EP2072161B1 - Method for controlling the pouring movement of a ladle - Google Patents

Method for controlling the pouring movement of a ladle Download PDF

Info

Publication number
EP2072161B1
EP2072161B1 EP08171100A EP08171100A EP2072161B1 EP 2072161 B1 EP2072161 B1 EP 2072161B1 EP 08171100 A EP08171100 A EP 08171100A EP 08171100 A EP08171100 A EP 08171100A EP 2072161 B1 EP2072161 B1 EP 2072161B1
Authority
EP
European Patent Office
Prior art keywords
characteristic
pouring
mold
casting
spoon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08171100A
Other languages
German (de)
French (fr)
Other versions
EP2072161A1 (en
Inventor
Dr. Eberhard Kroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reis Group Holding GmbH and Co KG
Original Assignee
Reis Group Holding GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reis Group Holding GmbH and Co KG filed Critical Reis Group Holding GmbH and Co KG
Priority to PL08171100T priority Critical patent/PL2072161T3/en
Publication of EP2072161A1 publication Critical patent/EP2072161A1/en
Application granted granted Critical
Publication of EP2072161B1 publication Critical patent/EP2072161B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/02Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by volume
    • B22D39/026Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by volume using a ladler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel

Definitions

  • the invention relates to a method for controlling a pouring movement of a ladle for pouring a molten metal such as molten metal into a mold such as mold, wherein a mold-specific Eing mankennline is predetermined and stored in dependence of a cast into the mold melted volume over time.
  • a method of the type mentioned above is in DE-A-10 2006 034 044 described.
  • a casting curve for a robot controller of a robot is detected, which leads a ladle.
  • a remote control device With a remote control device, a manual pouring of a melt from the ladle is performed.
  • the time course of the robot movement and / or the time course of the casting weights are recorded and stored. The stored time history is provided for use in the robot controller.
  • a method for casting castings and a robot system for detecting a casting curve will be described. Changes in the geometry of the pouring ladle, for example when using different ladles, are not taken into account in the known method.
  • Chill casting is used to cut metal foils with liquid molten aluminum to produce parts with complex geometries.
  • the filling with molten metal can u. a. also be automated with robots or other automation devices.
  • the time course of material filling is of the utmost importance.
  • simulation systems that provide the input quantity (material flow) over the course of time in the form of a pouring characteristic as output information.
  • the automation device for filling the molten metal into the mold is equipped with a ladle.
  • the ladle is attached to a numerically controlled axle and is tilted over the casting axis during the pouring process.
  • the timing of the pouring stream depends critically on the geometry of the pouring ladle, it is necessary to adjust the pouring motion for a given pouring ladle geometry. This is usually done empirically. After changing the ladle, especially when changing the geometry of the ladle, the pouring movement must be optimized again.
  • the present invention is based on the object of developing a method of the type mentioned at the outset in such a way that the pouring movement can be completely automated, planned and controlled. Also, the set-up times are to be shortened after a change of G manlöffelgeometrie.
  • the pouring movement is automatically generated on the basis of a given casting-specific pouring characteristic and at least one casting spoon-specific pouring characteristic.
  • the generated data are the position and inclination of the ladle as a function of time.
  • the movement is controlled in such a way that results in a continuous speed profile of all axes involved in the casting process, for example of a robot.
  • the basis for automatic motion generation is the pouring characteristic, which defines the required filling quantity (material flow) over the course of time.
  • the characteristic curve is read into the controller of the automation device and can be visualized there and, if necessary, adjusted manually and graphically and / or numerically.
  • the pouring curve must be in the form of "poured material volume over time", ie. accumulated volume. It can be specified by simulation software or manually.
  • the pouring characteristic is present only as "material flow per unit of time"
  • the accumulated material volume over the course of time must be calculated by integral formation. Since the material flow characteristic is not always functionally describable, numerical integration methods are used here.
  • the pouring characteristic must be in the form of "poured volume of material above the bucket tilt", i. H. accumulated volume. This characteristic can be created using two different methods.
  • the pouring characteristic is determined empirically as a function of the poured out volume of molten material above the pouring ladle inclination.
  • a fully filled ladle is gradually tilted until it is completely emptied.
  • the amount of material poured out is measured by an electronic balance and the measured value is transmitted to the automatic casting machine control.
  • the control records the measured values and, knowing the material-specific volume weight, creates a characteristic curve of the (accumulated) material volume. After changing the geometry of the pouring ladle, the pouring characteristic must be determined again.
  • the pouring characteristic as a function of the poured out volume of molten material above the casting ladle inclination, i. H. accumulated volume, with knowledge of the casting bucket geometry as 3D model and assuming a horizontal melt level mirror calculated analytically.
  • the time course of the pouring movement can be calculated and controlled automatically.
  • the casting machine can also be tilted during the pouring movement in another procedure (tilting molding machine).
  • the mold can be transferred during the pouring, for example, from an inclined initial position to a vertical end position.
  • the time profile of the mold movement can be determined and stored in a characteristic curve for the tilting movement over the course of time.
  • the characteristic curve for the tilting movement over time can be determined by a simulation software.
  • a first procedure provides that both the pouring movement of the ladle and the movement of the mold are controlled by one and the same controller, wherein the Eing mankennline and the characteristic for the tilting movement are based on a common time axis, starting from the Eing mankennline to each Timing during the pouring from the characteristic curve for the tilting movement the required G collect ein and starting from the optimum pouring volume on the Ausg intelligentkennline the corresponding G manlöffelne Trent is determined, whereby an automatic control of the inclination and the position of the ladle and the mold takes place.
  • the mold by an independent controller, wherein the current position of the mold is detected by a position sensor coupled thereto and transmitted to the control of the ladle, wherein the Eing mankennline taken at any time a Eing manvolumen and the associated pouring volume by means of Ausg jamkennline the associated inclination and position of the ladle is determined, wherein the tracking of the pouring of the ladle is carried out by a kinematic transformation, taking into account the current position of the mold and wherein a tool Center Point (TCP) is tracked so that a spout of the ladle is always moved over an insertion opening of the mold.
  • TCP tool Center Point
  • a further preferred procedure provides that interim values are respectively interpolated between discretely tapped characteristic values and output by the controller of the automatic casting machine to a drive of the casting mold and / or a casting spoon drive, so that a continuous movement results.
  • Another preferred procedure is an offline program generation, wherein a motion program for the control of the automation device is generated via an algorithm from information of Eing mankennline, Ausg jamkennline and possibly. Characteristic curve for the tilting movement.
  • This method has the advantage that the generated program can be archived, manually changed and possibly transferred to other casting machines.
  • a further preferred procedure is characterized by an online generation of motion, wherein the required position or inclination of the ladle and / or the mold continuously determined from the given characteristic data or characteristic tables over time and set immediately by the controller of the automation device such as casting machine ,
  • the presented methods offer the advantage that a casting task can be completely automated, planned and executed.
  • the automatic calibration after changing the G devislöffelgeometrie significantly reduces set-up times.
  • Fig. 1 shows purely schematically an apparatus 10 for filling a melted material 12 such as molten metal in a mold such as mold 14 for producing a molded part.
  • the apparatus 10 comprises an automation device 16, such as a casting machine or robot, which is equipped to fill the liquid metal 12 with a ladle 18.
  • the ladle 18 is attached to a numerically controlled axle 20 and is at the Eing manvorgang inclined over this axis.
  • further kinematic axes 22, 24, 26, 28 of the robot 16 can be coordinated.
  • the mold 14 may have a tilting device 30, with which the mold 14 during the pouring process from an example inclined initial position in an example vertical end position is tilted.
  • the control of the robot 16 via a controller 32 which can simultaneously control the tilting device 30 of the mold.
  • the tilting device 30 may also be controlled by an independent controller 33.
  • the position of the mold 14 is detected via an external position encoder 34 and passed to the controller of the robot 16.
  • the invention is based on the idea, starting from a given Kokillpezifischen Eing mankennline A, a pouring bucket specific Ausg tellkennline B and, if necessary. Characteristic for the tilting movement of the mold C, hereinafter called Kokillenkennline C automatically generate the pouring of the ladle.
  • Fig. 2a shows the Eing mankennline A as a function of a cast-in volume of molten material Ve [liter] 1 over the time course t [sec].
  • the Eing mankennline A can be specified by a simulation software or manually. It describes the optimal course of the melt-filling process and provides as initial information the amount of waste Ve [liters] (melt stream or material flow) over time.
  • Fig. 2b shows a pouring characteristic B as a function of the poured out volume of molten material Va [liters] above the G confuselöffelne Trent G [°]. Here, the accumulated melt volume is shown.
  • the pouring curve B can be created by means of two different methods.
  • the knowledge of the geometry of the pouring ladle, for example of a 3D model, and the level of the molten material always lying horizontally enables the amount of molten material poured out to be calculated analytically as a function of the pouring ladle inclination G.
  • there is the possibility in an automatic calibration process gradually tilt a fully filled ladle until completely drained.
  • the controller 32 logs the measured values and prepares the pouring characteristic curve B from the (accumulated) melt material volume, knowing the material-specific volume weight. This is a pouring bucket-specific pouring curve B. After changing the pouring ladle geometry, the pouring curve B must be determined again.
  • Fig. 2c the Kokillenkennline C shown.
  • the mold 14 during the Eing manvorgangs z. B. to transfer from an inclined initial position in a vertical end position.
  • the temporal course of the mold movement can be described in the Kokillenkennline as a function of the mold position K [deg °] over the time course t [sec].
  • the Kokillenkennline C can be determined either by a simulation software or - when the mold 14 is moved by the external control 33 - by recording the Kokillenfest using the coupled position controller 34 during a real Eing manvorgangs.
  • Fig. 3 shows a method wherein the mold 14 is controlled by the automatic casting machine 32.
  • the Eing mankennline A and the Kokillenkennline C is based on a common time axis t [sec].
  • the required casting mold position Kact is tapped off via the time Tact elapsed since the start of pouring with the aid of the mold characteristic curve C and the required pouring volume Vact from the pouring characteristic A.
  • the corresponding G manlöffel tilt Gact is tapped in the Ausg intelligentkennline B.
  • the casting machine control 32 sets about the required inclination G, K for ladle and mold.
  • Fig. 4 shows a process flow, wherein the mold 14 is controlled by the independent external controller 33.
  • the mold inclination K [° degrees] does not have to be set exactly, and the mold 14 is time-adjusted by an external controller 33.
  • the current position of the mold 14 is detected by the position sensor 34 coupled thereto and transmitted to the casting machine control.
  • the amount of volume Vact is taken from the pouring characteristic A via the continuous pouring time t [sec] and the pouring spoon position Gact is taken from the pouring characteristic B.
  • the tracking of the casting machine or robot 16 is carried out by a kinematic transformation, which takes into account the current position of the mold 14 according to position sensor 34 (conveyor synchronization).
  • a spout 36 of the ladle 18 as TCP (Tool Center Point) without orientation tracked so that the spout 36 of the ladle 18 is always moved over a filling opening of the mold 14.
  • the additionally required inclination G of the ladle 18 and thus the metering takes place via pouring ladle inclination Gact from the pouring characteristic D.
  • the automation device 10 moves the ladle 18 so that the G manlöffelposition is always tracked optimally to the filling opening of the mold.
  • intermediate values are interpolated between the discretely tapped characteristic values and output by the automatic casting machine controller 32 to the mold drive 30 and / or the ladle drive 16, so that a continuous movement is generated.
  • an algorithm In the case of offline programming, an algorithm generates a movement program for the robot 16 from the above-mentioned information. In this case, intermediate positions are generated, each with a speed specification for each intermediate position. This method has the advantage that the generated program can be archived, manually changed and possibly transferred to other robots or casting machines.
  • the required position of the ladle 18 is continuously determined from the given characteristic tables or characteristic values over the course of time and set on the robot or casting machine formats.
  • the other axes 20, 22, 24, 26, 28 of the robot are tracked by a kinematic transformation so that the spout 36 of the ladle 18 performs a defined path movement (casting movement).
  • An altered inclination K of the mold 14 is also included in the calculation of the robot movement.
  • the presented method offers the advantage that after replacing the ladle 18 or when using different ladle geometries, the controller, after automatic calibration, can automatically calculate a movement for the robot or automatic casting machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

The method for controlling a pouring movement of a spoon (18) for pouring a molten material (12) e.g. molten metal into a casting mold (14) e.g. cast, comprises predetermining a mold-specific casting characteristic (A) with respect to a volume of the molten product in the mold via a time course and storage of the casting characteristic, determining a spoon-specific pouring characteristic as function of a volume of the molten product from the spoon over the inclination of the spoon and storage of the pouring characteristic, and automatically generating the progress of the pouring movement. The method for controlling a pouring movement of a spoon (18) for pouring a molten material (12) e.g. molten metal into a casting mold (14) e.g. cast, comprises predetermining a mold-specific casting characteristic (A) with respect to a volume of the molten product in the mold via a time course and storage of the casting characteristic, determining a spoon-specific pouring characteristic as function of a volume of the molten product from the spoon over the inclination of the spoon and storage of the pouring characteristic, and automatically generating the progress of the pouring movement, where the volume of the molten product is determined on the basis of the casting characteristic at each time, and is equated to an optimal volume of the molten product, so that an optimal inclination is regulated to each time via the pouring characteristic. The casting characteristic is simulated as function of the volume of the molten product over the time course by simulation software or manually simulated. The pouring characteristic is empirically determined as a function of the pouring volume of the molten-product over the spoon inclination, where a full-filled spoon is gradually inclined in an automatic calibration procedure until completely emptying the spoon. During the tilting motion, the filled quantity is measured by an electronic balance and the measured value is transferred to a controller (32), in which the measured values are recorded and are created under the knowledge of the specific density of the molten product. The pouring characteristic is analytically calculated as a function of the pouring volume of the molten-product over the spoon inclination that is accumulated volume, under the knowledge of spoon geometry such as three-dimensional-model and under a condition of a horizontally lying molten-product reflector. After a change of spoon geometry, the pouring characteristic is determined according to the new spoon geometry. The mold is moved from an inclined initial position into a vertical end position, where the progress of the movement of the mold in a characteristic for the tilting motion (mold characteristic) is determined and stored as function of the mold position over a time course. The mold characteristic is determined by a simulation method and with external control by recording the mold movement using a coupled position detector (34) during a casting process. The pouring movement of the spoon and the movement of the mold are controlled by the same control. The casting characteristic and the mold characteristic lie in a common time axis. The mold position on the basis of the casting characteristic at each time during the casting process from the mold characteristic and the spoon inclination on the basis of the optimal casting volume over the pouring characteristic are determined so that an automatic control of the inclination of the spoon and the mold takes place. The mold is controlled by an independent controller. The actual position of the mold is detected by the position detector and is transferred to the control of the spoon, where a casting-melt volume is obtained from the casting characteristic at each time and is determined via the associated pouring-melt volume by the pouring characteristic of the associated spoon position. The tracking of the pouring movement of the spoon takes place by a kinematic transformation, where the actual position of the mold is considered and a tool center point is adjusted in such a way that a curvature of the spoon is moved over a charging hole of the mold. Intermediate values are interpolated between discretely measured characteristic values and are provided by controlling the casting machine at a drive of the mold and/or a spoon drive, so that it results a continuous movement. An off-line program generation is carried out, where a movement program for controlling the automation equipment is produced over an algorithm from information of the casting characteristic, pouring characteristic and optionally mold characteristic. An on-line movement generation is carried out, where the position of the spoon and/or the mold is continuously determined via a time course from the given characteristic data and/or characteristic tables and is immediately adjusted by controlling the automation equipment as casting machine.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Steuerung einer Ausgießbewegung eines Gießlöffels zum Ausgießen eines Schmelzgutes wie Metallschmelze in eine Gießform wie Kokille, wobei eine gießformspezifische Eingießkennlinie in Abhängigkeit eines in die Gießform eingegossenen Schmelzgutvolumens über dem Zeitverlauf vorgegeben und gespeichert wird.The invention relates to a method for controlling a pouring movement of a ladle for pouring a molten metal such as molten metal into a mold such as mold, wherein a mold-specific Eingießkennlinie is predetermined and stored in dependence of a cast into the mold melted volume over time.

Ein Verfahren der oben genannten Art ist in der DE-A-10 2006 034 044 beschrieben. Dabei wird eine Gießkurve für eine Robotersteuerung eines Roboters erfasst, der einen Gießlöffel führt. Mit einem Fernbedienungsgerät wird ein manuelles Abgießen einer Schmelze aus dem Gießlöffel durchgeführt. Während des Abgießens wird der zeitliche Verlauf der Roboterbewegung oder/und der zeitliche Verlauf der Abgussgewichte erfasst und gespeichert. Der gespeicherte zeitliche Verlauf wird für die Verwendung in der Robotersteuerung bereitgestellt. Ferner wird ein Verfahren zum Gießen von Gussteilen und ein Robotersystem zum Erfassen einer Gießkurve beschrieben. Änderungen der Gießlöffelgeometrie beispielsweise bei Verwendung verschiedener Gießlöffel werden bei dem bekannten Verfahren nicht berücksichtigt.A method of the type mentioned above is in DE-A-10 2006 034 044 described. In this case, a casting curve for a robot controller of a robot is detected, which leads a ladle. With a remote control device, a manual pouring of a melt from the ladle is performed. During pouring, the time course of the robot movement and / or the time course of the casting weights are recorded and stored. The stored time history is provided for use in the robot controller. Further, a method for casting castings and a robot system for detecting a casting curve will be described. Changes in the geometry of the pouring ladle, for example when using different ladles, are not taken into account in the known method.

In der WO-A-85/04607 ist ein Verfahren zur Steuerung des wiederholten Abgießens von Gießformen und eine Gießanlage beschrieben. Während eines manuell oder nach einer empirisch vorgegebenen Kurve gesteuerten Gießvorgangs wird laufend das Gewicht der Gießpfanne und damit der darin befindlichen Schmelze sowie das Niveau in einem Gusstrichter bestimmt. Der mittels Messdosen erfasste Verlauf des Pfannengewichts während des Gießvorgangs wird mittels einer elektronischen Steuerung gespeichert. Weitere Gießvorgänge werden hierauf automatisch gesteuert, in denen die Gießpfanne so gekippt wird, dass sich der gleiche Verlauf des Gewichts ergibt. Auch bei diesem Verfahren wird die Änderung einer Gießlöffelgeometrie nicht berücksichtigt.In the WO-A-85/04607 a method for controlling the repeated casting of molds and a casting plant is described. During a manual or after an empirically predetermined curve controlled casting process is continuously the weight of the ladle and thus the melt therein and determines the level in a casting funnel. The course of the pan weight during the casting process, recorded by means of measuring doses, is stored by means of an electronic control. Further pouring operations are then automatically controlled, in which the ladle is tilted so that there is the same course of the weight. Also in this method, the change of a Gießlöffelgeometrie is not considered.

Weitere Verfahren zur Steuerung des Ausgießbewegung eines Gießlöffel, sind auch aus DE 32 23 803 A1 , JP 10058120 , JP 07227668 bekannt.Other methods of controlling the pouring motion of a ladle are also out DE 32 23 803 A1 . JP 10058120 . JP 07227668 known.

Im Kokillenguss werden Metallfolien mit flüssiger Aluminiumschmelze gefällt, um Teile mit komplexen Geometrien herstellen zu können. Das Befüllen mit Metallschmelzgut kann u. a. auch automatisiert mit Robotern oder anderen Automationsgeräten realisiert werden.Chill casting is used to cut metal foils with liquid molten aluminum to produce parts with complex geometries. The filling with molten metal can u. a. also be automated with robots or other automation devices.

Für die Qualität von Kokillengussteilen ist der zeitliche Verlauf der Materialbefüllung von größter Bedeutung. Um den optimalen Verlauf des Materialfiillvorgangs zu ermitteln, gibt es Simulationssysteme, die als Ausgangsinformation die Einfüllmenge (Materialstrom) über dem Zeitverlauf in Form einer Eingießkennlinie liefern.For the quality of chill castings, the time course of material filling is of the utmost importance. In order to determine the optimal course of the material filling process, there are simulation systems that provide the input quantity (material flow) over the course of time in the form of a pouring characteristic as output information.

Das Automationsgerät zum Einfüllen des flüssigen Metalls in die Kokille ist mit einem Gießlöffel ausgerüstet. Der Gießlöffel ist an einer numerisch gesteuerten Achse befestigt und wird beim Eingießvorgang über die Gießachse geneigt. Je nach kinematischer Anordnung des Gießlöffels am Automationsgerät kann es erforderlich sein, die Bewegung mehrerer Achsen so zu koordinieren, dass die geforderte Ausgießbewegung erreicht wird.The automation device for filling the molten metal into the mold is equipped with a ladle. The ladle is attached to a numerically controlled axle and is tilted over the casting axis during the pouring process. Depending on the kinematic arrangement of the ladle on the automation device, it may be necessary to coordinate the movement of several axes so that the required pouring movement is achieved.

Da der zeitliche Verlauf des Ausgießstroms entscheidend von der Gießlöffelgeometrie abhängt, ist es notwendig, die Ausgießbewegung für eine gegebene Gießlöffelgeometrie anzupassen. Dies wird in der Regel empirisch durchgerührt. Nach einem Gießlöffelwechsel, insbesondere bei einem Wechsel der Gießlöffelgeometrie, muss die Ausgießbewegung erneut optimiert werden.Since the timing of the pouring stream depends critically on the geometry of the pouring ladle, it is necessary to adjust the pouring motion for a given pouring ladle geometry. This is usually done empirically. After changing the ladle, especially when changing the geometry of the ladle, the pouring movement must be optimized again.

Davon ausgehend liegt der vorliegenden Ereindung die Aufgabe zu Grunde, ein Verfahren der eingangs genannten Art dahingehend weiterzubilden, dass die Ausgießbewegung vollständig automatisiert, geplant und gesteuert werden kann. Auch sollen die Rüstzeiten nach einem Wechsel der Gießlöffelgeometrie verkürzt werden.Based on this, the present invention is based on the object of developing a method of the type mentioned at the outset in such a way that the pouring movement can be completely automated, planned and controlled. Also, the set-up times are to be shortened after a change of Gießlöffelgeometrie.

Die Aufgabe wird erfindungsgemäß durch folgende Verfahrensschritte gelöst:

  • Ermittlung einer gießlöffelspezifischen Ausgießkennlinie als Funktion eines aus dem Gießlöffel ausgegossenen Schmelzgutvolumens über der Neigung des Gießlöffels und Speichern der (zumindest einen) Ausgießkennlinie,
  • automatische Generierung des zeitlichen Verlaufs der Ausgießbewegung, wobei auf der Grundlage der Eingießkennlinie zu jedem Zeitpunkt das notwendige Eingießschmelzgutvolumen bestimmt wird, welches einem optimalen Ausgießschmelzgutvolumen gleichgesetzt wird, dem über die Ausgießkennlinie eine optimale Neigung zu jedem Zeitpunkt zugeordnet ist.
The object is achieved according to the invention by the following method steps:
  • Determination of a pouring bucket-specific pouring characteristic as a function of a pouring material volume poured out of the pouring ladle over the inclination of the pouring spoon and storage of the (at least one) pouring characteristic,
  • automatic generation of the time course of the pouring movement, wherein on the basis of Eingießkennlinie at any time the necessary Eingießschmelzgutvolumen is determined, which is equated with an optimum Ausgießschmelzgutvolumen, which is assigned via the Ausgießkennlinie an optimal slope at any time.

Die Ausgießbewegung wird ausgehend von einer gegebenen gießformspezifischen Eingießkennlinie sowie zumindest einer gießlöffelspezifischen Ausgießkennlinie automatisch generiert. Die generierten Daten sind Position und Neigung des Gießlöffels als Zeitfunktion. Die Bewegung wird so gesteuert, dass sich ein kontinuierlicher Geschwindigkeitsverlauf aller am Gießvorgang beteiligten Achsen beispielsweise eines Roboters ergibt.The pouring movement is automatically generated on the basis of a given casting-specific pouring characteristic and at least one casting spoon-specific pouring characteristic. The generated data are the position and inclination of the ladle as a function of time. The movement is controlled in such a way that results in a continuous speed profile of all axes involved in the casting process, for example of a robot.

Grundlage für die automatische Bewegungsgenerierung ist die Eingießkennlinie, welche die erforderliche Füllmenge (Materialstrom) über den Zeitverlauf definiert. Die Kennlinie wird in die Steuerung des Automationsgeräts eingelesen und kann dort visualisiert und ggfs. manuell wie grafisch und/oder numerisch angepasst werden.The basis for automatic motion generation is the pouring characteristic, which defines the required filling quantity (material flow) over the course of time. The characteristic curve is read into the controller of the automation device and can be visualized there and, if necessary, adjusted manually and graphically and / or numerically.

Die Eingießkennlinie muss in der Form "eingegossenes Materialvolumen über dem Zeitverlauf", d'.h. akkumuliertes Volumen, vorliegen. Sie kann von einer Simulationssoftware oder manuell vorgegeben werden.The pouring curve must be in the form of "poured material volume over time", ie. accumulated volume. It can be specified by simulation software or manually.

Liegt die Eingießkennlinie lediglich als "Materialstrom pro Zeiteinheit" vor, muss daraus durch Integralbildung das akkumulierte Materialvolumen über dem Zeitverlauf berechnet werden. Da die Materialstromkennlinie nicht immer funktional beschreibbar ist, kommen hier numerische Integrationsverfahren zur Anwendung.If the pouring characteristic is present only as "material flow per unit of time", then the accumulated material volume over the course of time must be calculated by integral formation. Since the material flow characteristic is not always functionally describable, numerical integration methods are used here.

Die Ausgießkennlinie muss in der Form "ausgegossenes Materialvolumen über der Gießlöffelneigung", d. h. akkumuliertes Volumen vorliegen. Diese Kennlinie kann mit zwei unterschiedlichen Methoden erstellt werden.The pouring characteristic must be in the form of "poured volume of material above the bucket tilt", i. H. accumulated volume. This characteristic can be created using two different methods.

Vorzugsweise wird die Ausgießkennlinie als Funktion des ausgegossenen Schmelzgutvolumens über der Gießlöffelneigung empirisch ermittelt. In einem automatischen Kalibriervorgang wird ein voll befüllter Gießlöffel schrittweise bis zur vollständigen Entleerung geneigt. Nach jedem Einzelschritt oder kontinuierlich wird die ausgegossenen Materialmenge von einer elektronischen Waage gemessen und der Messwert an die Gießautomat-Steuerung übertragen. Die Steuerung protokolliert die Messwerte und erstellt unter Kenntnis des materialspezifischen Volumengewichtes daraus eine Kennlinie über das (akkumulierte) Materialvolumen. Nach einem Wechsel der Gießlöffelgeometrie muss die Ausgießkennlinie erneut ermittelt werden.Preferably, the pouring characteristic is determined empirically as a function of the poured out volume of molten material above the pouring ladle inclination. In an automatic calibration process, a fully filled ladle is gradually tilted until it is completely emptied. After every single step or continuously, the amount of material poured out is measured by an electronic balance and the measured value is transmitted to the automatic casting machine control. The control records the measured values and, knowing the material-specific volume weight, creates a characteristic curve of the (accumulated) material volume. After changing the geometry of the pouring ladle, the pouring characteristic must be determined again.

Gemäß einer weiteren bevorzugten Methode wird die Ausgießkennlinie als Funktion des ausgegossenen Schmelzgutvolumens über der Gießlöffelneigung, d. h. akkumuliertes Volumen, unter Kenntnis der Gießlöffelgeometrie wie 3D-Modell und unter Voraussetzung eines waagerecht liegenden Schmelzgutspiegels analytisch berechnet.According to another preferred method, the pouring characteristic as a function of the poured out volume of molten material above the casting ladle inclination, i. H. accumulated volume, with knowledge of the casting bucket geometry as 3D model and assuming a horizontal melt level mirror calculated analytically.

Aus der Kenntnis der Eingießkennlinie und der Ausgießkennlinie lässt sich der zeitliche Verlauf der Ausgießbewegung automatisch errechnen und steuern.From the knowledge of the pouring characteristic and the pouring characteristic curve, the time course of the pouring movement can be calculated and controlled automatically.

Zusätzlich zur oben beschriebenen Vorgehensweise mit feststehender Gießmaschine kann bei einer anderen Verfahrensweise auch die Gießmaschine während der Eingießbewegung gekippt werden (Kippaießmaschine). In diesem Fall kann die Gießform während des Eingießvorgangs beispielsweise aus einer geneigten Anfangsstellung in eine senkrechte Endstellung überführt werden. Somit ist zusätzlich zur Steuerung des zeitlichen Verlaufes der Ausgießbewegung auch die räumliche Bewegung der Eingießposition durch die Bewegung der Kippgießmaschine so zu steuern, dass der Gießlöffel immer korrekt zur Eingießposition steht.In addition to the procedure described above with a fixed casting machine, the casting machine can also be tilted during the pouring movement in another procedure (tilting molding machine). In this case, the mold can be transferred during the pouring, for example, from an inclined initial position to a vertical end position. Thus, in addition to controlling the timing of the pouring movement and the spatial movement of the pouring position by the movement of Kippgießmaschine to control so that the ladle is always correct to Eingießposition.

Der zeitliche Verlauf der Gießformbewegung kann in einer Kennlinie für die Kippbewegung über dem Zeitverlauf ermittelt und gespeichert werden.The time profile of the mold movement can be determined and stored in a characteristic curve for the tilting movement over the course of time.

Gemäß einer bevorzugten Verfahrensweise kann die Kennlinie für die Kippbewegung über dem Zeitverlauf durch eine Simulationssoftware ermittelt werden. Alternativ besteht auch die Möglichkeit, die Kennlinie für die Kippbewegung über dem Zeitverlauf durch Aufzeichnung der Gießformbewegung mit Hilfe eines angekoppelten Lagereglers während eines realen Eingießvorgangs zu ermitteln, nämlich dann, wenn die Gießform durch eine externe Steuerung bewegt wird.According to a preferred procedure, the characteristic curve for the tilting movement over time can be determined by a simulation software. Alternatively, it is also possible to determine the characteristic curve for the tilting movement over time by recording the mold movement with the aid of a coupled position controller during a real pouring process, namely when the mold is moved by an external control.

Eine erste Verfahrensweise sieht vor, dass sowohl die Ausgießbewegung des Gießlöffels als auch die Bewegung der Gießform von ein- und derselben Steuerung gesteuert wird, wobei der Eingießkennlinie und der Kennlinie für die Kippbewegung eine gemeinsame Zeitachse zu Grunde liegen, wobei ausgehend von der Eingießkennlinie zu jedem Zeitpunkt während des Eingießvorgangs aus der Kennlinie für die Kippbewegung die erforderliche Gießformstellung und ausgehend von dem optimalen Eingießvolumen über die Ausgießkennlinie die entsprechende Gießlöffelneigung ermittelt wird, wodurch eine automatische Steuerung der Neigung und der Position des Gießlöffels und der Gießform erfolgt.A first procedure provides that both the pouring movement of the ladle and the movement of the mold are controlled by one and the same controller, wherein the Eingießkennlinie and the characteristic for the tilting movement are based on a common time axis, starting from the Eingießkennlinie to each Timing during the pouring from the characteristic curve for the tilting movement the required Gießformstellung and starting from the optimum pouring volume on the Ausgießkennlinie the corresponding Gießlöffelneigung is determined, whereby an automatic control of the inclination and the position of the ladle and the mold takes place.

Alternativ besteht die Möglichkeit, die Gießform von einer unabhängigen Steuerung zu steuern, wobei die aktuelle Stellung der Gießform von einem daran angekoppelten Positionsgeber erfasst und an die Steuerung des Gießlöffels übertragen wird, wobei aus der Eingießkennlinie zu jedem Zeitpunkt ein Eingießvolumen entnommen und über das zugehörige Ausgießvolumen mittels der Ausgießkennlinie die zugehörige Neigung und Position des Gießlöffels ermittelt wird, wobei das Nachführen der Ausgießbewegung des Gießlöffels durch eine kinematische Transformation erfolgt, wobei die aktuelle Stellung der Gießform berücksichtigt wird und wobei ein Tool Center Point (TCP) so nachgeführt wird, dass eine Schnaupe des Gießlöffels stets über eine Einführöffnung der Gießform bewegt wird.Alternatively, it is possible to control the mold by an independent controller, wherein the current position of the mold is detected by a position sensor coupled thereto and transmitted to the control of the ladle, wherein the Eingießkennlinie taken at any time a Eingießvolumen and the associated pouring volume by means of Ausgießkennlinie the associated inclination and position of the ladle is determined, wherein the tracking of the pouring of the ladle is carried out by a kinematic transformation, taking into account the current position of the mold and wherein a tool Center Point (TCP) is tracked so that a spout of the ladle is always moved over an insertion opening of the mold.

Eine weitere bevorzugte Verfahrensweise sieht vor, dass zwischen diskret abgegriffenen Kennlinienwerten jeweils Zwischenwerte interpoliert werden und von der Steuerung des Gießautomaten an einen Antrieb der Gießform und/oder einen Gießlöffelantrieb ausgegeben werden, so dass sich eine kontinuierliche Bewegung ergibt.A further preferred procedure provides that interim values are respectively interpolated between discretely tapped characteristic values and output by the controller of the automatic casting machine to a drive of the casting mold and / or a casting spoon drive, so that a continuous movement results.

Eine weitere bevorzugte Verfahrensweise stellt eine Offline-Programmgenerierung dar, wobei über einen Algorithmus aus Informationen der Eingießkennlinie, Ausgießkennlinie und ggfs. Kennlinie für die Kippbewegung ein Bewegungsprogamm für die Steuerung des Automationsgeräts erzeugt wird. Dieses Verfahren hat den Vorteil, dass das generierte Programm archiviert, manuell verändert und ggfs. auf andere Gießautomaten übertragen werden kann.Another preferred procedure is an offline program generation, wherein a motion program for the control of the automation device is generated via an algorithm from information of Eingießkennlinie, Ausgießkennlinie and possibly. Characteristic curve for the tilting movement. This method has the advantage that the generated program can be archived, manually changed and possibly transferred to other casting machines.

Eine weitere bevorzugte Verfahrensweise zeichnet sich durch eine Online-Bewegungsgenerierung aus, wobei aus den gegebenen Kennliniendaten bzw. Kennlinientabellen über dem Zeitverlauf kontinuierlich die erforderliche Stellung bzw. Neigung des Gießlöffels und/oder der Gießform ermittelt und durch die Steuerung des Automatisierungsgeräts wie Gießautomat sofort eingestellt wird.A further preferred procedure is characterized by an online generation of motion, wherein the required position or inclination of the ladle and / or the mold continuously determined from the given characteristic data or characteristic tables over time and set immediately by the controller of the automation device such as casting machine ,

Die vorgestellten Verfahren bieten den Vorteil, dass eine Gießaufgabe vollständig automatisiert, geplant und durchgeführt werden kann. Insbesondere die automatische Kalibrierung nach einem Wechsel der Gießlöffelgeometrie reduziert die Rüstzeiten erheblich.The presented methods offer the advantage that a casting task can be completely automated, planned and executed. In particular, the automatic calibration after changing the Gießlöffelgeometrie significantly reduces set-up times.

Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen - für sich und/oder in Kombination sondern auch aus der nachfolgenden Beschreibung von der Zeichnung zu entnehmenden bevorzugten Ausführungsbeispielen.For more details, advantages and features of the invention will become apparent not only from the claims, the features to be taken these - in itself and / or in combination but also from the following description of the drawing to be taken preferred embodiments.

Es zeigen:

Fig. 1
schematische Darstellung eines Gießautomaten mit Gießlöffel und Kokille,
Fig.
2a eine Eingießkennlinie als Funktion eines in eine Gießform einzugießenden Schmelzgutvolumens über dem Zeitverlauf,
Fig. 2b
eine Ausgießkennlinie als Funktion eines aus dem Gießlöffel ausgegossenen Schmelzgutvolumens über der Neigung des Gießlöffels,
Fig. 2c
eine Kennlinie für die Kippbewegung als Funktion der Gießformstellung über dem Zeitverlauf,
Fig. 3
Generierung der Gießlöffelbewegung auf der Grundlage von Eingießkennlinie, Ausgießkennlinie und Kennlinie für die Kippbewegung bei Steuerung der Gießform durch die Gießautomatsteuerung und
Fig. 4
Ermittlung der Gießformstellung auf der Grundlage der Eingießkennlinie, der Ausgießkennlinie sowie der Kennlinie für die Kippbewegung, wobei die Gießform von einer unabhängige Steuerung bewegt wird.
Show it:
Fig. 1
schematic representation of an automatic pouring machine with ladle and mold,
FIG.
FIG. 2a shows a pouring characteristic as a function of a molten material volume to be poured into a casting mold over the course of time, FIG.
Fig. 2b
a pouring characteristic as a function of a volume of molten material poured out of the ladle over the inclination of the ladle,
Fig. 2c
a characteristic for the tilting movement as a function of the casting mold position over time,
Fig. 3
Generation of Gießlöffelbewegung based on Eingießkennlinie, Ausgießkennlinie and characteristic for the tilting movement in the control of the mold by the casting machine control and
Fig. 4
Determining the casting mold position on the basis of the pouring characteristic, the pouring characteristic and the characteristic for the tilting movement, wherein the mold is moved by an independent controller.

Fig. 1 zeigt rein schematisch eine Vorrichtung 10 zum Einfüllen eines Schmelzgutes 12 wie Metallschmelze in eine Gießform wie Kokille 14 zur Herstellung eines Formteils. Die Vorrichtung 10 umfasst ein Automationsgerät 16 wie Gießautomat oder Roboter, der zum Einfüllen des flüssigen Metalls 12 mit einem Gießlöffel 18 ausgerüstet ist. Der Gießlöffel 18 ist an einer numerisch gesteuerten Achse 20 befestigt und wird beim Eingießvorgang über diese Achse geneigt. Um die erforderliche Ausgießbewegung des Gießlöffels 18 zu erreichen, können weitere kinematische Achsen 22, 24, 26, 28 des Roboters 16 koordiniert werden. Fig. 1 shows purely schematically an apparatus 10 for filling a melted material 12 such as molten metal in a mold such as mold 14 for producing a molded part. The apparatus 10 comprises an automation device 16, such as a casting machine or robot, which is equipped to fill the liquid metal 12 with a ladle 18. The ladle 18 is attached to a numerically controlled axle 20 and is at the Eingießvorgang inclined over this axis. In order to achieve the required pouring movement of the ladle 18, further kinematic axes 22, 24, 26, 28 of the robot 16 can be coordinated.

Die Kokille 14 kann eine Kippvorrichtung 30 aufweisen, mit der die Kokille 14 beim Eingießvorgang aus einer beispielsweise geneigten Anfangsstellung in eine beispielsweise senkrechte Endstellung kippbar ist. Die Steuerung des Roboters 16 erfolgt über eine Steuerung 32, die gleichzeitig auch die Kippvorrichtung 30 der Kokille steuern kann. Alternativ kann die Kippvorrichtung 30 auch von einer unabhängigen Steuerung 33 gesteuert werden. In diesem Fall wird über einen externen Positionsmessgeber 34 die Position der Kokille 14 erfasst und an die Steuerung des Roboters 16 geleitet.The mold 14 may have a tilting device 30, with which the mold 14 during the pouring process from an example inclined initial position in an example vertical end position is tilted. The control of the robot 16 via a controller 32 which can simultaneously control the tilting device 30 of the mold. Alternatively, the tilting device 30 may also be controlled by an independent controller 33. In this case, the position of the mold 14 is detected via an external position encoder 34 and passed to the controller of the robot 16.

Der Erfindung liegt die Idee zu Grunde, ausgehend von einer gegebenen kokillenspezifischen Eingießkennlinie A, einer gießlöffelspezifischen Ausgießkennlinie B und ggfs. Kennlinie für die Kippbewegung der Kokille C, nachfolgend Kokillenkennlinie C genannt, die Ausgießbewegung des Gießlöffels automatisch zu generieren.The invention is based on the idea, starting from a given Kokillpezifischen Eingießkennlinie A, a pouring bucket specific Ausgießkennlinie B and, if necessary. Characteristic for the tilting movement of the mold C, hereinafter called Kokillenkennlinie C automatically generate the pouring of the ladle.

Fig. 2a zeigt die Eingießkennlinie A als Funktion eines eingegossenen Schmelzgutvolumens Ve[Liter] 1 über dem Zeitverlauf t [sec]. Die Eingießkennlinie A kann von einer Simulationssoftware oder manuell vorgegeben werden. Sie beschreibt den optimalen Verlauf des Schmelzgut-Füllvorgangs und liefert als Ausgangsinfoimation die Einmüllmenge Ve[Liter] (Schmelzgutstrom bzw. Materialstrom) über dem Zeitverlauf. Fig. 2a shows the Eingießkennlinie A as a function of a cast-in volume of molten material Ve [liter] 1 over the time course t [sec]. The Eingießkennlinie A can be specified by a simulation software or manually. It describes the optimal course of the melt-filling process and provides as initial information the amount of waste Ve [liters] (melt stream or material flow) over time.

Fig. 2b zeigt eine Ausgießkennlinie B als Funktion des ausgegossenen Schmelzgutvolumens Va[Liter] über der Gießlöffelneigung G [°]. Dabei ist das akkumulierte Schmelzgutvolumen dargestellt. Fig. 2b shows a pouring characteristic B as a function of the poured out volume of molten material Va [liters] above the Gießlöffelneigung G [°]. Here, the accumulated melt volume is shown.

Die Ausgießkennlinie B kann mittels zwei unterschiedlicher Methoden erstellt werden. Zum einen kann unter Kenntnis der Gießlöffelgeometrie beispielsweise eines 3D-Modells, und des stets waagerecht liegenden Schmelzgutspiegels die ausgegossene Schmelzgutmenge in Abhängigkeit der Gießlöffelneigung G analytisch berechnet werden. Andererseits besteht die Möglichkeit, in einem automatischen Kalibriervorgang einen voll befüllten Gießlöffel schrittweise bis zur vollständigen Entleerung zu neigen. Während der Kippbewegung wird die ausgegossene Materialmenge von einer elektronischen Waage gemessen und der Messwert an die Gießautomat-Steuerung 32 übertragen. Die Steuerung 32 protokolliert die Messwerte und erstellt unter Kenntnis des materialspezifischen Volumengewichts daraus die Ausgießkennlinie B über das (akkumulierte) Schmelzgutvolumen. Dabei handelt es sich um eine gießlöffelspezifische Ausgießkennlinie B. Nach einem Wechsel der Gießlöffelgeometrie muss die Ausgießkennlinie B erneut ermittelt werden.The pouring curve B can be created by means of two different methods. On the one hand, the knowledge of the geometry of the pouring ladle, for example of a 3D model, and the level of the molten material always lying horizontally enables the amount of molten material poured out to be calculated analytically as a function of the pouring ladle inclination G. On the other hand, there is the possibility in an automatic calibration process gradually tilt a fully filled ladle until completely drained. During the tilting movement, the amount of material poured out is measured by an electronic balance and the measured value is transmitted to the casting machine controller 32. The controller 32 logs the measured values and prepares the pouring characteristic curve B from the (accumulated) melt material volume, knowing the material-specific volume weight. This is a pouring bucket-specific pouring curve B. After changing the pouring ladle geometry, the pouring curve B must be determined again.

Schließlich ist in Fig. 2c die Kokillenkennlinie C dargestellt. Bei manchen Gießverfahren ist es erforderlich, die Kokille 14 während des Eingießvorgangs z. B. aus einer geneigten Anfangsstellung in eine senkrechte Endstellung zu überführen. Der zeitliche Verlauf der Kokillenbewegung kann in der Kokillenkennlinie als Funktion der Kokillenstellung K [Grad°] über dem Zeitverlauf t [sec] beschrieben werden.Finally, in Fig. 2c the Kokillenkennlinie C shown. In some casting processes, it is necessary, the mold 14 during the Eingießvorgangs z. B. to transfer from an inclined initial position in a vertical end position. The temporal course of the mold movement can be described in the Kokillenkennlinie as a function of the mold position K [deg °] over the time course t [sec].

Die Kokillenkennlinie C kann entweder durch eine Simulationssoftware oder - wenn die Kokille 14 durch die externe Steuerung 33 bewegt wird - durch Aufzeichnung der Kokillenbewegung mit Hilfe des angekoppelten Lagereglers 34 während eines realen Eingießvorgangs ermittelt werden.The Kokillenkennlinie C can be determined either by a simulation software or - when the mold 14 is moved by the external control 33 - by recording the Kokillenbewegung using the coupled position controller 34 during a real Eingießvorgangs.

Aus den oben beschriebenen Kennlinien, nämlich Eingießkennlinie A, Ausgießkennlinie B sowie Kokillenkennlinie C lässt sich der zeitliche Verlauf der Ausgießbewegung automatisch steuern. Dabei können folgende Fälle unterschieden werden.From the characteristics described above, namely Eingießkennlinie A, Ausgießkennlinie B and Kokillenkennlinie C can be the time course of the pouring automatically controlled. The following cases can be distinguished.

Fig. 3 zeigt ein Verfahren, wobei die Kokille 14 von der Gießautomat-Steuerung 32 gesteuert wird. Der Eingießkennlinie A und der Kokillenkennlinie C liegt eine gemeinsame Zeitachse t [sec] zu Grunde. Beim Eingießvorgang wird über die, seit dem Gießbeginn verstrichene Zeit Tact mit Hilfe der Gießformkennlinie C die erforderliche Gießformstellung Kact und aus der Eingießkennlinie A das erforderliche Eingießvolumen Vact abgegriffen. Über das nun bekannte Eingießvolumen Vact wird in der Ausgießkennlinie B die entsprechende Gießlöffelneigung Gact abgegriffen. Die Gießautomat-Steuerung 32 stellt darüber die erforderliche Neigung G, K für Gießlöffel und Kokille ein. Fig. 3 shows a method wherein the mold 14 is controlled by the automatic casting machine 32. The Eingießkennlinie A and the Kokillenkennlinie C is based on a common time axis t [sec]. During the pouring process, the required casting mold position Kact is tapped off via the time Tact elapsed since the start of pouring with the aid of the mold characteristic curve C and the required pouring volume Vact from the pouring characteristic A. About the now known Eingießvolumen Vact the corresponding Gießlöffel tilt Gact is tapped in the Ausgießkennlinie B. The casting machine control 32 sets about the required inclination G, K for ladle and mold.

Fig. 4 zeigt einen Verfahrensablauf, wobei die Kokille 14 von der unabhängigen, externen Steuerung 33 gesteuert wird. In diesem Fall wird davon ausgegangen, dass die Kokillenneigung K[°Grad] nicht exakt eingestellt werden muss und die Kokille 14 von einer externen Steuerung 33 zeitgesteuert nachgestellt wird. Die aktuelle Stellung der Kokille 14 wird von dem daran angekoppelten Positionsgeber 34 erfasst und an die Gießautomat-Steuerung übertragen. Fig. 4 shows a process flow, wherein the mold 14 is controlled by the independent external controller 33. In this case, it is assumed that the mold inclination K [° degrees] does not have to be set exactly, and the mold 14 is time-adjusted by an external controller 33. The current position of the mold 14 is detected by the position sensor 34 coupled thereto and transmitted to the casting machine control.

In diesem Fall kommen nur die Eingießkennlinie A und die Ausgießkennlinie B zur Anwendung. Über die kontinuierlich verlaufende Gießzeit t [sec] wird aus der Eingießkennlinie A die Volumenmenge Vact entnommen und über die Ausgießkennlinie B die Gießlöffelstellung Gact entnommen. Das Nachführen des Gießautomaten bzw. Roboters 16 erfolgt durch eine kinematische Transformation, die die aktuelle Stellung der Kokille 14 gemäß Positionsgeber 34 berücksichtigt (Conveyor Synchronisation). Dabei wird eine Schnaupe 36 des Gießlöffels 18 als TCP (Tool Center Point) ohne Orientierung so nachgeführt, dass die Schnaupe 36 des Gießlöffels 18 immer über eine Einfüllöffnung der Kokille 14 bewegt wird. Die zusätzlich erforderliche Neigung G des Gießlöffels 18 und somit die Dosierung erfolgt über Gießlöffelneigung Gact aus der Ausgießkennlinie D.In this case, only the pouring characteristic A and the pouring characteristic B are used. The amount of volume Vact is taken from the pouring characteristic A via the continuous pouring time t [sec] and the pouring spoon position Gact is taken from the pouring characteristic B. The tracking of the casting machine or robot 16 is carried out by a kinematic transformation, which takes into account the current position of the mold 14 according to position sensor 34 (conveyor synchronization). Here, a spout 36 of the ladle 18 as TCP (Tool Center Point) without orientation tracked so that the spout 36 of the ladle 18 is always moved over a filling opening of the mold 14. The additionally required inclination G of the ladle 18 and thus the metering takes place via pouring ladle inclination Gact from the pouring characteristic D.

In beiden Fällen bewegt das Automationsgerät 10 den Gießlöffel 18 so, dass die Gießlöffelposition immer optimal zur Einfüllöffnung der Kokille nachgeführt wird. Zwischen den diskret abgegriffenen Kennlinienwerten werden jeweils Zwischenwerte interpoliert und von der Gießautomat-Steuerung 32 an den Kokillenantrieb 30 und/oder Gießlöffelantrieb 16 ausgegeben, so dass eine kontinuierliche Bewegung generiert wird.In both cases, the automation device 10 moves the ladle 18 so that the Gießlöffelposition is always tracked optimally to the filling opening of the mold. In each case, intermediate values are interpolated between the discretely tapped characteristic values and output by the automatic casting machine controller 32 to the mold drive 30 and / or the ladle drive 16, so that a continuous movement is generated.

Bei der automatischen Bewegungsgenerierung für den Roboter können zwei verschiedene Verfahren zur Anwendung kommen.There are two different ways to use automatic robot motion generation.

Bei einer Offline-Programmierung erzeugt ein Algorithmus aus den oben genannten Informationen ein Bewegungsprogramm für den Roboter 16. Hierbei werden Zwischenpositionen mit jeweils einer Geschwindigkeitsvorgabe für jede Zwischenposition generiert. Dieses Verfahren hat den Vorteil, dass das generierte Programm archiviert, manuell verändert und ggfs. auf andere Roboter bzw. Gießautomaten übertragen werden kann.In the case of offline programming, an algorithm generates a movement program for the robot 16 from the above-mentioned information. In this case, intermediate positions are generated, each with a speed specification for each intermediate position. This method has the advantage that the generated program can be archived, manually changed and possibly transferred to other robots or casting machines.

Bei der Online-Bewegungsgenerierung wird aus den gegebenen Kennlinientabellen bzw. Kennlinienwerten über den Zeitverlauf kontinuierlich die erforderliche Stellung des Gießlöffels 18 ermittelt und am Roboter bzw. Gießautormaten eingestellt. Dabei werden die anderen Achsen 20, 22, 24, 26, 28 des Roboters durch eine kinematische Transformation so nachgeführt, dass die Schnaupe 36 des Gießlöffels 18 eine definierte Bahnbewegung (Gießbewegung) ausführt. Eine veränderte Neigung K der Kokille 14 geht ebenfalls in die Berechnung der Roboterbewegung ein.In the online generation of motion, the required position of the ladle 18 is continuously determined from the given characteristic tables or characteristic values over the course of time and set on the robot or casting machine formats. The other axes 20, 22, 24, 26, 28 of the robot are tracked by a kinematic transformation so that the spout 36 of the ladle 18 performs a defined path movement (casting movement). An altered inclination K of the mold 14 is also included in the calculation of the robot movement.

Das vorgestellte Verfahren bietet den Vorteil, dass nach einem Austausch des Gießlöffels 18 oder bei Verwendung unterschiedlicher Gießlöffelgeometrien die Steurung, nach einer automatischen Kalibrierung, selbständig eine Bewegung für den Roboter bzw. Gießautomaten berechnen kann.The presented method offers the advantage that after replacing the ladle 18 or when using different ladle geometries, the controller, after automatic calibration, can automatically calculate a movement for the robot or automatic casting machine.

Zu der Kokillenkennlinie B ist anzumerken, dass diese im Falle einer nicht gekippten Kokille 14 eine Gerade z. B. bei einem Kippwinkel um 0° darstellt.To the Kokillenkennlinie B is noted that these in the case of a non-tilted mold 14 is a straight line z. B. represents at a tilt angle of 0 °.

Claims (13)

  1. Method for controlling a pouring-out movement of a casting ladle (18) for pouring out a molten material (12) such as molten metal into a casting mold (14) such as an ingot mold, where a pouring-in characteristic (A) specific to the casting mold as a function of a molten material volume (12) poured into the casting mold (14) over the time axis is preset and saved, wherein the method comprises the following method steps:
    - determination of a pouring-out characteristic (B) specific to the casting ladle as a function of a molten material volume (12) poured out of the casting ladle (18) over the tilt (G) of the casting ladle (18), and saving of at least one pouring-out characteristic (B),
    - automatic generation of the time axis of the pouring-out movement, where on the basis of the pouring-in characteristic (A) the necessary poured-in molten material volume is determined at any time and matched to an optimum poured-out molten material volume, to which an optimum tilt (G) of the casting ladle (18) is assigned at any time over the pouring-out characteristic (B).
  2. Method according to Claim 1,
    wherein
    the pouring-in characteristic (A) is preset by a simulation software or manually as a function of the poured-in molten material volume (12) over the time axis, i.e. accumulated volume.
  3. Method according to Claim 1 or 2,
    wherein
    the pouring-out characteristic (B) is empirically determined as a function of the poured-out molten material volume (12) over the casting ladle tilt, where in an automatic calibration operation a fully filled casting ladle is gradually tilted in individual steps until it is completely empty and the poured-out material quantity is weighed during the tilting movement by an electronic scale and the values measured are transmitted to a control unit (32), where the values measured are recorded in the control unit (32) and, with knowledge of the volumetric weight specific to the molten material, the pouring-out characteristic (B) over the (accumulated) material volume is obtained from them.
  4. Method according to at least one of the preceding claims,
    wherein
    the pouring-out characteristic (B) is analytically calculated as a function of the poured-out molten material volume (12) over the casting ladle tilt, i.e. accumulated volume, with knowledge of the casting ladle geometry such as a 3D model and assuming a constantly horizontal molten material level.
  5. Method according to at least one of the preceding claims,
    wherein
    after a change in the casting ladle geometry the pouring-out characteristic (B) is determined in accordance with the new casting ladle geometry.
  6. Method according to at least one of the preceding claims,
    wherein
    the casting mold (14) is moved during the pouring-in operation from a, for example, tilted initial position into a, for example, vertical end position, where the time axis of the movement of the casting mold (14) is determined and saved in a characteristic (C) for the tilting movement (casting mold characteristic) as a function of the casting mold position over the time axis.
  7. Method according to at least one of the preceding claims,
    wherein
    the casting mold characteristic (C) is determined by a simulation method.
  8. Method according to at least one of the preceding claims,
    wherein
    the casting mold characteristic (C) is determined in particular in the case of external control by recording the casting mold movement with the aid of a connected position sensor (34) during an actual pouring-in operation.
  9. Method according to at least one of the preceding claims,
    wherein
    both the pouring-out movement of the casting ladle (18) and the movement of the casting mold (14) are controlled by the same control unit (32), where the pouring-in characteristic (A) and the casting mold characteristic (C) are based on a common time axis, where proceeding from the pouring-in characteristic (A) the required casting mold position is determined from the casting mold characteristic (C) at any time during the pouring-in operation and proceeding from the optimum pouring-in volume the appropriate casting ladle tilt (G) is determined from the pouring-out characteristic (B), so that automatic control of the tilt of the casting ladle and of the casting mold is achieved.
  10. Method according to at least one of the preceding claims,
    wherein
    the casting mold is controlled by an independent control unit (33), where the current position of the casting mold (14) is detected by a position sensor (34) connected thereto and transmitted to the control unit (32) of the casting ladle (18), where a poured-in molten material volume is obtained from the pouring-in characteristic (A) at any time and the associated casting ladle position is determined using the associated poured-out molten material volume by means of the pouring-out characteristic (B), where the tracking of the pouring-out movement of the casting ladle (18) is achieved by a kinematic transformation, where the current position of the casting ladle (14) is taken into account and where a tool center point is tracked such that a spout (36) of the casting ladle is always moved over a filling opening of the casting mold.
  11. Method according to at least one of the preceding claims,
    wherein
    intermediate values are interpolated between discretely recorded characteristic values and are transmitted by the control unit (32) of the casting machine to a drive unit (30) of the casting mold (14) and/or to a casting ladle drive unit (20), so that a continuous movement is achieved.
  12. Method according to at least one of the preceding claims,
    wherein
    an offline program generation is conducted, where a movement program for controlling the automation equipment is generated using an algorithm made up of information on the pouring-in characteristic (A), the pouring-out characteristic (B) and if required the casting mold characteristic (C).
  13. Method according to at least one of the preceding claims,
    wherein
    an online movement generation is conducted, where the required position of the casting ladle (18) and/or the casting mold (14) is continuously determined from the given characteristic data or characteristic tables over the time axis and is immediately set by the control unit (32) of the automation equipment such as the casting machine.
EP08171100A 2007-12-17 2008-12-09 Method for controlling the pouring movement of a ladle Active EP2072161B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08171100T PL2072161T3 (en) 2007-12-17 2008-12-09 Method for controlling the pouring movement of a ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007047926A DE102007047926A1 (en) 2007-12-17 2007-12-17 Method for controlling a pouring movement of a ladle

Publications (2)

Publication Number Publication Date
EP2072161A1 EP2072161A1 (en) 2009-06-24
EP2072161B1 true EP2072161B1 (en) 2011-09-21

Family

ID=40344384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08171100A Active EP2072161B1 (en) 2007-12-17 2008-12-09 Method for controlling the pouring movement of a ladle

Country Status (4)

Country Link
EP (1) EP2072161B1 (en)
AT (1) ATE525154T1 (en)
DE (1) DE102007047926A1 (en)
PL (1) PL2072161T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11911913B2 (en) * 2018-11-28 2024-02-27 Bayer Aktiengesellschaft Method for transferring a pourable medium
CN110465223B (en) * 2019-09-06 2021-09-21 韩山师范学院 Disposable degradable aviation spoon apparatus for producing
CN111957938A (en) * 2020-07-14 2020-11-20 刘旭东 Ladle for metal casting that metal liquid can not flow out when beating and turning over
CN114210961B (en) * 2022-02-22 2022-06-14 秦皇岛秦冶重工有限公司 Molten iron tipping control method, control system and molten iron tipping device
CN114799137B (en) * 2022-05-13 2023-10-03 安徽省恒泰动力科技有限公司 Automatic turning device of aluminum piston casting machine ladle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2430835C3 (en) * 1974-06-27 1978-08-03 Alfelder Maschinen Und Modell-Fabrik Kuenkel, Wagner & Co Kg, 3220 Alfeld Device for casting cast workpieces
DE3223803C2 (en) * 1981-06-26 1984-07-12 Georg Fischer Ag, Schaffhausen Method and device for regulating the filling process of casting molds in a row
WO1985004607A1 (en) * 1984-04-10 1985-10-24 Maschinenfabrik & Eisengiesserei Ed. Mezger Ag Process for controlling the repeated filling of moulds and unit therefor
JPS6216869A (en) * 1985-07-12 1987-01-26 Shin Meiwa Ind Co Ltd Method for teaching pouring action to robot for casting
JPH07227668A (en) * 1994-02-18 1995-08-29 Hitachi Metals Ltd Method for controlling automatic pour of molten metal
JP3632878B2 (en) * 1996-06-14 2005-03-23 日立金属株式会社 Automatic pouring method
DE20308509U1 (en) * 2003-05-30 2003-08-07 ROBOTEC Engineering GmbH, 79713 Bad Säckingen Pouring device for gravity casting technology
DE102006034044A1 (en) * 2006-07-24 2008-01-31 Abb Patent Gmbh Method for detecting a casting curve for a robot control and detection system

Also Published As

Publication number Publication date
EP2072161A1 (en) 2009-06-24
PL2072161T3 (en) 2012-01-31
ATE525154T1 (en) 2011-10-15
DE102007047926A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP2072161B1 (en) Method for controlling the pouring movement of a ladle
DE69936385T2 (en) AUTOMATIC SHAPING TECHNOLOGY FOR THERMOPLASTIC INJECTION MOLDING
DE4307347C2 (en) Process for tempering an injection mold
DE3781996T3 (en) Device and method for regulating the pouring of melt into a casting mold.
DE68928776T2 (en) Continuous casting process and device for carrying out this process
EP0581786B1 (en) Method of controlling the casting parameters in a die-casting machine
WO2014095137A1 (en) Monitoring method for a continuous casting mould involving building up a database
DE69401811T2 (en) METHOD AND DEVICE FOR REGULATING THE METAL MIRROR IN A CONTINUOUS CHOCOLATE
DE3020076C2 (en) Control device for an automatic casting plant
EP0615825A1 (en) Method and apparatus for filling moulds with casting resin or similar castable fluids
EP0744267B1 (en) Method for monitoring and/or controlling an injection moulding machine
WO2003074210A2 (en) Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method
CN106694863A (en) Molten steel pouring control method and device
DE102015107951B4 (en) Method and device of a control of the casting process during casting of a casting mold by means of a gravitationally empty rotatable ladle
EP0383413B1 (en) Continuous-casting method
DE102007018008B3 (en) Method for casting non-ferrous anodes comprises tilting an intermediate charging box about its longitudinal axis and a horizontal axis to pour a melt from the intermediate charging box into a charging box
DE3438963C2 (en)
KR950007169B1 (en) A component estimate method of different kind steel mixing slab
CN113649555A (en) Automatic casting machine and casting method
EP0180590B1 (en) Process for controlling the repeated filling of moulds and unit therefor
EP1481748B1 (en) Apparatus and process for casting metal
JPH09277325A (en) Method and equipment for controlling injection of injection molding machine
DE102004026062B4 (en) Casting device for the gravity casting technique
KR960002220B1 (en) Method of control tundish sliding nozzle
EP0153918B1 (en) Method for determining the melt level in a reciprocating mould of a continuous-casting plant, and device for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REIS GROUP HOLDING GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004951

Country of ref document: DE

Effective date: 20111201

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

BERE Be: lapsed

Owner name: REIS GROUP HOLDING G.M.B.H. & CO. KG

Effective date: 20111231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

26N No opposition filed

Effective date: 20120622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004951

Country of ref document: DE

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 525154

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230929

Year of fee payment: 16

Ref country code: FR

Payment date: 20230929

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231017

Year of fee payment: 16

Ref country code: CZ

Payment date: 20231116

Year of fee payment: 16