EP2071142B1 - Dichtigkeit eines Nabenhohlraums eines Austrittsgehäuses in einem Turbotriebwerk - Google Patents

Dichtigkeit eines Nabenhohlraums eines Austrittsgehäuses in einem Turbotriebwerk Download PDF

Info

Publication number
EP2071142B1
EP2071142B1 EP08168877A EP08168877A EP2071142B1 EP 2071142 B1 EP2071142 B1 EP 2071142B1 EP 08168877 A EP08168877 A EP 08168877A EP 08168877 A EP08168877 A EP 08168877A EP 2071142 B1 EP2071142 B1 EP 2071142B1
Authority
EP
European Patent Office
Prior art keywords
exhaust casing
wall
radial
cylindrical
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08168877A
Other languages
English (en)
French (fr)
Other versions
EP2071142A1 (de
Inventor
Xavier Firmin Camille Jean Lescure
Aurélien René-Pierre Massot
Sebastien Jean Laurent Prestel
Christian René Schnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2071142A1 publication Critical patent/EP2071142A1/de
Application granted granted Critical
Publication of EP2071142B1 publication Critical patent/EP2071142B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation

Definitions

  • the present invention relates to an exhaust casing in a turbomachine, such as an aircraft turbojet, and relates more particularly to the sealing of a hub cavity in the exhaust casing.
  • the exhaust casing of a turbomachine is mounted downstream of a turbine and generally comprises two coaxial cylindrical walls, respectively radially inner and outer, which are connected by radial arms, the inner wall being surrounded by a cylindrical envelope intended to guiding an exhaust stream from the turbine.
  • the cylindrical envelope is fixed by its downstream end to the inner wall of the exhaust casing, and comprises at its upstream end a radial annular portion extending freely towards the axis of the turbomachine so that the inner wall of the casing exhaust and the cylindrical envelope delimit a cavity, commonly called hub cavity.
  • This cavity is open at the inner end of the radial annular portion of the cylindrical envelope.
  • the cylindrical envelope has vibration modes substantially corresponding to the frequencies of the rotor or rotors of the turbomachine, and is therefore likely to resonate with the rotor or rotors, thereby generating strong vibrations likely to penalize the life of the cylindrical envelope.
  • the document JP 2003020957 describes a cylindrical envelope fixed at its downstream end on the inner wall of the exhaust casing and comprising at its upstream end an inwardly extending radial portion whose radially inner end is bolted to a flange of the casing; exhaust.
  • the invention aims in particular to provide a simple, economical and effective solution to these problems, to avoid the disadvantages of the known technique.
  • turbomachine exhaust casing comprising two coaxial cylindrical walls, respectively radially inner and radially outer, connected by radial arms, and a cylindrical envelope integral with the downstream end of the radially inner wall and which delimits a hub cavity with the radially inner wall and an exhaust gas flow space with the radially outer wall, the cylindrical shell having at its upstream end a radial annular portion extending towards the axis of the turbomachine, characterized in that the radial annular portion of the casing has at its inner end an annular flange cooperating by substantially radially sliding radial sealing with the inner cylindrical wall of the exhaust casing.
  • the annular flange of the radial portion of the cylindrical casing makes it possible to prevent the circulation of air in the hub cavity.
  • This radially sliding connection mode makes it possible to ensure a good seal of the hub cavity while avoiding the appearance of mechanical stresses in the cylindrical envelope due to the expansions. thermal conditions that may occur at operating temperatures of the turbomachine.
  • the axial retention of the upstream end of the cylindrical envelope makes it possible to raise the frequencies of the vibration modes of the envelope and thus to avoid the resonance phenomena, for example with the rotor of the turbomachine, which are detrimental to its behavior over time.
  • the inner wall of the exhaust casing comprises two annular flanges, respectively upstream and downstream, extending radially outwards and disposed facing each other so as to form an annular groove for receiving the annular flange of the cylindrical envelope with an axial clearance for a substantially sealed connection of the cylindrical envelope to the radially inner wall allowing a radial displacement of the annular flange of the envelope.
  • the two flanges of the inner wall of the exhaust casing have a radial dimension greater than a maximum allowable amplitude of a radial displacement of the annular flange of the cylindrical envelope caused by an expansion. thermal of the latter.
  • the annular flange of the cylindrical envelope is not likely to disengage from the annular groove formed by the two flanges of the inner wall of the exhaust casing under the effect of thermal expansion, at least as long as the radial displacement of the annular flange does not exceed a maximum value corresponding to a predetermined maximum temperature that the cylindrical envelope is not likely to exceed during normal operation of the turbomachine.
  • the annular flange of the cylindrical envelope preferably extends substantially to the bottom of the annular groove of the inner wall of the exhaust casing in stopping condition of the turbomachine.
  • the cylindrical envelope is elastically preloaded, under stopping condition of the turbomachine, so as to apply the upstream face of the annular flange of its radial annular portion against the upstream annular flange of the inner wall. exhaust housing, to seal the hub cavity.
  • the cylindrical envelope is elastically prestressed, in the stopping condition of the turbomachine, so as to apply the downstream face of the annular flange of its radial annular part against the annular flange downstream of the internal wall of the exhaust casing, to seal the hub cavity.
  • the annular flange of the radial annular portion of the cylindrical envelope preferably comprises at its radially outer end a cylindrical flange extending upstream and forming a radial bearing abutment on the upstream annular flange of the inner wall of the housing. exhaust.
  • the radial annular portion of the cylindrical envelope comprises orifices for the passage of a flow of fresh air.
  • This embodiment is well suited to the case where the hub cavity requires to be ventilated.
  • the size of the orifices can then be chosen according to the level of ventilation required and allows the ventilation air flow rate to be controlled.
  • the invention also relates to a cylindrical envelope for a turbomachine of the type described above, comprising at one of its an annular flange and at the other end thereof an inwardly extending radial annular portion, characterized in that the radial annular portion has at its radially inner end a radial annular flange formed with a cylindrical flange.
  • the invention also relates to a turbomachine equipped with an exhaust casing as described above.
  • the figure 1 represents a turbomachine exhaust casing 10 comprising two coaxial cylindrical walls, respectively radially internal 12 and external 14, connected by radial structural arms 16.
  • a cylindrical casing 18 is mounted around the radially inner wall 12 of the exhaust casing 10.
  • This envelope 18 shown separately on the figure 2 , comprises a cylindrical wall 20 in which are formed cutouts 22 open downstream for the passage of the radial arms 16 of the exhaust casing 10.
  • the cylindrical casing 18 comprises at its downstream end a radial annular flange 24 for attachment to the exhaust casing 10, and to its upstream end, a radial annular portion 26 extending radially inwardly.
  • the casing 18 comprises, according to the invention, an annular flange 28 formed at the radially inner end of its radial annular portion 26.
  • the casing 18 and the radially outer wall 14 of the exhaust casing delimit an annular space for exhaust gas flow inside a turbomachine, represented partially on the figure 3 .
  • This figure 3 shows the exhaust casing 10 mounted downstream of a low-pressure turbine 30, comprising discs 32 carrying blades 34, and rotating a shaft connected to an upstream compressor (not shown), in a manner well known.
  • the exhaust casing 10 comprises a downstream radial wall 36 extending radially outwardly from the downstream end of the inner wall 12 of the casing, and to which is fixed the radial annular flange 24 of the cylindrical casing.
  • the assembly formed by the inner wall 12 and the downstream radial wall 36 of the exhaust casing 10 as well as by the cylindrical casing 18 defines a toric cavity 38 commonly called a hub cavity.
  • the radial annular portion of the cylindrical envelope is free at its radially inner end and thus provides an annular opening in the hub cavity, between the free end of this radial annular portion and the upstream end of the inner wall of the exhaust casing.
  • the cylindrical casing 18 comprises an annular flange 28 formed at the inner end of the radial annular portion 26 of the casing, and engaged, as shown in FIG. figure 3 in an annular groove 40 ( Fig. 3a ) open towards the outside and formed by two radial flanges, respectively upstream 42 and downstream 44, arranged facing each other and integral with the inner wall 12 of the exhaust casing 10, to close the hub cavity 38 substantially sealingly and thus prevent the flow of fresh air into this cavity .
  • the downstream flange 44 is for example formed at the radially outer end of a ferrule 46 extending radially outwards from the upstream end of the inner wall 12 of the exhaust casing 10.
  • the upstream flange 42 can for its part be formed for example in the extension of a radial flange 48 for fixing an inner casing 50, commonly called an oil recovery casing, to the exhaust casing 10, the inner casing 50 extending axially between the shaft of the turbine and the discs 32 of the rotor of this turbine, upstream of the exhaust casing 10.
  • an inner casing 50 commonly called an oil recovery casing
  • annular flange 28 of the cylindrical casing 18 comprises at its radially outer end a cylindrical flange 52 extending upstream and forming a radial bearing abutment on the upstream annular flange 42 of the inner wall 12 of the exhaust casing 10.
  • the axial extent of the annular groove 40 is slightly greater than the thickness of the annular flange 28 of the cylindrical envelope 18 so that the latter is engaged with an axial clearance, for example of the order of 1 mm, in the groove 40, so as to allow radial sliding of the annular flange 28 in the groove 40.
  • cylindrical envelope 18 is formed such that at room temperature, when the turbomachine is stopped, the annular flange 18 extends substantially to the bottom of the annular groove 40.
  • the radial flanges 42 and 44 of the exhaust casing have radial dimensions greater than a value of radial displacement of the annular flange 28 considered as a maximum permissible under normal operating conditions of the turbomachine, in order to avoid any risk of disengagement of the engine. ledge 28 out of the throat 40.
  • cylindrical casing 18 is prestressed axially to apply, in stopping condition of the turbomachine, the upstream face 54 of the annular flange 28 against the downstream face 56 of the upstream flange 42 of the inner wall 12 of the casing. exhaust 10, to better ensure the sealing of the connection between the cylindrical casing 18 and the inner wall 12 of the housing.
  • the thermal expansion of the cylindrical envelope then tends to further increase the pressure exerted by the flange 28 on the upstream flange 42 of the casing, so that the sealing of the hub cavity 38 is ensured permanently.
  • the cylindrical envelope 18 could be prestressed axially to apply the downstream face 58 of the annular flange 28 against the upstream face 60 of the downstream flange 44 of the inner wall 12 of the exhaust casing 10.
  • the air pressure in the hub cavity 38 becomes greater than the air pressure upstream of the exhaust casing, or if a thermal expansion of the cylindrical casing 18 causes its annular flange 28 to move towards the upstream, it is quickly pressed against the upstream flange 42 of the exhaust casing, so that the sealing of the hub cavity 38 is preserved.
  • the cylindrical envelope 18 Because of the maintenance of its upstream end, the cylindrical envelope 18 has higher frequencies of frequencies of vibration than in the prior art.
  • the sealing of the hub cavity 38 makes it possible, as explained above, to improve the service life of the radial arms 16 of the exhaust casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Claims (10)

  1. Turbomaschinenaustrittsgehäuse (10) mit zwei koaxialen zylindrischen Wänden, radial innen (12) bzw. radial außen (24), die durch radiale Arme (16) verbunden sind, und einer zylindrischen Schale (18), die mit dem stromabwärts gelegenen Ende der radial inneren Wand (12) fest verbunden ist und einen Nabenhohlraum (38) mit der radial inneren Wand (12) sowie einen Abgassdömunigsraum mit der radial äußeren Wand (14) abgrenzt, wobei die zylindrische Schale (18) an ihrem stromaufwärts gelegenen Ende einen ringförmigen radialen Teil (26) aufweist, der sich ins Innere der Turbomaschine erstreckt, dadurch gekennzeichnet, dass der ringförmige radiale Teil (26) an seinem inneren Ende einen ringförmigen Rand (28) aufweist, der durch radiales Gleiten im Wesentlichen auf Dichtigkeit mit der inneren zylindrischen Wand (12) des Austrittsgehäuses (10) zusammenwirkt.
  2. Austrittsgehäuse (10) nach Anspruch 1, dadurch gekennzeichnet, dass die innere Wand (12) des Austrittsgchäuses (10) zwei ringförmige Flansche, stromaufwärts (42) bzw. stromabwärts (44) gelegen, aufweist, die sich radial nach außen erstrecken und derart gegenüber einander angeordnet sind, dass sie eine ringförmige Einschnürung (40) bilden, die dazu bestimmt ist, den ringförmigen Rand (28) der zylindrischen Schale (18) mit einem axialen Spiel für eine dichte Verbindung der zylindrischen Schale (18) mit der radial inneren Wand (12) aufzunehmen, die eine radiale Verschiebung des ringförmigen Randes (28) der Schale (18) zulässt.
  3. Austrittsgehäuse (10) nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Flansche (42, 44) der inneren Wand (12) des Austrittsgehäuses (10) eine radiale Abmessung haben, die höher als eine maximal zulässige Amplitude einer radialen Verschiebung des ringförmigen Randes (28) der zylindrischen Schale (18) ist, die durch deren Wärmeausdehnung hervorgerufen wird.
  4. Austrittsgehäuse (10) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass sich der ringförmige Rand (28) der zylindrischen Schale (18) im Wesentlichen bis zum Boden der ringförmigen Einschnürung (40) der inneren Wand (12) des Austrittsgehäuses (10) im Haltezustand der Turbomaschine erstreckt.
  5. Austrittsgehäuse (10) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die zylindrische Schale (18) im Haltezustand der Turbomaschine derart vorgespannt ist, dass sie die stromaufwärts gelegene Seite (54) des ringförmigen Randes (28) ihres radialen ringförmigen Teils (26) gegen den stromaufwärts gelegenen ringförmigen Flansch (42) der inneren Wand (12) des Austrittsgehäuses drückt, um die Dichtigkeit des Nabenhohlraums (38) zu gewährleisten.
  6. Austrittsgehäuse (10) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die zylindrische Schale (18) im Haltezustand der Turbomaschine derart vorgespannt ist, dass sie die stromabwärts gelegene Seite (58) des ringförmigen Randes (28) ihres radialen ringförmigen Teils (26) gegen den stromabwärts gelegenen ringförmigen Flansch (44) der inneren Wand (12) des Austrittsgeliäuses rückt, um die Dichtigkeit des Nabenhohlraums (38) zu gewährleisten.
  7. Austrittsgehäuse (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der ringförmigen Rand (28) des radialen ringförmigen Teils (26) der zylindrischen Schale (18) an seinem radial äußeren Ende einen zylindrischen Kragen (52) aufweist, der sich nach stromaufwärts erstreckt und einen radialen Anlageanschlag an dem ringförmigen, stromaufwärts gelegenen Flansch (42) der inneren Wand (12) des Austrittsgehäuses (10) bildet.
  8. Austrittsgehäuse (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der radiale innere Teil (26) der zylindrischen Schale (18) Öffnungen aufweist, die zum Durchgang eines Entlüfumgsluftstroms bestimmt sind.
  9. Zylindrische Schale (18) für ein Turbomaschmenaustrittsgehäuse (10) nach einem der vorhergehenden Ansprüche, welche an einem ihrer Enden einen ringförmigen Flansch (24) und am anderen ihrer Enden einen radialen ringförmigen Teil (26) aufweist, der sich nach innen erstreckt, dadurch gekennzeichnet, dass der radiale ringförmige Teil (26) an seinem radial inneren Ende einen radialen ringförmigen Rand (28) aufweist, der mit einem zylindrischen Kragen ausgebildet und dazu bestimmt ist, durch radiales Gleiten im Wesentlichen auf Dichtigkeit mit einer zylindrischen Wand des Austrittsgehäuses zusammenwirkt.
  10. Turbomaschine, dadurch gekennzeichnet, dass sie ein Austrittsgehäuse (10) nach einem der Ansprüche 1 bis 8 aufweist.
EP08168877A 2007-12-14 2008-11-12 Dichtigkeit eines Nabenhohlraums eines Austrittsgehäuses in einem Turbotriebwerk Active EP2071142B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0708713A FR2925119A1 (fr) 2007-12-14 2007-12-14 Etancheite d'une cavite de moyeu d'un carter d'echappement dans une turbomachine

Publications (2)

Publication Number Publication Date
EP2071142A1 EP2071142A1 (de) 2009-06-17
EP2071142B1 true EP2071142B1 (de) 2010-06-23

Family

ID=39689098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08168877A Active EP2071142B1 (de) 2007-12-14 2008-11-12 Dichtigkeit eines Nabenhohlraums eines Austrittsgehäuses in einem Turbotriebwerk

Country Status (7)

Country Link
US (1) US8172526B2 (de)
EP (1) EP2071142B1 (de)
JP (1) JP5320046B2 (de)
CA (1) CA2647058C (de)
DE (1) DE602008001592D1 (de)
FR (1) FR2925119A1 (de)
RU (1) RU2478801C2 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923525B1 (fr) * 2007-11-13 2009-12-18 Snecma Etancheite d'un anneau de rotor dans un etage de turbine
FR2956695B1 (fr) 2010-02-25 2012-11-16 Turbomeca Support de palier arriere souple avec butee pour turbomachine
FR2963061B1 (fr) * 2010-07-26 2012-07-27 Snecma Systeme d?injection de carburant pour turbo-reacteur et procede d?assemblage d?un tel systeme d?injection
US9062701B2 (en) * 2012-08-27 2015-06-23 United Technologies Corporation Pitch diameter shank bolt with shear sleeve
WO2014105602A1 (en) 2012-12-29 2014-07-03 United Technologies Corporation Heat shield for a casing
US10378370B2 (en) 2012-12-29 2019-08-13 United Technologies Corporation Mechanical linkage for segmented heat shield
US9850774B2 (en) 2012-12-29 2017-12-26 United Technologies Corporation Flow diverter element and assembly
US9982564B2 (en) 2012-12-29 2018-05-29 United Technologies Corporation Turbine frame assembly and method of designing turbine frame assembly
WO2014105800A1 (en) 2012-12-29 2014-07-03 United Technologies Corporation Gas turbine seal assembly and seal support
US10053998B2 (en) 2012-12-29 2018-08-21 United Technologies Corporation Multi-purpose gas turbine seal support and assembly
WO2014137444A2 (en) 2012-12-29 2014-09-12 United Technologies Corporation Multi-ply finger seal
US10006306B2 (en) 2012-12-29 2018-06-26 United Technologies Corporation Turbine exhaust case architecture
WO2014143329A2 (en) 2012-12-29 2014-09-18 United Technologies Corporation Frame junction cooling holes
WO2014105604A1 (en) 2012-12-29 2014-07-03 United Technologies Corporation Angled cut to direct radiative heat load
US10329956B2 (en) 2012-12-29 2019-06-25 United Technologies Corporation Multi-function boss for a turbine exhaust case
US9903224B2 (en) 2012-12-29 2018-02-27 United Technologies Corporation Scupper channelling in gas turbine modules
US9903216B2 (en) 2012-12-29 2018-02-27 United Technologies Corporation Gas turbine seal assembly and seal support
EP2938834A1 (de) 2012-12-29 2015-11-04 United Technologies Corporation Stossfänger für abdichtungen in einem turbinenabgasgehäuse
WO2014105657A1 (en) 2012-12-29 2014-07-03 United Technologies Corporation Mount with deflectable tabs
WO2014105826A1 (en) 2012-12-29 2014-07-03 United Technologies Corporation Seal support disk and assembly
EP2938857B2 (de) 2012-12-29 2020-11-25 United Technologies Corporation Hitzeschild zur kühlung einer strebe
WO2014105603A1 (en) 2012-12-29 2014-07-03 United Technologies Corporation Multi-piece heat shield
EP2938860B1 (de) 2012-12-31 2018-08-29 United Technologies Corporation Turbinenabgasgehäuse mit mehrteiligem rahmen
GB2524220B (en) 2012-12-31 2020-05-20 United Technologies Corp Turbine exhaust case multi-piece frame
GB2524443B (en) 2012-12-31 2020-02-12 United Technologies Corp Turbine exhaust case multi-piece frame
WO2014197037A2 (en) * 2013-03-11 2014-12-11 United Technologies Corporation Bench aft sub-assembly for turbine exhaust case fairing
US9598981B2 (en) * 2013-11-22 2017-03-21 Siemens Energy, Inc. Industrial gas turbine exhaust system diffuser inlet lip
FR3021692B1 (fr) * 2014-05-27 2016-05-13 Snecma Platine d'etancheite a fonction de fusible
JP2016003584A (ja) * 2014-06-13 2016-01-12 ヤンマー株式会社 ガスタービンエンジン
US11454128B2 (en) * 2018-08-06 2022-09-27 General Electric Company Fairing assembly
FR3099800B1 (fr) * 2019-08-09 2021-07-09 Safran Aircraft Engines Dispositif d'accrochage d'un boîtier d'alimentation en air d'un dispositif de refroidissement d'un carter de turbomachine
US11181004B2 (en) * 2020-02-07 2021-11-23 Raytheon Technologies Corporation Confinement of a rope seal about a passage using a backing plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1777407A1 (ru) * 1989-02-06 1995-05-20 М.Г. Колотиленко Сопловой аппарат газовой турбины
JPH09324699A (ja) * 1996-06-05 1997-12-16 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンのフレーム構造
JP2001050448A (ja) * 1999-08-02 2001-02-23 Ishikawajima Harima Heavy Ind Co Ltd 筒状部材の継手構造
US6511284B2 (en) * 2001-06-01 2003-01-28 General Electric Company Methods and apparatus for minimizing gas turbine engine thermal stress
JP2003020957A (ja) * 2001-07-11 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd タービンフレーム構造
US6612807B2 (en) * 2001-11-15 2003-09-02 General Electric Company Frame hub heating system
DE50312707D1 (de) * 2003-03-19 2010-06-24 Abb Turbo Systems Ag Abgasturbinengehäuse
EP1777378A3 (de) * 2003-07-29 2011-03-09 Pratt & Whitney Canada Corp. Gehäuse für ein Mantelstromtriebwerk und Herstellungsverfahren dafür
US7100358B2 (en) * 2004-07-16 2006-09-05 Pratt & Whitney Canada Corp. Turbine exhaust case and method of making
RU2287073C2 (ru) * 2004-12-14 2006-11-10 Открытое акционерное общество "Авиадвигатель" Силовая турбина газотурбинного двигателя

Also Published As

Publication number Publication date
US20090155071A1 (en) 2009-06-18
CA2647058C (fr) 2015-02-17
JP2009144708A (ja) 2009-07-02
FR2925119A1 (fr) 2009-06-19
EP2071142A1 (de) 2009-06-17
CA2647058A1 (fr) 2009-06-14
JP5320046B2 (ja) 2013-10-23
US8172526B2 (en) 2012-05-08
DE602008001592D1 (de) 2010-08-05
RU2008149138A (ru) 2010-06-20
RU2478801C2 (ru) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2071142B1 (de) Dichtigkeit eines Nabenhohlraums eines Austrittsgehäuses in einem Turbotriebwerk
EP1881179B1 (de) Wandbelüftungssystem für die Brennkammer einer Strömungsmaschine
EP1972756B1 (de) Interturbinen-Gehäuse mit Kühlkreislauf und dieses umfassendes Turbostrahltriebwerk
EP2096266B1 (de) Diffusor-Gleichrichter-Anordnung für eine Strömungsmaschine
EP2337929B1 (de) Lüftung einer hochdruckturbine in einer turbomaschine
EP1965027B1 (de) Hochdruckturbine eines Turbinentriebwerks
EP1881181B1 (de) Strömungsmaschine
EP2406462B1 (de) Rotorelement mit einem fluidkanal und einem kanalsperrglied sowie turbomotor mit dem rotorelement
FR2641033A1 (de)
EP2440746A1 (de) Turbinenmotor mit verbesserter vorrichtung zur einstellung der strömungsgeschwindigkeit eines am ausgang eines hochdruckverdichters abgetasteten sekundärstroms
WO2011080433A2 (fr) Guidage d'une bougie dans une chambre de combustion de turbomachine
EP1881180B1 (de) Wandbelüftungssystem für die Brennkammer
EP1970541B1 (de) Dränrohr des Austrittsgehäuses einer Strömungsmaschine
EP3880939B1 (de) Dichtung zwischen einer welle und einer leitschaufel einer turbomaschine
EP1519009A1 (de) Turbomaschine mit Luftentnahme für die Kabine über ein Kugelgelengrohr
FR2983909A1 (fr) Enceinte lubrifiee logeant un palier inter-turbine et fermee par un joint a labyrinthe a faible usure
FR3119199A1 (fr) Conduit de decharge a etancheite perfectionnee
FR3053077B1 (fr) Boitier de relais d'accessoires d'une turbomachine
WO2010116051A2 (fr) Turbomachine a chambre annulaire de combustion
WO2023047034A1 (fr) Turbine à gaz haute-pression pour une turbomachine et turbomachine
FR3039225A1 (fr) Turbomachine, telle par exemple qu'un turboreacteur d'avion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090625

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 602008001592

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008001592

Country of ref document: DE

Effective date: 20110323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 16

Ref country code: DE

Payment date: 20231019

Year of fee payment: 16