EP2054746B1 - Method for producing an optical splitter and optical splitter - Google Patents

Method for producing an optical splitter and optical splitter Download PDF

Info

Publication number
EP2054746B1
EP2054746B1 EP07802808A EP07802808A EP2054746B1 EP 2054746 B1 EP2054746 B1 EP 2054746B1 EP 07802808 A EP07802808 A EP 07802808A EP 07802808 A EP07802808 A EP 07802808A EP 2054746 B1 EP2054746 B1 EP 2054746B1
Authority
EP
European Patent Office
Prior art keywords
optical
chip
optical waveguide
conductor track
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07802808A
Other languages
German (de)
French (fr)
Other versions
EP2054746A1 (en
Inventor
Wolfgang Schweiker
Klaus Hartkorn
Franz Draxler
Markus Meinelt
Angela Rief
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Research and Development Corp
Original Assignee
CCS Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Technology Inc filed Critical CCS Technology Inc
Publication of EP2054746A1 publication Critical patent/EP2054746A1/en
Application granted granted Critical
Publication of EP2054746B1 publication Critical patent/EP2054746B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves

Definitions

  • the invention relates to a method for producing an optical splitter, with which light from an optical waveguide, which is arranged on an input side of the optical splitter, distributed to a plurality of optical waveguides, which are arranged on an output side of the optical splitter.
  • the invention further relates to an optical splitter, with which light from an optical waveguide, which is arranged on an input side of the optical splitter, distributed to a plurality of optical waveguides, which are arranged on an output side of the optical splitter.
  • Figure 1A shows a cross section of an optical splitter.
  • a single optical fiber 10 is inserted on one side.
  • a plurality of optical waveguides 20 emerge to the outside.
  • the splitter is also operable in the reverse direction.
  • the input side of the splitter is the side where the plurality of optical fibers 20 are mounted
  • the output side is the side where the single optical fiber 10 is disposed.
  • the optical waveguide 10 is surrounded at its end with a reinforcing structure.
  • This can be z. B. in the form of a ferrule (ferrule) 40 are realized.
  • the ferrule is formed, for example, as a glass tube, in which the fiber 10 is glued.
  • the reinforcing structure may also consist of two parts, e.g. B. a base plate and a cover plate with groove.
  • the reinforcing structure serves as a holding unit fixed to one side 31 of an optical chip 30.
  • the reinforcing structure may be glued to the optical chip 30, for example.
  • the optical chip 30 has a carrier material, for example a substrate made of glass or silicon, on which glass layers are deposited.
  • the glass layers are formed, for example, of lightly doped quartz glass and act as optical waveguides.
  • the optical waveguides can also by other processes, eg. Diffusion of dopant ions into the substrate material.
  • FIG. 1B shows a plan view of the in Figure 1A shown in cross section optical branch.
  • the optical waveguides which are arranged on the carrier substrate, form a conductor track which has a plurality of branch nodes.
  • Light which is fed, for example, from the optical waveguide 10 on the side 31 of the optical chip 30 into a conductor track section of the conductor track 33 is distributed behind the branching node to a plurality of conductor track sections of the conductor track.
  • the fiber array On one side 32 of the optical chip, a so-called fiber array is attached to the chip.
  • the fiber array has a carrier substrate 50 and a V-groove plate 60.
  • the optical waveguides 20 are fixed on an upper side of the carrier substrate 50. They are guided in grooves of the V-groove plate 60 and are thus on the on the side 32 of the optical Chips arranged conductor track portions of the conductor 33 aligned.
  • the optical fibers 20 are protected by a strain relief element 70, which is arranged on one side of the housing 90, from tensile load and thus from tearing off of the fiber array.
  • the strain relief may be formed, for example, as a rubber boot.
  • optical splitter as in the Figures 1A and 1B is shown, is complicated.
  • the fiber ends of the optical waveguides 20 must first be cleaned, arranged in the grooves of the V-grooves plate, and glued to the carrier substrate.
  • the fiber end of the optical waveguide 10 is poured into the reinforcing structure 40.
  • the fiber array which is adhered to the optical chip to align the individual optical fibers of the plurality of optical fibers 20 on the conductor track portions of the optical conductor 33 on the output side 32 of the chip is very expensive.
  • the publication US 5,208,885 relates to a method for connecting an optical waveguide with a waveguide, which is arranged on a substrate.
  • the optical waveguide is coated at one end with a paste containing glass, aligned with the waveguide and, after heating the paste, can be connected to the waveguide.
  • optical waveguides can be easily and reliably attached to an optical chip to make an optical splitter.
  • a chip is provided with a carrier substrate, on which at least one optical strip conductor is arranged, which comprises a plurality of strip conductor sections, wherein a first of the strip line sections branches from a first side of the chip at at least one branch location of the strip conductor into at least two second strip conductor sections which extend to a second side of the chip.
  • An optical waveguide section of a first optical waveguide is connected to the The first conductor track section of the conductor track is adhesively bonded to the first side of the chip, wherein the optical waveguide section of the first optical waveguide is not arranged on a carrier substrate after adhesion and / or a number of respective optical waveguide sections of second optical waveguides are connected to one of the second conductor track sections on the second side of the second Glued chips, wherein the optical waveguide portions of the second optical waveguide are not arranged on a carrier substrate after sticking.
  • the carrier substrate may comprise a substrate material arranged to support the optical fibers in a longitudinal direction of the optical fibers.
  • an optical waveguide section of a first optical waveguide is thus adhesively bonded directly to the first interconnect section of the interconnect on the first side of the chip.
  • the optical waveguide section of the first optical waveguide is thus no longer encapsulated in the reinforcing structure (ferrule).
  • respective optical waveguide sections of second optical waveguides can also be adhered directly to the second side of the chip to one of the second interconnect sections.
  • the optical waveguide sections of the second optical waveguides thus no longer need to be arranged on a carrier substrate, which may for example be formed as part of a fiber array, and be glued to the chip with the fiber array. Since in particular the fiber array represents a not inconsiderable cost factor, and the adhesion of the optical waveguide sections of the second optical waveguide on the fiber array represents a complex production step, the coupling of the second optical waveguide to the chip is simplified with the specified method.
  • a first glass plate is arranged under the respective optical waveguide sections of the optical waveguides which is glued to the first and / or second side of the chip.
  • the first and / or second glass plate has at its respective end faces, where it is glued to the first and / or second side of the chip, each having a recess.
  • the adhesive material is arranged in the respective recess of the first and / or second glass plate.
  • respective end faces of the optical waveguide sections of the first optical waveguide and / or respective end faces of the second optical waveguides can be glued to respective end faces of the conductor track sections of the conductor track on the first and / or second side of the chip by means of an adhesive material.
  • a first layer of the adhesive material can be attached laterally to the respective end faces of the optical waveguide sections on the first and / or second side of the chip.
  • a layer containing an acrylate may be applied. It may also be attached as a first layer of the adhesive material, a layer containing an epoxide.
  • the attached adhesive material of acrylate or epoxy is cured for example by means of UV radiation.
  • a second layer of the adhesive material is applied over the first layer.
  • a layer is applied as the second layer of the adhesive material, which has a lower coefficient of thermal expansion than the first layer.
  • a glass filled adhesive material is attached as the second layer.
  • a second glass plate is arranged over the respective optical waveguide sections of the optical waveguides, which is glued to the first and / or second side of the chip.
  • the respective optical waveguide sections of the optical waveguides can be arranged in grooves of a holding device prior to adhering to the respective printed conductor sections of the printed conductor and aligned by means of the holding device on the respective printed conductor sections on the first and / or second side of the chip.
  • the respective optical waveguide sections of the optical waveguides are, for example, cut at an angle of less than 15 °, for example 8 °.
  • a cladding of the optical waveguides in the region of the respective optical waveguide sections of the optical waveguide is removed at respective conductor track sections of the conductor track.
  • the optical splitter comprises a chip which contains a carrier substrate, on which at least one optical strip conductor is arranged, which comprises a plurality of strip conductor sections, wherein a first of the strip conductor sections branches from a first side of the chip at at least one branch point of the conductor into at least two second conductor track sections, which extend to a second side of the chip.
  • An optical waveguide section of a first optical waveguide is adhered to the first interconnect section of the interconnect on the first side of the chip, wherein the optical waveguide section of the first optical waveguide is not arranged on a carrier substrate.
  • a number of respective optical fiber portions of second optical fibers are adhered to the conductor portions on the second side of the chip, the optical fiber portions of the second optical fibers are not disposed on a support substrate.
  • a first glass plate is glued, which is arranged below the respective optical waveguide sections of the first optical waveguide and / or the second optical waveguide.
  • the first and / or second glass plate has at its respective end faces, where it is glued to the first and / or second side of the chip, each having a recess.
  • the adhesive material is arranged in the respective recess of the first and / or second glass plate.
  • a first layer of an adhesive material may be disposed on respective end faces of the optical waveguide sections.
  • the first layer of the adhesive material can also be arranged laterally to the respective end faces.
  • the first layer of the adhesive material may include an acrylate or an epoxide.
  • a second layer of the adhesive material is disposed over the first layer of the adhesive material.
  • the adhesive material of the second layer is filled with glass, for example.
  • an area on the first and / or second sides of the chip and the respective end faces of the optical waveguide sections may have an inclination of less than 15 °, for example 8 °.
  • the chip and the respective optical waveguide sections of the optical waveguides can be surrounded by a housing.
  • a second glass plate may be glued to the first and / or second side of the chip, which is arranged above the respective optical waveguide sections of the first optical waveguide and / or the second optical waveguide.
  • an area on the first and / or second side of the chip and the first and / or second glass plate may have an inclination of less than 15 °, for example 8 °.
  • the chip and the respective optical waveguide sections of the optical waveguides can be surrounded by a housing.
  • FIG. 2 shows a plan view of an optical chip 100, on which a conductor 110, which has a plurality of conductor track portions 111, 112, ..., 115, is applied.
  • a conductor 110 which has a plurality of conductor track portions 111, 112, ..., 115, is applied.
  • conductor tracks made of lightly doped quartz glass are deposited on a carrier material which is formed, for example, from silicon or pure quartz glass.
  • a track section 111 branches off from a side 101 of the chip 100 at a branch location 120 and further branch locations 130, 140 into track sections 112, 113, 114 and 115 that extend to a side 102 of the chip.
  • the optical chip generally serves to distribute light, which is injected on the side 101 of the chip into the conductor track section 111, to a plurality of optical waveguides which are to be attached to the side 102 of the chip. Likewise, the light from the optical waveguides, which are arranged on the side 102, can be fed via the conductor track 110 into the individual optical waveguide 11 on the side 101.
  • the optical waveguide 10 and the plurality of optical fibers 20 are glued directly to the two sides of the chip.
  • the optical waveguide 10 is thus no longer surrounded by the ferrule 40.
  • the multiple optical waveguides 20 are not on the carrier substrate arranged in the longitudinal direction of the optical waveguide after adhering 50 are held or are no longer guided in grooves of the V-groove plate 60, which in the embodiment of the Figures 1A and 1B is glued to the carrier substrate.
  • FIG. 3 shows a cross section through one of the optical waveguides 10 and 20.
  • the optical waveguides each have in their center a core 11, 21, is guided in the light.
  • the core 11 or 21 is surrounded by a sheath material with a lower refractive index than the core and by an outer coating B. After removing the outer coating B, the optical waveguide section 11, which is the core region of the optical waveguide 10, is attached to the side 101 of the chip 30 and / or the optical waveguide sections 21, which are the core regions of the optical waveguides 20, to the side 102 of the optical chip glued.
  • FIG. 4 shows a holding device H for aligning the optical waveguide sections, for example, for aligning the optical waveguide sections 21a, ..., 21d on the conductor track sections 112, ..., 115 of the conductor 110.
  • the holding device comprises a plurality of recesses N, in which the optical waveguide sections 21a, .. ., 21d are arranged.
  • an adhesive material 300 is attached on the side 101, in an area where the wiring portion 111 is located, and / or on the side 102, in areas where the wiring portions 112, ..., 115 are disposed.
  • the adhesive material 300 may be, for example, a UV-curing acrylate or a UV-curing Be epoxide.
  • the entire arrangement may be surrounded by a housing 1000 for protection against tearing off the optical waveguide sections 11 and 21a,..., 21d.
  • FIG. 5 shows a cross section through an embodiment of an optical splitter.
  • the optical chip 100 is formed as a multi-layer substrate and has a carrier layer S1 on which glass layers 110 are deposited as an optical path.
  • the carrier layer S1 can be formed as pure quartz glass or as a silicon substrate.
  • the conductor track sections of the conductor track 110 are surrounded by a protective layer (cladding), which is additionally protected by a cover plate S2, which is glued onto the carrier layer S1.
  • the optical waveguide section 11 of the optical waveguide 10 is glued to the side 101 by means of the adhesive material 300. To the side 102 of the chip, the optical waveguide sections 21a, ..., 21d of the optical waveguide 20 are glued.
  • a glass plate 210 is positioned underneath the optical waveguide sections 11 and / or 21.
  • the glass plate 210 is adhered on its side surface 211 to the side 101 and / or the side 102 of the optical chip 100.
  • another glass plate 220 is disposed above the optical waveguide sections 11 and / or 21 and adhered with their respective side surfaces 221 to the side 101 and / or the side 102 of the optical chip 100.
  • glass plates 210 and 220 are adhered to the side surfaces on the output side 102 of the optical chip.
  • the glass plates provide protection so that the fibers do not tear off the side surfaces of the chip 100. Consequently eliminating the placement of the optical fiber sections in a fiber array and sticking the fiber array to the side 102 of the chip.
  • the optical waveguide section 11 can furthermore be fixed to the side 101 of the chip by means of a ferrule. But he can also, as in FIG. 5 shown, are glued directly to the side of the chip and protected with the two glass plates 210 and 220 from tearing.
  • the glass plates 210 and 220 each have recesses 212 and 222, respectively.
  • the recesses provide space for the adhesive material 300 to be conically shaped.
  • the adhesive material extends laterally to the optical waveguide sections 11 and 21 and thus provides a good grip.
  • the entire assembly is embedded in a housing 1000 made of a plastic or metal material.
  • the optical waveguide 10 and the optical waveguides 20 are surrounded by a reinforcement 400, for example a sleeve of a material made of a rubber.
  • FIG. 6 shows a comparative embodiment of an optical splitter.
  • the optical waveguide sections 11 and / or 21 are glued to the optical chip 100 on one side 101 and / or one side 102.
  • the adhesive material 300 has two layers 310 and 320.
  • the layer 310 is formed, for example, as a UV-curing acrylate or as a UV-curing epoxy.
  • the adhesive material of the layer 320 has a lower thermal expansion coefficient than the adhesive material of the layer 310.
  • As an adhesive material for the layer 320 for example, a highly filled with glass adhesive can be used.
  • the layer 320 has a lower thermal expansion factor than the Layer 310 and is adapted to the expansion factor of the glass layers of the optical chip 100. This prevents the optical waveguide sections 11 and 21 from being torn off the chip upon heating or cooling of the optical splitter.
  • the side 101 and the side 102 at an angle which is smaller than 15 ° and for example 8 °, cut.
  • the fibers 11 and 21 must be cut at a corresponding angle.
  • a laser is used for cutting the optical waveguide sections 11 and 21 at the angle.
  • FIG. 7 shows a further embodiment of an optical splitter.
  • the optical chip has chamfered input and output side surfaces which are cut at an angle less than 15 °, for example at an angle of 8 °.
  • the optical waveguide sections 11 and 21 are fixed by an adhesive material 300 on the input and output sides of the optical chip.
  • the fibers 11 and 21 are further disposed between two glass plates 210 and 220 which act as additional protection.
  • the glass plates each have at their end faces recesses in which the adhesive material is arranged.
  • the described method wherein the fiber ends of optical fibers glued directly to an optical splitter can be used in all devices in which an optical waveguide section of an optical waveguide must be fixed to an optical chip. Such arrangements occur, for example, in an AWG (Arrayed Waveguide Grating Chip) or a planar VOA (Variable Optical Attenuator).
  • AWG Arrayed Waveguide Grating Chip
  • VOA Variable Optical Attenuator
  • the AWG is a multiplexer / demultiplexer for wavelength division multiplexing. As with a splitter, AWGs also distribute the light from an input fiber over multiple output fibers or vice versa. However, in contrast to the splitter, only light having a specific wavelength is transmitted to a specific output fiber, so that the light is split depending on the wavelength. Typical configurations are 32 channel, 40 channel, 64 channel, 80 channel AWGs. In VOA arrays, the light of each input fiber is variably attenuated transmitted to the corresponding output fiber. Typical configurations are 8-channel or 16-channel VOA arrays.
  • the method or the optical branch can also be used in hybrid applications or planar splitters, which typically have a splitting ratio of 1x4, 1x8, 1x16, 1x32, 1x64, 2x8, 2x16, 2x32, 2x64, 2-1x16.
  • integrated optical components are used, in which several optical functionalities (eg splitter, AWG, VOA, monitor diodes) are integrated on an optical chip (PLC - Planar Lightwave Circuit).
  • Possible embodiments are V-MUX or O-ADM devices.
  • a V-MUX device an AWG with a VOA array is integrated on an optical chip.
  • the AWG functionality is enhanced by the ability to attenuate each channel individually.
  • OADM device Optical Add-Drop Multiplexer
  • AWGs are integrated with optical switches.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Glass Compositions (AREA)

Abstract

An optical splitter comprises an optical chip (100), having a conductor track (110) disposed on a carrier substrate (S1), wherein a conductor track section (111) of the conductor track branches away from a first side (101) of the chip via a plurality of junction nodes (120, 130, 140) into different conductor track sections (112, , 115) extending to a second side of the chip. On the first side of the chip, an optical wave guide section (11) of an optical wave guide (10) is glued on with an adhesive material (300). Accordingly, on the second side of the chip optical wave guide sections (21a, , 21d) are glued on with an adhesive material (300). In order to increase fixation, glass plates (210, 220) are disposed above and below the optical wave guides, the plates being glued to the optical chip at the respective side surfaces.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines optischen Verzweigers, mit dem Licht von einem Lichtwellenleiter, der an einer Eingangsseite des optischen Verzweigers angeordnet ist, auf mehrere Lichtwellenleiter, die an einer Ausgangsseite des optischen Verzweigers angeordnet sind, verteilt wird. Die Erfindung betrifft des weiteren einen optischen Verzweiger, mit dem Licht von einem Lichtwellenleiter, der an einer Eingangsseite des optischen Verzweigers angeordnet ist, auf mehrere Lichtwellenleiter, die an einer Ausgangsseite des optischen Verzweigers angeordnet sind, verteilt wird.The invention relates to a method for producing an optical splitter, with which light from an optical waveguide, which is arranged on an input side of the optical splitter, distributed to a plurality of optical waveguides, which are arranged on an output side of the optical splitter. The invention further relates to an optical splitter, with which light from an optical waveguide, which is arranged on an input side of the optical splitter, distributed to a plurality of optical waveguides, which are arranged on an output side of the optical splitter.

Figur 1A zeigt einen Querschnitt eines optischen Verzweigers. In ein Gehäuse 80 ist an einer Seite ein einzelner Lichtwellenleiter 10 eingeführt. An einer anderen Seite des Gehäuses treten mehrere Lichtwellenleiter 20 nach außen. Mit Hilfe des optischen Verzweigers wird Licht, das dem Verzweiger im Allgemeinen eingangsseitig von dem Lichtwellenleiter 10 zugeführt wird, auf die verschiedenen ausgangsseitig angebrachten Lichtwellenleiter 20 aufgeteilt. Der Verzweiger ist ebenso in der umgekehrten Richtung betreibbar. In diesem Fall ist die Eingangsseite des Verzweigers diejenige Seite, an der die mehreren Lichtwellenleiter 20 angebracht sind, und die Ausgangsseite diejenige Seite, an der der einzelne Lichtwellenleiter 10 angeordnet ist. Figure 1A shows a cross section of an optical splitter. In a housing 80, a single optical fiber 10 is inserted on one side. On another side of the housing, a plurality of optical waveguides 20 emerge to the outside. With the aid of the optical splitter, light which is supplied to the splitter generally on the input side of the optical waveguide 10 is split between the various optical waveguides 20 mounted on the output side. The splitter is also operable in the reverse direction. In this case, the input side of the splitter is the side where the plurality of optical fibers 20 are mounted, and the output side is the side where the single optical fiber 10 is disposed.

Der Lichtwellenleiter 10 ist an seinem Ende mit einer Verstärkungsstruktur umgeben. Dies kann z. B. in Form einer Aderendhülse (ferrule) 40 realisiert werden. Die Aderendhülse ist beispielsweise als ein Glasröhrchen ausgebildet, in das die Faser 10 eingeklebt ist. Die Verstärkungsstruktur kann auch aus zwei Teilen, z. B. einer Grundplatte und einer Deckplatte mit Nut bestehen. Die Verstärkungsstruktur dient als Halteeinheit, die an einer Seite 31 eines optischen Chips 30 befestigt ist. Die Verstärkungsstruktur kann beispielsweise an den optischen Chip 30 angeklebt sein.The optical waveguide 10 is surrounded at its end with a reinforcing structure. This can be z. B. in the form of a ferrule (ferrule) 40 are realized. The ferrule is formed, for example, as a glass tube, in which the fiber 10 is glued. The reinforcing structure may also consist of two parts, e.g. B. a base plate and a cover plate with groove. The reinforcing structure serves as a holding unit fixed to one side 31 of an optical chip 30. The reinforcing structure may be glued to the optical chip 30, for example.

Der optische Chip 30 weist ein Trägermaterial, beispielsweise ein Substrat aus Glas oder Silizium auf, auf dem Glasschichten abgeschieden sind. Die Glasschichten sind beispielsweise aus leicht dotiertem Quarzglas ausgebildet und wirken als optische Wellenleiter. Die optischen Wellenleiter können auch durch andere Prozesse, z. B. Diffusion von Dotierionen in das Substratmaterial, hergestellt werden.The optical chip 30 has a carrier material, for example a substrate made of glass or silicon, on which glass layers are deposited. The glass layers are formed, for example, of lightly doped quartz glass and act as optical waveguides. The optical waveguides can also by other processes, eg. Diffusion of dopant ions into the substrate material.

Figur 1B zeigt eine Draufsicht auf den in Figur 1A im Querschnitt dargestellten optischen Verzweiger. Die optischen Wellenleiter, die auf dem Trägersubstrat angeordnet sind, bilden eine Leiterbahn, die mehrere Verzweigungsknoten aufweist. Licht, das beispielsweise von dem Lichtwellenleiter 10 an der Seite 31 des optischen Chips 30 in einen Leiterbahnabschnitt der Leiterbahn 33 eingespeist wird, wird hinter den Verzweigungsknoten auf mehrere Leiterbahnabschnitte der Leiterbahn verteilt. FIG. 1B shows a plan view of the in Figure 1A shown in cross section optical branch. The optical waveguides, which are arranged on the carrier substrate, form a conductor track which has a plurality of branch nodes. Light which is fed, for example, from the optical waveguide 10 on the side 31 of the optical chip 30 into a conductor track section of the conductor track 33 is distributed behind the branching node to a plurality of conductor track sections of the conductor track.

An einer Seite 32 des optischen Chips ist ein sogenanntes Faser-Array an dem Chip befestigt. Das Faser-Array weist ein Trägersubstrat 50 und ein V-Nuten-Plättchen 60 auf. Die Lichtwellenleiter 20 sind auf einer Oberseite des Trägersubstrats 50 fixiert. Sie sind in Nuten des V-Nuten-Plättchens 60 geführt und sind somit auf die an der Seite 32 des optischen Chips angeordneten Leiterbahnabschnitte der Leiterbahn 33 ausgerichtet. Die Lichtwellenleiter 20 werden durch ein Zugentlastungselement 70, das an einer Seite des Gehäuses 90 angeordnet ist, vor Zugbelastung und somit vor einem Abreißen von dem Faser-Array geschützt. Das Zugentlastungselement kann beispielsweise als eine Gummimanschette ausgebildet sein.On one side 32 of the optical chip, a so-called fiber array is attached to the chip. The fiber array has a carrier substrate 50 and a V-groove plate 60. The optical waveguides 20 are fixed on an upper side of the carrier substrate 50. They are guided in grooves of the V-groove plate 60 and are thus on the on the side 32 of the optical Chips arranged conductor track portions of the conductor 33 aligned. The optical fibers 20 are protected by a strain relief element 70, which is arranged on one side of the housing 90, from tensile load and thus from tearing off of the fiber array. The strain relief may be formed, for example, as a rubber boot.

Die Herstellung eines optischen Verzweigers, wie er in den Figuren 1A und 1B dargestellt ist, ist aufwändig. So müssen beispielsweise die Faserenden der Lichtwellenleiter 20 zunächst gereinigt werden, in den Nuten des V-Nuten Plättchens angeordnet werden, und auf das Trägersubstrat aufgeklebt werden. Des weiteren wird das Faserende des Lichtwellenleiters 10 in die Verstärkungsstruktur 40 eingegossen. Insbesondere das Faser-Array, das an den optischen Chip angeklebt wird, um die einzelnen Lichtwellenleiter der mehreren Lichtwellenleiter 20 auf die Leiterbahnabschnitte der optischen Leiterbahn 33 an der Ausgangsseite 32 des Chips auszurichten, ist sehr kostenintensiv.The production of an optical splitter, as in the Figures 1A and 1B is shown, is complicated. For example, the fiber ends of the optical waveguides 20 must first be cleaned, arranged in the grooves of the V-grooves plate, and glued to the carrier substrate. Furthermore, the fiber end of the optical waveguide 10 is poured into the reinforcing structure 40. In particular, the fiber array which is adhered to the optical chip to align the individual optical fibers of the plurality of optical fibers 20 on the conductor track portions of the optical conductor 33 on the output side 32 of the chip is very expensive.

Die Druckschrift US 5,208,885 betrifft ein Verfahren zur Verbindung eines Lichtwellenleiters mit einem Wellenleiter, der auf einem Substrat angeordnet ist. Der Lichtwellenleiter wird an einem Ende mit einer Glas enthaltenden Paste beschichtet, auf den Wellenleiter ausgerichtet und kann nach Erhitzen der Paste mit dem Wellenleiter verbunden werden.The publication US 5,208,885 relates to a method for connecting an optical waveguide with a waveguide, which is arranged on a substrate. The optical waveguide is coated at one end with a paste containing glass, aligned with the waveguide and, after heating the paste, can be connected to the waveguide.

Es ist wünschenswert, dass zur Herstellung eines optischen Verzweigers Lichtwellenleiter auf einfache und zuverlässige Weise an einem optischen Chip befestigt werden können.It is desirable that optical waveguides can be easily and reliably attached to an optical chip to make an optical splitter.

Gemäß dem erfindungsgemäßen Verfahren zur Herstellung eines optischen Verzweigers nach Anspruch 1 wird ein Chip mit einem Trägersubstrat bereitgestellt, auf dem mindestens eine optische Leiterbahn angeordnet ist, die mehrere Leiterbahnabschnitte umfasst, wobei sich ein erster der Leiterbahnabschnitte von einer ersten Seite des Chips an mindestens einem Verzweigungsort der Leiterbahn in mindestens zwei zweite Leiterbahnabschnitte verzweigt, die zu einer zweiten Seite des Chips verlaufen. Ein Lichtwellenleiterabschnitt eines ersten Lichtwellenleiters wird an den ersten Leiterbahnabschnitt der Leiterbahn an der ersten Seite des Chips angeklebt, wobei der Lichtwellenleiterabschnitt des ersten Lichtwellenleiters nach dem Ankleben nicht auf einem Trägersubstrat angeordnet ist und/oder eine Anzahl von jeweiligen Lichtwellenleiterabschnitten von zweiten Lichtwellenleitern wird an jeweils einen der zweiten Leiterbahnabschnitte an der zweiten Seite des Chips angeklebt, wobei die Lichtwellenleiterabschnitte der zweiten Lichtwellenleiter nach dem Ankleben nicht auf einem Trägersubstrat angeordnet sind.According to the inventive method for producing an optical splitter according to claim 1, a chip is provided with a carrier substrate, on which at least one optical strip conductor is arranged, which comprises a plurality of strip conductor sections, wherein a first of the strip line sections branches from a first side of the chip at at least one branch location of the strip conductor into at least two second strip conductor sections which extend to a second side of the chip. An optical waveguide section of a first optical waveguide is connected to the The first conductor track section of the conductor track is adhesively bonded to the first side of the chip, wherein the optical waveguide section of the first optical waveguide is not arranged on a carrier substrate after adhesion and / or a number of respective optical waveguide sections of second optical waveguides are connected to one of the second conductor track sections on the second side of the second Glued chips, wherein the optical waveguide portions of the second optical waveguide are not arranged on a carrier substrate after sticking.

Das Trägersubstrat kann ein Substratmaterial umfassen, das zur Unterstützung der Lichtwellenleiter in einer Längsrichtung der Lichtwellenleiter angeordnet ist. Bei dem Verfahren wird somit ein Lichtwellenleiterabschnitt eines ersten Lichtwellenleiters direkt an den ersten Leiterbahnabschnitt der Leiterbahn an der ersten Seite des Chips angeklebt. Der Lichtwellenleiterabschnitt des ersten Lichtwellenleiters ist somit nicht mehr in die Verstärkungsstruktur (ferrule) eingegossen. Ebenso können auch jeweilige Lichtwellenleiterabschnitte von zweiten Lichtwellenleitern direkt an der zweiten Seite des Chips an jeweils einen der zweiten Leiterbahnabschnitte angeklebt werden. Die Lichtwellenleiterabschnitte der zweiten Lichtwellenleiter brauchen somit nicht mehr auf einem Trägersubstrat, das beispielsweise als Bestandteil eines Faser-Arrays ausgebildet sein kann, angeordnet zu werden und mit dem Faser-Array an den Chip angeklebt zu werden. Da insbesondere das Faser-Array einen nicht unerhebliche Kostenfaktor darstellt, und das Ankleben der Lichtwellenleiterabschnitte der zweiten Lichtwellenleiter auf dem Faser-Array einen aufwendigen Produktionsschritt darstellt, wird mit dem angegebenen Verfahren die Ankopplung der zweiten Lichtwellenleiter an den Chip vereinfacht.The carrier substrate may comprise a substrate material arranged to support the optical fibers in a longitudinal direction of the optical fibers. In the method, an optical waveguide section of a first optical waveguide is thus adhesively bonded directly to the first interconnect section of the interconnect on the first side of the chip. The optical waveguide section of the first optical waveguide is thus no longer encapsulated in the reinforcing structure (ferrule). Likewise, respective optical waveguide sections of second optical waveguides can also be adhered directly to the second side of the chip to one of the second interconnect sections. The optical waveguide sections of the second optical waveguides thus no longer need to be arranged on a carrier substrate, which may for example be formed as part of a fiber array, and be glued to the chip with the fiber array. Since in particular the fiber array represents a not inconsiderable cost factor, and the adhesion of the optical waveguide sections of the second optical waveguide on the fiber array represents a complex production step, the coupling of the second optical waveguide to the chip is simplified with the specified method.

Gemäß dem Verfahren wird nach dem Ankleben der jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter an die jeweiligen Leiterbahnabschnitte der Leiterbahn eine erste Glasplatte unter den jeweiligen Lichtwellenleiterabschnitten der Lichtwellenleiter angeordnet die an die erste und/oder zweite Seite des Chips angeklebt wird.According to the method, after adhering the respective optical waveguide sections of the optical waveguides to the respective interconnect sections of the interconnect, a first glass plate is arranged under the respective optical waveguide sections of the optical waveguides which is glued to the first and / or second side of the chip.

Die erste und/oder zweite Glasplatte weist an ihren jeweiligen Stirnflächen, an denen sie an die erste und/oder zweite Seite des Chips geklebt ist, jeweils eine Aussparung auf. Das Klebermaterial ist in der jeweiligen Aussparung der ersten und/oder zweiten Glasplatte angeordnet.The first and / or second glass plate has at its respective end faces, where it is glued to the first and / or second side of the chip, each having a recess. The adhesive material is arranged in the respective recess of the first and / or second glass plate.

Gemäß einer möglichen Ausführungsform des Verfahrens können jeweilige Stirnflächen der Lichtwellenleiterabschnitte des ersten Lichtwellenleiters und/oder jeweilige Stirnflächen der zweiten Lichtwellenleiter mittels eines Klebermaterials an jeweiligen Stirnflächen der Leiterbahnabschnitte der Leiterbahn an der ersten und/oder zweiten Seite des Chips angeklebt werden.According to a possible embodiment of the method, respective end faces of the optical waveguide sections of the first optical waveguide and / or respective end faces of the second optical waveguides can be glued to respective end faces of the conductor track sections of the conductor track on the first and / or second side of the chip by means of an adhesive material.

Bei einer weiteren Ausführungsform des Verfahrens kann eine erste Schicht des Klebermaterials seitlich zu den jeweiligen Stirnflächen der Lichtwellenleiterabschnitte an der ersten und/oder zweiten Seite des Chips angebracht werden. Als erste Schicht des Klebermaterials kann eine Schicht angebracht werden, die ein Acrylat enthält. Es kann als erste Schicht des Klebermaterials auch eine Schicht angebracht werden, die ein Epoxid enthält. Das angebrachte Klebermaterial aus Acrylat oder Epoxid wird beispielsweise mittels UV-Strahlung ausgehärtet.In a further embodiment of the method, a first layer of the adhesive material can be attached laterally to the respective end faces of the optical waveguide sections on the first and / or second side of the chip. As the first layer of the adhesive material, a layer containing an acrylate may be applied. It may also be attached as a first layer of the adhesive material, a layer containing an epoxide. The attached adhesive material of acrylate or epoxy is cured for example by means of UV radiation.

Bei einer anderen möglichen Ausführungsform des Verfahrens ist vorgesehen, dass eine zweite Schicht des Klebermaterials über der ersten Schicht angebracht wird. Dabei wird beispielsweise als zweite Schicht des Klebermaterials eine Schicht angebracht, die einen niedrigeren thermischen Ausdehnungskoeffizienten als die erste Schicht aufweist. Als zweite Schicht wird zum Beispiel ein mit Glas gefülltes Klebermaterial angebracht.In another possible embodiment of the method it is provided that a second layer of the adhesive material is applied over the first layer. In this case, for example, a layer is applied as the second layer of the adhesive material, which has a lower coefficient of thermal expansion than the first layer. As the second layer, for example, a glass filled adhesive material is attached.

Gemäß eines weiteren Merkmals des Verfahrens wird beispielsweise nach dem Ankleben der jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter an die jeweiligen Leiterbahnabschnitte der Leiterbahn eine zweite Glasplatte über den jeweiligen Lichtwellenleiterabschnitten der Lichtwellenleiter angeordnet, die an die erste und/oder zweite Seite des Chips angeklebt wird.According to a further feature of the method, for example, after the respective optical waveguide sections of the optical waveguide have been glued, a second glass plate is arranged over the respective optical waveguide sections of the optical waveguides, which is glued to the first and / or second side of the chip.

Die jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter können vor dem Ankleben an die jeweiligen Leiterbahnabschnitte der Leiterbahn in Nuten einer Haltevorrichtung angeordnet werden und mittels der Haltevorrichtung auf die jeweiligen Leiterbahnabschnitte an der ersten und/oder zweiten Seite des Chips ausgerichtet werden.The respective optical waveguide sections of the optical waveguides can be arranged in grooves of a holding device prior to adhering to the respective printed conductor sections of the printed conductor and aligned by means of the holding device on the respective printed conductor sections on the first and / or second side of the chip.

Die jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter werden beispielsweise unter einem Winkel von kleiner als 15°, beispielsweise von 8°, angeschnitten.The respective optical waveguide sections of the optical waveguides are, for example, cut at an angle of less than 15 °, for example 8 °.

Gemäß eines weiteren Merkmals des Verfahrens wird vor dem Ankleben der Lichtwellenleiterabschnitte der Lichtwellenleiter an jeweilige Leiterbahnabschnitte der Leiterbahn eine Umhüllung der Lichtwellenleiter im Bereich der jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter entfernt.According to a further feature of the method, before cladding the optical waveguide sections of the optical waveguide, a cladding of the optical waveguides in the region of the respective optical waveguide sections of the optical waveguide is removed at respective conductor track sections of the conductor track.

Im Folgenden werden mögliche Ausführungsformen eines erfindungsgemäßen optischen Verzweigers angegeben, der in Anspruch 8 definiert ist. Der optische Verzweiger umfasst einen Chip, der ein Trägersubstrat enthält, auf dem mindestens eine optische Leiterbahn angeordnet ist, die mehrere Leiterbahnabschnitte umfasst, wobei sich ein erster der Leiterbahnabschnitte von einer ersten Seite des Chips an mindestens einem Verzweigungsort der Leiterbahn in mindestens zwei zweite Leiterbahnabschnitte verzweigt, die zu einer zweiten Seite des Chips verlaufen. Ein Lichtwellenleiterabschnitt eines ersten Lichtwellenleiters ist an den ersten Leiterbahnabschnitt der Leiterbahn an der ersten Seite des Chips angeklebt, wobei der Lichtwellenleiterabschnitt des ersten Lichtwellenleiters nicht auf einem Trägersubstrat angeordnet ist. Eine Anzahl von jeweiligen Lichtwellenleiterabschnitten von zweiten Lichtwellenleitern sind an die Leiterbahnabschnitte an der zweiten Seite des Chips angeklebt, wobei die Lichtwellenleiterabschnitte der zweiten Lichtwellenleiter nicht auf eine Trägersubstrat angeordnet sind.In the following, possible embodiments of an optical splitter according to the invention are defined, which is defined in claim 8. The optical splitter comprises a chip which contains a carrier substrate, on which at least one optical strip conductor is arranged, which comprises a plurality of strip conductor sections, wherein a first of the strip conductor sections branches from a first side of the chip at at least one branch point of the conductor into at least two second conductor track sections, which extend to a second side of the chip. An optical waveguide section of a first optical waveguide is adhered to the first interconnect section of the interconnect on the first side of the chip, wherein the optical waveguide section of the first optical waveguide is not arranged on a carrier substrate. A number of respective optical fiber portions of second optical fibers are adhered to the conductor portions on the second side of the chip, the optical fiber portions of the second optical fibers are not disposed on a support substrate.

An die erste und/oder zweite Seite des Chips ist eine erste Glasplatte angeklebt, die unter den jeweiligen Lichtwellenleiterabschnitten des ersten Lichtwellenleiters und/oder der zweiten Lichtwellenleiter angeordnet ist.To the first and / or second side of the chip, a first glass plate is glued, which is arranged below the respective optical waveguide sections of the first optical waveguide and / or the second optical waveguide.

Die erste und/oder zweite Glasplatte weist an ihren jeweiligen Stirnflächen, an denen sie an die erste und/oder zweite Seite des Chips geklebt ist, jeweils eine Aussparung auf. Das Klebermaterial ist in der jeweiligen Aussparung der ersten und/oder zweiten Glasplatte angeordnet.The first and / or second glass plate has at its respective end faces, where it is glued to the first and / or second side of the chip, each having a recess. The adhesive material is arranged in the respective recess of the first and / or second glass plate.

Gemäß einer Ausführungsform des optischen Verzweigers kann eine erste Schicht eines Klebermaterials an jeweiligen Stirnflächen der Lichtwellenleiterabschnitte angeordnet sein. Die erste Schicht des Klebermaterials kann auch seitlich zu den jeweiligen Stirnflächen angeordnet sein. In einer möglichen Ausführungsform kann die erste Schicht des Klebermaterials ein Acrylat oder ein Epoxid enthalten.According to an embodiment of the optical splitter, a first layer of an adhesive material may be disposed on respective end faces of the optical waveguide sections. The first layer of the adhesive material can also be arranged laterally to the respective end faces. In one possible embodiment, the first layer of the adhesive material may include an acrylate or an epoxide.

Gemäß einem weiteren Merkmal des optischen Verzweigers ist beispielsweise eine zweite Schicht des Klebermaterials über der ersten Schicht des Klebermaterials angeordnet. Bei einer möglichen Ausführungsform ist das Klebermaterial der zweiten Schicht beispielsweise mit Glas gefüllt.For example, according to another feature of the optical splitter, a second layer of the adhesive material is disposed over the first layer of the adhesive material. In one possible embodiment, the adhesive material of the second layer is filled with glass, for example.

Bei einer anderen Ausführungsform des optischen Verzweigers kann eine Fläche an der ersten und/oder zweiten Seite des Chips und die jeweiligen Stirnflächen der Lichtwellenleiterabschnitte eine Neigung von weniger als 15°, beispielsweise von 8°, auf.In another embodiment of the optical splitter, an area on the first and / or second sides of the chip and the respective end faces of the optical waveguide sections may have an inclination of less than 15 °, for example 8 °.

Der Chip und die jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter können von einem Gehäuse umgeben sein.The chip and the respective optical waveguide sections of the optical waveguides can be surrounded by a housing.

Gemäß einer weiteren Ausführungsform des optischen Verzweigers kann an die erste und/oder zweite Seite des Chips eine zweite Glasplatte angeklebt sein, die über den jeweiligen Lichtwellenleiterabschnitten des ersten Lichtwellenleiters und/oder der zweiten Lichtwellenleiter angeordnet ist.According to a further embodiment of the optical splitter, a second glass plate may be glued to the first and / or second side of the chip, which is arranged above the respective optical waveguide sections of the first optical waveguide and / or the second optical waveguide.

Gemäß einer anderen möglichen Ausführungsform des optischen Verzweigers kann eine Fläche an der ersten und/oder zweiten Seite des Chips und die erste und/oder zweite Glasplatte eine Neigung von weniger als 15°, beispielsweise von 8°, aufweisen.According to another possible embodiment of the optical splitter, an area on the first and / or second side of the chip and the first and / or second glass plate may have an inclination of less than 15 °, for example 8 °.

Des weiteren kann der Chip und die jeweiligen Lichtwellenleiterabschnitte der Lichtwellenleiter von einem Gehäuse umgeben sein.Furthermore, the chip and the respective optical waveguide sections of the optical waveguides can be surrounded by a housing.

Die Erfindung wird im Folgenden anhand von Figuren, die Ausführungsbeispiele der vorliegenden Erfindung zeigen, näher erläutert. Es zeigen:

  • Figur 1A einen Querschnitt eines bekannten optischen Verzweigers,
  • Figur 1B eine Draufsicht auf eine Ausführungsform eines bekannten optischen Verzweigers,
  • Figur 2 eine Draufsicht auf eine Ausführungsform eines optischen Verzweigers gemäß der Erfindung,
  • Figur 3 einen Querschnitt durch einen Lichtwellenleiter,
  • Figur 4 eine Haltevorrichtung zur Ausrichtung von Lichtwellenleiterabschnitten auf Leiterbahnabschnitte eines optischen Chips,
  • Figur 5 einen Querschnitt durch eine weitere Ausführungsform eines optischen Verzweigers gemäß der Erfindung,
  • Figur 6 einen Querschnitt durch eine vorgleichende Ausführungsform eines optischen Verzweigers,
  • Figur 7 einen Querschnitt durch eine weitere Ausführungsform eines optischen Verzweigers gemäß der Erfindung.
The invention will be explained in more detail below with reference to figures showing exemplary embodiments of the present invention. Show it:
  • Figure 1A a cross section of a known optical splitter,
  • FIG. 1B a top view of an embodiment of a known optical splitter,
  • FIG. 2 a top view of an embodiment of an optical splitter according to the invention,
  • FIG. 3 a cross section through an optical waveguide,
  • FIG. 4 a holding device for aligning optical waveguide sections on conductor path sections of an optical chip,
  • FIG. 5 a cross section through a further embodiment of an optical splitter according to the invention,
  • FIG. 6 a cross section through a vorgleichende embodiment of an optical splitter,
  • FIG. 7 a cross section through a further embodiment of an optical splitter according to the invention.

Figur 2 zeigt eine Draufsicht auf einen optischen Chip 100, auf dem eine Leiterbahn 110, die mehrere Leiterbahnabschnitte 111, 112, ..., 115 aufweist, aufgebracht ist. Zum Anbringen der Leiterbahn 110 werden auf einem Trägermaterial, das beispielsweise aus Silizium oder reinem Quarzglas gebildet wird, Leiterbahnen aus leicht dotiertem Quarzglas abgeschieden. Ein Leiterbahnabschnitt 111 verzweigt sich ausgehend von einer Seite 101 des Chips 100 an einem Verzweigungsort 120 und weiteren Verzweigungsorten 130, 140 in Leiterbahnabschnitte 112, 113, 114 und 115, die zu einer Seite 102 des Chips verlaufen. Der optische Chip dient im Allgemeinen dazu Licht, das auf der Seite 101 des Chips in den Leiterbahnabschnitt 111 eingespeist wird, auf mehrere Lichtwellenleiter zu verteilen, die an der Seite 102 des Chips anzubringen sind. Ebenso kann auch das Licht von den Lichtwellenleitern, die an der Seite 102 angeordnet sind, über die Leiterbahn 110 in den einzelnen Lichtwellenleiter 11 auf der Seite 101 eingespeist werden. FIG. 2 shows a plan view of an optical chip 100, on which a conductor 110, which has a plurality of conductor track portions 111, 112, ..., 115, is applied. To attach the conductor 110, conductor tracks made of lightly doped quartz glass are deposited on a carrier material which is formed, for example, from silicon or pure quartz glass. A track section 111 branches off from a side 101 of the chip 100 at a branch location 120 and further branch locations 130, 140 into track sections 112, 113, 114 and 115 that extend to a side 102 of the chip. The optical chip generally serves to distribute light, which is injected on the side 101 of the chip into the conductor track section 111, to a plurality of optical waveguides which are to be attached to the side 102 of the chip. Likewise, the light from the optical waveguides, which are arranged on the side 102, can be fed via the conductor track 110 into the individual optical waveguide 11 on the side 101.

Im Gegensatz zu der in den Figuren 1A und 1B gezeigten Ausführungsform eines bekannter optischen Verzweigers sind bei der in Figur 2 dargestellten Ausführungsform der Lichtwellenleiter 10 und die mehreren Lichtwellenleiter 20 direkt an die beiden Seiten des Chips angeklebt. Der Lichtwellenleiter 10 ist somit nicht mehr von der Aderendhülse 40 umgeben. Ebenso sind die mehreren Lichtwellenleiter 20 nach dem Ankleben nicht auf dem in Längsrichtung der Lichtwellenleiter angeordneten Trägersubstrat 50 gehalten beziehungsweise werden nicht mehr in Nuten des V-Nuten-Plättchens 60 geführt, das bei der Ausführungsform der Figuren 1A und 1B mit dem Trägersubstrat verklebt ist.Unlike in the Figures 1A and 1B shown embodiment of a known optical splitter in the embodiment shown in Figure 2, the optical waveguide 10 and the plurality of optical fibers 20 are glued directly to the two sides of the chip. The optical waveguide 10 is thus no longer surrounded by the ferrule 40. Likewise, the multiple optical waveguides 20 are not on the carrier substrate arranged in the longitudinal direction of the optical waveguide after adhering 50 are held or are no longer guided in grooves of the V-groove plate 60, which in the embodiment of the Figures 1A and 1B is glued to the carrier substrate.

Figur 3 zeigt einen Querschnitt durch einen der Lichtwellenleiter 10 beziehungsweise 20. Die Lichtwellenleiter weisen jeweils in ihrem Zentrum einen Kern 11, 21 auf, in dem Licht geführt wird. Der Kern 11 beziehungsweise 21 ist von einem Mantelmaterial mit niedrigerem Brechungsindex als der Kern und von einer äußeren Beschichtung B umgeben. Nach dem Entfernen der äußeren Beschichtung B werden der Lichtwellenleiterabschnitt 11, der den Kernbereich des Lichtwellenleiters 10 darstellt, an der Seite 101 des Chips 30 angebracht und/oder die Lichtwellenleiterabschnitte 21, die die Kernbereiche der Lichtwellenleiter 20 darstellen, an die Seite 102 des optischen Chips angeklebt. FIG. 3 shows a cross section through one of the optical waveguides 10 and 20. The optical waveguides each have in their center a core 11, 21, is guided in the light. The core 11 or 21 is surrounded by a sheath material with a lower refractive index than the core and by an outer coating B. After removing the outer coating B, the optical waveguide section 11, which is the core region of the optical waveguide 10, is attached to the side 101 of the chip 30 and / or the optical waveguide sections 21, which are the core regions of the optical waveguides 20, to the side 102 of the optical chip glued.

Um die Lichtwellenleiterabschnitte 11 und/oder 21 auf die Leiterbahnabschnitte 111 und/oder 112, ..., 115 des optischen Chips auszurichten, werden die Lichtwellenleiterabschnitte zunächst in einer Haltevorrichtung angeordnet. Figur 4 zeigt eine Haltevorrichtung H zur Ausrichtung der Lichtwellenleiterabschnitte, beispielsweise zur Ausrichtung der Lichtwellenleiterabschnitte 21a, ..., 21d auf die Leiterbahnabschnitte 112, ..., 115 der Leiterbahn 110. Die Haltevorrichtung umfasst mehrere Aussparungen N, in denen die Lichtwellenleiterabschnitte 21a, ..., 21d angeordnet sind. An der Seite 101, in einem Bereich, an dem der Leiterbahnabschnitt 111 angeordnet ist, und/oder an der Seite 102, in Bereichen, an denen die Leiterbahnabschnitte 112, ..., 115 angeordnet sind, wird ein Klebermaterial 300 angebracht. Das Klebermaterial 300 kann beispielsweise ein UV-aushärtendes Acrylat oder ein UV-aushärtendes Epoxid sein. Die gesamte Anordnung kann zum Schutz vor einem Abreißen der Lichtwellenleiterabschnitte 11 und 21a, ..., 21d von einem Gehäuse 1000 umgeben sein.In order to align the optical waveguide sections 11 and / or 21 with the conductor track sections 111 and / or 112,..., 115 of the optical chip, the optical waveguide sections are initially arranged in a holding device. FIG. 4 shows a holding device H for aligning the optical waveguide sections, for example, for aligning the optical waveguide sections 21a, ..., 21d on the conductor track sections 112, ..., 115 of the conductor 110. The holding device comprises a plurality of recesses N, in which the optical waveguide sections 21a, .. ., 21d are arranged. On the side 101, in an area where the wiring portion 111 is located, and / or on the side 102, in areas where the wiring portions 112, ..., 115 are disposed, an adhesive material 300 is attached. The adhesive material 300 may be, for example, a UV-curing acrylate or a UV-curing Be epoxide. The entire arrangement may be surrounded by a housing 1000 for protection against tearing off the optical waveguide sections 11 and 21a,..., 21d.

Figur 5 zeigt einen Querschnitt durch eine Ausführungsform eines optischen Verzweigers. Der optische Chip 100 ist als ein Mehrlagensubstrat ausgebildet und weist eine Trägerschicht S1 auf, auf der Glasschichten 110 als eine optische Leiterbahn abgeschieden sind. Die Trägerschicht S1 kann als reines Quarzglas oder als ein Siliziumsubstrat ausgebildet sein. Die Leiterbahnabschnitte der Leiterbahn 110 sind von einer Schutzschicht (Cladding) umgeben, das von einer Deckplatte S2, die auf der Trägerschicht S1 aufgeklebt ist, zusätzlich geschützt ist. An die Seite 101 ist mittels des Klebermaterials 300 der Lichtwellenleiterabschnitt 11 des Lichtwellenleiters 10 angeklebt. An die Seite 102 des Chips sind die Lichtwellenleiterabschnitte 21a, ..., 21d der Lichtwellenleiter 20 angeklebt. FIG. 5 shows a cross section through an embodiment of an optical splitter. The optical chip 100 is formed as a multi-layer substrate and has a carrier layer S1 on which glass layers 110 are deposited as an optical path. The carrier layer S1 can be formed as pure quartz glass or as a silicon substrate. The conductor track sections of the conductor track 110 are surrounded by a protective layer (cladding), which is additionally protected by a cover plate S2, which is glued onto the carrier layer S1. The optical waveguide section 11 of the optical waveguide 10 is glued to the side 101 by means of the adhesive material 300. To the side 102 of the chip, the optical waveguide sections 21a, ..., 21d of the optical waveguide 20 are glued.

Nach dem Ankleben der Fasern wird gemäß der in Figur 5 gezeigten Ausführungsform eine Glasplatte 210 unterhalb der Lichtwellenleiterabschnitte 11 und/oder 21 positioniert. Die Glasplatte 210 wird an ihrer Seitenfläche 211 an die Seite 101 und/oder die Seite 102 des optischen Chips 100 angeklebt. Danach wird eine weitere Glasplatte 220 oberhalb der Lichtwellenleiterabschnitte 11 und/oder 21 angeordnet und mit ihren jeweiligen Seitenflächen 221 an die Seite 101 und/oder die Seite 102 des optischen Chips 100 angeklebt.After sticking the fibers according to the in FIG. 5 1, a glass plate 210 is positioned underneath the optical waveguide sections 11 and / or 21. The glass plate 210 is adhered on its side surface 211 to the side 101 and / or the side 102 of the optical chip 100. Thereafter, another glass plate 220 is disposed above the optical waveguide sections 11 and / or 21 and adhered with their respective side surfaces 221 to the side 101 and / or the side 102 of the optical chip 100.

Beispielsweise werden Glasplatten 210 und 220 an die Seitenflächen an der Ausgangsseite 102 des optischen Chips angeklebt. Die Glasplatten bieten einen Schutz, damit die Fasern nicht von den Seitenflächen des Chips 100 abreißen. Somit entfällt das Anordnen der Lichtwellenleiterabschnitte in einem Faser-Array und das Ankleben des Faser-Arrays an die Seite 102 des Chips. Der Lichtwellenleiterabschnitt 11 kann weiterhin mittels einer Aderendhülse an der Seite 101 des Chips fixiert sein. Er kann aber ebenfalls, wie in Figur 5 gezeigt, direkt an die Seite des Chips angeklebt werden und mit den beiden Glasplatten 210 und 220 vor einem Abreißen geschützt werden.For example, glass plates 210 and 220 are adhered to the side surfaces on the output side 102 of the optical chip. The glass plates provide protection so that the fibers do not tear off the side surfaces of the chip 100. Consequently eliminating the placement of the optical fiber sections in a fiber array and sticking the fiber array to the side 102 of the chip. The optical waveguide section 11 can furthermore be fixed to the side 101 of the chip by means of a ferrule. But he can also, as in FIG. 5 shown, are glued directly to the side of the chip and protected with the two glass plates 210 and 220 from tearing.

Die Glasplatten 210 beziehungsweise 220 weisen jeweils Aussparungen 212 beziehungsweise 222 auf. Die Aussparungen bieten Platz, damit sich das Klebermaterial 300 kegelförmig ausformen kann. Dadurch verläuft das Klebermaterial seitlich zu den Lichtwellenleiterabschnitten 11 beziehungsweise 21 und bietet somit einen guten Halt. Zum weiteren Schutz ist die gesamte Anordnung in einem Gehäuse 1000 aus einem Kunststoff- oder Metallmaterial eingebettet. Als weiterer Schutz vor Zugbelastung ist der Lichtwellenleiter 10 und die Lichtwellenleiter 20 von einer Verstärkung 400, beispielsweise einer Manschette aus einem Material aus einem Gummi, umgeben.The glass plates 210 and 220 each have recesses 212 and 222, respectively. The recesses provide space for the adhesive material 300 to be conically shaped. As a result, the adhesive material extends laterally to the optical waveguide sections 11 and 21 and thus provides a good grip. For further protection, the entire assembly is embedded in a housing 1000 made of a plastic or metal material. As a further protection against tensile load, the optical waveguide 10 and the optical waveguides 20 are surrounded by a reinforcement 400, for example a sleeve of a material made of a rubber.

Figur 6 zeigt eine vergleichende Ausführungsform eines optischen Verzweigers. Die Lichtwellenleiterabschnitte 11 und/oder 21 sind an einer Seite 101 und/oder einer Seite 102 an den optischen Chip 100 angeklebt. Das Klebermaterial 300 weist zwei Schichten 310 und 320 auf. Die Schicht 310 ist beispielsweise als ein UV-aushärtendes Acrylat oder als ein UV-aushärtendes Epoxid ausgebildet. Das Klebermaterial der Schicht 320 weist einen niedrigeren thermischen Ausdehnungskoeffizient als das Klebermaterial der Schicht 310 auf. Als Klebermaterial für die Schicht 320 lässt sich beispielsweise ein mit Glas hochgefüllter Klebstoff verwenden. Dadurch hat die Schicht 320 einen niedrigeren thermischen Ausdehnungsfaktor als die Schicht 310 und ist an den Ausdehnungsfaktor der Glasschichten des optischen Chips 100 angepasst. Somit wird verhindert, dass bei Erwärmung oder Abkühlung des optischen Verzweigers die Lichtwellenleiterabschnitte 11 beziehungsweise 21 von dem Chip abreißen. FIG. 6 shows a comparative embodiment of an optical splitter. The optical waveguide sections 11 and / or 21 are glued to the optical chip 100 on one side 101 and / or one side 102. The adhesive material 300 has two layers 310 and 320. The layer 310 is formed, for example, as a UV-curing acrylate or as a UV-curing epoxy. The adhesive material of the layer 320 has a lower thermal expansion coefficient than the adhesive material of the layer 310. As an adhesive material for the layer 320, for example, a highly filled with glass adhesive can be used. As a result, the layer 320 has a lower thermal expansion factor than the Layer 310 and is adapted to the expansion factor of the glass layers of the optical chip 100. This prevents the optical waveguide sections 11 and 21 from being torn off the chip upon heating or cooling of the optical splitter.

Des weiteren sind bei der in Figur 6 gezeigten Ausführungsform des optischen Verzweigers die Seite 101 und die Seite 102 in einem Winkel, der kleiner als 15° ist und zum Beispiel 8° beträgt, angeschnitten. Dadurch werden Rückreflektionen am Übergang zwischen Glas und Klebstoff vermieden. Somit wird verhindert, dass Licht, nach einer Reflektion in den Lichtwellenleiter 10 und die Lichtwellenleiter 20 zurück gekoppelt wird und einen Sender oder Empfänger stört. Ebenso müssen auch die Fasern 11 und 21 in einem entsprechenden Winkel geschnitten werden. Zum Schneiden der Lichtwellenleiterabschnitte 11 und 21 in dem Winkel wird beispielsweise ein Laser verwendet.Furthermore, at the in FIG. 6 shown embodiment of the optical splitter, the side 101 and the side 102 at an angle which is smaller than 15 ° and for example 8 °, cut. As a result, back reflections are avoided at the transition between glass and adhesive. Thus, it is prevented that light, after reflection in the optical waveguide 10 and the optical waveguide 20 is coupled back and interferes with a transmitter or receiver. Likewise, the fibers 11 and 21 must be cut at a corresponding angle. For cutting the optical waveguide sections 11 and 21 at the angle, for example, a laser is used.

Figur 7 zeigt eine weitere Ausführungsform eines optischen Verzweigers. Bei dieser Ausführungsform weist der optische Chip abgeschrägte Eingangs- und Ausgangsseitenflächen auf, die in einem Winkel kleiner als 15°, beispielsweise in einem Winkel von 8°, geschnitten sind. Die Lichtwellenleiterabschnitte 11 und 21 sind durch ein Klebermaterial 300 an der Eingangs- und Ausgangsseite des optischen Chips befestigt. Die Fasern 11 und 21 sind des weiteren zwischen zwei Glasplatten 210 und 220 angeordnet, die als zusätzlicher Schutz wirken. Die Glasplatten weisen jeweils an ihren Stirnflächen Aussparungen auf, in denen das Klebermaterial angeordnet ist. FIG. 7 shows a further embodiment of an optical splitter. In this embodiment, the optical chip has chamfered input and output side surfaces which are cut at an angle less than 15 °, for example at an angle of 8 °. The optical waveguide sections 11 and 21 are fixed by an adhesive material 300 on the input and output sides of the optical chip. The fibers 11 and 21 are further disposed between two glass plates 210 and 220 which act as additional protection. The glass plates each have at their end faces recesses in which the adhesive material is arranged.

Das beschriebene Verfahren, bei dem Faserenden von Lichtwellenleitern direkt an einen optischen Verzweiger angeklebt werden, lässt sich bei allen Vorrichtungen anwenden, bei denen ein Lichtwellenleiterabschnitt eines Lichtwellenleiters an einem optischen Chip fixiert werden muss. Derartige Anordnung treten beispielsweise bei einem AWG (Arrayed Waveguide Grating Chip) oder einem planaren VOA (Variable Optical Attenuator) auf.The described method, wherein the fiber ends of optical fibers glued directly to an optical splitter can be used in all devices in which an optical waveguide section of an optical waveguide must be fixed to an optical chip. Such arrangements occur, for example, in an AWG (Arrayed Waveguide Grating Chip) or a planar VOA (Variable Optical Attenuator).

Das AWG ist ein Multiplexer/Demultiplexer für Wellenlängenmultiplex. Wie bei einem Splitter wird auch bei AWGs das Licht einer Eingangsfaser auf mehrer Ausgangsfasern verteilt oder umgekehrt. Allerdings wird im Gegensatz zum Splitter auf eine bestimmte Ausgangsfaser nur Licht mit einer bestimmten Wellenlänge transmittiert, so dass das Licht wellenlängenabhängig aufgespalten wird. Typische Konfigurationen sind 32 Kanal, 40 Kanal, 64 Kanal, 80 Kanal AWGs. Bei VOA Arrays wird das Licht jeweils einer Eingangsfaser variabel abgeschwächt auf die korrespondierende Ausgangsfaser transmittiert. Typische Konfigurationen sind 8 Kanal oder 16 Kanal VOA Arrays.The AWG is a multiplexer / demultiplexer for wavelength division multiplexing. As with a splitter, AWGs also distribute the light from an input fiber over multiple output fibers or vice versa. However, in contrast to the splitter, only light having a specific wavelength is transmitted to a specific output fiber, so that the light is split depending on the wavelength. Typical configurations are 32 channel, 40 channel, 64 channel, 80 channel AWGs. In VOA arrays, the light of each input fiber is variably attenuated transmitted to the corresponding output fiber. Typical configurations are 8-channel or 16-channel VOA arrays.

Des Weiteren lässt sich das Verfahren bzw. der optische Verzweiger auch bei hybriden Anwendungen oder planaren Splittern, die typischerweise ein Splitterverhältnissen von 1x4, 1x8, 1x16, 1x32, 1x64, 2x8, 2x16, 2x32, 2x64, 2-1x16 aufweisen, anwenden. Bei hybriden Anwendungen kommen integrierte optische Bauelemente zum Einsatz, bei denen mehrere optische Funktionalitäten (z.B. Splitter, AWG, VOA, Monitor Dioden) auf einem optischen Chip (PLC - Planar Lightwave Circuit) integriert sind. Mögliche Ausführungsformen sind V-MUX oder O-ADM-Bauelemente. Bei einem V-MUX-Bauelement sind ein AWG mit einem VOA Array auf einem optischen Chip integriert. Die AWG Funktionalität wird hierbei um die Möglichkeit erweitert, jeden Kanal einzeln abschwächen zu können. Bei einem OADM-Bauelement (Optical Add-Drop Multiplexer) werden AWGs mit optischen Schaltern integriert.Furthermore, the method or the optical branch can also be used in hybrid applications or planar splitters, which typically have a splitting ratio of 1x4, 1x8, 1x16, 1x32, 1x64, 2x8, 2x16, 2x32, 2x64, 2-1x16. In hybrid applications, integrated optical components are used, in which several optical functionalities (eg splitter, AWG, VOA, monitor diodes) are integrated on an optical chip (PLC - Planar Lightwave Circuit). Possible embodiments are V-MUX or O-ADM devices. In a V-MUX device, an AWG with a VOA array is integrated on an optical chip. The AWG functionality is enhanced by the ability to attenuate each channel individually. For an OADM device (Optical Add-Drop Multiplexer), AWGs are integrated with optical switches.

Claims (15)

  1. A method for producing an optical splitter, comprising the following steps:
    - providing a chip (100) having a carrier substrate (S1), on which is arranged at least one optical conductor track (110) comprising a plurality of conductor track sections (111, 112, ..., 115), wherein a first one of the conductor track sections (111) branches from a first side (101) of the chip at at least one branching point (120, 130, 140) of the conductor track into at least two second conductor track sections (112, ..., 115) which run to a second side (102) of the chip,
    - adhesively bonding an optical waveguide section (11) of a first optical waveguide (10) onto the first conductor track section (111) of the conductor track (110) at the first side (101) of the chip, wherein the optical waveguide section (11) of the first optical waveguide is not arranged on a carrier substrate (50) after the adhesive bonding, and/or
    - adhesively bonding a number of respective optical waveguide sections (21a, ..., 21d) of second optical waveguides (20a, ..., 20d) onto in each case one of the second conductor track sections at the second side (102) of the chip, wherein the optical waveguide sections (21a, ..., 21d) of the second optical waveguides are adhesively bonded in a manner not supported by a carrier substrate (50),
    - arranging a glass plate (210) under the respective optical waveguide sections of the optical waveguides after adhesively bonding the respective optical waveguide sections (11, 21a, ..., 21d) of the optical waveguides onto the respective conductor track sections (111, 112, ..., 115) of the conductor track, wherein the glass plate (210) has a cutout (212) at an end surface (211), and the glass plate (210) is adhesively bonded onto the first and/or second side (101, 102) of the chip such that the adhesive material (300) is arranged in said cutout of the glass plate.
  2. The method as claimed in claim 1, comprising:
    - adhesively bonding respective end surfaces (12, 22) of the optical waveguide sections of the first optical waveguide (10) and/or of the second optical waveguides (20a, ..., 20d) by means of an adhesive material (300) onto the respective conductor track sections (111, 112, ..., 115) of the conductor track (110) at the first and/or second side (101, 102) of the chip,
    - applying a first layer (310) of the adhesive material laterally with respect to the respective end surfaces (12, 22) of the optical waveguide sections at the first and/or second side of the chip,
    - applying a second layer (320) of the adhesive material over the first layer (310).
  3. The method as claimed in claim 2,
    wherein a layer containing an acrylate (310) or an epoxid (310) is applied as first layer of the adhesive material.
  4. The method as claimed in one of the claims 2 or 3, wherein a layer having a lower coefficient of thermal expansion than the first layer (310) is applied as second layer (320) of the adhesive material.
  5. The method as claimed in claim 4,
    wherein a glass-filled adhesive material (320) is applied as second layer.
  6. The method as claimed in one of claims 1 to 5, comprising:
    cutting the respective optical waveguide sections (11, 21a, ..., 21d) of the optical waveguides at an angle of less than 15°.
  7. The method as claimed in one of claims 1 to 6, comprising:
    arranging another glass plate (220) over the respective optical waveguide sections of the optical waveguides after adhesively bonding the respective optical waveguide sections (11, 21a, ..., 21d) of the optical waveguides onto the respective conductor track sections of the conductor track, wherein the other glass plate (220) is adhesively bonded onto the first and/or second side (101, 102) of the chip, wherein the other glass plate (220) has a cutout (222) at an end surface (221), and the other glass plate (220) is adhesively bonded onto the first and/or second side (101, 102) of the chip such that the adhesive material (300) is arranged in said cutout of the other glass plate.
  8. An optical splitter, comprising:
    - a chip (100) containing a carrier substrate (S1), on which is arranged at least one optical conductor track (110) comprising a plurality of conductor track sections (111, 112, ..., 115), wherein a first one of the conductor track sections (111) branches from a side (101) of the chip at at least one branching point (120, 130, 140) of the conductor track into at least two second conductor track sections (112, ..., 115) which run to a second side (102) of the chip,
    - wherein an optical waveguide section (11) of a first optical waveguide (10) is adhesively bonded onto the first conductor track section (111) of the conductor track (110) at the first side (101) of the chip, and/or wherein a number of respective optical waveguide sections (21a, ..., 21d) of second optical waveguides (20a, ..., 20d) are adhesively bonded onto the conductor track sections (112, ..., 115) at the second side (102) of the chip,
    - wherein a glass plate (210) is adhesively bonded onto the first and/or second side (101, 102) of the chip (100) by an adhesive material (300), said glass plate being arranged under the respective optical waveguide sections (11, 21a, ..., 21d) of the first optical waveguide and/or of the second optical waveguides,
    - wherein the glass plate (210) has a cutout (212) at its end surface (211) at which it is adhesively bonded onto the first and/or second side of the chip,
    - wherein the adhesive material (300) is arranged in the cutout (212) of the glass plate.
  9. The optical splitter as claimed in claim 8, wherein another glass plate (220) is adhesively bonded onto the first and/or second side (101, 102) of the chip, said other glass plate being arranged over the respective optical waveguide sections (11, 21a, ..., 21d) of the first optical waveguide and/or of the second optical waveguides.
  10. The optical splitter as claimed in claim 9,
    - wherein the other glass plate (220) in each case has a cutout (222) at its end surface (221) at which it is adhesively bonded onto the first and/or second side of the chip,
    - wherein the adhesive material (300) is arranged in the cutout (222) of the other glass plate.
  11. The optical splitter as claimed in one of claims 9 or 10,
    wherein a surface at the first and/or second side (101, 102) of the chip (100) and the first and/or second glass plate (210, 220) have an inclination of less than 15°.
  12. The optical splitter as claimed in one of claims 8 to 11,
    - wherein a first layer (310) of an adhesive material is arranged at respective end surfaces (12, 22) of the optical waveguide sections (11, 21a, .., 21d),
    - wherein the first layer (310) of the adhesive material is arranged laterally with respect to the respective end surfaces (12, 22),
    - wherein a second layer (320) of the adhesive material is arranged over the first layer (310) of the adhesive material,
    - wherein the second layer (320) of the adhesive material has a lower coefficient of thermal expansion than the first layer (310).
  13. The optical splitter as claimed in claim 12, wherein the first layer of the adhesive material contains an acrylate (310) or an epoxid (310).
  14. The optical splitter as claimed in one of the claims 12 or 13,
    wherein the adhesive material of the second layer (320) is filled with glass.
  15. The optical splitter as claimed in one of claims 8 to 14,
    wherein a surface at the first and/or second side (101, 102) of the chip and the respective end surfaces of the optical waveguide sections have an inclination of less than 15°.
EP07802808A 2006-08-23 2007-08-22 Method for producing an optical splitter and optical splitter Not-in-force EP2054746B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006039516A DE102006039516A1 (en) 2006-08-23 2006-08-23 Process for producing an optical splitter and optical splitter
PCT/EP2007/058742 WO2008023037A1 (en) 2006-08-23 2007-08-22 Method for producing an optical splitter und optical splitter

Publications (2)

Publication Number Publication Date
EP2054746A1 EP2054746A1 (en) 2009-05-06
EP2054746B1 true EP2054746B1 (en) 2010-12-15

Family

ID=38655844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07802808A Not-in-force EP2054746B1 (en) 2006-08-23 2007-08-22 Method for producing an optical splitter and optical splitter

Country Status (5)

Country Link
EP (1) EP2054746B1 (en)
AT (1) ATE491965T1 (en)
DE (2) DE102006039516A1 (en)
ES (1) ES2357165T3 (en)
WO (1) WO2008023037A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001653A1 (en) * 2008-05-08 2009-12-03 Schleifring Und Apparatebau Gmbh Lens arrangement for optical rotary transformer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8417911D0 (en) * 1984-07-13 1984-08-15 British Telecomm Connecting waveguides
US4871226A (en) * 1987-10-01 1989-10-03 United Technologies Corporation Mounting of optical fibers to integrated optical chips
JPH04140702A (en) * 1990-10-01 1992-05-14 Kyocera Corp Method and device for connection between optical fiber and optical waveguide
US5208885A (en) * 1992-02-27 1993-05-04 At&T Bell Laboratories Optical fiber to strip waveguide interconnect
US5416881A (en) * 1992-08-20 1995-05-16 Nippon Sheet Glass Co., Ltd. Optical fiber and optical waveguide connecting device
EP0645651B1 (en) * 1993-03-31 1999-06-02 Sumitomo Electric Industries, Ltd Optical fiber array
CA2127861C (en) * 1993-07-14 2004-09-21 Shinji Ishikawa Coupling structure of optical fibers and optical waveguides
EP0693698B1 (en) * 1994-07-21 2001-07-04 Sumitomo Electric Industries, Ltd. Optical waveguide module having waveguide substrate made of predetermined material and ferrule made of material different from that of waveguide substrate
JP3721923B2 (en) * 2000-02-22 2005-11-30 株式会社日立製作所 Optical module
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
EP1306703A1 (en) * 2001-10-23 2003-05-02 Corning O.T.I. S.p.A. Optical devices for communication
GB2389916A (en) * 2002-06-20 2003-12-24 Bookham Technology Plc Fine alignment of optic fibres to optical components
JP2005025135A (en) * 2003-07-04 2005-01-27 Showa Electric Wire & Cable Co Ltd High reliability optical waveguide type device

Also Published As

Publication number Publication date
ATE491965T1 (en) 2011-01-15
WO2008023037A1 (en) 2008-02-28
DE102006039516A1 (en) 2008-03-13
ES2357165T3 (en) 2011-04-19
DE502007005977D1 (en) 2011-01-27
EP2054746A1 (en) 2009-05-06

Similar Documents

Publication Publication Date Title
DE69318293T2 (en) SELF-ALIGNING FLEXIBLE OPTICAL COUPLER
DE3877597T2 (en) CONNECTION OF OPTICAL FIBERS.
DE69430876T2 (en) Optical fiber array and method of making it
DE3783639T2 (en) OPTICAL PLUG AND SPLICE.
DE69523073T2 (en) MICRO-DIVERSE OPTICAL MODULE
DE69420652T2 (en) Hybrid optical IC with optical axes on different levels
DE60129678T2 (en) METHOD AND DEVICE FOR OPTICAL FIBERS AND OPTOELECTRONIC COMPONENTS OF PASSIVE ORIENTATION
DE69324623T2 (en) Connection between optical fiber and rising waveguide
DE60032338T2 (en) OPTICAL MESSAGE TRANSMISSION DEVICE
DE19819164C1 (en) Optical data communication module
EP0783714B1 (en) Optical coupler designed to couple an oeic module to optical fibres
US10718908B2 (en) Optical fiber array with high reliability
DE3431448C2 (en) Optical demultiplexing transmission device
DE112012002567B4 (en) optical module
DE69926844T2 (en) Planar lightwave circuit
DE10043324A1 (en) Optoelectronic assembly for multiplexing and / or demultiplexing optical signals
US20090052842A1 (en) Method for producing an optical splitter, and optical splitter
EP2502105A2 (en) Method for producing an optical assembly, optical assembly and splitter cascade
DE10312500A1 (en) Optical signal multiplexer and/or demultiplexer for optical data communications network has identical optical signal input and output sub-groups for respective wavelengths mounted on multiplex body
DE69833626T2 (en) Optical fiber array
US6885800B2 (en) Method and apparatus of cross-connecting optical fibers with layered substrates forming fiber optic ribbons
DE60028761T2 (en) DEVICE FOR OPTICAL CONNECTION
EP2054746B1 (en) Method for producing an optical splitter and optical splitter
DE69305697T2 (en) Optical component coupled to a linear arrangement of optical fibers
DE4433605A1 (en) Optical transceiver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007005977

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357165

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110315

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

26N No opposition filed

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005977

Country of ref document: DE

Effective date: 20110916

BERE Be: lapsed

Owner name: CCS TECHNOLOGY, INC.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130827

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190717

Year of fee payment: 13

Ref country code: ES

Payment date: 20190902

Year of fee payment: 13

Ref country code: DE

Payment date: 20190715

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005977

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200823