EP2069199B1 - Générateurs de vortex sur pales de rotor pour retarder le debut de moments de grand tangage oscillatoire et augmenter la portance maximale - Google Patents

Générateurs de vortex sur pales de rotor pour retarder le debut de moments de grand tangage oscillatoire et augmenter la portance maximale Download PDF

Info

Publication number
EP2069199B1
EP2069199B1 EP07873673A EP07873673A EP2069199B1 EP 2069199 B1 EP2069199 B1 EP 2069199B1 EP 07873673 A EP07873673 A EP 07873673A EP 07873673 A EP07873673 A EP 07873673A EP 2069199 B1 EP2069199 B1 EP 2069199B1
Authority
EP
European Patent Office
Prior art keywords
rotor blades
vortex generators
vortex
vortex generator
mobile platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07873673A
Other languages
German (de)
English (en)
Other versions
EP2069199A2 (fr
Inventor
Michael A. Mcveigh
Robert F. Maciolek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of EP2069199A2 publication Critical patent/EP2069199A2/fr
Application granted granted Critical
Publication of EP2069199B1 publication Critical patent/EP2069199B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/60Structure; Surface texture
    • F05B2250/61Structure; Surface texture corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present teachings relate to an airborne mobile platform having rotating rotor blades and more particularly relate to vortex generators on each rotor blade of a rotorcraft to reduce the onset of boundary layer separation and dynamic pitching moments in an unsteady subsonic airflow.
  • the wings i.e., the airfoils
  • the wings can experience relatively steady airflow.
  • a boundary layer can sufficiently detach from a surface of the wing causing a stall condition.
  • the wings can experience a loss in lift.
  • rotor blades of a rotorcraft can rotate with a rotor hub to which the rotor blades are connected.
  • the rotating rotor blades are subject to cyclical variations in blade pitch angle, as well as unsteady high-subsonic airflow that can include relatively high frequency and relatively large amplitude variations in angle of attack and relatively rapid and periodic changes in an airflow velocity at one or more sections of each of the rotor blades.
  • Rotor blades rotating through the unsteady airflow can have an increase in the maximum achievable lift (i.e., increase in airfoil section C Imax ) due to the unsteady variations in angle of attack.
  • the relatively large nose-down pitching moment i.e., moment stall
  • the speed, weight, altitude and/or other performance parameters of the rotorcraft may need to be limited so that these high vibratory loads can be avoided.
  • flight time in such conditions can reduce the life of the rotor hub and the rotor blade controls and can increase maintenance costs.
  • the solidity of the rotor blade can be increased to delay the onset of boundary layer separation, i.e., the stall condition.
  • Increasing rotor solidity can include increasing a chord of the rotor blade or increasing the number of blades.
  • the increase in the solidity of the rotor blade can reduce a value of a local section lift coefficient (i.e., decrease C I ) at certain local rotor sections below the maximum value of achievable lift (i.e., C Imax ).
  • the onset of the stall condition can be delayed.
  • the rotor blade can, nevertheless, stall.
  • increasing the solidity of the rotor blade can increase the magnitude of the pitching moment of the rotor blade by a square of the chord length (i.e., (pitching moment) - (chord length) 2 ).
  • the rotor blade airfoils can be implemented with trailing edge tabs and/or a relatively moderate camber
  • the trailing edge tabs can be set at a negative angle, i.e., upward from the trailing-edge.
  • the rotor blade airfoils can be designed to have negative camber (i.e., reverse camber) in a region of the trailing edge.
  • negative camber i.e., reverse camber
  • the various combinations can, however, add to the complexity and weight of the rotor blades especially increasing the number of rotor blades.
  • Increasing the solidity of the rotor blades and/or increasing the number of the rotor blades can require more engine power to overcome increased profile drag produced by the rotor blades, as profile drag can be proportional to the blade area.
  • Increased rotor blade solidity and/or camber and/or solidity can increase the weight of the rotor blades, the rotor hub, the rotor blade controls and associated structures of the rotorcraft. While the above rotor blade configurations remain useful for their intended purposes, there remains room in the art for improvement
  • EP 0481661 discloses a helicopter rotor blade having a plurality of rearwardly extending boundary layer control vanes protruding from an upper aerofoil surface of the rotor blade.
  • the control vanes are spaced apart along a notch region of the rotor blade and serve to reduce flow separation behind the notch region.
  • EP 1714869 discloses an aerofoil having devices that are provided at its front edge.
  • the devices include a passive eddy generator which is functionless at a low angle of attack and provides a function at a higher angle of attack.
  • EP 1577212 discloses an aerofoil having a body and at least one flow control device, the flow control device including a passage within the body of the aerofoil, and a passage outlet at an upper aerofoil surface.
  • air from the passage passes through the passage outlet to affect airflow over the upper surface of the aerofoil over at least a range of incidence angles,
  • the passage outlet is provided by an outlet fitting secured relative to upper surface of the aerofoil.
  • the flow control device is commonly known as an air jet vortex generator.
  • an airborne mobile platform and a method for improving performance of an airborne mobile platform as claimed in the appended claims.
  • the various aspects of the present teachings generally include an airborne mobile platform that generally includes a plurality of rotating rotor blades operating in an airflow that forms a boundary layer on each of the rotor blades. At least one of the rotor blades includes a section that encounters the airflow that includes an unsteady subsonic airflow having at least a varying angle of attack. At least one of the rotor blades also includes one or more vortex generators on the at least one of the rotor blades that generate a vortex that interacts with the boundary layer to at least delay an onset of separation of the boundary layer, to increase a value of an unsteady maximum lift coefficient and to reduce a value of an unsteady pitching moment coefficient for the section.
  • the various aspects of the present teachings can be applicable to any of a wide range of airborne mobile platforms.
  • the teachings can be particularly useful with rotorcrafts such as helicopters, tilt rotors, autogiros, etc.
  • the present teachings are also applicable to both unmanned and manned aircraft that can be controlled directly, remotely, via automation, and/or one or more suitable combinations thereof.
  • the various aspects of the present teachings can be applicable to any of a wide range of lift producing and/or thrust producing surfaces such as main rotors, secondary main rotors, rear rotors, etc. Accordingly, specific references to an airfoil and/or to rotor blades herein should not be construed as limiting the scope of the present teachings to those specific implementations.
  • one or more airborne mobile platforms 10 can employ rotor blades 12 to create lift and/or thrust.
  • a rotorcraft 14 can have the rotor blades 12 that can extend from a rotor hub 16.
  • Each of the rotor blades 12 can have a chord and a span.
  • Each of the rotor blades 12 can couple to the rotor hub 16 at a blade root 18 that is distal from a blade tip 20 in a spanwise direction.
  • the rotorcraft 14 can travel in generally a forward direction.
  • one of the rotor blades 12 can be in an advancing condition 22 and another one of the rotor blades 12 can be in a retreating condition 24.
  • Each of the rotor blades 12 experiences an airflow 26 that can be affected by an immediately preceding rotor blade, as the rotor blades 12 can travel in their circular path, i.e., a rotor disc 28.
  • each of the rotor blades 12 can experience unsteady airflow conditions arising from application of controlled periodic changes in blade pitch (i.e., cyclic pitch) and general airflow disturbances caused by the wakes of the other blades or other parts of the rotorcraft 14.
  • the Mach number of the airflow 26 can be subsonic.
  • the operating parameters of the rotorcraft 14 can include the Mach number of the airflow 26 being in a range from about 0.2 to 0.8 on the advancing blade (i.e., one of the rotor blades 12 in the advancing condition 22) and 0 to 0.6 on the retreating blade, (i.e., one of the rotor blades 12 in the retreating condition 24).
  • One or more vortex generators 30 can be implemented on one or more of the rotor blades 12 in various forms and/or at various predetermined positions.
  • vortices generated by the vortex generators 30 increase the reluctance of a boundary layer 32 to separate from the rotor blade 12 under conditions of high amplitude and/or high frequency changes in airfoil angle-of-attack.
  • the boundary layer 32 substantially attached to the rotor blade 12, as shown in Figures 3A and 3B , the rotor blade 12 can tolerate greater variations of angle-of-attack and Mach number before the rotor blade 12 enters dynamic moment stall. This can especially be so for the rotor blade 12 in the retreating condition 24.
  • the relatively large and dynamic pitching moments can be reduced or avoided by reducing and/or avoiding the onset of stall.
  • the unsteady airflow experienced by the rotor blades 12 can establish high frequency variations in angle-of-attack and/or Mach number over one or more sections of the rotor blades 12, which can result in the rotor blade 12 experiencing varying values of the local lift coefficient (i.e., C l ) for the section of the rotor blade 12.
  • the vortices from the vortex generators 30, however, can increase the local values of the maximum lift coefficient (i.e., C Imax ) and delay the abrupt change in section pitching moment for that section of the rotor blade 12. In this regard, the values of the lift coefficient can be maintained below the values of the maximum lift coefficients.
  • the values of lift coefficient can be increased to such a point that the boundary layer 32 can separate from the rotor blade 12, in other words, encounter the stall condition.
  • the pitching moments due to the stall condition can be reduced relative to pitching moments on rotor blades 12 whose solidity and/or camber had been modified to delay the onset of boundary layer 32 separation and moreover have not implemented the vortex generators 30 in accordance with the present teachings.
  • the vortex generators 30 can be mechanical and/or fluidic devices that can be deployed on the rotor blades 12 in certain predetermined configurations.
  • mechanical vortex generators 34 can be devices that physically extend into the airflow 26, such as a tab, a vane, etc.
  • fluidic vortex generators 36 can be devices that can inject a jet flow into and/or extract the jet flow from the airflow 26 such as piezoelectric pulse jets, zero net mass jets, etc.
  • the fluidic vortex generators 36 can be an oval or round fluidic vortex generator 36a (e.g., an orifice associated with one of the fluidic vortex generators 36 is oval or round).
  • the fluidic vortex generators 36 can be rectangular fluidic vortex generators 36b (e.g., an orifice associated with one of the fluidic vortex generators 36 is rectangular).
  • the vortex generators 30 can all be a single type of vortex generator 30 (e.g., all mechanical vortex generators 34 as shown in FIG. 2A ). Alternatively, one or more types of vortex generators 30 that can be employed on each or all of the rotor blades 12 and/or one or more suitable combinations thereof, as shown in FIG. 2D .
  • the mechanical vortex generators 34 can be fixed (i.e., not movable relative to the rotor blade 12) or, as in the present invention, can be adjustable.
  • the vortex generators 30 can include one or more vanes 38 that can be placed at specific chord and span positions along the rotor blade 12a.
  • the vanes 38 can be stationary or, as in the present invention, the vanes 38 can move relative to the rotor blade 12a and a combination thereof. Movement of the vanes 38 can include various deviations in pitch, roll and/or yaw relative to an initial position.
  • the vanes 38 can be fixed in the direction of pitch and roll but can be yawed (i.e., generally rotation about a z-axis 40 that can be generally normal to a ground blade section chord line 42).
  • the yawing of each vane 38 can be based on an angle of attack of the rotor blade 12a, the airflow velocity, the position of the rotor blade 12a on which the vortex generators 30 can be attached in the rotor disc 28 ( FIG. 1 ) (e.g., the blade being in the retreating condition 24 as opposed to the advancing condition 22) and/or one or more combinations thereof.
  • the vanes 38 can be extended from, and retracted into, a surface 44 of the rotor blade 12a.
  • the vanes 38 and/or one or more other suitable vortex generators 30 can be implemented on a top surface 46 ( FIG. 3A ) and/or a bottom surface 48 ( FIG. 3B ) of the rotor blade 12,12a and/or combinations thereof.
  • the yawing, extension, retraction and/or one or more combinations thereof of one or more of the vanes 38 can be based on an angle of attack of the rotor blade 12, the velocity of the airflow 26, the position of the rotor blade 12 on which one or more of the vortex generators 30 are attached in the rotor disc 28 ( FIG. 1 ) and/or one or more combinations thereof.
  • one or more of the fluidic vortex generators 36 can be placed at certain chord and span positions.
  • the vortex generators 30 can be arranged so that multiple vortex generators 30 on the rotor blade 12 can be divided into a first set 100, a second set 102, etc., which are part of a closely spaced array of fluidic vortex generators.
  • Each of the sets 100, 102 can be in an active condition (e.g., oscillating between injecting and extracting the jet flow) or in an inactive condition (e.g., neither injecting nor extracting).
  • an active condition e.g., oscillating between injecting and extracting the jet flow
  • an inactive condition e.g., neither injecting nor extracting
  • each of the fluidic vortex generators 36 inject and/or extract the jet flow in a similar or dissimilar fashion relative to other fluidic vortex generators 36 in the same set.
  • the first set 100 can all be in the active condition but certain fluidic vortex generators 36 in the first set 100 can inject and/or extract the jet flow differently than other fluidic vortex generators 36 in the first set 100.
  • the first set 100 and the second set 102, etc. of the fluidic vortex generators 36 can be associated with certain chord positions and/or span positions so that activating and deactivating certain fluidic vortex generators 36 can correspond to certain locations on the rotor blade 12.
  • the amount of either active or inactive fluidic vortex generators 36 can change.
  • the fashion in which each of the fluidic vortex generators 36 can inject and/or extract the jet flow can change as flight conditions and/or rotor blade 12 orientation change.
  • the fluidic vortex generators 36 can include one or more oscillating jets that can be similar to those disclosed in the following commonly assigned United States Patents: United States Patent Number 6,899,302 , titled Method and Device for Altering the Separation Characteristics of Flow over an Aerodynamic Surface via Hybrid Intermittent Blowing and Suction, issued May 31, 2005; United States Patent Number 6,866,234 , titled Method and Device for Altering the Separation Characteristics of Air-flow over an Aerodynamic Surface via Intermittent Suction, issued March 15, 2005; United States Patent Number 6,713,901 , titled Linear Electromagnetic Zero Net Mass Jet Actuator, issued March 30, 2004; and United States Patent Number 6,471,477 , titled Jet Actuators for Aerodynamic Surfaces, issued October 29, 2002.
  • the mechanical vortex generators 34 and/or the fluidic vortex generators 36 can be controlled by a controller 104 that can be integral to or in addition to existing avionic systems 106 or other suitable navigational, flight control, flight communication, etc. systems in the rotorcraft 14 ( Figure 1 ).
  • the pilot can directly and/or indirectly control the switching of each of the fluidic vortex generators 36 between the active and inactive conditions and/or can control the fashion in which each of the fluidic vortex generators 36 operate, the deployment of the fluidic and/or mechanical vortex generators 34, 36 and/or the positioning of the vortex generator (e.g., yawing the mechanical vortex generator 34) to further facilitate the delay of the onset of stall for the rotor blades 12.
  • each of the rotor blades 12 can be divided into multiple sections so that load and aerodynamic characteristics of each section can be discussed and/or modeled and an interaction of each and all of the sections can be assessed to provide an efficient design for a complete (i.e., finite) rotor blade 12.
  • Each section of the rotor blade 12 can experience differing load and/or aerodynamic characteristics for a myriad of reasons such as the airflow 26 being unsteady, the rotor blade 12 experiencing increased airspeed at the tip 20 ( Figure 1 ) of the rotor blade 12, twist and/or aeroelastics of the rotor blade 12, etc.
  • vortex generators 30 in some sections can delay the onset of stall but in other sections, the vortex generators 30 can delay the onset to a lesser extent or not at all.
  • the separation of the boundary layer 32 is not always an event that quickly occurs across the entire rotor blade 12.
  • the boundary layer 32 can partially separate in some sections of the rotor blade 12, while remaining generally attached in others.
  • the global effect can be a delay in the overall onset of stall, even though the airflow 26 over some sections of the rotor blade 12 can best be characterized as in the stall condition.
  • a diagram 200 in Figure 6 shows the effect of vortices generated by the vortex generators 30 on a value of lift coefficient versus a value of angle of attack for the rotor blade 12 ( Figure 1 ).
  • the value of angle of attack can change in a periodic fashion from a nominal angle of attack 202.
  • a value of a maximum angle of attack 204 and a value of a minimum angle of attack 206 are shown as the angle of attack of the rotor blade varies in the periodic fashion.
  • a first data series 208 indicates a value of the lift coefficient relative to values of angle of attack for a rotor blade without any vortex generators 30 implemented thereon.
  • a second data series 210 indicates a value of the lift coefficient relative to values of angle of attack for a rotor blade with one or more vortex generators 30 implemented thereon in accordance with the present teachings. It can be shown that as the values of angle of attack fluctuate in the periodic fashion typically experienced by rotating rotor blades 12, the effects of vortices from the vortex generators 30 can provide relatively higher values of lift coefficient.
  • a diagram 300 in Figure 7 shows the effect of vortices generated by the vortex generators 30 on a value of pitching moment coefficient versus a value of angle of attack for the rotor blade 12 ( Figure 1 ).
  • the value of angle of attack can vary in a periodic fashion between a maximum angle of attack 302 and a minimum angle of attack 304.
  • a first data series 306 indicates a value of the pitching moment coefficient relative to values of angle of attack for a rotor blade without any vortex generators 30 implemented thereon.
  • a second data series 308 indicates a value of the pitching moment coefficient relative to values of angle of attack for a rotor blade with one or more vortex generators 30 implemented thereon in accordance with the present teachings.
  • the effects of vortices from the vortex generators 30 can provide relatively lower values of pitching moment coefficient.
  • the vortex generators 30, in accordance with the present teachings, can be implemented on a rotor blade 12 that was otherwise initially constructed without the vortex generators 30, such as in a retrofit process.
  • the vortex generators 30 can cause the boundary layer 32 to remain attached over a trailing edge region 50 ( Figure 3A ) while increasing suction over a leading edge region 52 ( Figure 3A ). This can be shown to result in higher lift, lower drag and lower local pitching moments compared to an airfoil without the vortex generators 30.
  • the pitch rate of the rotor blade and the increased airflow velocity over the leading edge region 52 can be shown to result in a high and possibly detrimental velocity gradient over a section of the rotor blade 12.
  • a pocket of supersonic flow can be shown to occur ahead of the vortex generators 30.
  • the high velocity gradient and/or the pocket of supersonic flow can cause separation of flow closer to the leading edge rather than the trailing edge, which can negate the benefit of the vortex generators 30.
  • the vortex generators 30 can also be implemented on a rotor blade 12 that is initially constructed with the vortex generators 30 so that other characteristics of the rotor blade 12 can be modified and/or tailored to further benefit from the implementation of the vortex generators 30.
  • the leading edge of the rotor blades can be altered (e.g., adjust camber, bluntness, etc.) to slow the airflow along the section of the rotor blade 12.
  • Various shapes of the rotor blade 12 can be implemented with the vortex generators 30.
  • the configuration of the rotor blade 12 and the placement of the vortex generators 30 are based on a myriad of parameters that affect or define the rotorcraft 14. In certain instances, a more desirable velocity distribution over the rotor blade 12 in combination with a certain placement of the vortex generators 30 can be achieved by adjusting the thickness, the camber, the leading edge radius of the rotor blade 12 and one or more combinations thereof.
  • Certain implementations can be determined by initiating an iterative design process to provide an optimized configuration of the vortex blade 12, airfoil and the vortex generators.
  • the improved velocity distribution over the rotor blade in combination with certain placement of the vortex generators 30 can add to the reluctance of the boundary layer 32 to separate from the rotor blade 12.
  • an airfoil 400 can have a baseline bluntness 402 and an altered bluntness 404.
  • the bluntness of a leading edge 406 of the airfoil 400 can be adjusted by adjusting the radius of curvature of the leading edge 406.
  • the rotor blade 12 with the altered bluntness 404 on the leading edge 406 can also include one or more vortex generators 30 and therefore define an example of an airfoil that has been modified to accommodate and benefit from the vortex generators 30 relative to an airfoil having the baseline bluntness 402 to which a vortex generator 30 is simply attached.
  • the vortex generators 30 can establish a series of vortices. There can be a given number of vortices and, moreover, the spacing, the direction, the phase, the strength and one or more combinations thereof can be controlled to tailor the vortex generators 30 to a suitable aerodynamic environment or multiple environments typically encountered by the rotorcraft 14. At the least the above parameters can be simulated and/or tested empirically on various airborne mobile platforms to produce one or more suitable configurations of vortex generators 30 to benefit the airborne mobile platform.
  • the various aspects of the vortex generators 30 can be implemented to lower at least the oscillatory loads on the rotor controls, hub, and structure of a rotorcraft 14. This can help to reduce component wear-and-tear and increase the life of the rotorcraft 14.
  • the vortex generators 30 can also be used to generally maintain the oscillatory loads on the rotor controls, hub and structure of a rotorcraft 14 but can be used to expand the performance envelope of the rotorcraft 14. In doing so, the use of the vortex generators 30 can enable higher thrust levels without exceeding rotor control load limits.
  • the vortex generators 30 can expand current flight envelopes of rotorcraft 14 and thereby achieve increased speed, altitude, vertical lift, maneuver capability and combinations thereof.
  • the vortex generators 30 can be applied to rotor blades 12 that can be included in a tail rotor of a suitable rotorcraft.
  • the maximum thrust produced by the tail rotor can be increased, thereby increasing a low-speed yaw maneuvering capability of the rotorcraft 14.
  • rotorcraft 14 that have implemented the vortex generators 30 on the rotor blades 12 of a main rotor can also use the vortex generators 30 on a tail rotor to, among other things, offset the yawing moment associated with the performance increase of the main rotor.
  • the vortex generators 30 can be implemented on each of the rotor blades 12 on the rotorcraft 14 ( Figure 1 ). As shown in Figure 9 , the vortex generators 30 can define mechanical vortex generators 34 that are arranged along the leading edge region 52 of the rotor blade 12. Specifically, the vortex generators 30 can be vanes 500 that can be arranged in pairs 502 in the leading edge region 52 so that each of the pairs 502 of the vortex generators 30 are disposed at a location that is about 10% of a chord line 504 of one of the rotor blades 12 thereby defining a location 505 that is near the leading edge.
  • Each of vanes 500 in a single pair 502 can be oriented on the rotor blade 12 so that a leading edge 506 of each of the vanes 500 in the pair 502 are pointed toward one another and thus can form an angle 508 that is, in one example, about fifteen degrees from the chord line 504 of the rotor blade 12.
  • a direction parallel to a vortex generator chord line 510 can establish the angle 508 with a direction that is parallel to the chord line 504 of the rotor blade 12.
  • each of the vanes 500 of the pair 502 can be spaced from one another a distance 512 of about 6.35 millimeters (about 0.25 inches) measured from about the quarter chord of each vane 500.
  • Each of pairs 502 can be spaced from other pairs of vanes 500 on the rotor blade 12 a distance 514 that is about 25.4 millimeters (about one inch).
  • Each of the vanes 500 can be about 5.08 millimeters (about 0.2 inches) long (i.e., along the vortex generator chord line 510) and can be about 2.54 millimeters (about 0.1 inch) tall (i.e., a dimension normal from a surface 516 of the rotor blade 12.
  • the thickness of the vane 500 can be about 0.635 millimeters (about 0.025 inches).
  • the vanes 500 can be configured for certain applications, one of which can include a rotorcraft 14 having two main rotors like a Boeing Chinook CH-47.
  • each of the vanes 500 of the pair 502 can be spaced from one another a distance of about 19.1 millimeters (about 0.75 inches) measured from about the quarter chord of each vane 500.
  • Each of pairs 502 can be spaced from other pairs of vanes 500 on the rotor blade 12 a distance that is about 76.2 millimeters (about three inches).
  • Each of the vanes 500 can be about 15.2 millimeters (about 0.6 inches) long (i.e., along the vane chord line) and can be about 7,62 millimeters (about 0.3 inch) tall (i.e., a dimension normal from the surface 516 of the rotor blade.
  • the thickness of the vane 500 can be about 1.91 millimeters (about 0.075 inches). It will be appreciated in light of the disclosure that other configurations of the vortex generators 30 can be implemented based on the airborne mobile platform and the mission for that airborne mobile platform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Claims (19)

  1. Plate-forme mobile embarquée comprenant:
    une pluralité de pâles de rotor tournantes (12) fonctionnant dans un écoulement d'air (26) qui forme une couche limite (32) sur chacune des pâles de rotor, au moins une desdites pâles de rotor comprenant:
    une section qui rencontre l'écoulement d'air, où l'écoulement d'air comprend un écoulement d'air subsonique irrégulier ayant au moins un angle d'attaque qui varie; et
    un ou plusieurs générateurs de vortex (30) sur lesdites au moins une des pâles de rotor (12) qui produisent un vortex qui interagit avec la couche limite pour au moins retarder un début de séparation de la couche limite, pour augmenter une valeur d'un coefficient de levée maximum irrégulier et pour réduire une valeur d'un coefficient de moment de tangage irrégulier pour ladite section, où au moins un desdits générateurs de vortex comporte une aube (38) qui s'étend d'une surface (44) de ladite section, caractérisée en ce que ladite aube (38) est mobile relativement à la lame de rotor et ajustable relativement à l'écoulement d'air dans une direction de lacet.
  2. Plate-forme mobile embarquée selon la revendication 1, dans laquelle une forme d'au moins ladite section est modifiée pour changer une distribution de vitesse sur ladite au moins une desdites pâles de rotor basée sur un effet de placement desdits un ou plusieurs générateurs de vortex, et où ladite forme de ladite section est modifiée pour changer au moins un d'une épaisseur, d'une obtusité, d'un rayon de bord avant, d'une cambrure et une ou plusieurs combinaisons de ceux-ci.
  3. Plate-forme mobile embarquée selon la revendication 1, dans laquelle ladite aube est actionnable pour se rétracter en dessous de ladite surface de ladite section.
  4. Plate-forme mobile embarquée selon la revendication 1, dans laquelle ledit un ou plusieurs générateurs de vortex (36) comprennent un jet dans ladite section qui, au moins un parmi extrait et injecte un écoulement de jet dans ladite couche limite.
  5. Plate-forme mobile embarquée selon la revendication 1, dans laquelle lesdits un ou plusieurs générateurs de vortex (30) sont positionnés à un emplacement sur une des pâles de rotor qui correspond à environ dix pour cent de corde de ladite au moins une desdites pâles de rotor.
  6. Plate-forme mobile embarquée selon la revendication 1, dans laquelle lesdits un ou plusieurs générateurs de vortex comprennent au moins un premier générateur de vortex mécanique (34, 500) qui définit une ligne de corde de générateur de vortex (510), et où une direction parallèle à ladite ligne de corde de générateur de vortex établit un premier angle (508) avec une direction parallèle à une ligne de corde (504) d'au moins une desdites pâles de rotor sur laquelle ledit premier générateur de vortex mécanique est relié, ledit angle étant d'environ quinze degrés.
  7. Plate-forme mobile embarquée selon la revendication 6, dans laquelle lesdits un ou plusieurs générateurs de vortex (30) comprennent un deuxième générateur de vortex mécanique (34, 500) qui définit une ligne de corde de générateur de vortex (510), et où une direction parallèle à ladite ligne de corde de générateur de vortex dudit deuxième générateur de vortex mécanique établit un deuxième angle avec une direction parallèle à une ligne de corde (504) d'au moins une desdites pâles de rotor sur laquelle ledit deuxième générateur de vortex mécanique est relié, ledit deuxième angle étant d'environ quinze degrés, et où un angle avant (506) dudit premier générateur de vortex mécanique et un bord avant (506) dudit deuxième générateur de vortex mécanique sont inclinés l'un vers l'autre.
  8. Plate-forme mobile embarquée selon la revendication 1, dans laquelle lesdits un ou plusieurs générateurs de vortex (30) comprennent un premier générateur de vortex mécanique et un deuxième générateur de vortex mécanique qui définissent chacun une ligne de corde de générateur de vortex qui est inclinée relativement à une ligne de corde (504) d'au moins une desdites pâles de rotor sur laquelle lesdits premier et deuxième générateurs de vortex mécanique sont reliés.
  9. Plate-forme mobile embarquée selon la revendication 8, dans laquelle un bord avant (506) dudit premier générateur de vortex mécanique et un bord avant (506) dudit deuxième générateur de vortex mécanique sont inclinés l'un vers l'autre.
  10. Plate-forme mobile embarquée selon la revendication 1, comprenant en outre un dispositif de commande (104) qui ajuste lesdits un ou plusieurs générateurs de vortex (30) sur la base d'au moins une position de rotation d'au moins une desdites pâles de rotor (12).
  11. Plate-forme mobile embarquée selon la revendication 10, dans laquelle ledit ajustement desdits un ou plusieurs générateurs de vortex (30) comprend le déplacement d'une aube (38) entre un état étendu et un état rétracté, et où ladite aube (38) dans ledit état rétracté est disposée en dessous d'une surface (44) de ladite section de ladite au moins une desdites pâles de rotor.
  12. Plate-forme mobile embarquée selon la revendication 1, dans laquelle ledit un ou plusieurs générateurs de vortex (30) comprennent un groupement de générateurs de vortex fluidique faiblement espacés (36).
  13. Plate-forme mobile embarquée selon la revendication 12, comprenant en outre un dispositif de commande (104) apte à ajuster ledit groupement de générateurs de vortex fluidique faiblement espacés (38), où ledit groupement de générateurs de vortex fluidique faiblement espacés établit un premier ensemble (100) de générateurs de vortex fluidique et un deuxième ensemble (102) de générateurs de vortex fluidique, et où ledit ajustement dudit groupement de générateurs de vortex fluidique faiblement espacés comprend au moins une parmi l'activation dudit premier ensemble (100), la désactivation dudit premier ensemble (100), le changement d'une grandeur d'un écoulement de jet dudit premier ensemble (100), le changement d'une fréquence d'un écoulement de jet dudit premier ensemble (100), le changement d'une largeur d'impulsion d'un écoulement de jet dudit premier ensemble (100) et une ou plusieurs combinaisons de ceux-ci.
  14. Procédé pour améliorer la performance d'une plate-forme mobile embarquée comportant des pâles de rotor tournantes, le procédé comprenant:
    faire tourner les pâles de rotor (12) par un écoulement d'air subsonique irrégulier ayant au moins un angle d'attaque qui varie, chacune desdites pâles de rotor ayant une première valeur d'un coefficient de levée maximum dans ledit écoulement d'air;
    générer des vortex sur chacune desdites pâles de rotor en utilisant des générateurs de vortex (30), au moins un générateur de vortex comportant une aube (38) qui s'étend vers l'extérieur depuis une surface (44) de ladite pâle de rotor (12), l'aube (38) étant mobile relativement à la pâle de rotor et ajustable relativement à l'écoulement d'air dans une direction du lacet; et
    établir une deuxième valeur dudit coefficient de levée maximum qui est plus grande que ladite première valeur dudit coefficient de levée maximum dans ledit écoulement d'air en raison desdits vortex.
  15. Procédé selon la revendication 14, dans lequel ladite génération de vortex sur chacune desdites pâles de rotor comprend le déplacement d'aubes (38) d'un état rétracté à un état étendu.
  16. Procédé selon la revendication 14, dans lequel ladite génération de vortex sur chacune desdites pâles de rotor comprend l'injection et l'extraction d'un écoulement de jet.
  17. Procédé selon la revendication 14, dans lequel lesdits vortex sont produits près d'un bord avant de chacune des pâles de rotor (12).
  18. Procédé selon la revendication 14, dans lequel ladite génération de vortex sur chacune desdites pâles de rotor comprend la modification d'une forme desdites pâles de rotor pour changer une distribution de vitesse sur lesdites pâles de rotor basée sur le placement d'un ou de plusieurs générateurs de vortex (30) sur lesdites pâles de rotor.
  19. Procédé selon la revendication 14, dans lequel ladite génération de vortex sur chacune desdites pâles de rotor comprend le placement d'un premier générateur de vortex mécanique (500) et d'un deuxième générateur de vortex mécanique (500) près d'un bord avant (506) de chacune desdites pâles de rotor, et où un bord avant (506) dudit premier générateur de vortex mécanique et un bord avant dudit deuxième générateur de vortex mécanique sont inclinés l'un vers l'autre.
EP07873673A 2006-12-13 2007-12-13 Générateurs de vortex sur pales de rotor pour retarder le debut de moments de grand tangage oscillatoire et augmenter la portance maximale Not-in-force EP2069199B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/610,317 US7748958B2 (en) 2006-12-13 2006-12-13 Vortex generators on rotor blades to delay an onset of large oscillatory pitching moments and increase maximum lift
PCT/US2007/087343 WO2008118232A2 (fr) 2006-12-13 2007-12-13 Générateurs de vortex sur pales de rotor pour retarder le debut de moments de grand tangage oscillatoire et augmenter la portance maximale

Publications (2)

Publication Number Publication Date
EP2069199A2 EP2069199A2 (fr) 2009-06-17
EP2069199B1 true EP2069199B1 (fr) 2011-04-27

Family

ID=39527459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07873673A Not-in-force EP2069199B1 (fr) 2006-12-13 2007-12-13 Générateurs de vortex sur pales de rotor pour retarder le debut de moments de grand tangage oscillatoire et augmenter la portance maximale

Country Status (7)

Country Link
US (1) US7748958B2 (fr)
EP (1) EP2069199B1 (fr)
JP (1) JP5308349B2 (fr)
CN (1) CN101557981B (fr)
AT (1) ATE507142T1 (fr)
DE (1) DE602007014233D1 (fr)
WO (1) WO2008118232A2 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031241A1 (fr) * 2007-08-29 2009-03-04 Lm Glasfiber A/S Pale de rotor pour éolienne dotée de moyens générateurs de barrière
WO2009080316A2 (fr) * 2007-12-21 2009-07-02 Vestas Wind Systems A/S Dispositif de contrôle de flux actif et procédé pour affecter une couche limite de fluide d'une pale d'éolienne
US9302766B2 (en) * 2008-06-20 2016-04-05 Aviation Partners, Inc. Split blended winglet
WO2009153772A1 (fr) * 2008-06-20 2009-12-23 Nathan Kirpitznikoff Éolienne
US20110006165A1 (en) * 2009-07-10 2011-01-13 Peter Ireland Application of conformal sub boundary layer vortex generators to a foil or aero/ hydrodynamic surface
US8376704B2 (en) * 2009-11-05 2013-02-19 General Electric Company Systems and method of assembling an air distribution system for use in a rotor blade of a wind turbine
US8061986B2 (en) * 2010-06-11 2011-11-22 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
DE102010041111A1 (de) * 2010-09-21 2012-03-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotorblatt mit integrierter passiver Oberflächenklappe
EP2450764B1 (fr) 2010-11-05 2016-05-11 Sikorsky Aircraft Corporation Mise en oeuvre d'un estimateur de l'état linéaire d'un filtre Kalman pour l'égalisation de l'actionneur
CA2824611A1 (fr) * 2010-12-16 2012-06-21 Inventus Holdings, Llc Procede de determination du positionnement optimal d'un generateur de vortex pour un rendement maximal sur un aerogenerateur reconditionne de dessin aerodynamique inconnu
ES2856270T3 (es) * 2011-06-09 2021-09-27 Aviation Partners Inc El winglet integrado doble
ITTO20110071U1 (it) * 2011-07-18 2013-01-19 Agustawestland Spa Sistema di simulazione che permette di valutare in tempo reale l'interazione della scia di un rotore di un aeromobile in grado di volare a punto fisso contro l'aeromobile stesso
US9440737B1 (en) * 2012-05-11 2016-09-13 The Boeing Company Apparatus to adjust airfoils of rotor blades
CN102745328A (zh) * 2012-07-13 2012-10-24 北京理工大学 具有桨尖涡流抑制效应的涵道
DE102012024272A1 (de) * 2012-12-12 2014-06-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Verringern eines Rotors einer Windenergieanlage belastenden Nickmoments
BR112015017808A2 (pt) * 2013-01-25 2017-07-11 Ireland Anthony aprimoramentos de eficiência de energia para turbomáquina
US20140328688A1 (en) * 2013-05-03 2014-11-06 General Electric Company Rotor blade assembly having vortex generators for wind turbine
US9523279B2 (en) 2013-11-12 2016-12-20 General Electric Company Rotor blade fence for a wind turbine
WO2017147781A1 (fr) * 2016-03-01 2017-09-08 深圳市大疆创新科技有限公司 Support d'informations, véhicule aérien sans équipage et procédé et système de commande de détection et de suivi de secousses
EP3269635A1 (fr) * 2016-07-12 2018-01-17 The Aircraft Performance Company UG Aile d'avion
FR3054714B1 (fr) * 2016-08-01 2018-08-31 Airbus Operations Sas Procede de masquage d'un signal sonore genere par un element d'une peau d'un aeronef
US10487798B2 (en) * 2016-08-05 2019-11-26 General Electric Company System and method for locating airflow modifiers for installation on a wind turbine rotor blade
WO2018129721A1 (fr) * 2017-01-13 2018-07-19 深圳市大疆创新科技有限公司 Hélice d'un aéronef, groupe d'alimentation et véhicule aérien sans pilote
ES2761024T3 (es) * 2017-01-17 2020-05-18 Airbus Operations Sl Superficie de elevación
CN106741857A (zh) * 2017-03-02 2017-05-31 南京那尔朴电子有限公司 一种可以推力调节的螺旋桨
EP3511243B1 (fr) * 2018-01-15 2021-12-29 The Aircraft Performance Company GmbH Aile d'avion
FR3077802B1 (fr) * 2018-02-15 2020-09-11 Airbus Helicopters Methode de determination d'un cercle initial de bord d'attaque des profils aerodynamiques d'une pale et d'amelioration de la pale afin d'augmenter son incidence negative de decrochage
FR3077803B1 (fr) * 2018-02-15 2020-07-31 Airbus Helicopters Methode d'amelioration d'une pale afin d'augmenter son incidence negative de decrochage
US10889370B2 (en) * 2018-07-02 2021-01-12 Textron Innovations Inc. Chord-wise variable vortex generator
CN109018310A (zh) * 2018-09-03 2018-12-18 中国科学院工程热物理研究所 一种可调节涡流发生装置
US11613345B2 (en) * 2019-05-20 2023-03-28 The Boeing Company Aircraft nacelles having adjustable chines
CN110667839A (zh) * 2019-09-10 2020-01-10 河南理工大学 一种直升机旋翼叶片
US20220411046A1 (en) * 2019-11-21 2022-12-29 University Of Washington Vortex control on engine nacelle strake and other vortex generators
CN112253391B (zh) * 2020-10-30 2022-02-01 上海电气风电集团股份有限公司 空气流动控制装置及包含其的风机叶片、风力发电机组
US11885234B2 (en) 2021-07-30 2024-01-30 Honeywell International Inc. System and method for turbomachine with local vortex generator array

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2545010A (en) 1945-09-24 1951-03-13 Edward A Stalker Boundary layer control system for aircraft wings
US3713750A (en) * 1970-12-07 1973-01-30 Us Navy Circulation control rotor system
US4382569A (en) 1979-12-26 1983-05-10 Grumman Aerospace Corporation Wing tip flow control
US4455045A (en) * 1981-10-26 1984-06-19 Wheeler Gary O Means for maintaining attached flow of a flowing medium
US4655419A (en) * 1984-12-31 1987-04-07 The Boeing Company Vortex generator
US5209438A (en) * 1988-06-20 1993-05-11 Israel Wygnanski Method and apparatus for delaying the separation of flow from a solid surface
US5054720A (en) 1989-09-18 1991-10-08 Mcdonnell Douglas Corporation Trapped vortex cavity
GB9022271D0 (en) * 1990-10-13 1991-02-20 Westland Helicopters Helicopter rotor blades
US5758823A (en) 1995-06-12 1998-06-02 Georgia Tech Research Corporation Synthetic jet actuator and applications thereof
US5788191A (en) 1995-08-18 1998-08-04 Sikorsky Aircraft Corporation Half-plow vortex generators for rotor blades for reducing blade-vortex interaction noise
US6092090A (en) 1996-01-11 2000-07-18 Bhp Minerals International Inc. Management system for documents stored electronically
US5813625A (en) 1996-10-09 1998-09-29 Mcdonnell Douglas Helicopter Company Active blowing system for rotorcraft vortex interaction noise reduction
US6042059A (en) 1997-02-20 2000-03-28 Continuum Dynamics, Inc. System and method of vortex wake control using vortex leveraging
GB2324351A (en) 1997-04-18 1998-10-21 British Aerospace Reducing drag in aircraft wing assembly
US5938404A (en) 1997-06-05 1999-08-17 Mcdonnell Douglas Helicopter Company Oscillating air jets on aerodynamic surfaces
US6543719B1 (en) 1997-06-05 2003-04-08 Mcdonnell Douglas Helicopter Co. Oscillating air jets for implementing blade variable twist, enhancing engine and blade efficiency, and reducing drag, vibration, download and ir signature
US6092990A (en) 1997-06-05 2000-07-25 Mcdonnell Douglas Helicopter Company Oscillating air jets for helicopter rotor aerodynamic control and BVI noise reduction
US6234751B1 (en) 1997-06-05 2001-05-22 Mcdonnell Douglas Helicopter Co. Oscillating air jets for reducing HSI noise
US6821090B1 (en) 1997-06-05 2004-11-23 Mcdonnell Douglas Helicopter Company Gust alleviation/flutter suppression device
IL121164A (en) * 1997-06-26 2002-03-10 Univ Ramot Airfoil with dynamic stall control by oscillatory forcing
US6105904A (en) * 1998-03-30 2000-08-22 Orbital Research Inc. Deployable flow control device
US6171056B1 (en) * 1998-12-23 2001-01-09 Sikorsky Aircraft Corporation Technique for providing a signal for controlling blade vortex interaction noise of a rotorcraft
US6109566A (en) * 1999-02-25 2000-08-29 United Technologies Corporation Vibration-driven acoustic jet controlling boundary layer separation
US6302360B1 (en) 2000-01-10 2001-10-16 The University Of Toledo Vortex generation for control of the air flow along the surface of an airfoil
US6471477B2 (en) 2000-12-22 2002-10-29 The Boeing Company Jet actuators for aerodynamic surfaces
WO2002072421A2 (fr) 2001-03-10 2002-09-19 Georgia Tech Research Corporation Modification de l'ecoulement dun fluide sur des corps et des surfaces par formage aerodynamique virtuel de profils au moyen d'actuateurs de jets synthetiques
US6796533B2 (en) 2001-03-26 2004-09-28 Auburn University Method and apparatus for boundary layer reattachment using piezoelectric synthetic jet actuators
US6390116B1 (en) 2001-07-16 2002-05-21 Illinois Institute Of Technology Large amplitude pneumatic oscillator
US6713901B2 (en) 2002-03-14 2004-03-30 The Boeing Company Linear electromagnetic zero net mass jet actuator
US7048235B2 (en) 2002-10-09 2006-05-23 The Boeing Company Slotted aircraft wing
US7195210B2 (en) 2002-10-10 2007-03-27 The Boeing Company Fiber matrix for a geometric morphing wing
US6685143B1 (en) 2003-01-03 2004-02-03 Orbital Research Inc. Aircraft and missile forebody flow control device and method of controlling flow
US6837465B2 (en) 2003-01-03 2005-01-04 Orbital Research Inc Flow control device and method of controlling flow
US6866234B1 (en) 2003-07-29 2005-03-15 The Boeing Company Method and device for altering the separation characteristics of air-flow over an aerodynamic surface via intermittent suction
US6899302B1 (en) * 2003-12-12 2005-05-31 The Boeing Company Method and device for altering the separation characteristics of flow over an aerodynamic surface via hybrid intermittent blowing and suction
GB0405843D0 (en) * 2004-03-16 2004-04-21 Westland Helicopters Improvements in or relating to aerofoils
US7255309B2 (en) 2004-07-14 2007-08-14 The Boeing Company Vernier active flow control effector
US6994297B1 (en) 2004-10-27 2006-02-07 The Boeing Company Method and apparatus for controlling a vehicle
DE102005018427A1 (de) 2005-04-21 2006-11-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Auftriebsfläche mit verbessertem Ablöseverhalten bei stark veränderlichem Anstellwinkel

Also Published As

Publication number Publication date
JP5308349B2 (ja) 2013-10-09
EP2069199A2 (fr) 2009-06-17
CN101557981A (zh) 2009-10-14
DE602007014233D1 (de) 2011-06-09
JP2010513113A (ja) 2010-04-30
US7748958B2 (en) 2010-07-06
US20080145219A1 (en) 2008-06-19
WO2008118232A3 (fr) 2009-03-12
CN101557981B (zh) 2013-05-29
WO2008118232A2 (fr) 2008-10-02
ATE507142T1 (de) 2011-05-15

Similar Documents

Publication Publication Date Title
EP2069199B1 (fr) Générateurs de vortex sur pales de rotor pour retarder le debut de moments de grand tangage oscillatoire et augmenter la portance maximale
US9555895B2 (en) Motor pylons for a kite and airborne power generation system using same
US20230227149A1 (en) Adjustable lift modification wingtip
US4293110A (en) Leading edge vortex flap for wings
US8016245B2 (en) Dynamic bumps for drag reduction at transonic-supersonic speeds
EP2631175B1 (fr) Pale de rotor adaptif
EP2662282A2 (fr) Génération de vortex
US10423168B2 (en) Landing method and system for air vehicles
KR100211389B1 (ko) 헬리콥터 미부 구조물에 사용되는 시라우드-핀 일체 선반
EP3623289A1 (fr) Extension d'aile à pivotement libre d'aéronef à rotors basculants
EP2431275B1 (fr) Pale de rotor dotée d'un rabat de surface passif intégré
US7118071B2 (en) Methods and systems for controlling lower surface shocks
US8109473B2 (en) Slotted high lift aerofoils
US20200023945A1 (en) Aerodynamic surface of an aircraft
US20160152324A1 (en) Fluidic fence for performance enhancement
US4606519A (en) Airfoil
CN111348183B (zh) 飞行器
US6318677B1 (en) Method and apparatus for generating a stable leading-edge lifting-vortex controller
US11718396B2 (en) Active sail blade
CN114044135A (zh) 抑制直升机高速脉冲噪声的方法、装置及直升机
US4895323A (en) Rag control for powered lift aircraft
Petz et al. Active separation control on a high-lift configuration by a periodically pulsating jet
WO2013104007A1 (fr) Pylônes à moteur pour un cerf-volant et système de génération d'énergie aéroporté les utilisant
Fung et al. Control of a miniducted-fan unmanned aerial vehicle using active flow control
Heidersbach et al. Geometric Effects on the Aerodynamic Interactions of a Wing-Propeller Combination in Hover Flight

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090330

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007014233

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007014233

Country of ref document: DE

Effective date: 20110609

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110427

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110807

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110827

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007014233

Country of ref document: DE

Effective date: 20120130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111213

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151213

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201227

Year of fee payment: 14

Ref country code: GB

Payment date: 20201228

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201229

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007014233

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231