EP2067926A1 - Procédé pour supprimer le connecteur d'hydrate à partir d'une conduite d'écoulement - Google Patents
Procédé pour supprimer le connecteur d'hydrate à partir d'une conduite d'écoulement Download PDFInfo
- Publication number
- EP2067926A1 EP2067926A1 EP07254690A EP07254690A EP2067926A1 EP 2067926 A1 EP2067926 A1 EP 2067926A1 EP 07254690 A EP07254690 A EP 07254690A EP 07254690 A EP07254690 A EP 07254690A EP 2067926 A1 EP2067926 A1 EP 2067926A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drilling tool
- flowline
- blockage
- drill bit
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005553 drilling Methods 0.000 claims abstract description 194
- 239000012530 fluid Substances 0.000 claims abstract description 87
- 238000005520 cutting process Methods 0.000 claims abstract description 59
- 238000005086 pumping Methods 0.000 claims abstract description 16
- 239000004020 conductor Substances 0.000 claims description 22
- 230000009975 flexible effect Effects 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 6
- 239000004519 grease Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000010779 crude oil Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 238000005485 electric heating Methods 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 244000261422 Lysimachia clethroides Species 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009954 braiding Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000012772 electrical insulation material Substances 0.000 description 2
- 229920002457 flexible plastic Polymers 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
- B08B9/043—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved by externally powered mechanical linkage, e.g. pushed or drawn through the pipes
- B08B9/0436—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved by externally powered mechanical linkage, e.g. pushed or drawn through the pipes provided with mechanical cleaning tools, e.g. scrapers, with or without additional fluid jets
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/001—Self-propelling systems or apparatus, e.g. for moving tools within the horizontal portion of a borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/14—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for displacing a cable or a cable-operated tool, e.g. for logging or perforating operations in deviated wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B4/00—Drives for drilling, used in the borehole
- E21B4/04—Electric drives
Definitions
- This invention relates to a method for re-starting the flow of a fluid through a flowline when the flowline has become blocked with a solid material such as gas hydrates, wax, mineral scale, asphaltenes or corrosion products.
- this invention relates to a method for re-starting the flow of a fluid through a subsea flowline.
- Subsea flowlines may be used in the oil industry for transporting produced fluids from a wellhead to a riser through which the produced fluid passes to a surface separation facility.
- the surface separation facility may be on a platform or a Floating Production Storage and Offloading (FPSO) vessel.
- Subsea flowlines may also used for transporting gaseous streams comprising natural gas (gas export flowlines or gas injection flowlines).
- a problem may arise when a subsea flowline is used for transporting a multiphase fluid that comprises crude oil and/or gas condensate, produced water and produced gas in that the flowline may become blocked with gas hydrate, owing to the temperature at the seabed being below the temperature at which gas hydrates are formed at typical flowline pressures, for example, the temperature external of the flowline may be in the range of 4 to 7°C.
- gas hydrates may form in a subsea flowline that is used for transporting a gaseous stream that comprises natural gas and produced water.
- a problem may also arise when a subsea flowline is used for transporting a heavy crude oil in that wax and/or asphaltene components of the crude oil may deposit onto the walls of the flowline.
- mineral scale may deposit onto the walls of a flowline from the aqueous phase of a multiphase fluid.
- corrosion of the flowline may lead to corrosion products accumulating in the flowline. These deposits may restrict or prevent flow of the multiphase fluid.
- the present invention relates to a method of drilling through a blockage in a flowline using a remotely controlled electrically operated drilling tool that comprises a drill bit, a steering means, a pumping means, and a propulsion system wherein the drilling tool is connected either directly or indirectly to an electric cable and the drill bit is mounted on the steering means, the method comprising:
- the flowline is used for transporting a multiphase produced fluid comprising crude oil and/or gas condensate, produced water and produced gas.
- the flowline may be used for transporting a gaseous stream comprising produced natural gas and produced water.
- the fluid that is present in the flowline adjacent the blockage and that is passed over the cutting surfaces of the drilling tool is typically a liquid (for example, crude oil and/or gas condensate and/or produced water) or a gas, in particular, a "wet" natural gas.
- the flowline may be either completely blocked such that there is a plug in the flowline or partially blocked such that the flowline has a substantially reduced flow channel, for example, a layer of gas hydrate, wax, asphaltene or mineral scale may be present on the inner walls of the flowline.
- the drilling tool typically drills a borehole through the blockage.
- pressure communication is achieved when the pressure downstream of the blockage(s), is equal to the pressure upstream of the blockage(s) as a result of a borehole being drilled through the blockage(s) (where upstream and downstream refer to the direction of flow of fluids through the flowline prior to a complete blockage forming in the flowline).
- Pressure sensors in the flowline or at a surface separation facility may be used to determine if pressure communication has been achieved.
- the pressure of the fluid upstream of a complete blockage (plug) or a plurality of blockages (plugs) is typically at least 100 bar, for example, 150 to 300 bar.
- the drilling tool may be used to remove deposits from the wall of the flowline thereby increasing the available flow channel through the flowline.
- the flowline may be a land or subsea flowline. Where the flowline is a subsea flowline, the drilling tool may be passed into the flowline through a riser with the drilling tool suspended from the electric cable.
- the drilling tool may be introduced into a riser tower via a pig launcher that is located in a turret of a FPSO vessel.
- the drilling tool may be introduced into a riser via a buoyancy tower.
- the tool may be introduced into a riser via a non-stationary surface entry point such as on an FPSO vessel.
- the entry point for the drilling tool may be above sea level (hereinafter referred to as "surface entry point").
- An entry access system for the drilling tool is provided at the surface entry point.
- the entry access system for the surface entry point comprises a blow out preventer, lubricator, injector and winch system (for the cable).
- the surface entry point is within 10 kilometres, for example, within 6 kilometres of the location of the blockage in the flowline.
- the drilling tool may be introduced into the flowline through a subsea entry point in the flowline, for example, a Pipeline End Termination (PLET) or a Flowline Termination Assembly (FTA).
- PLET Pipeline End Termination
- FTA Flowline Termination Assembly
- the flowline is provided with a plurality of entry points spaced apart along the flowline.
- the entry points may be positioned in side branches in the flowline.
- These side branches preferably have gentle curves to facilitate installation of the drilling tool in the flowline.
- Suitable side branches include Y shaped sections in the flowline, for example, Y shaped sections where the side branch has an angle of up to 20° relative to the longitudinal axis of the main flowline.
- the subsea entry points are provided with an entry access system that allows the drilling tool to be installed and recovered from the flowline in such a way as to prevent loss of containment of the flowline.
- the entry access system comprises various components that might be found in a wellhead, such as a lubricator, a dual valving system, a wireline stuffing box, and a grease seal.
- the wireline stuffing box comprises rubber packing elements that seal around the cable as it is run into and pulled out of the flowline.
- the grease seal provides a dynamic seal around the cable.
- At least one of the valves is a shear-seal valve that is capable of cutting the cable in the event of an emergency.
- the dual valving system allows the drilling tool to enter the flowline via the lubricator.
- one of the valves is arranged above the lubricator and the other below the lubricator. The upper valve is opened thereby allowing the drilling tool to pass into the lubricator. The upper valve is then closed and the lower valve opened thereby allowing the drilling tool to pass into the flowline.
- the drilling tool may be lowered to the subsea entry point from a floating vessel, with the drilling tool suspended from an electric cable.
- the cable is arranged within a flowline intervention riser that may be deployed from the floating vessel.
- the flowline intervention riser may be latched to the subsea entry point of the flowline using a suitable connector.
- a means for releasing the riser, in the event of an emergency, may also be provided at the subsea entry point.
- the flowline intervention riser terminates at the surface at a valving system that comprises at least one pressure valve, a wireline stuffing box, and a grease seal.
- a chemical injection facility is also provided at the surface thereby allowing a treatment chemical to be delivered to the flowline via the flowline intervention riser.
- the drilling tool and associated equipment may be provided subsea with electrical power being supplied via an umbilical.
- an electric cable may be laid alongside the flowline with wet-connect electrical connection points for the drilling tool provided adjacent the subsea entry points.
- subsea fluid reservoirs are provided for collecting any flowline fluids that may otherwise be released to the environment.
- the drilling tool is delivered to and connected to the subsea electrical connection point via a remotely controlled submersible vehicle (ROV).
- ROV remotely controlled submersible vehicle
- the drilling tool is provided with a sufficient length of additional electric cable, such that the drilling tool may be passed through the subsea entry point and along the flowline to the location of the blockage.
- the subsea entry point that is used to deliver the drilling tool to the flowline is located downstream of the blockage (on the surface facility side of the blockage).
- the subsea entry point is within 10 kilometres, preferably, within 5 kilometres, for example, within 2.5 kilometres of the blockage.
- the electric cable is connected to the drilling tool by means of a connector, in particular, a releasable connector that provides an emergency disconnect for the drilling tool.
- the electric cable is a conventional cable formed from reinforced steel that encases one or more wires or segmented conductors for transmitting electricity or electrical signals (hereinafter "conventional cable”).
- the conventional cable may be a braided steel cable.
- the electric cable may also be a modified "conventional cable” comprising a core of an insulation material having at least one electrical conductor wire or segmented conductor embedded therein; an intermediate fluid barrier layer; and, an outer flexible protective sheath.
- the insulation material is comprised of a flexible plastic or rubber material.
- the intermediate fluid barrier layer is comprised of steel.
- the outer protective sheath is comprised of steel braiding.
- the electrical conductor wire(s) and/or segmented conductor(s) embedded in the core of insulation material is coated with an electrical insulation material.
- the electric cable may also be a composite cable or a polymer cable as manufactured by Brand Rex.
- the electric cable may be a hybrid cable that comprises a tubing having least one electrical conductor wire and/or at least one segmented electrical conductor embedded in the wall thereof.
- the hybrid cable comprises a concentrically arranged inner metal pipe and outer metal pipe.
- the electrical conductor wire(s) and/or segmented cable(s) run through the annular space between the inner and outer metal pipes of the hybrid cable.
- the electrical conductor wire(s) and/or segmented conductor(s) are embedded in an insulation material (for example, a flexible plastic or rubber material) that fills the annular space between the inner and outer pipe.
- the electrical conductor wire(s) and/or segmented conductor(s) of the hybrid cable are coated with an electrical insulation material.
- the hybrid cable is provided with a protective sheath, for example, steel braiding. It is envisaged that the cable may be designed such that it operates at below optimum efficiency for transmitting electricity. Accordingly, the cable will generate and emit heat to its external environment. This is advantageous as it may prevent gas hydrate from forming in the immediate vicinity of the cable thereby allowing the cable and hence the drilling tool to be advanced through the flowline.
- the electric cable has a diameter of less than 2 inches, preferably, less than 1 inch.
- the cable is a conventional cable, it is preferred that the cable has a diameter of less than 0.5 inches, for example, braided electric wireline is supplied in varying diameters, typically 7/32, 9/32, 5/16 and 7/16 inches.
- the electric cable has a length that is at least as long as the distance from the surface to the blockage in the flowline (or as long as the distance between the electrical subsea connection points and the blockage in the flowline). Where the electric cable is run from the surface, it typically has a length of up to 30,000 feet, for example, up to 24,000 feet.
- the electric cable should have minimal contact with the inner wall of the flowline so as to avoid any friction between the electric cable and the flowline.
- the cable may be provided with cable centralisers. It is also envisaged that friction between the cable and the flowline may be minimised by coating the cable with a low friction material.
- the drilling tool is provided with an elongate housing.
- the elongate housing is of circular cross-section.
- the diameter of the elongate housing is in the range of 2 to 24 inches, preferably, 4 to 12 inches.
- the elongate housing is a segmented housing.
- segmented housing is meant that the housing comprises a plurality of housing segments that are joined together by flexible joints or flexible connectors, for example, knuckle joints.
- the segmented housing has a length in the range of 10 to 60 feet, for example, 20 to 40 feet.
- each segment of the housing should be such that the drilling tool is capable of negotiating bends having a radius of less than 5 pipe diameters, in particular, bends having a radius of less than 3 pipe diameters.
- the length of the housing segments will be dependent upon the internal diameter of the flowline.
- each segment of the housing has a length in the range of from 1 to 10 feet.
- the segmented housing comprises 4 to 30, for example, 10 to 20 segments.
- the segmented elongate housing is preferably pressure sealed up to the maximum operating pressure of the flowline.
- the segmented elongate housing is pressured sealed against a pressure of up to 600 bar absolute, for example, up to 400 bar absolute.
- each knuckle joint typically allows no rotation between adjacent housing segments.
- each knuckle joint provides an angular deviation of up to 90°, for example, up to 45°.
- angular deviation is meant the deviation of the longitudinal axis of a housing segment relative to the longitudinal axis of an adjacent housing segment.
- the knuckle joints are capable of pressure sealing, at a pressure up to the maximum operating pressure of the flowline, throughout the full rotation of the drilling tool.
- the ball sockets of the knuckle joints provide the rotation and angular deviation.
- seals in the knuckle joints provide the pressure sealing capability.
- the knuckle joints are selected from those knuckle joints that have at least one flow-through bore that may comprise part of at least one fluid channel through the housing of the drilling tool (see below).
- the knuckle joints have thread connections at each end that connect the knuckle joints to adjacent segments of the housing.
- the knuckle joints may have other "nonrotating" connections at each end (of the types typically used in wireline tools). Suitable knuckle joints are provided by, for example, National Oilwell Varco and Thru-Tubing Technology.
- the segmented housing provides flexibility to the drilling tool enabling it to negotiate typical geometries of "flexibles” (S-shaped flexible flow lines), “goosenecks", catenary risers, 3D bends (bends in a flowline or riser having a radius of 3 pipe diameters), multiple bends in a riser or flowline arranged over a short distance (for example, 2 to 10 bends, over a distance of less than 100 metres, in particular less than 50 metres), or flowlines that traverse undulating terrains.
- flexibles S-shaped flexible flow lines
- goosenecks catenary risers
- 3D bends tails in a flowline or riser having a radius of 3 pipe diameters
- multiple bends in a riser or flowline arranged over a short distance for example, 2 to 10 bends, over a distance of less than 100 metres, in particular less than 50 metres
- flowlines that traverse undulating terrains.
- a drill bit is provided at both the front and rear of the drilling tool (i.e. at each end thereof).
- the presence of the drill bit at the rear of the drilling tool is advantageous as this additional drill bit may be used to remove debris (cuttings) when withdrawing the drilling tool from the flowline, or to remove the drilling tool from a blockage in the event that the drilling tool becomes stuck in the blockage or the blockage re-forms behind the drilling tool.
- the drill bit at the rear of the drilling tool has cutting surfaces formed from a material that will not damage the electric cable.
- the drill bit at the rear of the drilling tool is a core drill.
- an electric heating means or laser may be provided at or near the rear of the drilling tool for melting any gas hydrate or wax that may re-form behind the drilling tool.
- deposits may be removed from the wall of the flowline when the drilling tool is passed in both a forward and reverse direction through the flowline.
- the drilling tool may be moved backwards and forwards within the flowline a plurality of times, for example, 2 to 5 times, in order to substantially remove the deposit from the wall of the flowline.
- the deposits are of mineral scale
- the mineral scale cuttings may be collected in a junk basket, see below.
- an electric motor is located in the elongate housing of the drilling tool.
- the electric motor is capable of actuating a means for driving the drill bit.
- the means for driving the drill bit is a rotor (a rotating shaft).
- each drill bit may be mounted on a dedicated rotatable shaft that is driven by a dedicated electric motor.
- a single electrical motor may drive both drill bits that are mounted on dedicated rotatable shafts. Electricity is transmitted to the motor(s) via an electrical conductor wire or a segmented conductor encased in the electrical cable.
- the drill bit(s) of the drilling tool is mounted on an electrically operated steering means, for example, a steerable joint, that is used to adjust the trajectory of the drilling tool (and hence the trajectory of a borehole that is being drilled through a blockage in the flowline). Electricity is transmitted to the steering means via an electrical conductor wire or a segmented conductor embedded in the electric cable.
- the steering means is preferably a continuously variable bent-sub or a continuously rotary steerable system that is capable of adjusting the bit orientation relative to the longitudinal axis through the drilling tool by from 0 to 10°, for example, 0 to 5° thereby allowing the drill bit to be aimed in any direction. Bent-subs and continuously rotary steerable systems are well known to the person skilled in the art.
- the trajectory of the borehole that is drilled through the blockage is adjusted, using the steering means, so that the borehole remains substantially parallel to the wall of the flowline.
- the borehole is offset from the centre of the flowline, in particular, is close to the wall of the flowline.
- the propulsion system is connected either directly or indirectly to the elongate housing of the drilling tool.
- the propulsion system is a traction means, in particular, an electrically operated traction means.
- the housing of the drilling tool may be provided with tractor feet, pads or wheels that may be extended in a radial direction into engagement with the walls of the flowline (or the bore hole that is being drilled through the blockage) and that are adapted to move the drilling tool through the flowline (or borehole).
- a suitable traction means is a Welltec TM wireline tractor.
- the traction means also takes up the reactive torque generated by the means for driving the drill bit.
- Electricity may be transmitted to the traction means via an electrical conductor wire or segmented conductor of the electric cable and optionally via an umbilical.
- the drilling tool may be retrieved by either pulling on the electric cable or by running the electrical traction means in reverse such that the drilling tool moves in the reverse direction through the borehole that has been drilled through the blockage and then in a reverse direction through the flowline (whilst taking up the slack in the electrical cable, for example, using a wireline truck drum).
- the pumping means of the drilling tool is a remotely controlled electrically operated pumping means.
- the pumping means draws fluid that is present in the flowline adjacent the blockage over the cutting surfaces of the drill bit thereby entraining the cuttings in the fluid.
- the fluid that is drawn over the cuttings surfaces of the drill bit is taken from a location adjacent to the blockage (on the surface facility side of the blockage).
- the pumping means is located within the elongate housing of the drilling tool.
- the fluid is passed to the cutting surfaces of the drill bit over the outside of the elongate housing of the drilling tool.
- the housing of the drilling tool may have a fluid channel therethrough (for example, a conduit) having an inlet for the fluid that is present in the flowline adjacent the blockage and an outlet that is in fluid communication with at least one fluid channel in the drill bit so that fluid is passed through the drilling tool and out over the cutting surfaces of the drill bit.
- a fluid channel therethrough for example, a conduit
- the inlet to the fluid channel is provided with a filter to prevent any cuttings from being recycled to the drill bit of the drilling tool.
- the pumping means is typically a remotely controlled electrically operated downhole pump, for example, a suction pump or positive displacement pump.
- the pumping means is typically a compressor associated with an eductor. This type of pumping system is described in International Patent Application WO 2007/122393 and may be employed where drill cuttings are being conveyed by a gas.
- the elongate housing of the drilling tool has a fluid channel (or conduit) for transporting the suspension of cuttings away from the drill bit (that is mounted at the front of the drilling tool) such that the cuttings are deposited behind the drilling tool.
- this fluid channel has an inlet that is in close vicinity to the drill bit and an outlet that is at or near the rear of the drilling tool.
- the pumping means draws the suspension of drill cuttings through the inlet of the fluid channel and discharges said suspension via the outlet into the flowline behind the drilling tool.
- this passage is in fluid communication with a discharge conduit that extends longitudinally (along the direction of the flowline) behind the housing of drilling tool such that the cuttings are deposited at a distance behind the drilling tool, for example, the conduit may extend at least 10 metres behind the drilling tool.
- the drilling tool is preferably provided with an electric heating element or a laser that may be used to heat the suspension of cuttings as it is being passed through the fluid channel.
- an electric heating element may be wound around the fluid channel (or conduit) and may be used to melt the hydrate cuttings or wax cuttings as the suspension of cuttings flows through the fluid channel (or conduit).
- a window may be provided in the fluid channel (or conduit) through which a laser beam is focussed into the suspension that is flowing through the fluid channel (or conduit).
- the laser beam is used to melt the hydrate cuttings or wax cuttings as the suspension of cuttings flows past the window in the fluid channel or conduit.
- the presence of the electric heating element or the laser may mitigate the risk of a gas hydrate or wax blockage re-forming behind the drilling tool.
- the drilling tool may be provided with a junk basket located behind the housing of the drilling tool for collecting any cuttings.
- the junk basket may be joined to the elongate housing of the drilling device via a flexible joint or flexible connector, in particular, a knuckle joint.
- the junk basket may be provided with an external screen, for example, a screen formed from fibre glass.
- the diameter of the junk basket is substantially the same as the diameter of the elongate housing of the drilling tool.
- the junk basket has a length of less than 10 feet, preferably less than 5 feet thereby allowing the drilling tool to negotiate the geometries discussed above.
- the fluid channel through the housing that is used for transporting the suspension of cuttings away from the drill bit has an outlet for discharging the suspension into the junk basket.
- this outlet is located at or near the end of the junk basket that is joined to the elongate housing of the drilling device.
- the junk basket is also provided with an outlet, at the end remote from the elongate housing, for discharging fluid from the junk basket into the flowline behind the drilling device.
- the fluid is discharged from the junk basket via a discharge pipe that extends beyond (behind) the junk basket such that the fluid is discharged at a distance behind the drilling tool, for example, at a distance of at least 1 metre, preferably, at least 2 metres behind the drilling tool.
- the inlet to the discharge pipe is located in the upper portion of the junk basket in order to mitigate the risk of the discharge pipe becoming blocked with cuttings.
- the inlet to the discharge pipe is provided with a screen that has a sufficiently small mesh size to prevent the majority of the cuttings from passing out of the junk basket with the fluid.
- the mesh size of the screen is dependent upon the size of the cuttings.
- the larger sized cuttings disentrain from the fluid in the junk basket and are deposited at the bottom thereof.
- the housing of the drilling device may be provided with a fluid reservoir for storing a treatment chemical.
- the housing of the drilling device has an outlet at or near the drill bit that is in fluid communication with the fluid reservoir.
- a dedicated pump for the treatment fluid is provided within the housing and may be actuated to pump the treatment fluid from the fluid reservoir such that the treatment chemical is discharged from the outlet and is delivered to the blockage.
- a nozzle is provided at the outlet such that the treatment chemical is sprayed onto the blockage. It is envisaged that the treatment chemical will assist in removing the blockage from the flowline and/or will dissolve the drill cuttings.
- the treatment chemical may be methanol or a glycol such as monoethylene glycol.
- the treatment chemical comprises an organic solvent such as xylene and a wax dissolver.
- the treatment chemical is an organic solvent such as xylene.
- a tubing may be run from the surface together with the electric cable for delivering a treatment chemical to the blockage.
- the tubing is a flexible tubing and may be either a continuous tubing or a jointed pipe.
- the continuous tubing is coiled tubing, for example, metal coiled tubing or composite coiled tubing.
- the tubing has an outer diameter of less than 2 inches.
- the tubing is bound to the electrical cable i.e. the tubing runs alongside the electric cable.
- the electric cable may be arranged within the tubing with the fluid delivered to the blockage via the annulus between the inner wall of the tubing and the cable.
- the electrical cable may be a hybrid cable (see above) such that a treatment chemical may be delivered to the blockage in the flowline through the bore that runs through interior of the hybrid cable.
- the tubing or the hybrid cable discharges the treatment fluid behind the drilling tool (in close vicinity to the drilling tool) such that treatment fluid, optionally, together with flowline fluid, passes over the outside of the drilling tool to the drill bit, and the drill cuttings become entrained in the treatment fluid and optionally the flowline fluid.
- the drilling tool may be removed from the flowline and a cold re-start of the flowline may be attempted.
- methanol is typically added to the cold re-start fluid at the wellheads or at a manifold in order to treat the freshly produced fluids.
- a treatment fluid may be delivered to the blockage to remove the remainder of the blockage.
- a hot re-start may take place, for example, hot-oiling.
- the hot fluid that flows through the borehole in the blockage may begin to warm the surrounding hydrate to above the hydrate formation temperature such that the hydrate melts thereby increasing the diameter of the borehole until eventually all of the hydrate plug is removed.
- any hydrate cuttings that are deposited behind the drilling tool may become entrained in the flowing fluid thereby forming a hydrate slurry that is transported away from the drilling tool.
- the hydrate cuttings may melt in the flowing hot fluid before the entrained hydrate cuttings reach the surface separation facility.
- the hot fluid that flows through the borehole in the blockage may warm the surrounding wax to above its melting point such that the melted wax dissolves in the flowing fluid thereby increasing the diameter of the borehole until eventually all of the wax has melted and the wax plug has been removed.
- the drilling tool has a maximum outer diameter smaller than the internal diameter of riser thereby allowing the drilling tool to pass through the riser and the flowline.
- the maximum outer diameter of the drilling tool is at least 1 inch, more preferably, at least 2 inches less than the internal diameter of the riser.
- the maximum outer diameter of the drilling tool is less than the diameter of the entry point thereby allowing the drilling tool to enter the flowline via the subsea entry point.
- the maximum outer diameter of the drilling tool is at least 0.5 inches less than, more preferably, at least 1 inch less than the diameter of the entry point.
- a flow line has an internal diameter of at least 4 inches, for example, in the range of 6 to 36 inches.
- the maximum diameter of the drilling tool is at least 1 inch less than the internal diameter of the flowline, preferably, at least 2 inches less than the internal diameter of the flowline.
- the diameter of the drill bit is slightly greater than the maximum diameter of the elongate housing of the drilling tool. Accordingly, this minimizes contact between the housing and the wall of the borehole that is drilled through a blockage thereby minimizing friction.
- the drill bit has a diameter that is about 1 inch greater than the maximum diameter of the elongate housing of the drilling tool.
- the cutting surfaces on the drill bit are sized to form a borehole having a diameter of from 3 to 12 inches, preferably, 3 to 6 inches.
- different sized drill bits may be connected to the drilling tool depending upon the internal diameter of the flowline and the size of the borehole that it is desired to drill through a blockage.
- the drill bit may be an expandable drill bit, thereby allowing the borehole that is drilled through a blockage to have a diameter that is significantly greater than the maximum diameter of the housing of the drilling tool.
- the tool is passed through the flowline with the drill bit in a non-expanded state.
- the drill bit is expanded.
- the expandable drill bit may be expanded to a diameter up to the diameter of the flowline.
- the expandable drill bit is preferably expanded to a diameter that is at least 0.125 inches less, preferably at least 0.25 inches less than the internal diameter of the flowline.
- the drilling tool may be provided with an expandable reamer or expandable underreamer that is located immediately behind the drill bit.
- the expandable reamer may be expanded to a diameter up to the internal diameter of the flowline.
- the expandable reamer is expanded to a diameter that is at least 0.125 inches less, preferably at least 0.25 inches less than the diameter of the flowline.
- the drill bit may drill a borehole through the blockage and the expandable reamer may then be used to enlarge the diameter of the borehole.
- Suitable expandable drill bits and reamers for use in the present invention are well known to the person skilled in the art.
- the expandable reamer may be deployed once the drilling tool has drilled a borehole through a blockage.
- the borehole through the blockage may be enlarged by passing the drilling tool back through the borehole that has been drilled through the blockage.
- the expandable reamer may be deployed as the borehole is being drilled through a blockage.
- the reamer is employed to enlarge the borehole as it is being drilled through a blockage.
- the drilling tool may be provided with sensors that are electrically connected to recording equipment at the surface via electrical conductor wire(s) or segmented conductor(s) in the cable.
- the sensors are located in proximity to the cutting surfaces of the drill bit.
- sensors may extend along the length of the drilling tool.
- These sensors may monitor the temperature and pressure at the cuttings surfaces of the drill bit(s), the proximity of the cutting surfaces of the drill bit(s) to the wall of the flowline, the temperature and pressure along the length of the drilling tool, the electric motor current, the angle of inclination of the tool, the angle of inclination of the steering means with respect to the longitudinal axis through the tool, and the precise location of the drilling tool in the flowline (determined using internal sensors and/or from the length of cable that has been deployed). Data may be continuously or intermittently sent to the surface thereby allowing the drilling tool, and hence the drilling operation, to be controlled in real-time. In particular, the torque on the drill bit may be calculated in real time from the electric motor current data.
- the torque may be calibrated so that it can be determined, in real time, whether the drill bit is drilling through a blockage in the flowline or has engaged with the wall of the flowline.
- the signals received at the surface may be monitored and electrical signals may be sent to the steering means, in response to these signals, so that the trajectory of the borehole that is being drilled through the blockage is automatically adjusted so as to avoid the risk of the drill bit damaging the walls of the flowline.
- the signals that are transmitted between the surface and the drilling tool are controlled by a telemetry unit that is located within the housing of the drilling tool.
- digital signals that are either sensor readings which are sent to the surface or control signals that are sent down the electrical cable to the drilling tool may be controlled by the telemetry unit.
- the cutting surfaces of the drill bit and/or reamer may be formed from a material that is softer than the steel that forms the walls of the flowline thereby further mitigating the risk of damaging the flowline.
- the material that forms the cutting surfaces of the drill bit and/or reamer must be sufficiently hard that the drill bit is capable of forming a borehole through the blockage and the reamer is capable of enlarging said borehole.
- Figure 1 shows a Floating Production Storage and Offloading (FPSO) vessel having a pig launcher 1 that is a suitable entry point for the drilling tool of the present invention.
- the drilling tool (suspended from an electric cable) is passed through the pig launcher 1, flexible 2, gooseneck 3 and riser 4 into a flowline 5.
- the drilling tool may be introduced into flowline 5 via a Flowline Termination Assembly (FTA).
- Figure 1 also shows a platform having a valve system 6 that may be used to introduce the drilling tool, suspended from a cable, down a steel catenary riser 7 and into flowline 5.
- the drilling tool 8 and a hydrate plug 9 are shown in an enlargement of the flowline 5.
- a more detailed drawing of the drilling tool 8 is also shown in Figure 1 .
- the drilling tool comprises a plurality of housing segments 10 that are linked together via knuckle joints 11, and a drill bit 12 mounted on a steering means 13.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Optical Communication System (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07254690A EP2067926A1 (fr) | 2007-12-04 | 2007-12-04 | Procédé pour supprimer le connecteur d'hydrate à partir d'une conduite d'écoulement |
EP08856308A EP2225438B1 (fr) | 2007-12-04 | 2008-11-19 | Procédé d'élimination d'un bouchon d'hydrate dans une conduite d'écoulement |
PCT/GB2008/003888 WO2009071869A1 (fr) | 2007-12-04 | 2008-11-19 | Procédé d'élimination d'un bouchon d'hydrate dans une conduite d'écoulement |
BRPI0820010-6A BRPI0820010A2 (pt) | 2007-12-04 | 2008-11-19 | Método para remoção de um tampão de hidrato de uma linha de fluxo |
US12/734,906 US20100236785A1 (en) | 2007-12-04 | 2008-11-19 | Method for removing hydrate plug from a flowline |
AT08856308T ATE510105T1 (de) | 2007-12-04 | 2008-11-19 | Verfahren zur entfernung eines hydratsteckers aus einer flussleitung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07254690A EP2067926A1 (fr) | 2007-12-04 | 2007-12-04 | Procédé pour supprimer le connecteur d'hydrate à partir d'une conduite d'écoulement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2067926A1 true EP2067926A1 (fr) | 2009-06-10 |
Family
ID=39315053
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07254690A Ceased EP2067926A1 (fr) | 2007-12-04 | 2007-12-04 | Procédé pour supprimer le connecteur d'hydrate à partir d'une conduite d'écoulement |
EP08856308A Not-in-force EP2225438B1 (fr) | 2007-12-04 | 2008-11-19 | Procédé d'élimination d'un bouchon d'hydrate dans une conduite d'écoulement |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08856308A Not-in-force EP2225438B1 (fr) | 2007-12-04 | 2008-11-19 | Procédé d'élimination d'un bouchon d'hydrate dans une conduite d'écoulement |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100236785A1 (fr) |
EP (2) | EP2067926A1 (fr) |
AT (1) | ATE510105T1 (fr) |
BR (1) | BRPI0820010A2 (fr) |
WO (1) | WO2009071869A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010010326A2 (fr) * | 2008-07-25 | 2010-01-28 | Bp Exploration Operating Company Limited | Système d’entrée de pipeline |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9347271B2 (en) | 2008-10-17 | 2016-05-24 | Foro Energy, Inc. | Optical fiber cable for transmission of high power laser energy over great distances |
US10301912B2 (en) * | 2008-08-20 | 2019-05-28 | Foro Energy, Inc. | High power laser flow assurance systems, tools and methods |
US9664012B2 (en) | 2008-08-20 | 2017-05-30 | Foro Energy, Inc. | High power laser decomissioning of multistring and damaged wells |
US9244235B2 (en) | 2008-10-17 | 2016-01-26 | Foro Energy, Inc. | Systems and assemblies for transferring high power laser energy through a rotating junction |
US9719302B2 (en) | 2008-08-20 | 2017-08-01 | Foro Energy, Inc. | High power laser perforating and laser fracturing tools and methods of use |
EP2315904B1 (fr) | 2008-08-20 | 2019-02-06 | Foro Energy Inc. | Procede et systeme de progression d'un trou de forage au moyen d'un laser de forte puissance |
US8627901B1 (en) | 2009-10-01 | 2014-01-14 | Foro Energy, Inc. | Laser bottom hole assembly |
US9074422B2 (en) | 2011-02-24 | 2015-07-07 | Foro Energy, Inc. | Electric motor for laser-mechanical drilling |
US9089928B2 (en) | 2008-08-20 | 2015-07-28 | Foro Energy, Inc. | Laser systems and methods for the removal of structures |
US8571368B2 (en) | 2010-07-21 | 2013-10-29 | Foro Energy, Inc. | Optical fiber configurations for transmission of laser energy over great distances |
US9267330B2 (en) | 2008-08-20 | 2016-02-23 | Foro Energy, Inc. | Long distance high power optical laser fiber break detection and continuity monitoring systems and methods |
US9138786B2 (en) | 2008-10-17 | 2015-09-22 | Foro Energy, Inc. | High power laser pipeline tool and methods of use |
US9669492B2 (en) | 2008-08-20 | 2017-06-06 | Foro Energy, Inc. | High power laser offshore decommissioning tool, system and methods of use |
US9360631B2 (en) | 2008-08-20 | 2016-06-07 | Foro Energy, Inc. | Optics assembly for high power laser tools |
US9080425B2 (en) | 2008-10-17 | 2015-07-14 | Foro Energy, Inc. | High power laser photo-conversion assemblies, apparatuses and methods of use |
US9027668B2 (en) | 2008-08-20 | 2015-05-12 | Foro Energy, Inc. | Control system for high power laser drilling workover and completion unit |
US9242309B2 (en) | 2012-03-01 | 2016-01-26 | Foro Energy Inc. | Total internal reflection laser tools and methods |
US20110052328A1 (en) * | 2009-08-26 | 2011-03-03 | Chevron U.S.A. Inc. | Apparatus and method for performing an intervention in a riser |
CA2808214C (fr) | 2010-08-17 | 2016-02-23 | Foro Energy Inc. | Systemes et structures d'acheminement destines a une emission laser longue distance a haute puissance |
EP2678512A4 (fr) | 2011-02-24 | 2017-06-14 | Foro Energy Inc. | Procédé de forage mécanique-laser de grande puissance |
WO2012167102A1 (fr) | 2011-06-03 | 2012-12-06 | Foro Energy Inc. | Connecteurs optiques robustes à fibre laser d'énergie élevée passivement refroidie et procédés d'utilisation |
US20130036588A1 (en) * | 2011-08-09 | 2013-02-14 | Agar Corporation Limited | Method and Apparatus for Installing a Device at a Storage Vessel |
NO339382B1 (no) * | 2012-01-10 | 2016-12-05 | Qinterra Tech As | Framgangsmåte og anordning for å fjerne en hydratplugg |
US9657543B2 (en) * | 2012-06-14 | 2017-05-23 | Halliburton Energy Services, Inc. | Wellbore isolation device containing a substance that undergoes a phase transition |
US10145194B2 (en) | 2012-06-14 | 2018-12-04 | Halliburton Energy Services, Inc. | Methods of removing a wellbore isolation device using a eutectic composition |
EP2890859A4 (fr) * | 2012-09-01 | 2016-11-02 | Foro Energy Inc | Systèmes de commande de puits d'énergie mécanique réduite et procédés d'utilisation |
WO2014144887A2 (fr) * | 2013-03-15 | 2014-09-18 | Foro Energy, Inc. | Systèmes, outils et procédés de garantie d'écoulement par laser à haute puissance |
US10221687B2 (en) | 2015-11-26 | 2019-03-05 | Merger Mines Corporation | Method of mining using a laser |
US10280033B2 (en) * | 2016-01-28 | 2019-05-07 | The United States Of America, As Represented By The Secretary Of The Army | Dispensing from an apparatus |
US11294401B2 (en) | 2020-07-08 | 2022-04-05 | Saudi Arabian Oil Company | Flow management systems and related methods for oil and gas applications |
US11256273B2 (en) | 2020-07-08 | 2022-02-22 | Saudi Arabian Oil Company | Flow management systems and related methods for oil and gas applications |
US11314266B2 (en) | 2020-07-08 | 2022-04-26 | Saudi Arabian Oil Company | Flow management systems and related methods for oil and gas applications |
US11802645B2 (en) | 2020-07-08 | 2023-10-31 | Saudi Arabian Oil Company | Flow management systems and related methods for oil and gas applications |
US11131158B1 (en) | 2020-07-08 | 2021-09-28 | Saudi Arabian Oil Company | Flow management systems and related methods for oil and gas applications |
US11274501B2 (en) * | 2020-07-08 | 2022-03-15 | Saudi Arabian Oil Company | Flow management systems and related methods for oil and gas applications |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995033581A1 (fr) * | 1994-06-06 | 1995-12-14 | Mobil Oil Corporation | Procede d'elimination de depots de metaux alcalino-terreux |
WO2000073619A1 (fr) * | 1999-05-27 | 2000-12-07 | Weatherford/Lamb, Inc. | Appareil souterrain |
US6343652B1 (en) * | 1997-05-30 | 2002-02-05 | Drillflex | Method and device for cleaning out a well or piping blocked with gas hydrates |
US20030056954A1 (en) * | 2001-09-21 | 2003-03-27 | Halliburton Energy Services, Inc. | Methods and apparatus for a subsea tie back |
WO2007122393A1 (fr) | 2006-04-20 | 2007-11-01 | Bp Exploration Operating Company Limited | Procédé de forage en sous-pression dans une formation gazéifère |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2567475A (en) * | 1946-05-16 | 1951-09-11 | Nevada Leasehold Corp | Wall cleaning plug |
US2509922A (en) * | 1946-06-21 | 1950-05-30 | Nevada Leasehold Corp | Cementing plug |
US2668593A (en) * | 1950-01-14 | 1954-02-09 | Sun Oil Co | Device for scraping and testing well tubing |
US3191696A (en) * | 1958-05-16 | 1965-06-29 | Richfield Oil Corp | Offshore drilling system |
US5447200A (en) * | 1994-05-18 | 1995-09-05 | Dedora; Garth | Method and apparatus for downhole sand clean-out operations in the petroleum industry |
US7325606B1 (en) * | 1994-10-14 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus to convey electrical pumping systems into wellbores to complete oil and gas wells |
US5692563A (en) * | 1995-09-27 | 1997-12-02 | Western Well Tool, Inc. | Tubing friction reducer |
GB9606673D0 (en) * | 1996-03-29 | 1996-06-05 | Sensor Dynamics Ltd | Apparatus for the remote measurement of physical parameters |
US6148912A (en) * | 1997-03-25 | 2000-11-21 | Dresser Industries, Inc. | Subsurface measurement apparatus, system, and process for improved well drilling control and production |
NO306481B1 (no) * | 1997-11-03 | 1999-11-08 | Kongsberg Offshore As | Anordning ved en boremal for brönner til havs |
US6260617B1 (en) * | 1997-11-21 | 2001-07-17 | Superior Energy Services, L.L.C. | Skate apparatus for injecting tubing down pipelines |
US6651744B1 (en) * | 1997-11-21 | 2003-11-25 | Superior Services, Llc | Bi-directional thruster pig apparatus and method of utilizing same |
US6533032B1 (en) * | 1999-10-28 | 2003-03-18 | Abb Vetco Gray Inc. | Subsea pig launcher and method of using the same |
US7311151B2 (en) * | 2002-08-15 | 2007-12-25 | Smart Drilling And Completion, Inc. | Substantially neutrally buoyant and positively buoyant electrically heated flowlines for production of subsea hydrocarbons |
US7063157B2 (en) * | 2002-08-22 | 2006-06-20 | Fmc Technologies, Inc. | Apparatus and method for installation of subsea well completion systems |
NO321494B1 (no) * | 2004-06-24 | 2006-05-15 | Statoil Asa | Skyvkraftplugg |
BRPI0500996A (pt) * | 2005-03-10 | 2006-11-14 | Petroleo Brasileiro Sa | sistema para conexão vertical direta entre equipamentos submarinos contìguos e método de instalação da dita conexão |
US20100018693A1 (en) * | 2008-07-25 | 2010-01-28 | Neil Sutherland Duncan | Pipeline entry system |
-
2007
- 2007-12-04 EP EP07254690A patent/EP2067926A1/fr not_active Ceased
-
2008
- 2008-11-19 BR BRPI0820010-6A patent/BRPI0820010A2/pt not_active IP Right Cessation
- 2008-11-19 AT AT08856308T patent/ATE510105T1/de not_active IP Right Cessation
- 2008-11-19 US US12/734,906 patent/US20100236785A1/en not_active Abandoned
- 2008-11-19 WO PCT/GB2008/003888 patent/WO2009071869A1/fr active Application Filing
- 2008-11-19 EP EP08856308A patent/EP2225438B1/fr not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995033581A1 (fr) * | 1994-06-06 | 1995-12-14 | Mobil Oil Corporation | Procede d'elimination de depots de metaux alcalino-terreux |
US6343652B1 (en) * | 1997-05-30 | 2002-02-05 | Drillflex | Method and device for cleaning out a well or piping blocked with gas hydrates |
WO2000073619A1 (fr) * | 1999-05-27 | 2000-12-07 | Weatherford/Lamb, Inc. | Appareil souterrain |
US20030056954A1 (en) * | 2001-09-21 | 2003-03-27 | Halliburton Energy Services, Inc. | Methods and apparatus for a subsea tie back |
WO2007122393A1 (fr) | 2006-04-20 | 2007-11-01 | Bp Exploration Operating Company Limited | Procédé de forage en sous-pression dans une formation gazéifère |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010010326A2 (fr) * | 2008-07-25 | 2010-01-28 | Bp Exploration Operating Company Limited | Système d’entrée de pipeline |
WO2010010326A3 (fr) * | 2008-07-25 | 2010-04-01 | Bp Exploration Operating Company Limited | Système d’entrée de pipeline |
Also Published As
Publication number | Publication date |
---|---|
WO2009071869A1 (fr) | 2009-06-11 |
ATE510105T1 (de) | 2011-06-15 |
US20100236785A1 (en) | 2010-09-23 |
EP2225438B1 (fr) | 2011-05-18 |
WO2009071869A8 (fr) | 2010-07-01 |
BRPI0820010A2 (pt) | 2015-05-19 |
EP2225438A1 (fr) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2225438B1 (fr) | Procédé d'élimination d'un bouchon d'hydrate dans une conduite d'écoulement | |
US6772840B2 (en) | Methods and apparatus for a subsea tie back | |
US6615848B2 (en) | Electronically controlled pipeline monitoring and cleaning device | |
US8479821B2 (en) | Method and apparatus for removal of pigs, deposits and other debris from pipelines and wellbores | |
US7770656B2 (en) | System and method for delivering a cable downhole in a well | |
US20040134662A1 (en) | High power umbilicals for electric flowline immersion heating of produced hydrocarbons | |
EP1496297B1 (fr) | Navire pour l'intervention sur puits | |
AU2001252234A1 (en) | Riser with retrievable internal services | |
WO2009042307A1 (fr) | Procédé et dispositif de gestion de débit d'une conduite de production sous-marine unique | |
MX2008016052A (es) | Metodo y aparato para la perforacion alambrica en tuberia enrollada. | |
US11060380B2 (en) | Systems and methods for accessing subsea conduits | |
WO2010139943A2 (fr) | Procédé et appareil pour enlever un bouchon dans une conduite d'écoulement | |
WO2008107142A1 (fr) | Procédé et appareil de forage | |
EP1696101B1 (fr) | Système et procédé adapté à être utilisé pour le netoyage du puits pendant le forage | |
WO2010139931A2 (fr) | Procédé et appareil de suppression de bouchon dans une conduite d'écoulement | |
US20220106859A1 (en) | Downhole wellbore treatment system and method | |
EP1847679A1 (fr) | Méthode de forage en sous-pression dans une formation de gaz | |
CA2739413A1 (fr) | Systeme et procede pour amener un cable en fond de trou | |
EP1558834A1 (fr) | Procedes et dispositif pour raccordement sous-marin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20090623 |