EP2066520A2 - Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant - Google Patents

Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant

Info

Publication number
EP2066520A2
EP2066520A2 EP07823721A EP07823721A EP2066520A2 EP 2066520 A2 EP2066520 A2 EP 2066520A2 EP 07823721 A EP07823721 A EP 07823721A EP 07823721 A EP07823721 A EP 07823721A EP 2066520 A2 EP2066520 A2 EP 2066520A2
Authority
EP
European Patent Office
Prior art keywords
equipment according
micro
voltage
cells
hybrid device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07823721A
Other languages
German (de)
English (en)
Inventor
Julien Masfaraud
Hugues Doffin
Farouk Boudjemai
Roger Abadia
Richard Tellier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP2066520A2 publication Critical patent/EP2066520A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • micro-hybrid device device for a motor vehicle and micro-hybrid device incorporating it
  • the present invention finds applications advantageously in the field of the automotive sector. It relates to an integrated micro-hybrid device device for a motor vehicle in which can be integrated a power store, an AC-DC converter and a DC-DC converter in a single housing.
  • This approximation in the same case of different electronic and electrotechnical components proposed by the invention aims to reduce the size and cost and improve the reliability of all such components in a motor vehicle.
  • a micro-hybrid device of the type described above has mechanically independent electrical components. These components are generally a reversible rotary electric machine, a reversible AC-DC converter, a super-capacitor pack and a reversible DC-DC converter.
  • the micro-hybrid device is connected to the power supply battery of the vehicle power supply network.
  • the alternator-starter performs an alternator function and a starter function of the engine.
  • the shaft of the engine of the vehicle drives the rotor of the electric machine, so as to produce an electric current in the stator for supplying an onboard network of the motor vehicle.
  • micro-hybrid device made with mechanically independent components, causes them to be interconnected by a relatively long cable length.
  • the length of the connection cables of the AC-DC converter to the rotating electrical machine, the DC-DC converter and the supercapacitor pack does not facilitate the control of the thermal and electrical problems existing in the micro-hybrid device.
  • this type of architecture is difficult to integrate into any type of vehicle especially as some components such as super-capacitors are relatively bulky.
  • the present invention overcomes these problems posed by the conventional architecture described above.
  • the subject of the invention is an integrated micro-hybrid device for a motor vehicle, capable of being electrically connected to functional components of the micro-hybrid device.
  • hybrid comprising a pack of super-capacitors equipped with voltage balancing means and electronic circuits.
  • the equipment comprises a housing comprising a first compartment in which is housed the pack of supercapacitors and a second compartment in which are housed the electronic circuits and the voltage balancing means.
  • This new architecture facilitates the integration of the microhybrid device in any type of motor vehicle, reduces its cost and its size and improves its reliability.
  • This new mycro-hybrid device architecture results in a reduction of the dissipated electrical power, as well as in the size and the cost of such a system, while simplifying the integration of the power management in others. systems.
  • the integration in the integrated equipment according to the invention of the super-capacitor pack and the DC-DC converter enables a reduction in the voltage drop in the cables. Indeed, when there is a voltage drop that occurs, the pack of supercapacitors relieve stored electrical power while the rotating electrical machine operates in alternator mode.
  • components associated with a micro-hybrid device dissipate some of the energy they transmit to heat, which generates localized heating in components and wiring.
  • the invention uses a heatsink placed on the housing of the integrated equipment. It also proposes to equip the integrated equipment with a cooling system to prevent breakdowns due to excessive temperature of components and wiring.
  • the components are arranged in the housing of the integrated equipment so as to increase the efficiency rate of heat dissipation and cooling of the components. and wiring.
  • the integrated equipment of the invention may advantageously have the physical size of a conventional storage battery. It can thus be placed in place of the battery pack, which can be in this case placed in other places of the thermally compatible motor vehicle such as the trunk or under the driver's seat.
  • the supercapacitor pack comprises a plurality of supercapacitor cells and the voltage balancing means comprise a plurality of voltage balancing cells connected across the plurality of supercapacitor cells.
  • the voltage balancing cells each comprise voltage limiting means for limiting a charging voltage of the respective super-capacitor cell to a predetermined value.
  • the voltage limiting means are connected to terminals of the respective super-capacitor cell.
  • the super-capacitor cells are electrically connected in series.
  • the super-capacitor cells are long-length cells arranged parallel to one another.
  • the cells are oriented alternately in one direction and the other to have opposite poles to the same housing face.
  • the cells are long with their large dimension oriented parallel to the plane of a partition separating the first and second compartments in the housing.
  • the electronic circuits comprise a DC-DC converter adapted to be connected to a power supply battery of a power distribution network of the motor vehicle.
  • the electronic circuits comprise an electronic control card for the DC-DC converter.
  • the electronic circuits comprise an AC-DC converter adapted to be connected to a rotating electrical machine of the micro-hybrid device.
  • the electronic circuits comprise an electronic control card for the AC / DC converter.
  • the first compartment and the second compartment are separated by a thermally insulating partition.
  • Cooling means are provided for one and / or the other of the first and second compartments of the housing.
  • the cooling means comprise at least one fan coupled to a pipe providing a forced circulation of a cooling fluid through the first compartment.
  • the cooling means comprise a heat sink increasing the heat exchange surface through the outer wall of the second compartment of the housing.
  • the invention also relates to a micro-hybrid device for a motor vehicle comprising a rotating electrical machine capable of being mechanically coupled to a vehicle engine and integrated equipment as briefly described above, the integrated equipment being electrically connectable, on the one hand, to the rotating electrical machine and, on the other hand, to a battery for powering the vehicle.
  • the rotating electrical machine may advantageously be an alternator-starter.
  • the invention also relates to a motor vehicle equipped with a micro-hybrid device as briefly described above.
  • FIG 1 schematically represents an illustration of an architecture of micro-hybrid device with alternator-starter according to the state of the art.
  • FIG. 2 illustrates functional means embodying an embodiment of a micro-hybrid device according to the invention.
  • FIG. 3 is an exploded perspective view of the integrated equipment according to the invention.
  • FIG 4 represents a sectional view of the integrated equipment according to the invention.
  • FIG 5 is a more detailed perspective view of the integrated equipment according to the invention showing the arrangement of the connector.
  • FIGS. 6A and 6B show schematic diagrams of two exemplary embodiments of voltage equalization means included in the integrated equipment according to the invention.
  • the micro-hybrid device with alternator / starter comprises an AC / DC converter 12 of polyphase voltages electrically connected to a reversible rotary electric machine 11.
  • the converter (AC / DC) 12 is a reversible voltage converter.
  • the AC / DC converter 12 When the rotary electric machine 1 1 operates in starter mode in order to start the engine 10 of the vehicle, the AC / DC converter 12 operates to convert a DC voltage from the power / energy storage means of the vehicle into polyphase voltages. , more precisely three-phase voltages in the embodiment of FIG. Polyphase voltages are used for driving the rotary electric machine 1 1.
  • the AC / DC converter 12 When the rotary electric machine 1 1 operates in alternator mode, more specifically, in normal alternator mode or regenerative braking alternator mode, the AC / DC converter 12 operates to convert polyphase voltage supplied by the machine 1 1 into a voltage which is used to supply the vehicle's electrical distribution network and to charge the power / energy storage means thereof. As shown in FIG. 1, the AC / DC converter 12 is conventionally connected to a pack of supercapacitors 14 constituting power storage means.
  • the AC / DC converter 12 is also connected to a reversible DC / DC voltage converter 13.
  • This DC / DC converter 13 is connected between the supercapacitor pack 14 and the battery pack 16.
  • the DC converter / DC 13 allows bidirectional transfers of electrical energy between the pack of supercapacitors 14 and the battery pack 16.
  • a floating high-voltage network may be powered from the voltage present at the terminals of the pack of super-capacitors 23.
  • the energy supplied to this network with floating DC voltage can then come from the pack of super-capacitors 23, the machine 21 operating as an alternator, through AC / DC converter 22, or the battery supply 26 through the DC / DC converter 24 then operating as a voltage booster .
  • Fig.2 shows a schematic representation of a micro-hybrid device with alternator-starter according to the invention.
  • the micro-hybrid alternator-starter device of Fig.2 comprises an integrated equipment 2 according to the invention, contained in a housing 20, which is interposed between a rotating electrical machine 21 and a supply battery 26.
  • the electric machine Reversible turntable 21 is typically a three-phase synchronous machine.
  • power supply battery 26 is understood in the present invention as covering any device forming a rechargeable electric energy reservoir, at the terminals of which a non-zero voltage is available, at least in a non-zero load state of the device.
  • This battery 26 is powered by the electric machine 21 via the integrated equipment 2.
  • This battery 26 can power electrical or electronic consumers. Electrical or electronic consumers in a motor vehicle are typically lights, radio, air conditioning, windshield wipers, etc.
  • the integrated equipment 2 essentially comprises a reversible AC / DC voltage converter 22, a pack of supercapacitors 23 and a reversible DC / DC converter 24.
  • the AC / DC converter 22, the super-capacitor pack 23 and the DC / DC converter 24 are connected to an internal DC bus 28 of the integrated equipment 2.
  • voltage equalization means represented schematically in the form of a block 25, are also provided in order to balance the load voltages between the different super-capacitors of the pack 23.
  • the voltage balancing means allow a better reliability of the super-capacitor pack by allowing a balancing of the voltage across each of the cells of the pack of super-capacitors.
  • These voltage balancing means contribute to improving the life of the super-capacitor cells by reducing a disparity of the charging voltages on the different cells, limiting these charge voltages to a nominal value and also preventing a possible breakdown. in tension.
  • the mark 29 in Fig.2 corresponds to a connection of the integrated equipment 2 to a floating DC voltage distribution network.
  • the mark 29 'in Fig.2 corresponds to a connection of the integrated equipment 2 to a constant voltage DC distribution network, that is to say, typically the 12 V network usually present in the current motor vehicles .
  • the integrated equipment 2 can be integrated in different places of the motor vehicle, even elsewhere than under the bonnet of the vehicle.
  • the integration of the integrated equipment 2 in a motor vehicle is flexible. This flexibility of integration makes it possible to reduce the constraints of implantation on the vehicle.
  • the integrated equipment 2 can be placed in the physical place of the battery pack 26. In this case, the battery 26 can be moved to any other suitable place of the vehicle, for example in the trunk or under the driver's seat.
  • the physical size of the housing 20 containing the integrated equipment 2 can be standardized so that it can be integrated into any type of motor vehicle.
  • Figs.3 to 5 show in more detail an arrangement in the component housing 20 included in the integrated equipment 2 according to the invention.
  • FIG. 3 schematically and exploded shows the various components housed in the housing 20.
  • the casing 20, of parallelepipedal shape is divided into two compartments 31 and 32.
  • the compartment 31 comprises The pack of supercapacitors 23.
  • the pack of supercapacitors are, according to a preferred embodiment of the invention, in the form of several supercapacitor cells 40. These cells 40 can store a very large electrical power during a short period and return it when starting the vehicle or for the rotating electrical machine gives extra torque to the vehicle.
  • the second compartment 32 comprises electronic circuits of the integrated equipment 2.
  • the electronic circuits housed in the compartment 32 are in fact the DC / DC converter 24.
  • the electronic circuits also include the AC / DC converter 22 and possibly control or other circuits.
  • the AC / DC converter 22 and the DC / DC converter 24 are integrated in the the compartment 32 of the housing 2 respectively in the form of a power electronic card 38 and an electronic power card 34.
  • the AC / DC converter power electronic card 38 is controlled by an electronic control card 37.
  • DC / DC converter power electronic board 34 is driven by an electronic control board 35.
  • Each power electronic board 34, 38 is preferably juxtaposed with the other.
  • the electronic control cards 35, 37 are preferably juxtaposed to one another.
  • the power electronic boards 34, 38 and the electronic control boards 35, 37 are generally mechanically independent in order to minimize the cost of development.
  • the electronic power and control cards of each converter can be produced in the form of a single card.
  • This mode of dividing the housing 20 into two compartments is a preferred example of the invention.
  • the housing 20 may comprise as many compartments as it comprises electronic cards.
  • each card is placed in a compartment.
  • the different compartments can be stacked on each other as in the example described.
  • the compartments can be side by side with each other. The components of one compartment must not encroach on the volume of another compartment. This is to allow a design change of a compartment without affecting the other compartments.
  • the compartment 31 comprising the supercapacitor cells 40 and the compartment 32 comprising the electronic cards are separated by a partition 36 thermally insulating.
  • This partition 36 is put in place to ensure the electronic components on each electronic card an optimal operating temperature.
  • the temperature of the super-capacitor cells 40 is regulated between acceptable limits. Forced convection cooling makes it possible to guarantee this limitation and to cool the compartment 31.
  • the cooling means of the first compartment 31 are implemented by at least two ports 42a and 42b, laterally opposite, which are formed in the housing 20, to serve the circulation of a flow of 'air.
  • These orifices 42a and 42b are relatively large in size, so that one of the orifices is adapted to receive a fan 33, coupled to an air intake hose 41.
  • the number of intake and exhaust ports is not limited to two.
  • the first compartment of the housing can have a sufficient number of orifices so that the heat dissipated by the supercapacitor cells 40 can be rapidly extracted.
  • the cooling means may be implemented by a heat sink 39 placed on the outer upper surface of the second compartment 32 of the housing parallel to the partition 36.
  • the dissipator increases the heat exchange surface through the wall of the second compartment 32.
  • the pack of supercapacitors 23 is arranged such that the air flow circulates between the different supercapacitor cells 40.
  • the integrated equipment 20 comprises at least two sensors (not shown) for measuring the temperature. Preferably, one of the temperature sensors is located at the power electronics components and the other temperature sensor is located at the super-capacitor cells. The temperature measurements make it possible to control the flow of air supplied by the cooling means.
  • Fig.5 shows the arrangement of the connector inside the housing 20 and between the two compartments 31, 32.
  • the electronic cards are mechanically independent of each other.
  • the housing may comprise cooling means placed on the electronic power boards which are those dissipating the most heat. These cooling means may be fans connected to each power electronic board 34, 38 or a heat sink or a heat exchanger involving a heat transfer fluid.
  • the super-capacitor cells are arranged horizontally aligned with an alternating negative or positive polarity.
  • the super-capacitor cells 40 are connected in series.
  • the voltage balancing means comprise a plurality of like voltage balancing cells, each voltage balancing cell being electrically connected to the terminals of a respective supercapacitor cell.
  • a cell 40On comprises, in this first exemplary embodiment, essentially a resistor 402 and a Zener diode 403.
  • the resistor 402 and the diode 403 are connected in series so as to form a limiting circuit or voltage clipping which is connected in parallel across the respective super-capacitor cell 40n.
  • the Zener diode 403 and the resistor 402 are selected to limit the voltage across the cell 40n to a predetermined maximum value.
  • a cell 400n comprises, in this second exemplary embodiment, essentially a switch 404 and a voltage comparator 405.
  • the switch 404 is formed for example of a MOS-FET type transistor and is connected, in series with a resistor current limiting device 406 at the terminals of the supercapacitor cell 4On.
  • the comparator 405 compares the voltage VcI across the terminals of the super-capacitor cell 4On to a set voltage Vc. When the voltage VcI becomes greater than the reference voltage Vc, the comparator 405 controls the closing of the switch 404 so as to limit the voltage VcI to a maximum value equal to Vc.
  • the voltage balancing cells 400n, 400n ' may be placed on one of the control electronics 35, 37.
  • the voltage balancing cells 400n, 400n' are connected to the supercapacitor cells 40 via connection wires 57 shown in FIG.
  • the voltage balancing cells, in the form 400n for example can be placed directly across the super-capacitor cells 40.
  • the AC / DC converter power electronic card 38 is connected to the reversible rotary electric machine 21 by a three-phase connection 51.
  • the DC / DC converter power supply card 34 is connected to the battery of the power supply network of the vehicle via a connection 53.
  • the AC / DC converter power supply board 38 is connected to a negative terminal 52 of the super-capacitor pack 23 and to a positive terminal 56 of the super-capacitor pack 23.
  • the DC / DC converter power board 34 is connected to the negative terminal 52 of the super-capacitor pack 23 and the positive terminal 56 of the super-capacitor pack 23.
  • the connection of the AC / DC converter power electronic board 38 to the negative terminal 52 also makes it possible to avoid the mass shift.
  • the mass offset is observed when there is no mass common to the various electronic components and the voltage regulation of the vehicle electrical system passes through different voltage measurements at the terminals of the various electrical devices, including the invention. is part of that system. Mass shifting creates communication problems between the various system components and poor regulation.
  • the fact that in the device according to the invention there is a common ground makes it possible to dispense with certain standardized tests concerning the electrical connections between the different blocks of the engine compartment, and thus to make the design more reliable.
  • the invention finds particularly advantageous applications in combination with the bi-voltage network system said 14 + X.
  • This architecture has two independent power grids of which one, the 14 + X network, by its technology, is able to operate at a floating high voltage.
  • This arrangement of the housing as shown in Fig.5 shows a connection 55 of the positive terminal 56 of the pack of supercapacitors 23 to the network with loads that agree to operate under a floating network (the defrost, the wiper, etc.. ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'équipement intégré de dispositif micro-hybride pour véhicule automobile selon l'invention, apte à être connecté électriquement à des composants fonctionnels du dispositif micro-hybride comprend un pack de super-condensateurs (40) équipé de moyens d'équilibrage de tension et des circuits électroniques (34, 35, 37, 38). Conformément à l'invention, l'équipement comporte un boîtier (20) comprenant un premier compartiment (31) dans lequel est logés le pack de super-condensateurs (40) et un second compartiment (32) dans lequel sont logés les circuits électroniques et les moyens d'équilibrage de tension.

Description

Equipement intégré de dispositif micro-hybride pour véhicule automobile et dispositif micro-hvbride l'incorporant
La présente invention trouve des applications de manière avantageuse dans le domaine du secteur automobile. Elle a pour objet un équipement intégré de dispositif micro-hybride pour véhicule automobile dans lequel peuvent être intégrés un stockeur de puissance, un convertisseur alternatif-continu et un convertisseur continu-continu dans un seul boîtier. Ce rapprochement dans un même boîtier de différents composants électronique et électrotechnique proposé par l'invention a pour but de réduire l'encombrement et le coût et d'améliorer la fiabilité de l'ensemble de tels composants dans un véhicule automobile.
Pour réduire la consommation de carburant des véhicules automobiles, et par voie de conséquence la pollution qu'ils génèrent, il est connu d'équiper un véhicule d'un dispositif micro-hybride à alterno- démarreur autorisant un freinage récupératif.
Dans l'état de la technique, un dispositif micro-hybride du type décrit ci-dessus comporte des composants électriques mécaniquement indépendants. Ces composants sont généralement une machine électrique tournante réversible, un convertisseur alternatif-continu réversible, un pack de super-condensateurs et un convertisseur de tension continu-continu réversible.
A travers le condensateur de tension continu-continu, le dispositif micro-hybride est relié à la batterie d'alimentation du réseau d'alimentation électrique du véhicule.
L'alterno-démarreur remplit une fonction d'alternateur et une fonction de démarreur du moteur thermique.
Dans la fonction alternateur, l'arbre du moteur thermique du véhicule entraîne le rotor de la machine électrique, de manière à produire un courant électrique dans le stator afin d'alimenter un réseau de bord du véhicule automobile.
L'architecture des composants du dispositif micro-hybride ci- dessus selon la technique antérieure présente des inconvénients. En effet, le dispositif micro-hybride réalisé avec des composants mécaniquement indépendants, entraîne que ces derniers sont reliés entre eux par un câblage de longueur relativement importante. La longueur des câbles de branchement du convertisseur alternatif-continu à la machine électrique tournante, au convertisseur continu-continu et au pack de super- condensateurs ne facilite pas la maîtrise des problèmes thermiques et électriques existant dans le dispositif micro-hydride.
Dans un espace aussi restreint que le compartiment moteur d'un véhicule automobile, ce type d'architecture s'intègre difficilement dans n'importe quel type de véhicule d'autant plus que certains composants tels que les super-condensateurs sont relativement volumineux. De plus, il en découle une connectique relativement complexe qui n'est pas favorable à une bonne fiabilité, connectique qui est d'autant plus complexe que les super-condensateurs doivent être équipés de moyens d'équilibrage de tension pour obtenir une meilleure fiabilisation du pack de super- condensateurs et permettre un équilibrage de la tension aux bornes de chacune des cellules du pack de super-condensateurs.
Par ailleurs, le coût global de ce type d'architecture classique de l'art antérieur est élevé.
La présente invention remédie à ces problèmes posés par l'architecture classique décrite ci-dessus.
Selon un premier aspect, l'invention a pour objet un équipement intégré de dispositif micro-hybride pour véhicule automobile, apte à être connecté électriquement à des composants fonctionnels du dispositif micro- hybride, comprenant un pack de super-condensateurs équipé de moyens d'équilibrage de tension et des circuits électroniques.
Conformément à l'invention, l'équipement comporte un boîtier comprenant un premier compartiment dans lequel est logés le pack de super-condensateurs et un second compartiment dans lequel sont logés les circuits électroniques et les moyens d'équilibrage de tension.
Cette nouvelle architecture facilite l'intégration du dispositif microhybride dans tout type de véhicule automobile, réduit sont coût et son encombrement et améliore sa fiabilité.
Cette nouvelle architecture de dispositif mycro-hybride suivant l'invention entraîne une réduction de la puissance électrique dissipée, ainsi que de la taille et du coût d'un tel système, tout en simplifiant l'intégration de la gestion de puissance dans d'autres systèmes.
Par ailleurs, une gestion thermique efficace est mise en œuvre dans l'invention du fait que la puissance dissipée par unité de surface est extrêmement basse.
L'intégration dans l'équipement selon l'invention du pack de super-condensateurs et du convertisseur alternatif-continu (AC/DC) permet de réduire les ondulations de la tension issue du convertisseur AC/DC lorsque la machine électrique tournante fonctionne en mode alternateur. Elle permet également de s'affranchir de certains essais normatifs de compatibilité électromagnétique imposés seulement pour des composants séparés comme dans l'état de la technique.
L'intégration dans l'équipement intégré selon l'invention du pack de super-condensateurs et du convertisseur continu-continu (DC/DC) permet une réduction de la chute de la tension dans les câbles. En effet, lorsqu'il y a une chute de tension qui survient, le pack de supercondensateurs délestent de la puissance électrique emmagasinée pendant que la machine électrique tournante fonctionne en mode alternateur. De plus, les composants associés à un dispositif micro-hybride dissipent en chaleur une partie de l'énergie qu'ils transmettent, ce qui génère un échauffement localisé dans les composants et les câblages. Pour résoudre ce problème, l'invention met en oeuvre un dissipateur thermique placé sur le boîtier de l'équipement intégré. Elle propose également d'équiper l'équipement intégré d'un système de refroidissement permettant de prévenir les pannes dues à un excès de température des composants et des câblages.
Suivant des caractéristiques complémentaires de l'invention dans ses modes de mises en œuvre préférées, les composants sont disposés dans le boîtier de l'équipement intégré de telle sorte à augmenter le taux d'efficacité de la dissipation de la chaleur et du refroidissement des composants et des câblages.
L'équipement intégré de l'invention peut avantageusement présenter la taille physique d'une batterie de stockage conventionnelle. Il peut être ainsi placé à la place de la batterie d'alimentation, laquelle peut être dans ce cas placée à d'autres endroits du véhicule automobile thermiquement compatible comme le coffre ou sous le siège du conducteur.
L'invention peut avantageusement répondre en outre à une ou plusieurs des caractéristiques suivantes :
- le pack de super-condensateurs comporte une pluralité de cellules de super-condensateur et les moyens d'équilibrage de tension comportent une pluralité de cellules d'équilibrage de tension connectées aux bornes de la pluralité de cellules de super-condensateur.
- les cellules d'équilibrage de tension comportent chacune des moyens de limitation de tension pour limiter une tension de charge de la cellule de super-condensateur respective à une valeur prédéterminée.
- les moyens de limitation de tension sont connectés à des bornes de la cellule de super-condensateur respective. - les cellules de super-condensateur sont montées électriquement en série.
- les cellules de super-condensateur sont des cellules longiformes disposées parallèlement les unes aux autres.
- les cellules sont orientées alternativement dans un sens et dans l'autre pour présenter des pôles opposés vers une même face de boîtier.
- les cellules sont longiformes avec leur grande dimension orientée parallèlement au plan d'une cloison séparant les premier et second compartiments dans le boîtier.
- les circuits électroniques comprennent un convertisseur continu- continu apte à être connecté à une batterie d'alimentation électrique d'un réseau de distribution électrique du véhicule automobile.
- les circuits électroniques comprennent une carte électronique de pilotage du convertisseur continu-continu.
- les circuits électroniques comprennent un convertisseur alternatif-continu apte à être connecté à une machine électrique tournante du dispositif micro-hybride.
- les circuits électroniques comprennent une carte électronique de pilotage du convertisseur alternatif-continu.
- le premier compartiment et le second compartiment sont séparés par une cloison thermiquement isolante.
- des moyens de refroidissement sont prévus pour l'un et/ou l'autre des premier et second compartiments du boîtier.
- les moyens de refroidissement comportent au moins un ventilateur couplé à un tuyau assurant une circulation forcée d'un fluide de refroidissement à travers le premier compartiment. - les moyens de refroidissement comportent un dissipateur thermique augmentant la surface d'échange thermique à travers la paroi extérieure du second compartiment du boîtier.
Selon une autre aspect, l'invention concerne aussi un dispositif micro-hybride pour véhicule automobile comprenant une machine électrique tournante apte à être couplée mécaniquement à un moteur thermique du véhicule et un équipement intégré tel que décrit brièvement ci-dessus, l'équipement intégré étant connectable électriquement, d'une part, à la machine électrique tournante et, d'autre part, à une batterie d'alimentation électrique du véhicule. Bien entendu, conformément à l'invention, la machine électrique tournante peut avantageusement être est un alterno- démarreur.
L'invention concerne également un véhicule automobile équipé d'un dispositif micro-hybride tel que décrit brièvement ci-dessus.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux figures qu'elle comporte, parmi lesquelles:
-la Fig.1 représente schématiquement une illustration d'une architecture de dispositif micro-hybride à alterno-démarreur selon l'état de la technique.
-la Fig.2 illustre des moyens fonctionnels mettant en œuvre un mode de réalisation d'un dispositif micro-hybride selon l'invention.
-la Fig.3 représente de manière éclatée une vue en perspective de l'équipement intégré selon l'invention.
-la Fig.4 représente une vue en coupe de l'équipement intégré selon l'invention. -la Fig.5 représente une vue en perspective plus détaillée de l'équipement intégré selon l'invention montrant l'agencement de la connectique.
-les Figs.6A et 6B représentent des schémas de principe de deux exemples de réalisation de moyens d'équilibrage de tension inclus dans l'équipement intégré selon l'invention.
Actuellement, une architecture de câblage des différents composants d'un dispositif micro-hybride à alterno-démarreur telle que réalisée dans l'état de la technique est encombrante et coûteuse. Un exemple d'une telle architecture est représentée dans la Fig.1 . Dans l'exemple de la Fig.1 , le dispositif micro-hybride à alterno-démarreur comporte un convertisseur alternatif-continu (AC/DC) 12 de tensions polyphasées connecté électriquement à une machine électrique tournante réversible 1 1 .
Le convertisseur (AC/DC) 12 est un convertisseur de tension réversible.
Lorsque la machine électrique tournante 1 1 fonctionne en mode démarreur afin de démarrer le moteur thermique 10 du véhicule, le convertisseur AC/DC 12 opère de manière à convertir une tension continue provenant des moyens de stockage de puissance/énergie du véhicule en des tensions polyphasées, plus précisément des tensions triphasées dans la réalisation de la Fig.1 . Les tensions polyphasées sont utilisées pour l'entraînement de la machine électrique tournante 1 1.
Lorsque la machine électrique tournante 1 1 fonctionne en mode alternateur, plus précisément, en mode alternateur normal ou en mode alternateur de freinage récupératif, le convertisseur AC/DC 12 opère de manière à convertir des tensions polyphasées fournies par la machine 1 1 en une tension continue qui est employée pour alimenter le réseau de distribution électrique du véhicule et charger les moyens de stockage de puissance/énergie de celui-ci. Comme montré à la Fig.1 , le convertisseur AC/DC 12 est branché classiquement à un pack de super-condensateurs 14 constituant des moyens de stockage de puissance.
Le convertisseur AC/DC 12 est également branché à un convertisseur de tension continu-continu (DC/DC) réversible 13. Ce convertisseur DC/DC 13 est connecté entre le pack de supercondensateurs 14 et la batterie d'alimentation 16. Le convertisseur DC/DC 13 autorise des transferts bidirectionnels d'énergie électrique entre le pack de super-condensateurs 14 et la batterie d'alimentation 16.
Dans les véhicules équipés de réseaux de distribution électrique bi-tension, un réseau à tension continue élevée flottante peut être alimenté à partir de la tension présente aux bornes du pack de super-condensateurs 23. L'énergie fournie à ce réseau à tension continue flottante peut alors provenir du pack de super-condensateurs 23, de la machine 21 opérant en alternateur, à travers de convertisseur AC/DC 22, ou de la batterie d'alimentation 26 à travers le convertisseur DC/DC 24 opérant alors en élévateur de tension.
La Fig.2 montre une représentation schématique d'un dispositif micro-hybride à alterno-démarreur selon l'invention. Le dispositif micro- hybride à alterno-démarreur de la Fig.2 comporte un équipement intégré 2 selon l'invention, contenu dans un boîtier 20, qui est intercalé entre une machine électrique tournante 21 et une batterie d'alimentation 26. La machine électrique tournante réversible 21 est typiquement une machine synchrone triphasée.
La notion de batterie d'alimentation 26 se comprend dans la présente invention comme couvrant tout dispositif formant un réservoir d'énergie électrique rechargeable, aux bornes duquel une tension électrique non nulle est disponible, du moins dans un état de charge non nul du dispositif. Cette batterie 26 est alimentée par la machine électrique 21 via le l'équipement intégré 2. Cette batterie 26 permet d'alimenter des consommateurs électriques ou électroniques. Les consommateurs électriques ou électroniques dans un véhicule automobile sont typiquement des phares, une radio, une climatisation, des essuie-glaces, etc.
L'équipement intégré 2 comporte essentiellement un convertisseur de tension AC/DC réversible 22, un pack de supercondensateurs 23 et un convertisseur DC/DC réversible 24.
Le convertisseur AC/DC 22, le pack de super-condensateurs 23 et le convertisseur DC/DC 24 sont reliés à un bus continu interne 28 de l'équipement intégré 2.
Comme cela apparaît également à la Fig.2, des moyens d'équilibrage de la tension, représentés schématiquement sous la forme d'un bloc 25, sont également prévus afin d'équilibrer les tensions de charge entre les différents super-condensateurs du pack 23. Les moyens d'équilibrage de tension autorisent une meilleure fiabilisation du pack de super-condensateurs en permettant un équilibrage de la tension aux bornes de chacune des cellules du pack de super-condensateurs. Ces moyens d'équilibrage de tension contribuent à améliorer la durée de vie des cellules de super-condensateur en réduisant une disparité des tensions de charge sur les différentes cellules, en limitant ces tensions de charge à une valeur nominale et en empêchant également un éventuel claquage en tension.
Le repère 29 à la Fig.2 correspond à un branchement de l'équipement intégré 2 à un réseau de distribution électrique à tension continue flottante.
Le repère 29' à la Fig.2 correspond à un branchement de l'équipement intégré 2 à un réseau de distribution électrique à tension continue constante, c'est-à-dire, typiquement le réseau 12 V habituellement présent dans les véhicules automobiles actuels.
L'équipement intégré 2 peut être intégré dans différents endroits du véhicule automobile, même ailleurs que sous le capot moteur du véhicule. Ainsi, l'intégration de l'équipement intégré 2 dans un véhicule automobile est flexible. Cette souplesse d'intégration permet de réduire les contraintes d'implantation sur le véhicule. Dans un exemple préféré, l'équipement intégré 2 peut être placé en lieu et place physique de la batterie d'alimentation 26. Dans ce cas, la batterie 26 peut être déplacée dans tout autre endroit adéquat du véhicule, par exemple dans le coffre ou en dessous du siège du conducteur. La taille physique du boîtier 20 contenant l'équipement intégré 2 peut être standardisée de telle sorte que celui-ci puisse être intégré dans n'importe quel type de véhicule automobile.
Les Figs.3 à 5 montrent plus en détail une disposition dans le boîtier 20 de composants compris dans l'équipement intégré 2 selon l'invention.
La Fig.3 montre de manière schématique et éclatée les différents composants logés dans le boîtier 20. Dans l'exemple de la Fig.3, le boîtier 20, de forme parallélépipédique, est divisé en deux compartiments 31 et 32. Le compartiment 31 comporte le pack de super-condensateurs 23. Le pack de super-condensateurs se présentent, selon un mode de réalisation préféré de l'invention, sous forme de plusieurs cellules de super- condensateur 40. Ces cellules 40 peuvent emmagasiner une très grande puissance électrique pendant une courte période et la restituer lors d'un démarrage du véhicule ou pour que la machine électrique tournante donne un couple d'appoint au véhicule. Conformément à l'invention, le second compartiment 32 comporte des circuits électroniques de l'équipement intégré 2. Dans une forme de réalisation particulière, les circuits électroniques logés dans le compartiment 32 sont en fait le convertisseur DC/DC 24. Dans d'autres formes de réalisation de l'invention, les circuits électroniques comprennent aussi le convertisseur AC/DC 22 et éventuellement des circuits de commande ou autres.
Dans la forme de réalisation plus particulièrement décrite ici, le convertisseur AC/DC 22 et le convertisseur DC/DC 24 sont intégrés dans le le compartiment 32 du boîtier 2 respectivement sous la forme d'une carte électronique de puissance 38 et d'une carte électronique de puissance 34. La carte électronique de puissance de convertisseur AC/DC 38 est pilotée par une carte électronique de contrôle 37. La carte électronique de puissance de convertisseur DC/DC 34 est pilotée par une carte électronique de contrôle 35. Chaque carte électronique de puissance 34, 38 est de préférence juxtaposée à l'autre. De même, les cartes électroniques de contrôle 35, 37 sont de préférence juxtaposées l'une à l'autre. Les cartes électroniques de puissance 34, 38 et les cartes électroniques de contrôle 35, 37 sont en général mécaniquement indépendantes afin de minimiser le coût de développement. En variante, les cartes électronique de puissance et de contrôle de chaque convertisseur peuvent être réalisées sous la forme d'une seule carte.
Ce mode de division du boîtier 20 en deux compartiments est un exemple préféré de l'invention.
Dans une variante, le boîtier 20 peut comporter autant de compartiments qu'il comporte de cartes électroniques. Dans le cas ci- dessus, chaque carte est placée dans un compartiment. Les différents compartiments peuvent être empilés les uns sur les autres comme dans l'exemple décrit. Dans une autre varaiante, les compartiments peuvent être accolés latéralement les uns par rapport aux autres. Les composants d'un compartiment ne doivent pas empiéter sur le volume d'un autre compartiment. Ceci afin de permettre un changement de conception d'un compartiment sans toucher aux autres compartiments.
Le compartiment 31 comportant les cellules de supercondensateur 40 et le compartiment 32 comportant les cartes électroniques sont séparés par une cloison 36 thermiquement isolante. Cette cloison 36 est mise en place pour garantir aux composants électroniques qui se trouvent sur chaque carte électronique une température de fonctionnement optimale. La température des cellules de super-condensateur 40 est régulée entre des limites acceptables. Un refroidissement par convection forcée permet de garantir cette limitation et de refroidir le compartiment 31 .
Comme le montre la Fig.4, les moyens de refroidissement du premier compartiment 31 sont mis en œuvre par au moins deux orifices 42a et 42b, latéralement opposés, qui sont pratiqués dans le boîtier 20, pour servir à la circulation d'un flux d'air. Ces orifices 42a et 42b sont de tailles relativement conséquentes, de manière à ce que l'un des orifices soit apte à recevoir un ventilateur 33, couplé à un tuyau flexible d'admission d'air 41 .
Le nombre d'orifices d'admission et de sortie d'air n'est pas limité à deux. Le premier compartiment du boîtier peut avoir un nombre suffisant d'orifices de manière à pouvoir extraire rapidement la chaleur dissipée par les cellules de super-condensateur 40.
Les moyens de refroidissement peuvent être mis en œuvre par un dissipateur thermique 39 placé sur la surface supérieure extérieure du second compartiment 32 du boîtier parallèlement à la cloison 36. Le dissipateur augmente la surface d'échange thermique à travers la paroi du second compartiment 32.
Le pack de super-condensateurs 23 est agencé de telle sorte que le flux d'air circule entre les différentes cellules de super-condensateur 40. L'équipement intégré 20 comporte au moins deux capteurs (non représentés) de mesure de température. De préférence, l'un des capteurs de température est placé au niveau des composants d'électronique de puissance et l'autre capteur de température est placé au niveau des cellules de super-condensateur. Les mesures de température permettent d'asservir le flux d'air fourni par les moyens de refroidissement.
La Fig.5 montre l'agencement de la connectique à l'intérieur du boîtier 20 et entre les deux compartiments 31 , 32. Dans l'exemple de la Fig.5, les cartes électroniques sont mécaniquement indépendantes les unes des autres. Dans un exemple, le boîtier peut comporter des moyens de refroidissement placés sur les cartes électronique de puissance qui sont celles dissipant le plus de chaleur. Ces moyens de refroidissement peuvent être des ventilateurs branchés sur chaque carte électronique de puissance 34, 38 ou un dissipateur thermique ou un échangeur thermique faisant intervenir un fluide caloporteur.
Les cellules de super-condensateur sont disposées horizontalement de façon alignées avec une polarité négative ou positive alternée. Les cellules de super-condensateur 40 sont branchées en série.
En référence aux Figs.6A et 6B, il est maintenant décrit les moyens d'équilibrage de tension intégrés dans l'équipement 2.
Deux exemples de réalisation sont montrés respectivement aux Figs.6A et 6B sous la forme des cellules d'équilibrage de tension 40On et 40On'. Pour une même forme de réalisation, les moyens d'équilibrage de tension comportent une pluralité de cellules d'équilibrage de tension analogues, chaque cellule d'équilibrage de tension étant connectée électriquement aux bornes d'une cellule de super-condensateur respective.
Comme montré à la Fig.6A, une cellule 40On comporte, dans ce premier exemple de réalisation, essentiellement une résistance 402 et une diode de Zéner 403. La résistance 402 et la diode 403 sont reliées en série de manière à former un circuit de limitation ou écrêtage de tension qui est branché en parallèle aux bornes de la cellule de super-condensateur 40n respective. La diode de Zéner 403 et la résistance 402 sont choisies de manière à limiter la tension aux bornes de la cellule 40n à une valeur maximale prédéterminée.
Comme montré à la Fig.6B, une cellule 400n' comporte, dans ce second exemple de réalisation, essentiellement un interrupteur 404 et un comparateur de tension 405. L'interrupteur 404 est formé par exemple d'un transistor de type MOS-FET et est connecté, en série avec une résistance de limitation de courant 406, aux bornes de la cellule de supercondensateur 4On. Le comparateur 405 compare la tension VcI aux bornes de la cellule de super-condensateur 4On à une tension de consigne Vc. Lorsque la tension VcI devient supérieure à la tension de consigne Vc, le comparateur 405 commande la fermeture de l'interrupteur 404 de manière à limiter la tension VcI à une valeur maximale égale à Vc.
Dans un mode de réalisation particulier, les cellules d'équilibrage de tension 400n, 400n' peuvent être placées sur l'une des cartes électroniques de contrôle 35, 37. Dans ce cas, les cellules d'équilibrage de tension 400n, 400n' sont raccordées aux cellules de supercondensateur 40 via des fils de connexion 57 représentés à la Fig.5. Dans certains modes de réalisation de l'invention, les cellules d'équilibrage de tension, sous la forme 400n par exemple, peuvent être placées directement aux bornes des cellules de super-condensateur 40.
Les deux exemples de réalisation ci-dessus des moyens d'équilibrage de tension ont été représentés et décrits de manière simplifiée, principalement par rapport à la fonction de limitation en tension réalisée par ces moyens. Bien entendu, différentes variantes de réalisation sont possibles et sont à la portée de l'homme du métier.
La carte électronique de puissance de convertisseur AC/DC 38 est connectée à la machine électrique tournante réversible 21 par une connexion triphasée 51 . La carte électronique de puissance de convertisseur DC/DC 34 est connecté à la batterie d'alimentation du réseau de distribution électrique du véhicule par l'intermédiaire d'une connexion 53.
La carte électronique de puissance de convertisseur AC/DC 38 est branchée à une borne négative 52 du pack de super-condensateurs 23 et à une borne positive 56 du pack de super-condensateurs 23. La carte électronique de puissance de convertisseur DC/DC 34 est branchée à la borne négative 52 du pack de super-condensateurs 23 et à la borne positive 56 du pack de super-condensateurs 23.
Ces quatre branchements des cartes électroniques 34 et 38 au pack de super-condensateurs 23 sont effectués avec un câblage de faible longueur, ce qui réduit considérablement le phénomène d'avalanche thermique lorsque la machine 21 est en mode moteur et l'ondulation de tension lorque la machine 21 est en mode générateur.
Le branchement de la carte électronique de puissance de convertisseur AC/DC 38 à la borne négative 52 permet également d'éviter le décalage de masse. Le décalage de masse s'observe lorsqu'il n'y a pas de masse commune aux différents composants électroniques et que la régulation de tension du système électrique du véhicule passe par différentes mesures de tensions aux bornes des différents dispositifs électriques, dont l'invention fait partie, qui constituent ledit système. Le décalage de masse engendre des problèmes de communication entre les différents organes du système et une mauvaise régulation. Le fait que dans le dispositif selon l'invention, il y a une masse commune permet de s'affranchir de certains essais normalisés concernant les connexions électriques entre les différents blocs du compartiment moteur, et donc de fiabiliser la conception.
L'invention trouve des applications particulièrement avantageuses en combinaison avec le système à réseau bi-tension dit 14+X. Cette architecture possède deux réseaux électriques indépendants dont l'un, le réseau 14+X, de par sa technologie, est capable de fonctionner à une tension élevée flottante. Cet agencement du boîtier comme le prévoit la Fig.5 montre une connexion 55 de la borne positive 56 du pack de supercondensateurs 23 vers le réseau comportant des charges qui acceptent de fonctionner sous un réseau flottant (le dégivrage, l'essuie glace, etc.).

Claims

Revendications
1 . Equipement intégré de dispositif micro-hybride pour véhicule automobile, apte à être connecté électriquement à des composants fonctionnels (21 , 26) dudit dispositif micro-hybride, comprenant un pack de super- condensateurs (23, 40) équipé de moyens d'équilibrage de tension (25, 40On, 40On') et des circuits électroniques (22, 24, 34, 35, 37, 38), caractérisé en ce qu'il comporte un boîtier (20) comprenant un premier compartiment (31 ) dans lequel est logés ledit pack de super-condensateurs (23, 40) et un second compartiment (32) dans lequel sont logés lesdits circuits électroniques (22, 24, 34, 35, 37, 38) et lesdits moyens d'équilibrage de tension (25, 40On, 40On').
2. Equipement selon la revendication 1 , caractérisé en ce que ledit pack de super-condensateurs (23, 40) comporte une pluralité de cellules de supercondensateur (40) et lesdits moyens d'équilibrage de tension (25, 40On, 40On') comportent une pluralité de cellules d'équilibrage de tension (40On, 40On') connectées aux bornes de ladite pluralité de cellules de supercondensateur (40).
3. Equipement selon la revendication 2, caractérisé en ce que lesdites cellules d'équilibrage de tension (400n, 400n') comportent chacune des moyens de limitation de tension (402, 403 ; 404, 405, 406) logés pour limiter à une valeur prédéterminée (Vc) une tension de charge (VcI) de la cellule de super-condensateur (40).
4. Equipement selon la revendication 3, caractérisé en ce que lesdits moyens de limitation de tension (402, 403 ; 404, 405, 406) sont connectés à des bornes de la cellule de super-condensateur (40) respective.
5. Equipement selon l'une quelconque des revendications 2 à 4, caractérisé en ce que lesdites cellules de super-condensateur (40) sont montées électriquement en série.
6. Equipement selon l'une quelconque des revendications 2 à 5, caractérisé en ce que les cellules de super-condensateur (40) sont des cellules longiformes disposées parallèlement les unes aux autres.
7. Equipement selon l'une quelconque des revendications 2 à 6, caractérisé en ce que les cellules (40) sont orientées alternativement dans un sens et dans l'autre pour présenter des pôles opposés vers une même face de boîtier.
8. Equipement selon l'une quelconque des revendications 2 à 7, caractérisé en ce que les cellules (40) sont longiformes avec leur grande dimension orientée parallèlement au plan d'une cloison (36) séparant lesdits premier et second compartiments (31 , 32) dans le boîtier.
9. Equipement selon l'une quelconque des revendications 1 à 8, caractérisé en ce que lesdits circuits électroniques comprennent un convertisseur continu-continu (24) apte à être connecté à une batterie d'alimentation électrique (26) d'un réseau de distribution électrique dudit véhicule automobile.
10. Equipement selon la revendication 9, caractérisé en ce que lesdits circuits électroniques comprennent une carte électronique de pilotage (35) du convertisseur continu-continu (24).
1 1 . Equipement selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits circuits électroniques comprennent un convertisseur alternatif-continu (22) apte à être connecté à une machine électrique tournante (21 ) dudit dispositif micro-hybride.
12. Equipement selon la revendication 1 1 , caractérisé en ce que lesdits circuits électroniques comprennent une carte électronique de pilotage (37) du convertisseur alternatif-continu (22).
13. Equipement selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier compartiment (31 ) et le second compartiment (32) sont séparés par une cloison thermiquement isolante (36).
14. Equipement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des moyens de refroidissement (33, 39) de l'un et/ou de l'autre desdits premier et second compartiments (31 , 32) du boîtier.
15. Equipement selon la revendication 14, caractérisé en ce que les moyens de refroidissement comportent au moins un ventilateur (33) couplé à un tuyau (41 ) assurant une circulation forcée d'un fluide de refroidissement à travers le premier compartiment (31 ) .
16. Equipement selon la revendication 14 ou 15, caractérisé en ce que les moyens de refroidissement comportent un dissipateur thermique (39) augmentant la surface d'échange thermique à travers la paroi extérieure du second compartiment du boîtier (20).
17. Dispositif micro-hybride pour véhicule automobile comprenant une machine électrique tournante (21 ) apte à être couplée mécaniquement à un moteur thermique dudit véhicule et un équipement intégré selon l'une quelconque des revendications précédentes, ledit équipement intégré étant connectable électriquement, d'une part, à ladite machine électrique tournante (21 ) et, d'autre part, à une batterie d'alimentation électrique dudit véhicule.
18. Dispositif selon la revendication 17, caractérisé en ce que la machine électrique tournante (21 ) est un alterno-démarreur.
19. Véhicule automobile comprenant un dispositif micro-hybride selon la revendication 17 ou 18.
EP07823721A 2006-09-22 2007-08-16 Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant Ceased EP2066520A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653911A FR2906416B1 (fr) 2006-09-22 2006-09-22 Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant
PCT/FR2007/051820 WO2008034986A2 (fr) 2006-09-22 2007-08-16 Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant

Publications (1)

Publication Number Publication Date
EP2066520A2 true EP2066520A2 (fr) 2009-06-10

Family

ID=37950028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07823721A Ceased EP2066520A2 (fr) 2006-09-22 2007-08-16 Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant

Country Status (5)

Country Link
US (1) US8662225B2 (fr)
EP (1) EP2066520A2 (fr)
CN (1) CN101516668B (fr)
FR (1) FR2906416B1 (fr)
WO (1) WO2008034986A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE446877T1 (de) * 2005-04-01 2009-11-15 Bonfiglioli Riduttori Spa Antriebssystem für zwillingsräder, insbesondere der an strassenwalzen verwendeten art
FR2933815B1 (fr) * 2008-07-09 2010-08-20 Peugeot Citroen Automobiles Sa Pack d'accumulateurs rechargeables avec circuits electroniques de pilotage
CN101973216A (zh) * 2010-11-08 2011-02-16 黄山汉和碳纤维科技有限公司 一种纯电动汽车驱动装置
CN102290242B (zh) * 2011-08-10 2014-09-24 联合汽车电子有限公司 薄膜电容器的散热结构及方法
DE102012112970A1 (de) * 2012-12-21 2014-06-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeug mit elektrischem Energiespeicher und Leistungselektronik
US9162669B2 (en) * 2014-02-25 2015-10-20 Cummins Inc. Systems and methods for control of powertrains with regenerative start/stop alternator functionality
FR3018013B1 (fr) * 2014-02-26 2018-01-12 Valeo Equipements Electriques Moteur Ensemble electronique pour machine electrique tournante pour vehicule automobile
CN104901393A (zh) * 2015-06-22 2015-09-09 罗民雄 电池串联充电电路中各电池充电电压的控制方法与电路
JP7168346B2 (ja) * 2018-05-25 2022-11-09 矢崎総業株式会社 バッテリモジュール
US10865759B2 (en) * 2018-08-24 2020-12-15 A Tech Aerospace, Inc. Battery enhancer for a vehicle
US11376977B2 (en) * 2018-12-30 2022-07-05 Texas Instruments Incorporated Powertrain architecture for a vehicle utilizing an on-board charger
CN111355003B (zh) * 2020-03-12 2021-08-10 奇瑞新能源汽车股份有限公司 一种动力电池加热装置的加热方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186738A1 (en) * 2005-02-18 2006-08-24 Minoru Noguchi Method of supplying electric current, method of starting internal combustion engine, power supply apparatus, and vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1260903B (it) * 1992-03-04 1996-04-29 Honda Motor Co Ltd Motoveicolo a trazione elettrica.
JP3044975B2 (ja) * 1992-12-10 2000-05-22 トヨタ自動車株式会社 電気自動車のバッテリ加温装置
US5713426A (en) * 1996-03-19 1998-02-03 Jeol Ltd. Hybrid vehicle
JP3466513B2 (ja) * 1999-08-02 2003-11-10 日産ディーゼル工業株式会社 電気自動車の電源システム
CN1073945C (zh) * 1999-11-09 2001-10-31 罗云 电动汽车动力装置
US7172831B2 (en) * 2003-01-09 2007-02-06 Ford Motor Company Battery system for automotive vehicle
US20050269988A1 (en) * 2004-06-04 2005-12-08 Maxwell Technologies, Inc. Voltage balancing circuit for multi-cell modules
JP4611820B2 (ja) * 2005-07-04 2011-01-12 本田技研工業株式会社 車両用電装ユニットの冷却装置
US8134343B2 (en) * 2007-04-27 2012-03-13 Flextronics International Kft Energy storage device for starting engines of motor vehicles and other transportation systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186738A1 (en) * 2005-02-18 2006-08-24 Minoru Noguchi Method of supplying electric current, method of starting internal combustion engine, power supply apparatus, and vehicle

Also Published As

Publication number Publication date
WO2008034986A3 (fr) 2008-09-12
CN101516668B (zh) 2012-02-08
CN101516668A (zh) 2009-08-26
WO2008034986A2 (fr) 2008-03-27
FR2906416B1 (fr) 2009-05-08
FR2906416A1 (fr) 2008-03-28
US8662225B2 (en) 2014-03-04
US20100101877A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
EP2066520A2 (fr) Equipement integre de dispositif micro-hybride pour vehicule automobile et dispositif micro-hybride l'incorporant
EP2044646B1 (fr) Dispositif compact d'alimentation électrique pour un véhicule automobile équipe de moyens de refroidissement régules
FR2903057A1 (fr) Dispositif compact d'alimentation electrique pour un vehicule automobile comportant des moyens de refroidissement a effet peltier
EP3201637A1 (fr) Protection contre un court-circuit de module de batterie
WO2015033062A2 (fr) Ensemble electronique pour machine electrique tournante pour vehicule automobile
EP3586423A1 (fr) Batterie à groupes de cellule(s) de stockage associés respectivement à des modules de conversion, pour la fourniture de tensions de types différents
WO2020053502A2 (fr) Ensemble propulsif hybride serie pour aeronef
EP2831977B1 (fr) Procède et système d'alimentation électrique d'un véhicule automobile hybride a doublé stockeurs d'énergie électrique
EP3613121A1 (fr) Batterie à ensembles de groupe de cellule(s) et module de conversion, pour fournir différentes tensions et faire différentes recharges
WO2014068245A2 (fr) Systeme d'alimentation electrique a double stockeurs d'energie electrique d'un vehicule automobile ou hybride
EP3381114A1 (fr) Systeme modulaire de conversion d'une puissance electrique continue en puissance electrique triphasee
EP1331716B1 (fr) Système d'alimentation en énergie électrique d'un véhicule automobile
EP2913910A2 (fr) Ensemble électronique pour machine électrique tournante pour véhicule automobile
EP3221177B1 (fr) Système d'alimentation électrique d'un véhicule automobile et module électronique de commande correspondant
FR2903056A1 (fr) Dispositif compact d'alimentation electrique pour un vehicule automobile equipe de moyens de refroidissement comportant une source froide exterieure
FR2985615A1 (fr) Systeme d'alimentation d'une charge alternative par plusieurs sources de tension continue
EP4237273A1 (fr) Système d'alimentation électrique
EP3476036B1 (fr) Système et procédé de conversion d'une puissance électrique continue en puissance électrique alternative triphasee avec radiateur a air
FR2973601A1 (fr) Circuit electrique destine a equiper un vehicule automobile et permettant d'alimenter un reseau de bord sensible
FR2926684A1 (fr) Systeme d'alimentation electrique d'un vehicule , notamment d'un vehicule automobile hybride
FR3037733A1 (fr) Reseau electrique d'alimentation des equipements d'un vehicule automobile a double sous-reseaux et son utilisation
EP2019446B1 (fr) Dispositif compact d'alimentation électrique comportant des moyens de refroidissement
WO2024094940A1 (fr) Systeme de gestion d'energie d'un bloc batterie
FR3112904A1 (fr) Système d’alimentation d’un moteur de traction
Guzzella et al. Models of electric and hybrid-electric propulsion systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090409

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200628