbonates using tertiary amines as catalysts | |
EP1714964A1 (en) | Preparation of unsaturated cyclic orthoesters | |
DE69505613T2 (en) | Synthesis of mercaptocarboxylic acid esters | |
EP1713800B1 (en) | Method for producing a 2-(ethoxymethyl)tropane derivative | |
EP1019356B1 (en) | Method for producing 3-hydroxy-2-methylbenzoic acid | |
EP0251058A2 (en) | Process for the racemization of optically active phenoxy-propionic acid esters and their derivatives | |
EP0418662B1 (en) | Process for the preparation of 2-alkylamino-4-amino benzenesulphuric acids | |
DE102004023607A1 (en) | Process for the preparation of dialkyl dicarbonates | |
WO2001096277A1 (en) | Method for producing 2,3,4,6-tetramethyl mandelic acid and 2,3,4,6-tetramethyl mandelic acid acetate | |
DE2101359C3 (en) | Process for the preparation of 4-mercaptophenols | |
DE33497C (en) | Process for the preparation of substituted quinoline derivatives from imidochlorides and malonic acid or acetoacetic esters | |
DE10209583B4 (en) | Process for the preparation of 4- (6-bromohexyloxy) -butylbenzene | |
DE19934231B4 (en) | Process for the preparation of 1-substituted 5-hydroxy-imidazoline-2,4-diones and 1-substituted 5-alkoxy-imidazoline-2,4-diones | |
DE2429757C3 (en) | Process for the preparation of 3-hexyn-1-ol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20091228 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100208 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 546428 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008006469 Country of ref document: DE Effective date: 20120419 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2380267 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120510 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120622 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120622 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20121123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008006469 Country of ref document: DE Effective date: 20121123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008006469 Country of ref document: DE Representative=s name: WICHMANN, BIRGID, DIPL.-CHEM. DR.RER.NAT., DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008006469 Country of ref document: DE Representative=s name: WICHMANN, BIRGID, DIPL.-CHEM. DR.RER.NAT., DE Effective date: 20131213 Ref country code: DE Ref legal event code: R081 Ref document number: 502008006469 Country of ref document: DE Owner name: SALTIGO GMBH, DE Free format text: FORMER OWNER: SALTIGO GMBH, 40764 LANGENFELD, DE Effective date: 20131213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081124 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20151111 Year of fee payment: 8 Ref country code: FI Payment date: 20151111 Year of fee payment: 8 Ref country code: DE Payment date: 20151118 Year of fee payment: 8 Ref country code: GB Payment date: 20151118 Year of fee payment: 8 Ref country code: IE Payment date: 20151109 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20151014 Year of fee payment: 8 Ref country code: AT Payment date: 20151027 Year of fee payment: 8 Ref country code: BE Payment date: 20151111 Year of fee payment: 8 Ref country code: FR Payment date: 20151008 Year of fee payment: 8 Ref country code: NL Payment date: 20151110 Year of fee payment: 8 Ref country code: CZ Payment date: 20151104 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008006469 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20161201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 546428 Country of ref document: AT Kind code of ref document: T Effective date: 20161124 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170601 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161124 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161125 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181120 |