EP2066828B1 - Method for feeding particles of a coating material into a thermal spraying process - Google Patents

Method for feeding particles of a coating material into a thermal spraying process Download PDF

Info

Publication number
EP2066828B1
EP2066828B1 EP20070820641 EP07820641A EP2066828B1 EP 2066828 B1 EP2066828 B1 EP 2066828B1 EP 20070820641 EP20070820641 EP 20070820641 EP 07820641 A EP07820641 A EP 07820641A EP 2066828 B1 EP2066828 B1 EP 2066828B1
Authority
EP
European Patent Office
Prior art keywords
particles
additive
carrier gas
gas stream
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20070820641
Other languages
German (de)
French (fr)
Other versions
EP2066828A2 (en
Inventor
Jens Dahl Jensen
Ursus KRÜGER
Volkmar LÜTHEN
Ralph Reiche
Oliver Stier
Jens Klingemann
Daniel Körtvelyessy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2066828A2 publication Critical patent/EP2066828A2/en
Application granted granted Critical
Publication of EP2066828B1 publication Critical patent/EP2066828B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1693Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed with means for heating the material to be sprayed or an atomizing fluid in a supply hose or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to a method for injecting particles of a layer material in a cold gas injection process, in which the particles are passed through a feed line and fed via the mouth of the feed line to a carrier gas stream, wherein the carrier gas stream transporting the particles to a surface to be coated Component serves.
  • the carrier gas stream is passed through a stagnation chamber into which also opens the feed line, and then accelerated to the surface to be coated through a nozzle.
  • Thermal spraying is generally used to inexpensively create layers on components to be coated or to provide them with different non-producing properties.
  • the layer material must be fed into the injection process, this usually being in the form of particles. These particles are passed through a supply line, which they leave through an orifice to be detected by a carrier gas stream, which is directed for the purpose of coating on the component to be coated.
  • a carrier gas stream which is directed for the purpose of coating on the component to be coated.
  • the particles In order for the particles to adhere to the component to be coated, it must be imprinted with an amount of energy that depends on the coating method and the material, which leads to adhesion of the particles on the component to be coated. This energy input can be done for example by heating the particles during spraying or by an acceleration of the particles.
  • an energy input in the form of kinetic energy is in the foreground, wherein an additional heating of the particles can take place, but usually does not lead to a melting or melting of the particles. Due to the high kinetic energy of the particles they deform plastically when hitting the surface to be coated, with a simultaneous deformation of the surface causes adhesion of the particles. Furthermore, with the high-speed flame spraying, for example, a thermal spraying process is made available in which both the kinetic energy and the thermal energy of the particles impinging on the surface to be coated play a significant role in the formation of the layer.
  • the cold gas spraying finds for example in the DE 197 47 386 A1 Mention.
  • the particles provided for the coating can be supplied to the carrier gas stream in a well-defined manner.
  • agglomeration of the particles must be suppressed so that they can be fed as uniformly as possible and not as large clusters in the carrier gas stream.
  • US 6,715,640 B2 can be seen, the reduction or cancellation of agglomeration of the coating particles, for example, by mechanical means.
  • the particles are in a funnel-shaped container stocked and taken from this in the required quantity. By vibration and stirring, the withdrawn amount can be treated such that a separation of the particles takes place and they can be supplied to a transport gas. This results in a particle-gas mixture which can be fed through a supply line to the carrier gas stream of a thermal spraying process.
  • This energy source is in the form of a flame in the center of a coating nozzle, so that coating particles in the form of a liquid dispersion can be fed directly to the flame.
  • the high energy density of the flame guarantees a complete evaporation of the dispersion medium, whereby the amount of energy necessary for the evaporation can be made available by suitable regulation of the energy supply for the flame.
  • the flame can readily provide the amount of energy necessary for the evaporation of the dispersant due to the high energy density.
  • the supply of liquid suspension is also used in a plasma spraying application can find to protect the particles from the thermal attack of the plasma flame by means of the liquid dispersant.
  • particles can be used which represent a solid dispersion in their structure. These may, for example, consist of cobalt, it being possible for tungsten carbide particles, which form a dispersed phase, to be embedded in the matrix of the cobalt material. These particles can be deposited on a substrate, which then has the same structure as the particles. This means that the cobalt matrix is also deposited.
  • liquid dispersions can be deposited from a drug by means of acoustic sound waves on substrates such as glass beads.
  • the object of the invention is to specify a method for feeding particles into a cold gas injection process, with which a comparatively accurate metering of the particles is made possible.
  • the additive since the thermal spraying process requires that the particles in the carrier gas stream be in pure state again at the latest when the component surface is reached, it is further provided according to the invention for the additive to assume a gaseous state in the carrier gas stream after it leaves the mouth of the feed line. In this way, it is advantageously achieved that the material of the additive does not form a particulate or droplet-shaped phase, but only contributes a Patialtik to the carrier gas.
  • the additive By transfer of the additive in the gaseous state, ie by evaporation of a liquid additive or by sublimation or melting and evaporation of a solid so the separation of the particles in the carrier gas stream is enforced by the additive.
  • the particles are advantageously prevented from clumping by the solid or liquid additive during transport through the supply line.
  • the carrier gas stream is passed through a stagnation chamber and then accelerated through a nozzle.
  • This process control for the thermal spraying process is particularly necessary if the injection process is to take place while introducing a significant amount of kinetic energy into the particles, as is necessary in the already mentioned methods of cold gas spraying.
  • the residence time of the molecules of the carrier gas flow in the thermal spraying device can be increased. This facilitates the supply of thermal energy, these preferably during the residence time of the molecules of the carrier gas flow in the stagnation chamber is transferred.
  • the stagnation chamber here is to be understood as meaning a line structure for the carrier gas flow which is widened in cross-section compared to the nozzle.
  • the cross-sectional expansion does not cause stagnation in the strict sense, but merely reduces the flow velocity of the carrier gas flow, so that the residence time of the gas molecules in the stagnation chamber is increased compared to the nozzle.
  • the transfer of heat energy into the stagnation chamber can be done by all known energy sources.
  • the wall of the stagnation chamber can be heated, so that the thermal energy is radiated into the interior of the stagnation chamber, or is transferred to abutting gas molecules of the carrier gas flow.
  • the energy input into the thermal Spraying device is necessary so that a transfer of the additive takes place in the gaseous state. It must absorb thermal energy to change its state of aggregation.
  • the carrier gas stream is heated prior to feeding to the nozzle such that condensation (and thus solidification) and / or resublimation of the additive is prevented, in particular in the nozzle.
  • condensation and thus solidification
  • / or resublimation of the additive is prevented, in particular in the nozzle.
  • the approximately adiabatic expansion of the carrier gas behind the nozzle throat causes it to cool strongly.
  • This cooling can also lead to a resublimation or condensation and solidification of the additive in extreme cases.
  • new particles or droplets can form from the additive, which, together with the particles to be deposited, strike the surface to be coated.
  • the additive may lead to undesirable contamination of the layer.
  • the molecules of the mixed with this additive remain in the gaseous state, so that they can not be deposited or only in negligible amount in the forming layer.
  • the most critical conditions generally prevail with regard to resublimation or condensation or solidification of the additive since, in addition to a negative pressure relative to the environment, there also occurs a temperature minimum of the carrier gas flow.
  • the design of the least necessary heating of the carrier gas flow is, however, ultimately the state of the carrier gas flow when hitting the component to be coated is decisive and not the state in the nozzle.
  • the additive consists of a material which is to be deposited in the forming layer and possibly to react with the deposited particles.
  • the possibly necessary energy is also obtained from the thermal energy supplied to the carrier gas stream.
  • an additive obtained in this way has the advantage that it becomes gaseous again under normal conditions, which normally prevail outside the thermal spraying device. Therefore, such an additive at the outlet from the nozzle opening of the thermal spray device is advantageously also very easy to convert into a gaseous state.
  • water can also be used as an additive according to another embodiment of the invention.
  • the prerequisite for this is, however, that the temperature at the nozzle outlet at least not significantly below a temperature of 100 ° C, since a formation of water droplets could not be prevented in this case.
  • the use of water as an additive has the particular advantage that this liquid is chemically relatively stable at a relatively low boiling point and therefore fails to react with most provided for coating particle types.
  • water is also in the event of an exit into the environment as unproblematic in terms of its environmental impact to evaluate.
  • the additive is used in the liquid state, it is advantageous to prepare and stock a suspension with stirring.
  • This suspension can then be fed into the feed line, it being possible to fall back on the already proven technology for the metering of the particles for the purpose of metering the particles.
  • the suspended particles can advantageously be metered in a simple manner by handling the additive.
  • the metering of the particles for the injection process can be carried out in particular taking into account the particle concentration in the Suspension by adjusting the volume flow in the supply line done. It is of great importance that the concentration of particles is kept constant by stirring or moving the suspension, so that it can be fed directly into the feed line with known volume flow.
  • a solid additive it is advantageous to disperse the particles disperse therein and carry out a conditioning, in particular grinding or atomization, whereby the solid additive is processed into a powder.
  • a conditioning in particular grinding or atomization
  • the solid additive is processed into a powder.
  • the additive should not be deposited in the layer to be formed, must in the choice of additive the layering process itself is not taken into account. Therefore, optimized additives can be selected for the line and dosage, which compensate for any dosing problems of the particles provided for coating.
  • the powder can therefore be added metered without any problems to a gas stream conducted through the feed line, it being possible to choose the metering taking into account the film formation process during thermal spraying.
  • a cold gas spray gun 11 according to FIG. 1 represents the core of a thermal spray device 12 according to FIG. 2 dar.
  • the cold gas spray gun 11 according to FIG. 1 consists essentially of a formed in a single housing 13 Laval nozzle 14 and stagnation 15.
  • a heating coil 16 is embedded in the wall of the housing 13, which causes the heating of a carrier gas, which through an inlet 17 of the stagnation 15 is supplied.
  • the carrier gas passes through the inlet 17 first into the stagnation chamber 15 and leaves it through the Laval nozzle 14.
  • the carrier gas in the stagnation chamber can be heated up to 800 ° C.
  • the mouth 19 is arranged in the stagnation chamber 15 and Laval nozzle 14, for example, a liquid additive fed with the particles provided for coating.
  • a cooling of the carrier gas stream is effected, which has temperatures below 300 ° C in the region of the nozzle opening. This temperature reduction is due to a substantially adiabatic expansion of the carrier gas, which has, for example, a pressure of 30 bar in the stagnation chamber and is relieved to atmospheric pressure outside the nozzle opening.
  • FIG. 2 is shown schematically as a cold spray gun 11 according to FIG. 1 to a thermal spray device 12 can be completed.
  • the thermal spray gun 11 is arranged in a housing space 20, not shown, in which a component to be coated 21 can be arranged, which has a surface to be coated 22 to the nozzle opening of the cold spray gun 11.
  • the carrier gas stream 23 is indicated by an arrow, it being clear that the carrier gas stream is aligned with the surface 22 and impinges there to form a layer 24 which is formed from the particles 25 present in the carrier gas stream.
  • a heating coil 16 according to FIG. 1 are arranged on the cold spray gun 11 different energy sources for heat supply.
  • a microwave generator 26 is suitable for heating the carrier gas contained in the stagnation chamber 15 as well as the particles and the additive by electromagnetic induction. Furthermore, two lasers 27 are mounted on the cold spray gun 11, which radiate a laser beam into the interior of the stagnation chamber 15, which intersect just before the mouth of the feed line 18. As a result, a targeted energy input in the additive provided with the particles is possible, wherein by transfer of the additive in the gaseous state, this energy is absorbed and the thermal load of the particles 25 is limited so.
  • a reservoir 28 is provided for the carrier gas used, which can be supplied via a line 29 of a preheating unit 30 and then the inlet 17 to the stagnation chamber 15.
  • a regulation of the gas flow is possible via throttle valves, not shown.
  • a storage hopper 31 may contain a suitably conditioned powder of an additive in whose powder particles the particles provided for the coatings are finely dispersed.
  • the powder is conditioned so that the supply into the supply line 18 can be done without problems.
  • a gas stream is passed through the feed line to which the powder particles are added.
  • a storage tank 32 is provided, in which a suspension of a liquid additive and dispersed therein particles for coating can be stored.
  • a stirring device 33 is provided, which ensures the homogeneity of the dispersion.
  • the storage hopper 31 and the storage tank 32 are surrounded by a thermal insulation 34, which allows the economic use of cooled additives, for example, gaseous substances present at room temperature.

Description

Die Erfindung betrifft ein Verfahren zum Einspritzen von Partikeln eines Schichtmaterials in einen Kaltgas-Spritzvorgang, bei dem die Partikel durch eine Zuführleitung geleitet werden und über die Mündung der Zuführleitung einem Trägergasstrom zugeführt werden, wobei der Trägergasstrom einem Transport der Partikel zu einer zu beschichtenden Oberfläche des Bauteils dient. Hierzu wird der Trägergasstrom durch eine Stagnationskammer geleitet, in die auch die Zuführleitung mündet, und anschließend auf die zu beschichtende Oberfläche durch eine Düse beschleunigt.The invention relates to a method for injecting particles of a layer material in a cold gas injection process, in which the particles are passed through a feed line and fed via the mouth of the feed line to a carrier gas stream, wherein the carrier gas stream transporting the particles to a surface to be coated Component serves. For this purpose, the carrier gas stream is passed through a stagnation chamber into which also opens the feed line, and then accelerated to the surface to be coated through a nozzle.

Thermische Spritzvorgänge werden im Allgemeinen verwendet, um kostengünstig Schichten auf zu beschichtenden Bauteilen zu erzeugen oder diese mit anders nicht zu erzeugenden Eigenschaften zu versehen. Zu diesem Zweck muss das Schichtmaterial in den Spritzvorgang eingespeist werden, wobei dieses gewöhnlich in Form von Partikeln vorliegt. Diese Partikel werden durch eine Zuführleitung geleitet, welche sie durch eine Mündung verlassen, um von einem Trägergasstrom erfasst zu werden, der zum Zwecke der Beschichtung auf das zu beschichtende Bauteil gerichtet wird. Damit die Partikel auf dem zu beschichtenden Bauteil anhaften, muss diesen ein von Beschichtungsverfahren und Material abhängiger Energiebetrag eingeprägt werden, der zu einem Anhaften der Partikel auf dem zu beschichtenden Bauteil führt. Dieser Energieeintrag kann beispielsweise durch eine Erwärmung der Partikel während des Spritzens oder auch durch eine Beschleunigung der Partikel erfolgen. Beim Kaltgasspritzen wird jedoch die durch eine Beschleunigung in das Verfahren eingebrachte kinetische Energie beim Auftreffen der Partikel auf dem zu beschichtenden Bauteil in eine Verformung bzw. Wärme umgewandelt. Eine Erwärmung der Partikel führt bei einem genügenden Energieeintrag zu einer Erweichung oder sogar zu einem Aufschmelzen der Partikel, wodurch ein Anhaften der auf das zu beschichtende Bauteil auftreffenden Partikel erleichtert wird.Thermal spraying is generally used to inexpensively create layers on components to be coated or to provide them with different non-producing properties. For this purpose, the layer material must be fed into the injection process, this usually being in the form of particles. These particles are passed through a supply line, which they leave through an orifice to be detected by a carrier gas stream, which is directed for the purpose of coating on the component to be coated. In order for the particles to adhere to the component to be coated, it must be imprinted with an amount of energy that depends on the coating method and the material, which leads to adhesion of the particles on the component to be coated. This energy input can be done for example by heating the particles during spraying or by an acceleration of the particles. In cold gas spraying, however, the kinetic energy introduced by acceleration into the process becomes upon impact of the particles on the component to be coated in a deformation or heat converted. A heating of the particles leads to a softening or even to a melting of the particles with a sufficient input of energy, whereby an adhesion of the particles striking the component to be coated is facilitated.

Beim Kältgasspritzen steht ein Energieeintrag in Form von kinetischer Energie im Vordergrund, wobei eine zusätzliche Erwärmung der Partikel erfolgen kann, jedoch üblicherweise nicht zu einem Anschmelzen oder Aufschmelzen der Partikel führt. Auf Grund der hohen kinetischen Energie der Partikel verformen diese sich beim Auftreffen auf die zu beschichtende Oberfläche plastisch, wobei eine gleichzeitige Verformung der Oberfläche ein Anhaften der Partikel bewirkt. Weiterhin wird beispielsweise mit dem Hochgeschwindigkeits-Flammspritzen ein thermisches Spritzverfahren zur Verfügung gestellt, bei dem an der Schichtbildung sowohl die kinetische Energie als auch die thermische Energie der auf die zu beschichtende Oberfläche auftreffenden Partikel eine nennenswerte Rolle spielt. Das Kaltgasspritzen findet beispielsweise in der DE 197 47 386 A1 Erwähnung.In the case of cold gas spraying, an energy input in the form of kinetic energy is in the foreground, wherein an additional heating of the particles can take place, but usually does not lead to a melting or melting of the particles. Due to the high kinetic energy of the particles they deform plastically when hitting the surface to be coated, with a simultaneous deformation of the surface causes adhesion of the particles. Furthermore, with the high-speed flame spraying, for example, a thermal spraying process is made available in which both the kinetic energy and the thermal energy of the particles impinging on the surface to be coated play a significant role in the formation of the layer. The cold gas spraying finds for example in the DE 197 47 386 A1 Mention.

Zur Erreichung eines qualitativ hochwertigen Beschichtungsergebnisses ist es von besonderer Bedeutung, dass die für die Beschichtung vorgesehenen Partikel dem Trägergasstrom in wohl definierter Weise zugeführt werden können. Um dies zu gewährleisten, muss insbesondere ein Agglomerieren der Partikel unterdrückt werden, damit diese möglichst gleichmäßig und nicht als große Cluster in den Trägergasstrom eingespeist werden können. Wie der US 6,715,640 B2 zu entnehmen ist, kann die Reduzierung bzw. Aufhebung einer Agglomeration der Beschichtungspartikel beispielsweise auf mechanischem Wege erfolgen. Die Partikel werden dabei in einem trichterförmigen Behälter bevorratet und diesem in der jeweils benötigten Menge entnommen. Durch Vibration und Rühren kann die entnommene Menge derart behandelt werden, dass eine Vereinzelung der Partikel erfolgt und diese einem Transportgas zugeführt werden können. Hierdurch entsteht ein Partikel-Gasgemisch, welches sich durch eine Zuführleitung dem Trägergasstrom eines thermischen Spritzverfahrens zuführen lässt.In order to achieve a high-quality coating result, it is of particular importance that the particles provided for the coating can be supplied to the carrier gas stream in a well-defined manner. To ensure this, in particular agglomeration of the particles must be suppressed so that they can be fed as uniformly as possible and not as large clusters in the carrier gas stream. Again US 6,715,640 B2 can be seen, the reduction or cancellation of agglomeration of the coating particles, for example, by mechanical means. The particles are in a funnel-shaped container stocked and taken from this in the required quantity. By vibration and stirring, the withdrawn amount can be treated such that a separation of the particles takes place and they can be supplied to a transport gas. This results in a particle-gas mixture which can be fed through a supply line to the carrier gas stream of a thermal spraying process.

Aus A. Killinger u.a., "High-Velocity Suspension Flame Spraying (HVSFS), a new approach for spraying nanoparticles with hypersonic speed", Surface & Coatings Technology 201 (2006) 1922 - 1929 sowie der US 6,579,573 B2 , der US 6,491,967 B1 , der EP 1 134 302 A1 und der DE 103 92 691 T5 sind thermische Beschichtungsverfahren bekannt, bei denen der Energieeintrag in den Strahl mit den Beschichtungsteilchen durch eine Flamme wie z. B. eine Plasmaflamme erfolgt. Bei diesen Flammspritz-Beschichtungsverfahren wird die Herstellung der Haftung der Beschichtungspartikel auf dem zu beschichtenden Substrat mit der Flamme als Energiequelle mit verhältnismäßig hoher Energiedichte gewährleistet. Diese Energiequelle befindet sich in Form einer Flamme im Zentrum einer Beschichtungsdüse, so dass Beschichtungspartikel in Form einer Flüssigdispersion direkt der Flamme zugeführt werden können. Die hohe Energiedichte der Flamme garantiert dabei eine vollständige Verdampfung des Dispersionsmittels, wobei durch geeignete Regelung der Energiezufuhr für die Flamme der für die Verdampfung notwendige Energiebetrag zur Verfügung gestellt werden kann. Die Flamme kann den für die Verdampfung des Dispersionsmittels notwendigen Energiebetrag aufgrund der hohen Energiedichte ohne weiteres zur Verfügung stellen.Out A. Killinger et al., "High Velocity Suspension Flame Spraying (HVSFS), A New Approach to Spraying Nanoparticles with Hypersonic Speed", Surface & Coatings Technology 201 (2006) 1922-1929 as well as the US 6,579,573 B2 , of the US Pat. No. 6,491,967 B1 , of the EP 1 134 302 A1 and the DE 103 92 691 T5 thermal coating methods are known in which the energy input into the beam with the coating particles by a flame such. B. a plasma flame takes place. In these flame spray coating methods, the adhesion of the coating particles to the substrate to be coated with the flame is ensured as a relatively high energy density energy source. This energy source is in the form of a flame in the center of a coating nozzle, so that coating particles in the form of a liquid dispersion can be fed directly to the flame. The high energy density of the flame guarantees a complete evaporation of the dispersion medium, whereby the amount of energy necessary for the evaporation can be made available by suitable regulation of the energy supply for the flame. The flame can readily provide the amount of energy necessary for the evaporation of the dispersant due to the high energy density.

Gemäß der WO96/06957 ist beschrieben, dass die Zuführung von Flüssigsuspension auch bei einem Plasmaspritzen Anwendung finden kann, um mittels des flüssigen Dispersionsmittels die Partikel vor dem thermischen Angriff der Plasmaflamme zu schützen.According to the WO96 / 06957 It is described that the supply of liquid suspension is also used in a plasma spraying application can find to protect the particles from the thermal attack of the plasma flame by means of the liquid dispersant.

Gemäß der WO2005/061116 A1 ist es bekannt, dass bei einem Kaltgasspritzverfahren auch Partikel verwendet werden können, die in ihrer Struktur eine Feststoffdispersion darstellen. Diese können beispielsweise aus Kobalt bestehen, wobei in die Matrix des Kobaltmaterialwolframkarbidpartikel eingebettet sein können, die eine dispergierte Phase ergeben. Diese Partikel können auf einem Substrat abgeschieden werden, wobei dieses dann dieselbe Struktur hat, wie die Partikel. Dies bedeutet, dass die Kobaltmatrix mit abgeschieden wird.According to the WO2005 / 061116 A1 It is known that in a cold gas spraying process also particles can be used which represent a solid dispersion in their structure. These may, for example, consist of cobalt, it being possible for tungsten carbide particles, which form a dispersed phase, to be embedded in the matrix of the cobalt material. These particles can be deposited on a substrate, which then has the same structure as the particles. This means that the cobalt matrix is also deposited.

Gemäß der US 5,833,891 ist es überdies bekannt, dass Flüssigdispersionen aus einem Medikament mittels akustischer Schallwellen auf Substraten wie beispielsweise Glaskugeln abgeschieden werden können.According to the US 5,833,891 It is also known that liquid dispersions can be deposited from a drug by means of acoustic sound waves on substrates such as glass beads.

Die Aufgabe der Erfindung liegt darin, ein Verfahren zum Einspeisen von Partikeln in einen Kaltgas-Spritzvorgang anzugeben, mit dem eine vergleichsweise genaue Dosierung der Partikel ermöglicht ist.The object of the invention is to specify a method for feeding particles into a cold gas injection process, with which a comparatively accurate metering of the particles is made possible.

Diese Aufgabe wird mit dem gemäss Anspruch 1 eingangs angegebenen Verfahren erfindungsgemäß dadurch gelöst, dass die Partikel vor der Einleitung in die Zuführleitung dispergiert werden, wobei der Zusatzstoff nach Verlassen der Mündung der Zuführleitung im Trägergasstrom in den gasförmigen Zustand überführt wird. Erfindungsgemäß ist damit vorgesehen, die Partikel des Schichtmaterials nicht als reines Pulver zu transportieren bzw. zu handhaben, sondern die Partikel in einem flüssigen oder festen Zusatzstoff fein zu verteilen. Dieser Zusatzstoff weist den Vorteil auf, dass er als solcher leichter zu handhaben ist, als die als trockenes Pulver vorliegenden Partikel. Hierdurch kann vorteilhaft eine einfachere und insbesondere auch genauere Dosierung erfolgen, sodass ein Verfahren zum Einspeisen dieser Partikel hiervon profitieren kann. Da es der thermische Spritzvorgang jedoch erfordert, dass die Partikel in dem Trägergasstrom spätestens bei Erreichen der Bauteiloberfläche wieder im Reinzustand vorliegen, ist erfindungsgemäß weiterhin vorgesehen, dass der Zusatzstoff nach Verlassen der Mündung der Zuführleitung einen gasförmigen Zustand im Trägergasstrom annimmt. Hierdurch wird vorteilhaft erreicht, dass das Material des Zusatzstoffs keine partikuläre oder tröpfchenförmige Phase bildet, sondern nur einen Patialdruck zum Trägergas beisteuert. Durch Überführung des Zusatzstoffes in den gasförmigen Zustand, also durch Verdampfen eines flüssigen Zusatzstoffes bzw. durch Sublimieren oder Schmelzen und Verdampfen eines festen wird also die Trennung der Partikel im Trägergasstrom vom Zusatzstoff erzwungen. Vorteilhaft werden die Partikel andererseits durch den festen bzw. flüssigen Zusatzstoff während des Transportes durch die Zuführleitung an einem Verklumpen gehindert.This object is achieved according to the invention with the method given in claim 1 according to the invention in that the particles are dispersed in the supply line prior to introduction, the additive being transferred to the gaseous state after leaving the mouth of the feed line in the carrier gas stream. According to the invention, it is thus provided that the particles of the layer material are not transported or handled as pure powder, but rather that the particles are finely distributed in a liquid or solid additive. This additive has the advantage of being easier to handle as such is, as the present as a dry powder particles. As a result, a simpler and, in particular, more accurate metering can advantageously take place, so that a method for feeding these particles can profit from this. However, since the thermal spraying process requires that the particles in the carrier gas stream be in pure state again at the latest when the component surface is reached, it is further provided according to the invention for the additive to assume a gaseous state in the carrier gas stream after it leaves the mouth of the feed line. In this way, it is advantageously achieved that the material of the additive does not form a particulate or droplet-shaped phase, but only contributes a Patialdruck to the carrier gas. By transfer of the additive in the gaseous state, ie by evaporation of a liquid additive or by sublimation or melting and evaporation of a solid so the separation of the particles in the carrier gas stream is enforced by the additive. On the other hand, the particles are advantageously prevented from clumping by the solid or liquid additive during transport through the supply line.

Vorteilhaft wird der Trägergasstrom durch eine Stagnationskammer geführt und anschließend durch eine Düse beschleunigt. Diese Verfahrensführung für den thermischen Spritzvorgang ist insbesondere erforderlich, wenn der Spritzvorgang unter Eintrag eines nennenswerten Betrages an kinetischer Energie in die Partikel erfolgen soll, wie dies bei den schon erwähnten Verfahren des Kaltgasspritzens notwendig ist. Dadurch, dass der Trägergasstrom vorher durch eine Stagnationskammer geführt wird, kann vorteilhaft die Verweildauer der Moleküle des Trägergasstroms in der thermischen Spritzvorrichtung erhöht werden. Dies erleichtert die Zuführung von thermischer Energie, wobei diese vorzugsweise während der Verweildauer der Moleküle des Trägergasstroms in der Stagnationskammer übertragen wird. Als Stagnationskammer ist hierbei eine im Vergleich zur Düse im Querschnitt erweiterte Leitungsstruktur für den Trägergasstrom zu verstehen. Die Querschnittserweiterung bewirkt jedoch nicht eine Stagnation im engeren Sinne, sondern verringert lediglich die Strömungsgeschwindigkeit des Trägergasstromes, sodass die Verweildauer der Gasmoleküle in der Stagnationskammer im Vergleich zur Düse erhöht ist.Advantageously, the carrier gas stream is passed through a stagnation chamber and then accelerated through a nozzle. This process control for the thermal spraying process is particularly necessary if the injection process is to take place while introducing a significant amount of kinetic energy into the particles, as is necessary in the already mentioned methods of cold gas spraying. Due to the fact that the carrier gas stream is previously passed through a stagnation chamber, advantageously the residence time of the molecules of the carrier gas flow in the thermal spraying device can be increased. This facilitates the supply of thermal energy, these preferably during the residence time of the molecules of the carrier gas flow in the stagnation chamber is transferred. The stagnation chamber here is to be understood as meaning a line structure for the carrier gas flow which is widened in cross-section compared to the nozzle. However, the cross-sectional expansion does not cause stagnation in the strict sense, but merely reduces the flow velocity of the carrier gas flow, so that the residence time of the gas molecules in the stagnation chamber is increased compared to the nozzle.

Die Übertragung von Wärmeenergie in die Stagnationskammer kann durch alle bekannten Energiequellen erfolgen. Beispielsweise kann die Wand der Stagnationskammer erhitzt werden, sodass die thermische Energie in das Innere der Stagnationskammer abgestrahlt wird, bzw. auf an die Wand stoßende Gasmoleküle des Trägergasstroms übertragen wird. Weiterhin ist es möglich, einen Energieeintrag in das Volumen der Stagnationskammer vorzunehmen. Dies kann beispielsweise durch Zündung eines Lichtbogens im Inneren der Stagnationskammer, durch elektromagnetische Induktion oder durch Lasereinstrahlung erfolgen. Weiterhin ist es auch möglich, neben der Stagnationskammer die Düse zu beheizen. Der Energieeintrag in die thermische Spritzvorrichtung ist notwendig, damit eine Überführung des Zusatzstoffes in den gasförmigen Zustand erfolgt. Dieser muss zur Änderung seines Aggregatzustandes nämlich thermische Energie aufnehmen.The transfer of heat energy into the stagnation chamber can be done by all known energy sources. For example, the wall of the stagnation chamber can be heated, so that the thermal energy is radiated into the interior of the stagnation chamber, or is transferred to abutting gas molecules of the carrier gas flow. Furthermore, it is possible to make an energy input into the volume of the stagnation chamber. This can be done for example by ignition of an arc inside the stagnation chamber, by electromagnetic induction or by laser irradiation. Furthermore, it is also possible to heat the nozzle next to the stagnation chamber. The energy input into the thermal Spraying device is necessary so that a transfer of the additive takes place in the gaseous state. It must absorb thermal energy to change its state of aggregation.

Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass der Trägergasstrom vor der Zuführung zur Düse derart erwärmt wird, dass ein Kondensieren (und damit auch ein Verfestigen) und/oder Resublimieren des Zusatzstoffes insbesondere in der Düse verhindert wird. Bei der Bemessung der dem Trägergasstrom zugeführten Wärmemenge muss berücksichtigt werden, dass durch die näherungsweise adiabatische Expansion des Trägergases hinter der Düsenkehle eine starke Abkühlung desselben erfolgt. Durch diese Abkühlung kann es in Extremfällen auch zu einem Resublimieren bzw. einer Kondensation und Verfestigung des Zusatzstoffes kommen. Auf diese Weise können sich neue Partikel oder Tröpfchen aus dem Zusatzstoff bilden, welche zusammen mit den zur Abscheidung vorgesehenen Partikeln auf die zu beschichtende Oberfläche treffen. Hier kann der Zusatzstoff zu einer ungewünschten Kontamination der Schicht führen. Erfolgt jedoch eine ausreichende Erwärmung des Trägergases, so verbleiben die Moleküle des mit diesem vermischten Zusatzstoffes im gasförmigen Zustand, sodass diese nicht oder nur in vernachlässigbarer Menge in der sich ausbildenden Schicht abgeschieden werden können .According to a particular embodiment of the invention it is provided that the carrier gas stream is heated prior to feeding to the nozzle such that condensation (and thus solidification) and / or resublimation of the additive is prevented, in particular in the nozzle. When dimensioning the amount of heat supplied to the carrier gas stream, it must be taken into account that the approximately adiabatic expansion of the carrier gas behind the nozzle throat causes it to cool strongly. This cooling can also lead to a resublimation or condensation and solidification of the additive in extreme cases. In this way, new particles or droplets can form from the additive, which, together with the particles to be deposited, strike the surface to be coated. Here, the additive may lead to undesirable contamination of the layer. However, if sufficient heating of the carrier gas, the molecules of the mixed with this additive remain in the gaseous state, so that they can not be deposited or only in negligible amount in the forming layer.

Nahe dem Düsenaustritt der thermischen Spritzvorrichtung herrschen hinsichtlich eines Resublimierens oder Kondensierens oder einer Verfestigung des Zusatzstoffes im Allgemeinen die kritischsten Bedingungen, da dort neben einem Unterdruck gegenüber der Umgebung auch ein Temperaturminimum des Trägergasstromes auftritt. Für die Bemessung der mindestens notwendigen Erwärmung des Trägergasstromes ist letztendlich jedoch der Zustand des Trägergasstromes beim Auftreffen auf das zu beschichtende Bauteil maßgeblich und nicht der Zustand in der Düse.Near the nozzle exit of the thermal spraying device, the most critical conditions generally prevail with regard to resublimation or condensation or solidification of the additive since, in addition to a negative pressure relative to the environment, there also occurs a temperature minimum of the carrier gas flow. For the design of the least necessary heating of the carrier gas flow is, however, ultimately the state of the carrier gas flow when hitting the component to be coated is decisive and not the state in the nozzle.

Unter bestimmten Voraussetzungen kann es auch wünschenswert sein, dass ein Resublimieren oder Kondensieren oder eine Verfestigung des Zusatzstoffes erfolgt. In diesem Fall besteht der Zusatzstoff aus einem Material, welches in der sich ausbildenden Schicht abgeschieden werden soll und evtl. mit den abgeschiedenen Partikeln eine Reaktion eingehen soll. Die hierzu evtl. notwendige Energie wird ebenfalls aus der dem Trägergasstrom zugeführten thermischen Energie bezogen.Under certain conditions, it may also be desirable to resublimate or condense or solidify the additive. In this case, the additive consists of a material which is to be deposited in the forming layer and possibly to react with the deposited particles. The possibly necessary energy is also obtained from the thermal energy supplied to the carrier gas stream.

Bei der Wahl des Zusatzstoffes ist zu berücksichtigen, dass dieser im Trägergasstrom keine explosionsartigen exothermen Reaktionen hervorrufen darf. Dieses wäre insbesondere dann der Fall, wenn durch das Sublimieren oder Verdampfen ein Gasgemisch mit dem Trägergas entsteht, welches Sauerstoff und eine leicht oxidierbare, also feuergefährliche Substanz enthält. Dabei ist es ohne Bedeutung, welche dieser Substanzen vom Trägergas und welche der Substanzen vom Zusatzstoff beigesteuert werden. Die Erwärmung sowie Druckerhöhung vor dem Düsenaustritt würden bei einem Vorliegen einer explosionsgefährdeten Gasmischung schnell zu unkontrollierbaren Explosionserscheinungen führen. Andererseits könnte jedoch eine kontrollierbare Reaktion im Trägergasstrom zusätzliche Energie für die Beschichtung zur Verfügung stellen, bzw. bei einer Reaktion mit den zur Beschichtung vorgesehenen Partikeln auch die chemische Zusammensetzung der zu bildenden Beschichtung direkt in einer gewünschten Weise beeinflussen.When choosing the additive, it must be taken into account that it must not cause explosive exothermic reactions in the carrier gas stream. This would be the case in particular if the sublimation or evaporation produces a gas mixture with the carrier gas which contains oxygen and an easily oxidizable, ie flammable substance. It is irrelevant which of these substances are contributed by the carrier gas and which of the substances by the additive. The heating and pressure increase before the nozzle exit would quickly lead to uncontrollable explosive phenomena in the presence of a potentially explosive gas mixture. On the other hand, however, a controllable reaction in the carrier gas stream could provide additional energy for the coating, or, in a reaction with the particles intended for coating, also directly affect the chemical composition of the coating to be formed in a desired manner.

Gemäß einer besonderen Ausgestaltung der Erfindung wird zur Gewinnung des Zusatzstoffes ein bei Raumtemperatur und Atmosphärendruck gasförmiger Ausgangsstoff durch Druckerhöhung und/oder Abkühlung verfestigt oder verflüssigt. Ein auf diesem Wege gewonnener Zusatzstoff hat den Vorteil, dass er bei Normalbedingungen, wie sie außerhalb der thermischen Spritzvorrichtung normalerweise herrschen, wieder gasförmig wird. Daher ist ein derartiger Zusatzstoff bei Austritt aus der Düsenöffnung der thermischen Spritzvorrichtung vorteilhaft auch besonders einfach in einen gasförmigen Zustand zu überführen.According to a particular embodiment of the invention is for obtaining the additive a gaseous at room temperature and atmospheric pressure starting material by increasing the pressure and / or cooling solidifies or liquefies. An additive obtained in this way has the advantage that it becomes gaseous again under normal conditions, which normally prevail outside the thermal spraying device. Therefore, such an additive at the outlet from the nozzle opening of the thermal spray device is advantageously also very easy to convert into a gaseous state.

Allerdings herrschen in der thermischen Spritzvorrichtung Temperaturen, die über den Normbedingungen liegen. Daher kann gemäß einer anderen Ausgestaltung der Erfindung als Zusatzstoff auch Wasser verwendet werden. Voraussetzung hierfür ist jedoch, dass die Temperatur am Düsenaustritt eine Temperatur von 100 °C zumindest nicht wesentlich unterschreitet, da eine Ausbildung von Wassertröpfchen in diesem Falle nicht verhindert werden könnte. Die Verwendung von Wasser als Zusatzstoff hat insbesondere den Vorteil, dass diese Flüssigkeit bei einem verhältnismäßig niedrigen Siedepunkt chemisch verhältnismäßig stabil ist und daher eine Reaktion mit den meisten zur Beschichtung vorgesehenen Partikeltypen ausbleibt. Außerdem ist Wasser auch im Falle eines Austrittes in die Umgebung als unproblematisch hinsichtlich seiner Umweltverträglichkeit zu bewerten.However, prevail in the thermal spray device temperatures that are above the standard conditions. Therefore, water can also be used as an additive according to another embodiment of the invention. The prerequisite for this is, however, that the temperature at the nozzle outlet at least not significantly below a temperature of 100 ° C, since a formation of water droplets could not be prevented in this case. The use of water as an additive has the particular advantage that this liquid is chemically relatively stable at a relatively low boiling point and therefore fails to react with most provided for coating particle types. In addition, water is also in the event of an exit into the environment as unproblematic in terms of its environmental impact to evaluate.

Für den Fall, dass der Zusatzstoff in flüssigem Zustand verwendet wird, ist es vorteilhaft, unter Rühren eine Suspension herzustellen und zu bevorraten. Diese Suspension kann dann in die Zuführleitung eingespeist werden, wobei zur Dosierung der Partikel auf eine zur Leitung von Flüssigkeiten bereits bewährte Technologie zurückgegriffen werden kann. Hierdurch lassen sich die suspendierten Partikel durch Handhaben des Zusatzstoffes vorteilhaft auf einfache Weise dosieren. Die Dosierung der Partikel für den Spritzvorgang kann insbesondere unter Berücksichtigung der Partikelkonzentration in der Suspension durch eine Einstellung des Volumenstroms in der Zuführleitung erfolgen. Hierbei ist es von großer Bedeutung, dass durch Rühren oder Bewegen der Suspension die Konzentration an Partikeln konstant gehalten wird, sodass diese mit bekanntem Volumenstrom direkt in die Zuführleitung eingespeist werden kann.In the case where the additive is used in the liquid state, it is advantageous to prepare and stock a suspension with stirring. This suspension can then be fed into the feed line, it being possible to fall back on the already proven technology for the metering of the particles for the purpose of metering the particles. As a result, the suspended particles can advantageously be metered in a simple manner by handling the additive. The metering of the particles for the injection process can be carried out in particular taking into account the particle concentration in the Suspension by adjusting the volume flow in the supply line done. It is of great importance that the concentration of particles is kept constant by stirring or moving the suspension, so that it can be fed directly into the feed line with known volume flow.

Wird ein fester Zusatzstoff verwendet, so ist es vorteilhaft, in diesem die Partikel dispers zu verteilen und eine Konditionierung, insbesondere ein Mahlen oder eine Verdüsung vorzunehmen, wodurch der feste Zusatzstoff zu einem Pulver verarbeitet wird. Hierdurch entsteht ein Pulver, welches im allgemeinen grobkörniger ist als die Partikel selbst und welches auf Grund seiner Eigenschaften leichter zu führen und dosieren ist als die Partikel selbst. Da der Zusatzstoff nicht in der zu bildenden Schicht abgeschieden werden soll, muss bei der Wahl des Zusatzstoffes der Schichtbildungsprozess selbst nicht berücksichtigt werden. Daher können für die Leitung und Dosierung optimierte Zusatzstoffe ausgewählt werden, welche eventuelle Dosierungsprobleme der zur Beschichtung vorgesehenen Partikel kompensieren. Das Pulver kann daher einem durch die Zuführleitung geleiteten Gasstrom ohne Probleme dosiert zugesetzt werden, wobei die Dosierung unter Berücksichtigung des Schichtbildungsprozesses beim thermischen Spritzen gewählt werden kann.If a solid additive is used, it is advantageous to disperse the particles disperse therein and carry out a conditioning, in particular grinding or atomization, whereby the solid additive is processed into a powder. This results in a powder, which is generally coarser than the particles themselves and which is easier to guide and dose due to its properties than the particles themselves. Since the additive should not be deposited in the layer to be formed, must in the choice of additive the layering process itself is not taken into account. Therefore, optimized additives can be selected for the line and dosage, which compensate for any dosing problems of the particles provided for coating. The powder can therefore be added metered without any problems to a gas stream conducted through the feed line, it being possible to choose the metering taking into account the film formation process during thermal spraying.

Die Herstellung einer Suspension bzw. eines Pulvers mit fein verteilten Partikeln zur Beschichtung hat den Vorteil, dass neben einer größeren Vielfalt von Partikelmaterialien auch feinere Partikel Verwendung finden können. Diese würden bei direkter Zugabe in einen Gasstrom nicht mehr ohne ein Verklumpen transportierbar sein. Die Hilfestellung durch einen flüssigen oder festen Zusatzstoff vereinfacht jedoch den Transport in der Zuführleitung und somit auch die Dosierung in den thermischen Spritzprozess.The production of a suspension or a powder with finely divided particles for coating has the advantage that, in addition to a larger variety of particle materials, finer particles can also be used. These would no longer be transported without clogging when added directly to a gas stream. However, the assistance of a liquid or solid additive simplifies the Transport in the supply line and thus also the dosage in the thermal spraying process.

Weitere Einzelheiten der Erfindung werden im Folgenden anhand der Zeichnungen beschrieben. Gleiche oder sich entsprechende Elemente in den einzelnen Figuren sind jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen

Figur 1
eine Kaltgasspritzpistole, die für ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens geeignet ist, im Längsschnitt und
Figur 2
schematisch eine thermische Spritzvorrichtung, die zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist, als Blockschaltbild.
Further details of the invention will be described below with reference to the drawings. Identical or corresponding elements in the individual figures are each provided with the same reference numerals and will only be explained several times as far as there are differences between the individual figures. Show it
FIG. 1
a cold gas spray gun, which is suitable for an embodiment of the method according to the invention, in longitudinal section and
FIG. 2
schematically a thermal spray device, which is suitable for carrying out the method according to the invention, as a block diagram.

Eine Kaltgasspritzpistole 11 gemäß Figur 1 stellt das Kernstück einer thermischen Spritzvorrichtung 12 gemäß Figur 2 dar. Die Kaltgasspritzpistole 11 gemäß Figur 1 besteht im Wesentlichen aus einer in einem einzigen Gehäuse 13 ausgebildeten Laval-Düse 14 und Stagnationskammer 15. Im Bereich der Stagnationskammer 15 ist in die Wand des Gehäuses 13 eine Heizspirale 16 eingebettet, welche die Beheizung eines Trägergases bewirkt, welches durch einen Einlass 17 der Stagnationskammer 15 zugeführt wird.A cold gas spray gun 11 according to FIG. 1 represents the core of a thermal spray device 12 according to FIG. 2 dar. The cold gas spray gun 11 according to FIG. 1 consists essentially of a formed in a single housing 13 Laval nozzle 14 and stagnation 15. In the region of the stagnation chamber 15, a heating coil 16 is embedded in the wall of the housing 13, which causes the heating of a carrier gas, which through an inlet 17 of the stagnation 15 is supplied.

Das Trägergas gelangt durch den Einlass 17 zunächst in die Stagnationskammer 15 und verlässt diese durch die Laval-Düse 14. Dabei kann das Trägergas in der Stagnationskammer bis zu 800 °C aufgeheizt werden. Durch eine Zuführleitung 18, deren Mündung 19 in der Stagnationskammer 15 und Laval-Düse 14 angeordnet ist, wird beispielsweise ein flüssiger Zusatzstoff mit den zur Beschichtung vorgesehenen Partikeln eingespeist. Durch eine Entspannung des mit den Partikeln und dem Zusatzstoff beaufschlagten Trägergasstromes durch die Laval-Düse 14 wird eine Abkühlung des Trägergasstromes bewirkt, der im Bereich der Düsenöffnung Temperaturen unter 300 °C aufweist. Diese Temperaturverringerung ist auf eine im wesentlichen adiabatische Expansion des Trägergases zurückzuführen, welches in der Stagnationskammer beispielsweise einen Druck von 30 bar aufweist und außerhalb der Düsenöffnung auf Atmosphärendruck.entspannt wird.The carrier gas passes through the inlet 17 first into the stagnation chamber 15 and leaves it through the Laval nozzle 14. In this case, the carrier gas in the stagnation chamber can be heated up to 800 ° C. By a supply line 18, the mouth 19 is arranged in the stagnation chamber 15 and Laval nozzle 14, for example, a liquid additive fed with the particles provided for coating. By a relaxation of the charged with the particles and the additive carrier gas flow through the Laval nozzle 14, a cooling of the carrier gas stream is effected, which has temperatures below 300 ° C in the region of the nozzle opening. This temperature reduction is due to a substantially adiabatic expansion of the carrier gas, which has, for example, a pressure of 30 bar in the stagnation chamber and is relieved to atmospheric pressure outside the nozzle opening.

In Figur 2 ist schematisch dargestellt, wie eine Kaltspritzpistole 11 gemäß Figur 1 zu einer thermischen Spritzvorrichtung 12 komplettiert werden kann. Die thermische Spritzpistole 11 ist in einem nicht näher dargestellten Gehäuseraum 20 angeordnet, in dem auch ein zu beschichtendes Bauteil 21 angeordnet werden kann, welches mit einer zu beschichtenden Oberfläche 22 zur Düsenöffnung der Kaltspritzpistole 11 weist. Weiterhin ist der Trägergasstrom 23 durch einen Pfeil angedeutet, wobei deutlich wird, dass der Trägergasstrom auf die Oberfläche 22 ausgerichtet ist und dort unter Ausbildung einer Schicht 24, die aus den im Trägergasstrom befindlichen Partikeln 25 gebildet wird, auftrifft. Anstelle einer Heizspirale 16 gemäß Figur 1 sind an der Kaltspritzpistole 11 verschiedene Energiequellen für eine Wärmezufuhr angeordnet. Ein Mikrowellengenerator 26 ist geeignet, um das in der Stagnationskammer 15 befindliche Trägergas sowie die Partikel und den Zusatzstoff durch elektromagnetische Induktion zu erwärmen. Weiterhin sind zwei Laser 27 an der Kaltspritzpistole 11 angebracht, welche einen Laserstrahl in das Innere der Stagnationskammer 15 einstrahlen, wobei diese sich genau vor der Mündung der Zuführleitung 18 kreuzen. Hierdurch ist ein gezielter Energieeintrag in den mit den Partikeln versehenen Zusatzstoff möglich, wobei durch Überführung des Zusatzstoffes in den gasförmigen Zustand diese Energie absorbiert wird und die thermische Belastung der Partikel 25 damit begrenzt wird.In FIG. 2 is shown schematically as a cold spray gun 11 according to FIG. 1 to a thermal spray device 12 can be completed. The thermal spray gun 11 is arranged in a housing space 20, not shown, in which a component to be coated 21 can be arranged, which has a surface to be coated 22 to the nozzle opening of the cold spray gun 11. Furthermore, the carrier gas stream 23 is indicated by an arrow, it being clear that the carrier gas stream is aligned with the surface 22 and impinges there to form a layer 24 which is formed from the particles 25 present in the carrier gas stream. Instead of a heating coil 16 according to FIG. 1 are arranged on the cold spray gun 11 different energy sources for heat supply. A microwave generator 26 is suitable for heating the carrier gas contained in the stagnation chamber 15 as well as the particles and the additive by electromagnetic induction. Furthermore, two lasers 27 are mounted on the cold spray gun 11, which radiate a laser beam into the interior of the stagnation chamber 15, which intersect just before the mouth of the feed line 18. As a result, a targeted energy input in the additive provided with the particles is possible, wherein by transfer of the additive in the gaseous state, this energy is absorbed and the thermal load of the particles 25 is limited so.

Weiterhin ist ein Vorratsbehälter 28 für das verwendete Trägergas vorgesehen, welcher über eine Leitung 29 einer Vorwärmeinheit 30 und anschließend dem Einlass 17 zur Stagnationskammer 15 zugeführt werden kann. Eine Regulierung des Gasstroms ist über nicht dargestellte Drosselventile möglich.Furthermore, a reservoir 28 is provided for the carrier gas used, which can be supplied via a line 29 of a preheating unit 30 and then the inlet 17 to the stagnation chamber 15. A regulation of the gas flow is possible via throttle valves, not shown.

Weiterhin sind Vorratsbehälter für die Partikel vorgesehen, welche alternativ beschickt werden können. Ein Vorratstrichter 31 kann ein in geeigneter Weise konditioniertes Pulver eines Zusatzstoffes enthalten, in dessen Pulverteilchen die zur Beschichtungen vorgesehenen Partikel fein dispers verteilt sind. Das Pulver ist derart konditioniert, dass die Zuführung in die Zuführleitung 18 unproblematisch erfolgen kann. Hierbei wird ein Gasstrom durch die Zuführleitung geleitet, dem die Pulverteilchen zugesetzt werden. Weiterhin ist ein Vorratstank 32 vorgesehen, in dem eine Suspension aus einem flüssigen Zusatzstoff und darin dispergierten Partikeln zur Beschichtung aufbewahrt werden kann. In diesem ist eine Rührvorrichtung 33 vorgesehen, die die Homogenität der Dispersion sicherstellt. Der Vorratstrichter 31 und der Vorratstank 32 sind mit einer thermischen Isolation 34 umgeben, was den wirtschaftlichen Einsatz von gekühlten Zusatzstoffen, beispielsweise bei Raumtemperatur gasförmig vorliegenden Stoffen, ermöglicht.Furthermore, storage containers are provided for the particles, which can be charged alternatively. A storage hopper 31 may contain a suitably conditioned powder of an additive in whose powder particles the particles provided for the coatings are finely dispersed. The powder is conditioned so that the supply into the supply line 18 can be done without problems. In this case, a gas stream is passed through the feed line to which the powder particles are added. Furthermore, a storage tank 32 is provided, in which a suspension of a liquid additive and dispersed therein particles for coating can be stored. In this, a stirring device 33 is provided, which ensures the homogeneity of the dispersion. The storage hopper 31 and the storage tank 32 are surrounded by a thermal insulation 34, which allows the economic use of cooled additives, for example, gaseous substances present at room temperature.

Claims (8)

  1. Method for the feed of particles (25) of a layer material into a cold-gas spraying process, in which the particles (25) are conducted through a supply line (18) and are delivered to a carrier gas stream (23) via the mouth (19) of the supply line (18), the carrier gas stream (23) serving for transporting the particles (25) to a surface (22), to be coated, of a component (21) and, for this purpose, being routed through a stagnation chamber (15) and subsequently accelerated through a nozzle (14), the particles (25), before being introduced into the supply line (18), being dispersed in a liquid or solid additive,
    characterized in that
    such an amount of heat energy is transmitted into the stagnation chamber that the additive absorbs such an amount of thermal energy that, after leaving the mouth (19) of the supply line (18), said additive changes into the gaseous state in the carrier gas stream (23).
  2. Method according to Claim 1,
    characterized in that
    the carrier gas stream (23), before being delivered to the nozzle (14), is charged with an amount of heat which is great enough that the cooling of the carrier gas in the nozzle does not lead to condensation and solidification and/or resublimation of the additive.
  3. Method according to either one of Claims 1 and 2,
    characterized in that
    the carrier gas stream is heated in the stagnation chamber (15).
  4. Method according to one of Claims 1 to 3,
    characterized in that
    water is used as an additive.
  5. Method according to one of the preceding claims,
    characterized in that
    a suspension is produced from the liquid additive and the particles (25) by agitation and is stored.
  6. Method according to Claim 5,
    characterized in that
    the metering of the particles (25) for the spraying process takes place, taking into account the particle concentration in the suspension, by setting the volume flow in the supply line (18).
  7. Method according to one of Claims 1 to 3,
    characterized in that
    the solid additive in which the particles (25) are distributed dispersedly is processed into a powder by means of conditioning, in particular grinding or atomization.
  8. Method according to Claim 7,
    characterized in that
    the powder is added, metered, to a gas stream conducted through the supply line (18).
EP20070820641 2006-09-28 2007-09-27 Method for feeding particles of a coating material into a thermal spraying process Active EP2066828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006047101A DE102006047101B4 (en) 2006-09-28 2006-09-28 Method for feeding particles of a layer material into a cold gas spraying process
PCT/EP2007/060250 WO2008037761A2 (en) 2006-09-28 2007-09-27 Method for feeding particles of a coating material into a thermal spraying process

Publications (2)

Publication Number Publication Date
EP2066828A2 EP2066828A2 (en) 2009-06-10
EP2066828B1 true EP2066828B1 (en) 2015-04-29

Family

ID=39134504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070820641 Active EP2066828B1 (en) 2006-09-28 2007-09-27 Method for feeding particles of a coating material into a thermal spraying process

Country Status (8)

Country Link
US (1) US8252384B2 (en)
EP (1) EP2066828B1 (en)
KR (1) KR101124079B1 (en)
CN (1) CN101522937B (en)
CA (1) CA2664595C (en)
DE (1) DE102006047101B4 (en)
ES (1) ES2536363T3 (en)
WO (1) WO2008037761A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020509B2 (en) * 2009-01-08 2011-09-20 General Electric Company Apparatus, systems, and methods involving cold spray coating
AU2010325875B2 (en) * 2009-12-04 2014-09-04 The Regents Of The University Of Michigan Coaxial laser assisted cold spray nozzle
DE102010022593A1 (en) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Process for the cold gas spraying of a layer with a metallic structural phase and a plastic structural phase, component with such a layer and uses of this component
DE102012102885A1 (en) 2012-04-03 2013-10-10 Reinhausen Plasma Gmbh Container for powder, method for marking a container for powder and apparatus for using powder from the container
EP3049189B1 (en) * 2013-09-25 2019-10-30 United Technologies Corporation Simplified cold spray nozzle and gun
ITBO20130619A1 (en) * 2013-11-12 2015-05-13 Ibix Srl METHOD AND EQUIPMENT FOR FLAME SPRAYING OF THERMOPLASTIC POWDERS
US9669365B2 (en) 2014-06-11 2017-06-06 United Technologies Corporation Suspension plasma spray apparatus and use methods
DE102014008908A1 (en) 2014-06-14 2014-12-04 Daimler Ag Cold gas spraying apparatus and method for coating a component
US10850298B1 (en) * 2016-05-06 2020-12-01 Madeline A. Kuchinski System for non-contact coating of moving component through a falling flow of coating material
CA3098314C (en) * 2016-09-07 2022-04-12 Tessonics, Inc. Hopper with microreactor and cartridge for low pressure cold spraying
EP3526369A4 (en) * 2016-10-17 2020-04-29 The Regents of The University of Michigan Cold spray apparatus with large area conformal deposition ability
CN109136819B (en) * 2018-07-24 2020-06-05 兆基五金制品(苏州)有限公司 Stable powder ion plasma plating equipment
CN109821702B (en) * 2019-03-26 2020-11-10 重庆京东方显示技术有限公司 Coating apparatus and coating method
CN112090609B (en) * 2020-09-15 2021-10-29 季华实验室 Suspension liquid cooling aerodynamic spraying system and application thereof
CN112206937B (en) * 2020-09-30 2022-02-22 季华实验室 Liquid material supply system for suspension liquid cooling spraying process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609921A (en) * 1994-08-26 1997-03-11 Universite De Sherbrooke Suspension plasma spray
RU2196846C2 (en) * 1995-11-13 2003-01-20 Дзе Юниверсити оф Коннектикут Nanostructural raw materials for thermic deposition
US5833891A (en) * 1996-10-09 1998-11-10 The University Of Kansas Methods for a particle precipitation and coating using near-critical and supercritical antisolvents
DE19747386A1 (en) 1997-10-27 1999-04-29 Linde Ag Process for the thermal coating of substrate materials
EP1134302A1 (en) * 2000-03-17 2001-09-19 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I New process for the production of nanostructured solid powders and nano-particles films by compartimentalised solution thermal spraying (CSTS)
US6491967B1 (en) * 2000-10-24 2002-12-10 General Electric Company Plasma spray high throughput screening method and system
US6715640B2 (en) 2001-07-09 2004-04-06 Innovative Technology, Inc. Powder fluidizing devices and portable powder-deposition apparatus for coating and spray forming
US20030219544A1 (en) * 2002-05-22 2003-11-27 Smith William C. Thermal spray coating process with nano-sized materials
KR100515608B1 (en) * 2003-12-24 2005-09-16 재단법인 포항산업과학연구원 Cold spray apparatus with powder preheating apparatus

Also Published As

Publication number Publication date
KR20090077053A (en) 2009-07-14
CN101522937B (en) 2012-06-27
CA2664595A1 (en) 2008-04-03
DE102006047101A1 (en) 2008-04-03
CA2664595C (en) 2012-08-28
US20100098845A1 (en) 2010-04-22
DE102006047101B4 (en) 2010-04-01
KR101124079B1 (en) 2012-03-21
US8252384B2 (en) 2012-08-28
WO2008037761A3 (en) 2009-04-23
CN101522937A (en) 2009-09-02
ES2536363T3 (en) 2015-05-22
EP2066828A2 (en) 2009-06-10
WO2008037761A2 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
EP2066828B1 (en) Method for feeding particles of a coating material into a thermal spraying process
DE112006000689B4 (en) Metallic powders and methods of making the same
DE112007000353B4 (en) Compacted metallic molybdenum powder and process for its preparation
EP1927394B1 (en) Method and thermal reactor for creating particles
DE2850271C3 (en) Device for intensive mixing of liquids
DE112004002500T5 (en) Cold spraying device with powder preheating device
DE3942050A1 (en) METHOD AND DEVICE FOR LASER PLASMA SPRAYING WITH AXIAL FLOW
DE2908136A1 (en) METHOD AND DEVICE FOR MANUFACTURING UREA CORES
AT410640B (en) METHOD AND DEVICE FOR SPRAYING METAL MELT
WO2007141235A1 (en) Apparatus and method for vapour depositing a powdered organic starting material
EP1095169B1 (en) Method and device for producing a powder aerosol and use thereof
EP1364076B1 (en) Device and method for supplying a cvd reactor with a liquid starting material entering into a gaseous phase
EP2009132A1 (en) Method for manufacturing a functional layer, coating material, method for its manufacture and functional layer
DE102022120223A1 (en) EJECTOR FOR MODIFICATION OF METAL BEAM COMPOSITIONS AND METHOD THEREOF
DE3719825A1 (en) METHOD FOR PRODUCING CERAMIC POWDERS AND DEVICE FOR IMPLEMENTING THE SAME
DE102006039462A1 (en) Producing particles comprises injecting a mixture of a feed material and seed crystals into a hot gas stream in a pulsed combustion reactor
DE1483147A1 (en) Method and device for the decomposition of metal compounds
DE102007032778A1 (en) Apparatus and method for prilling
WO2019052806A1 (en) Method and device for thermal rounding or spheronisation of powdered plastic particles
DE102006023046B4 (en) Method and starting material for providing a gaseous precursor
DE2200448A1 (en) Process and device for the heat treatment of difficult-to-melt materials in a fluidized bed
EP2087143A2 (en) Vapour-deposited coating and thermally stressable component having such a coating, and also a process and apparatus for producing such a coating
DE102013106837A1 (en) Method and device for the thermal conversion of a substance mixture in a reactor space to particles
DE19812441A1 (en) Method and apparatus for raising the energy level of particles of a powder spray material, and applications of the method
WO2023078544A1 (en) Mixing conveyor for an injection molding system, injection molding system, method for producing a molded object, and molded object

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090309

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130220

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 24/04 20060101AFI20141014BHEP

Ipc: C23C 4/12 20060101ALI20141014BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2536363

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013903

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013903

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150927

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 724488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070927

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20220921

Year of fee payment: 16

Ref country code: DE

Payment date: 20220620

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220921

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220926

Year of fee payment: 16

Ref country code: GB

Payment date: 20221011

Year of fee payment: 16

Ref country code: ES

Payment date: 20221216

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221220

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL