EP2053151A2 - Method and apparatus for determining an imbalance condition in an appliance - Google Patents

Method and apparatus for determining an imbalance condition in an appliance Download PDF

Info

Publication number
EP2053151A2
EP2053151A2 EP08166863A EP08166863A EP2053151A2 EP 2053151 A2 EP2053151 A2 EP 2053151A2 EP 08166863 A EP08166863 A EP 08166863A EP 08166863 A EP08166863 A EP 08166863A EP 2053151 A2 EP2053151 A2 EP 2053151A2
Authority
EP
European Patent Office
Prior art keywords
parameter
value
spread
parameter value
parameter values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08166863A
Other languages
German (de)
French (fr)
Inventor
Mariano Fillipa
Edward Hatfield
Richard D. Ii Suel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP2053151A2 publication Critical patent/EP2053151A2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/16Imbalance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/48Preventing or reducing imbalance or noise

Definitions

  • the present invention generally relates to methods and an apparatus for detecting imbalance conditions in an appliance.
  • Appliances such as automatic washing machines typically contain rotatable vessels that are designed to hold material or clothing and are known in the art.
  • the vessel is contained within a housing and is perforated with apertures.
  • the apertures allow water to be pumped into the vessel to wash the material in the vessel and to allow soiled water to be forced out of the vessel.
  • a washing machine usually contains a main control panel that controls various cycles, typically comprising a wash cycle, spin cycle, a rinse cycle, followed by another spin cycle. Water is pumped into the vessel during the wash cycle and rinse cycle, while it is extracted via centrifugal force during the spin cycle as the vessel rotates or spins.
  • a washing machine usually contains an agitator that oscillates to facilitate washing where the vessel rotates about a vertical axis. In machines that contain vessels that rotate about a horizontal axis, an agitator is usually not included as clothes can be tumbled instead of agitated in order to facilitate in the washing process.
  • Appliances that contain rotatable vessels are subject to operating conditions such as load imbalances.
  • Load imbalances in appliances such as washing machines occur when the material contained in the vessels is not evenly distributed within the vessel.
  • the material may be unevenly distributed when loaded into the vessel or may become unevenly distributed as the vessel rotates.
  • vertical-axis washing machines when a wash or rinse cycle completes and water is drained from the vessel, the clothes are gathered at the bottom of the vessel without being evenly distributed within the vessel. As the motor ramps up the speed for the next cycle, the clothes can creep up the sides of the vessel and become imbalanced.
  • load imbalances can occur when clothes are not evenly distributed during the machine's distribution cycle.
  • Load imbalance conditions can cause various inconveniences such as severe vibration and movement of the appliance. Severe vibration occurs when a load is imbalanced, or out of balance because the center of mass of the rotating vessel no longer corresponds to the geometric axis of the vessel. Severe vibration can cause an appliance to move along the surface it rests upon, for example, when a washing machine moves across the floor. Additionally, severe vibration can cause the vessel to break free from its mountings.
  • Another disadvantage of load imbalance conditions is that the motor's power is wasted in the vibrations and movement instead of being fully applied to rotating the vessel.
  • Prior art solutions designed to prevent imbalance conditions were typically mechanical and include adding masses to the rotatable vessel of the appliance in order to counter-balance imbalance conditions.
  • an appliance and method that can determine load imbalance or out-of-balance conditions.
  • the appliances that typically apply load imbalance detection are clothes washers.
  • a method of imbalance detection includes identifying parameter values that fluctuate with load imbalance over a predetermined sample period and determining a target parameter value from the identified parameter values.
  • the method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value.
  • the method further includes converting the parameter spread into a weight value that reflects an imbalance condition.
  • a computer program embodied on a computer-readable medium includes identifying parameter values that fluctuate with load imbalance over a predetermined sample period and determining a target parameter value from the identified parameter values. The method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value. The method further includes converting the parameter spread into a weight value that reflects an imbalance condition.
  • an appliance in another embodiment, includes a vessel mounted for rotation about an axis; a motor for rotating the vessel about an axis; a processor configured to determine load imbalance; and a memory for receiving and storing parameter data and instructions for determining load imbalance.
  • the load imbalance is determined by identifying parameter values that fluctuate with load imbalance over a predetermined sample period and determining a target parameter value from the identified parameter values.
  • the method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value.
  • the method further includes converting the parameter spread into a weight value that reflects an imbalance condition.
  • One embodiment of the present invention concerns a method and a circuit for detecting a load imbalance in an appliance that is simple to implement.
  • a horizontal-axis washing machine in accordance with one embodiment of the present invention is illustrated generally at 10.
  • a horizontal-axis washing machine includes a vessel that rotates about a horizontal axis within the cabinet.
  • Another embodiment of the invention includes a vertical-axis machine where the vessel rotates about a vertical axis within the cabinet.
  • Washer 10 includes a motor 12 and a motor control unit 14 (see Fig. 1b ) that can also be integrated within one unit.
  • Washer 10 includes an outer housing or cabinet 20 supporting a fixed tub 22, a vessel or moving tub ("tub") 25, motor 12, and motor control unit 14, within which there is a processor 102, in a known manner. Vessel drive shaft 30 is also illustrated. Tub 25 is configured to hold articles (not shown) such as clothes to be washed.
  • a direct belt drive is configured to transmit rotary motion imparted on a motor shaft 36 by motor 12 to tub 25 via drive belt 29.
  • Fig. 1b illustrates a side view of the exemplary washer of the present invention.
  • a spin cycle liquid within the articles is removed by the centrifugal force imparted by the spinning vessel and is allowed to exit the basket through apertures (not shown).
  • articles or clothing becomes plastered to the wall of tub 25 at a first speed or plaster speed.
  • Plaster refers to the centrifugal force of the spin cycle pushing the clothing against the wall or structure of the basket.
  • the clothes remain positioned by centrifugal force during a time period the first speed or plaster speed to a second speed or maximum speed of the spinning basket.
  • the plastered speed and maximum speed can be determined by one of ordinary skill in the art. Load imbalance conditions can occur when the clothes are unevenly plastered throughout the vessel.
  • Fig. 2 depicts a block diagram showing an appliance for detecting a load imbalance in an embodiment of the present invention.
  • the appliance which could be an automatic washing machine 10
  • the cabinet 20 contains the vessel 25 that can be loaded with material, for example clothes.
  • the motor 12 drives the vessel and can be directly attached to the vessel by a belt, clutch, or a direct coupling, for example.
  • the motor can be any type, including an induction motor.
  • the sensor 103 can detect the rotation speed of the motor shaft along with other parameters that fluctuate due to load imbalance, such as voltage amplitude, torque and motor current, for example.
  • the memory 101 stores the executable instructions for controlling the functions of an appliance.
  • the processor 102 executes the instructions stored in the memory 101.
  • the memory 101 can either be external or internal to the processor.
  • the processor may comprise any type of processor including microcontroller or a microprocessor.
  • the processor 102 executes the instructions to determine when an imbalance condition exists according to the method shown in Fig. 3 and takes corrective action if a sufficiently high imbalance or out of-balance (OOB) condition is detected.
  • OOB out of-balance
  • the actions taken when a sufficiently high imbalance condition is detected may include stopping the motor, attempts to re-balance the clothes in the tub, or a reduction of the allowed top speed.
  • Fig. 3 is a flow diagram showing a method for detecting a load imbalance condition.
  • the method includes selecting a parameter that fluctuates due to load imbalance, in this example, voltage amplitude which is required to maintain a constant speed.
  • the method further includes identifying parameter values in a predetermined sample period 201 and determining a target parameter value 202, which is the average of the parameter values in this example.
  • the parameter measured is voltage amplitude, required to maintain a constant speed, which is measured at a fixed interval of time, (i.e. every 50ms) of a pre-determined sample period.
  • the sample period represents the predetermined sample period, the time during which the parameter values are read.
  • the parameter values are stored in a data buffer of predetermined length in memory. If the buffer is full, return to the beginning of the data buffer so the parameter data will overwrite the oldest parameter data. The effect of this method is that of a moving data window or moving sample period.
  • the amplitude required to maintain the current speed is calculated in the microprocessor software.
  • the software increases or decreases voltage amplitude according to input from a speed sensor 103 to maintain a constant speed.
  • the speed sensor 103 may be employed to detect speed fluctuations of the motor shaft 36.
  • the method further provides calculating a parameter spread of the parameter values described above 203.
  • the parameter spread is calculated whenever the buffer window is full of parameter values, for example or in another embodiment, whenever a total number of parameter values is reached over a given sample period. Also, several sample periods may be taken over time, which constitutes a moving sample period.
  • the parameter spread comprises an average deviation based on the difference between the average of the parameter values in the sample period and a particular parameter value, although other methods of determining parameter spread may be used.
  • the parameter spread shown by the equation above requires calculating the average (X) of the total number of parameter values from the sample period, summing the absolute value of each parameter value (X i ), which can be a real-time reading of the fluctuating parameter, minus the average (X), and dividing the sum by a predetermined number of values.
  • the processor can calculate the average parameter error by retrieving the parameter value data from memory at predetermined intervals.
  • the load constant is calculated by applying a predetermined linear equation to the current load size in the washing machine tub.
  • the current load size can be determined in various ways as determined by one of ordinary skill in the art, and stored in memory as a weight value (1bs or kg).
  • the slope and offset comprise predetermined values that are constants calibrated using known or predetermined imbalance loads.
  • Load Constant Load Size ⁇ Slope + Offset
  • An example of calibration includes calculating the average deviation for a chosen parameter for each known imbalance load, which is a known actual imbalance that has a weight value (lbs or kg).
  • the load constant may be determined through empirical data that may stored in tabular format in the memory 101.
  • the load constant may be generated through the use of empirical data such as that provided in Figure 4 utilizing the following equation wherein the parameter spread is the average deviation as provided in Figure 4 .
  • Load Constant Parameter Spread / Actual OOB
  • Load Constant Parameter Spread * Speed / Actual OOB
  • the modification to the equation includes multiplying the parameter spread by the speed of the motor in order to normalize the voltage amplitude spread.
  • the modification to the equation above is not required, although desirable due to the drop in amplitude spread as speed increases. If the amplitude spread is multiplied by the speed, the resulting load constant curve is flatter and provides an improved imbalance calculation.
  • the OOB calculation is optimized between 90 basket RPM (or plaster speed) and about 150 basket RPM. This range may vary slightly based on machine dynamics.
  • the load size is the actual weight of the clothes in the vessel.
  • An imbalance condition will be detected when the OOB value is above a predetermined value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Testing Of Balance (AREA)

Abstract

An appliance and method is provided that can determine load imbalance or out-of-balance conditions. The appliances that typically apply load imbalance detection are clothes washers. A method of imbalance detection includes identifying parameter values that fluctuate with load imbalance over a predetermined sample period (201) and determining a target parameter value from the identified parameter values (202). The method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value (203). The method further includes converting the parameter spread into a weight value that reflects an imbalance condition.

Description

    BACKGROUND Field of the Invention
  • The present invention generally relates to methods and an apparatus for detecting imbalance conditions in an appliance.
  • DESCRIPTION OF THE RELATED ART
  • Appliances such as automatic washing machines typically contain rotatable vessels that are designed to hold material or clothing and are known in the art. The vessel is contained within a housing and is perforated with apertures. The apertures allow water to be pumped into the vessel to wash the material in the vessel and to allow soiled water to be forced out of the vessel. A washing machine usually contains a main control panel that controls various cycles, typically comprising a wash cycle, spin cycle, a rinse cycle, followed by another spin cycle. Water is pumped into the vessel during the wash cycle and rinse cycle, while it is extracted via centrifugal force during the spin cycle as the vessel rotates or spins. Additionally, a washing machine usually contains an agitator that oscillates to facilitate washing where the vessel rotates about a vertical axis. In machines that contain vessels that rotate about a horizontal axis, an agitator is usually not included as clothes can be tumbled instead of agitated in order to facilitate in the washing process.
  • Appliances that contain rotatable vessels are subject to operating conditions such as load imbalances. Load imbalances in appliances such as washing machines occur when the material contained in the vessels is not evenly distributed within the vessel. The material may be unevenly distributed when loaded into the vessel or may become unevenly distributed as the vessel rotates. For example, in vertical-axis washing machines, when a wash or rinse cycle completes and water is drained from the vessel, the clothes are gathered at the bottom of the vessel without being evenly distributed within the vessel. As the motor ramps up the speed for the next cycle, the clothes can creep up the sides of the vessel and become imbalanced.
  • Similarly, in horizontal-axis washing machines, load imbalances can occur when clothes are not evenly distributed during the machine's distribution cycle. Load imbalance conditions can cause various inconveniences such as severe vibration and movement of the appliance. Severe vibration occurs when a load is imbalanced, or out of balance because the center of mass of the rotating vessel no longer corresponds to the geometric axis of the vessel. Severe vibration can cause an appliance to move along the surface it rests upon, for example, when a washing machine moves across the floor. Additionally, severe vibration can cause the vessel to break free from its mountings. Another disadvantage of load imbalance conditions is that the motor's power is wasted in the vibrations and movement instead of being fully applied to rotating the vessel.
  • Prior art solutions designed to prevent imbalance conditions were typically mechanical and include adding masses to the rotatable vessel of the appliance in order to counter-balance imbalance conditions.
  • Other solutions that were designed to detect imbalance conditions are typically complex and include comparing the actual power usage of a vessel to an expected power usage and measuring current ripples. One example of such an attempt is illustrated in U.S. Patent No. 6,640,374 , where the amount of current used by the motor to rotate the vessel is compared to a threshold value.
  • Accordingly, there is a need to provide an improved method and apparatus to detect load imbalance conditions in an appliance to allow for simplified design and manufacturing.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one embodiment of the invention, an appliance and method is provided that can determine load imbalance or out-of-balance conditions. The appliances that typically apply load imbalance detection are clothes washers. A method of imbalance detection includes identifying parameter values that fluctuate with load imbalance over a predetermined sample period and determining a target parameter value from the identified parameter values. The method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value. The method further includes converting the parameter spread into a weight value that reflects an imbalance condition.
  • In another embodiment of the invention, a computer program embodied on a computer-readable medium includes identifying parameter values that fluctuate with load imbalance over a predetermined sample period and determining a target parameter value from the identified parameter values. The method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value. The method further includes converting the parameter spread into a weight value that reflects an imbalance condition.
  • In another embodiment of the invention, an appliance includes a vessel mounted for rotation about an axis; a motor for rotating the vessel about an axis; a processor configured to determine load imbalance; and a memory for receiving and storing parameter data and instructions for determining load imbalance. The load imbalance is determined by identifying parameter values that fluctuate with load imbalance over a predetermined sample period and determining a target parameter value from the identified parameter values. The method further includes calculating a parameter spread of the parameter values by comparing parameter values to the target parameter value. The method further includes converting the parameter spread into a weight value that reflects an imbalance condition.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • There follows a detailed description of embodiments of the invention by way of example only with reference to the accompanying drawings in which:
    • Fig. 1 a is a view of a horizontal-axis washing machine;
    • Fig. 1b is a diagram showing a horizontal-axis washing machine;
    • Fig. 2 is a block diagram showing a system for detecting a load imbalance in an embodiment of the present invention;
    • Fig. 3 is a flow diagram showing a method for detecting a load imbalance condition;
    • Fig. 4 is a table containing load imbalance data; and
    • Fig. 5 is a graph of the load imbalance data of Fig. 4.
    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • One embodiment of the present invention concerns a method and a circuit for detecting a load imbalance in an appliance that is simple to implement.
  • Referring now to Fig. 1a, a horizontal-axis washing machine in accordance with one embodiment of the present invention is illustrated generally at 10. A horizontal-axis washing machine includes a vessel that rotates about a horizontal axis within the cabinet. Another embodiment of the invention includes a vertical-axis machine where the vessel rotates about a vertical axis within the cabinet. One of ordinary skill in the art can perform the exemplary embodiments of the invention described herein using either configuration. Washer 10 includes a motor 12 and a motor control unit 14 (see Fig. 1b) that can also be integrated within one unit. Washer 10 includes an outer housing or cabinet 20 supporting a fixed tub 22, a vessel or moving tub ("tub") 25, motor 12, and motor control unit 14, within which there is a processor 102, in a known manner. Vessel drive shaft 30 is also illustrated. Tub 25 is configured to hold articles (not shown) such as clothes to be washed.
  • In the horizontal washer configuration, a direct belt drive is configured to transmit rotary motion imparted on a motor shaft 36 by motor 12 to tub 25 via drive belt 29. Fig. 1b illustrates a side view of the exemplary washer of the present invention.
  • During a spin cycle, liquid within the articles is removed by the centrifugal force imparted by the spinning vessel and is allowed to exit the basket through apertures (not shown). During the spin cycle, articles or clothing becomes plastered to the wall of tub 25 at a first speed or plaster speed. Plaster refers to the centrifugal force of the spin cycle pushing the clothing against the wall or structure of the basket. The clothes remain positioned by centrifugal force during a time period the first speed or plaster speed to a second speed or maximum speed of the spinning basket. The plastered speed and maximum speed can be determined by one of ordinary skill in the art. Load imbalance conditions can occur when the clothes are unevenly plastered throughout the vessel.
  • Fig. 2 depicts a block diagram showing an appliance for detecting a load imbalance in an embodiment of the present invention. The appliance, which could be an automatic washing machine 10, can include a cabinet 20, a vessel 25, a motor 12, and a motor control unit 14 including a memory 101, a processor 102, and a sensor 103. The cabinet 20 contains the vessel 25 that can be loaded with material, for example clothes. The motor 12 drives the vessel and can be directly attached to the vessel by a belt, clutch, or a direct coupling, for example. The motor can be any type, including an induction motor. The sensor 103 can detect the rotation speed of the motor shaft along with other parameters that fluctuate due to load imbalance, such as voltage amplitude, torque and motor current, for example. Any type of sensor can be used, including a hall sensor to detect the rotation speed of the motor shaft. The memory 101 stores the executable instructions for controlling the functions of an appliance. The processor 102 executes the instructions stored in the memory 101. The memory 101 can either be external or internal to the processor. The processor may comprise any type of processor including microcontroller or a microprocessor. The processor 102 executes the instructions to determine when an imbalance condition exists according to the method shown in Fig. 3 and takes corrective action if a sufficiently high imbalance or out of-balance (OOB) condition is detected. The actions taken when a sufficiently high imbalance condition is detected may include stopping the motor, attempts to re-balance the clothes in the tub, or a reduction of the allowed top speed.
  • Fig. 3 is a flow diagram showing a method for detecting a load imbalance condition. The method includes selecting a parameter that fluctuates due to load imbalance, in this example, voltage amplitude which is required to maintain a constant speed. The method further includes identifying parameter values in a predetermined sample period 201 and determining a target parameter value 202, which is the average of the parameter values in this example. In one exemplary embodiment, the parameter measured is voltage amplitude, required to maintain a constant speed, which is measured at a fixed interval of time, (i.e. every 50ms) of a pre-determined sample period. The sample period represents the predetermined sample period, the time during which the parameter values are read. The parameter values are stored in a data buffer of predetermined length in memory. If the buffer is full, return to the beginning of the data buffer so the parameter data will overwrite the oldest parameter data. The effect of this method is that of a moving data window or moving sample period.
  • In one embodiment, the amplitude required to maintain the current speed is calculated in the microprocessor software. The software increases or decreases voltage amplitude according to input from a speed sensor 103 to maintain a constant speed. The speed sensor 103 may be employed to detect speed fluctuations of the motor shaft 36.
  • The method further provides calculating a parameter spread of the parameter values described above 203. The parameter spread is calculated whenever the buffer window is full of parameter values, for example or in another embodiment, whenever a total number of parameter values is reached over a given sample period. Also, several sample periods may be taken over time, which constitutes a moving sample period. In one embodiment of the invention, the parameter spread comprises an average deviation based on the difference between the average of the parameter values in the sample period and a particular parameter value, although other methods of determining parameter spread may be used.
  • In accordance with the present embodiment, the processor 102 compares individual parameter values to a the target parameter value to get an average deviation of the parameter spread as shown below: i = 1 N X i - X N
    Figure imgb0001
  • The parameter spread shown by the equation above requires calculating the average (X) of the total number of parameter values from the sample period, summing the absolute value of each parameter value (Xi), which can be a real-time reading of the fluctuating parameter, minus the average (X), and dividing the sum by a predetermined number of values. The processor can calculate the average parameter error by retrieving the parameter value data from memory at predetermined intervals.
  • Furthermore, the parameter spread may be converted to an actual weight value (Lbs or Kg) 204 that can be used to determine the existence of an imbalance condition 205 by the following equation: OOB Lbs = Parameter Spread / Load Constant
    Figure imgb0002
  • Wherein the load constant is calculated by applying a predetermined linear equation to the current load size in the washing machine tub. The current load size can be determined in various ways as determined by one of ordinary skill in the art, and stored in memory as a weight value (1bs or kg). The slope and offset comprise predetermined values that are constants calibrated using known or predetermined imbalance loads. Load Constant = Load Size Slope + Offset
    Figure imgb0003
  • An example of calibration includes calculating the average deviation for a chosen parameter for each known imbalance load, which is a known actual imbalance that has a weight value (lbs or kg). When voltage is the measured parameter, the voltage deviation is measured as an A/D value, where 1 VDC = 2.0277 A/D units.
  • In practical embodiments the load constant may be determined through empirical data that may stored in tabular format in the memory 101. To accomplish this, the load constant may be generated through the use of empirical data such as that provided in Figure 4 utilizing the following equation wherein the parameter spread is the average deviation as provided in Figure 4. Load Constant = Parameter Spread / Actual OOB
    Figure imgb0004
  • When voltage amplitude is the measured parameter, the equation for the load constant can be modified as shown below: Load Constant = Parameter Spread * Speed / Actual OOB
    Figure imgb0005
  • The modification to the equation includes multiplying the parameter spread by the speed of the motor in order to normalize the voltage amplitude spread. The modification to the equation above is not required, although desirable due to the drop in amplitude spread as speed increases. If the amplitude spread is multiplied by the speed, the resulting load constant curve is flatter and provides an improved imbalance calculation. In the current implementation, the OOB calculation is optimized between 90 basket RPM (or plaster speed) and about 150 basket RPM. This range may vary slightly based on machine dynamics.
  • Referring now to Fig. 5, a linear graph of the data from the table of Fig. 4 showing slope 300 gives the equation: Load Constant = - 7.2623 * Load Size + 152.46
    Figure imgb0006
  • Wherein the load size is the actual weight of the clothes in the vessel.
  • The imbalance weight value (OOB Lbs) can be determined by the using the equation: OOB = Parameter Spread / Load Constant
    Figure imgb0007
  • An imbalance condition will be detected when the OOB value is above a predetermined value.
  • The particular embodiments of the invention described above are merely illustrative as the invention may be practiced in different but equivalent manners apparent to those skilled in the art. Similarly, the protection sought is to be found in the claims and is not to be limited by the descriptions of the embodiments above. Therefore, the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope of the invention.
  • For completeness, various aspects of the invention are now set out in the following numbered clauses:
    1. 1. A method for determining an imbalance condition in an appliance, comprising:
      • identifying parameter values that fluctuate with load imbalance over a predetermined sample period;
      • determining a target parameter value from the identified parameter values;
      • calculating a parameter value spread of the parameter values by comparing parameter values to the target parameter value;
      • converting said parameter spread into a weight value that reflects an imbalance condition.
    2. 2. The method of clause 1 wherein the predetermined sample period comprises a moving sample period.
    3. 3. The method of clause 1 wherein the target parameter value comprises an average.
    4. 4. The method of clause 1, further comprising periodically recalculating the target parameter value and identifying additional parameter values.
    5. 5. The method of clause 1 wherein calculating said parameter value spread comprises:
      • calculating an average parameter value from said parameter values; and
      • comparing said average parameter value to each said parameter value to arrive at an average deviation value;
    6. 6. The method of clause 1 wherein converting said parameter spread into a weight value comprises:
      • dividing said parameter spread by a load constant value.
    7. 7. The method of clause 6, wherein said parameter spread is multiplied by current motor speed.
    8. 8. The method of clause 1, wherein the said parameter value comprises speed.
    9. 9. The method of clause 1, wherein the said parameter value comprises voltage amplitude required to maintain a constant speed.
    10. 10. The method of clause 1, wherein said appliance is an automatic washing machine.
    11. 11. The method of clause 1, wherein said washing machine is a horizontal axis washer.
    12. 12. The method of clause 1, wherein said washing machine is a vertical axis washer.
    13. 13. A computer program embodied on a computer-readable medium, comprising:
      • identifying parameter values that fluctuate with load imbalance over a predetermined sample period;
      • determining a target parameter value from the identified parameter values;
      • calculating a parameter value spread of the parameter values by comparing parameter values to the target parameter value;
      • converting said parameter spread into a weight value that reflects an imbalance condition.
    14. 14. An appliance comprising:
      • a vessel mounted for rotation about an axis;
      • a motor for rotating the vessel about an axis;
      • a processor configured to determine load imbalance; and
      • a memory for receiving and storing parameter data and instructions for determining load imbalance;
      • wherein the load imbalance is determined by:
      • identifying parameter values that fluctuate with load imbalance over a predetermined sample period;
      • determining a target parameter value from the identified parameter values;
      • calculating a parameter value spread of the parameter values by comparing parameter values to the target parameter value;
      • converting said parameter spread into a weight value that reflects an imbalance condition.
    15. 15. The device of clause 14 wherein the predetermined sample period comprises a moving sample period.
    16. 16. The device of clause 14 wherein the target parameter value comprises an average.
    17. 17. The device of clause 14, wherein the load imbalance is further determined by periodically recalculating the target parameter value and identifying additional parameter values.
    18. 18. The device of clause 14 wherein calculating said parameter value spread comprises:
      • calculating an average parameter value from said parameter values; and
      • comparing said average parameter value to each said parameter value to arrive at an average deviation value;
    19. 19. The device of clause 14 wherein converting said parameter spread into a weight value comprises:
      • dividing said parameter spread by a load constant value based on the weight of the load in a washer.
    20. 20. The device of clause 14, wherein said parameter spread is multiplied by current motor speed.
    21. 21. The device of clause 14, wherein the said parameter value comprises speed.
    22. 22. The device of clause 14, wherein the said parameter value comprises voltage amplitude required to maintain a constant speed.
    23. 23. The device of clause 14, wherein said appliance is a washing machine.
    24. 24. The device of clause 23, wherein said appliance is a horizontal axis washer.
    25. 25. The device of clause 23, wherein said appliance is a vertical axis washer.

Claims (15)

  1. A method for determining an imbalance condition in an appliance, comprising:
    identifying parameter values that fluctuate with load imbalance over a predetermined sample period (201);
    determining a target parameter value from the identified parameter values (202);
    calculating a parameter value spread of the parameter values by comparing parameter values to the target parameter value (203);
    converting said parameter spread into a weight value that reflects an imbalance condition.
  2. The method of claim 1 wherein the predetermined sample period comprises a moving sample period and wherein the target parameter value comprises an average.
  3. The method of claim 1 or 2, further comprising periodically recalculating the target parameter value and identifying additional parameter values.
  4. The method of any of the preceding claims, wherein calculating said parameter value spread comprises:
    calculating an average parameter value from said parameter values (203); and comparing said average parameter value to each said parameter value to arrive at an average deviation value;
  5. The method of any of the preceding claims, wherein converting said parameter spread into a weight value comprises:
    dividing said parameter spread by a load constant value.
  6. An appliance comprising:
    a vessel (25) mounted for rotation about an axis;
    a motor(12) for rotating the vessel about an axis;
    a processor (102) configured to determine load imbalance; and
    a memory (101) for receiving and storing parameter data and instructions for determining load imbalance;
    wherein the load imbalance is determined by:
    identifying parameter values that fluctuate with load imbalance over a predetermined sample period (201);
    determining a target parameter value from the identified parameter values (202);
    calculating a parameter value spread of the parameter values by comparing parameter values to the target parameter value (203);
    converting said parameter spread into a weight value that reflects an imbalance condition.
  7. The device of claim 6 wherein the predetermined sample period comprises a moving sample period and wherein the target parameter value comprises an average.
  8. The device of claim 6 or 7, wherein the load imbalance is further determined by periodically recalculating the target parameter value and identifying additional parameter values.
  9. The device of any of claims 6 to 8, wherein calculating said parameter value spread comprises:
    calculating an average parameter value from said parameter values; and comparing said average parameter value to each said parameter value to arrive at an average deviation value.
  10. The device of any of claims 6 to 9, wherein converting said parameter spread into a weight value comprises:
    dividing said parameter spread by a load constant value based on the weight of the load in a washer.
  11. The device of any of claims 6 to 10, wherein said parameter spread is multiplied by current motor speed.
  12. The device of any of claims 6 to 11, wherein the said parameter value comprises speed.
  13. The device of any of claims 6 to 12, wherein the said parameter value comprises voltage amplitude required to maintain a constant speed.
  14. The device of any of claims 6 to 13, wherein said appliance is a washing machine.
  15. The device of claim 14, wherein said appliance is a horizontal axis washer.
EP08166863A 2007-10-24 2008-10-17 Method and apparatus for determining an imbalance condition in an appliance Withdrawn EP2053151A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/877,830 US20090107185A1 (en) 2007-10-24 2007-10-24 Method and apparatus for determining an imbalance condition in an appliance

Publications (1)

Publication Number Publication Date
EP2053151A2 true EP2053151A2 (en) 2009-04-29

Family

ID=40342512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08166863A Withdrawn EP2053151A2 (en) 2007-10-24 2008-10-17 Method and apparatus for determining an imbalance condition in an appliance

Country Status (5)

Country Link
US (1) US20090107185A1 (en)
EP (1) EP2053151A2 (en)
CN (1) CN101419112A (en)
CA (1) CA2640828A1 (en)
MX (1) MX2008013655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225746B2 (en) 2018-08-27 2022-01-18 Ecolab Usa Inc. System and technique for extracting particulate-containing liquid samples without filtration

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466538A (en) * 2011-03-14 2012-05-23 无锡艾柯威科技有限公司 Method for detecting load imbalance of variable frequency motor
CN202450294U (en) * 2011-12-07 2012-09-26 博西华电器(江苏)有限公司 Base for washing machine and washing machine
DK2527511T3 (en) * 2012-03-21 2014-05-12 Primus Ce S R O Method of controlling the centrifugation process in a washing machine
US8875332B2 (en) 2012-07-10 2014-11-04 Whirlpool Corporation Laundry treating appliance and method of operation
CN104452187B (en) * 2014-11-21 2017-04-19 广东威灵电机制造有限公司 Roller washing machine and unbalance detection method and device thereof
JP6654373B2 (en) * 2015-08-04 2020-02-26 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Washing machine
US10060067B2 (en) 2016-05-10 2018-08-28 Haier Us Appliance Solutions, Inc. Determining out of balance conditions of a washing machine
CN106637823B (en) * 2016-12-13 2019-03-15 广东威灵电机制造有限公司 Washing machine and its dehydration controlling method and device
CN108801323B (en) * 2017-04-26 2022-01-04 博西华电器(江苏)有限公司 Clothes nursing machine and method for detecting whether balance ring is installed on clothes nursing machine
CN116575216B (en) * 2023-07-13 2023-09-05 珠海格力电器股份有限公司 Washing machine load weighing method and washing machine
CN116575213B (en) * 2023-07-13 2023-09-05 珠海格力电器股份有限公司 Washing machine load weighing method and washing machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640374B1 (en) 2001-08-01 2003-11-04 Michael H Courtney Curb brush is an implement for displacing debris from the top and bottom of rounded curbs

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765161A (en) * 1987-10-19 1988-08-23 American Laundry Machinery, Inc. Out-of-balance control for laundry machines
US5070565A (en) * 1989-04-17 1991-12-10 Emerson Electric Co. Unbalanced load detection system and method for a household appliance
US5301523A (en) * 1992-08-27 1994-04-12 General Electric Company Electronic washer control including automatic balance, spin and brake operations
JPH08122192A (en) * 1994-10-21 1996-05-17 Mitsubishi Electric Corp Equipment and method for detecting state of load of induction motor
US6163912A (en) * 1997-09-22 2000-12-26 Matsushita Electric Industrial Co., Ltd. Washing machine
US6282965B1 (en) * 1998-11-20 2001-09-04 Emerson Electric Co. Method and apparatus for detecting washing machine tub imbalance
US6460381B1 (en) * 1999-03-29 2002-10-08 Sanyo Electric Co., Ltd. Washing machine or an apparatus having a rotatable container
US6640372B2 (en) * 2000-06-26 2003-11-04 Whirlpool Corporation Method and apparatus for detecting load unbalance in an appliance
US6715175B2 (en) * 2000-06-26 2004-04-06 Whirlpool Corporation Load unbalanced prediction method and apparatus in an appliance
KR100348626B1 (en) * 2000-09-28 2002-08-13 엘지전자주식회사 Dection of the weight of a washing machine
KR100425723B1 (en) * 2001-07-10 2004-04-03 엘지전자 주식회사 Method of detecting the weight of laundry in washing machine of sensorless bldc motor
KR20040059222A (en) * 2002-12-28 2004-07-05 엘지전자 주식회사 method for detecting unbalance of dehydration tub and method for controlling operation of washing machine by using the same
US7905122B2 (en) * 2003-04-28 2011-03-15 Nidec Motor Corporation Method and system for determining a washing machine load unbalance
KR100548274B1 (en) * 2003-07-23 2006-02-02 엘지전자 주식회사 Method of detecting weight of laundry in washing machine
US7451510B2 (en) * 2003-07-25 2008-11-18 Lg Electronics, Inc. Washing machine and method of performing spinning operation
KR101138888B1 (en) * 2003-11-25 2012-05-14 삼성전자주식회사 Washing Machine And Control Method Thereof
US7765837B2 (en) * 2004-12-16 2010-08-03 General Electric Company Clothes washer accelerating systems and methods
KR100701949B1 (en) * 2005-02-14 2007-03-30 엘지전자 주식회사 Detecting method for laundary weight of drum type washing machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640374B1 (en) 2001-08-01 2003-11-04 Michael H Courtney Curb brush is an implement for displacing debris from the top and bottom of rounded curbs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225746B2 (en) 2018-08-27 2022-01-18 Ecolab Usa Inc. System and technique for extracting particulate-containing liquid samples without filtration
US11739460B2 (en) 2018-08-27 2023-08-29 Ecolab Usa Inc. System and technique for extracting particulate-containing liquid samples without filtration

Also Published As

Publication number Publication date
CA2640828A1 (en) 2009-04-24
MX2008013655A (en) 2009-05-12
US20090107185A1 (en) 2009-04-30
CN101419112A (en) 2009-04-29

Similar Documents

Publication Publication Date Title
EP2053151A2 (en) Method and apparatus for determining an imbalance condition in an appliance
US9428854B2 (en) Method and apparatus for balancing an unbalanced load in a washing machine
AU755693B2 (en) Method and apparatus for detecting washing machine tub imbalance
US11149372B2 (en) Washing machine
EP2377982B1 (en) Method of determining an unbalance condition in a laundry appliance and laundry treating appliance
EP2607535B1 (en) Method of operating a laundry treating appliance
US20040211009A1 (en) Method and system for determinging a washing machine load unbalance
EP2206822B1 (en) Washing machine and method of operating same
US8813288B2 (en) System and method for detecting imbalance in a washing machine
US9551103B2 (en) Method to detect the type of a load in a laundry treating appliance
CN109863266A (en) Uneven detection before draining in washing machine
US9267226B2 (en) Dynamic unbalance detection in a washing machine
US20090249560A1 (en) Laundry water extractor speed limit control and method
US20080115295A1 (en) Mechanical action estimation for washing machines
US9127392B2 (en) Method and apparatus to detect an over-suds condition
EP1461487B1 (en) Method for determining unbalanced load
US7765837B2 (en) Clothes washer accelerating systems and methods
US11028517B2 (en) Washing machine appliance and methods for out-of-balance detection and mitigation
EP3650596B1 (en) Washing machine
US10975512B2 (en) Washing machine appliance and methods for preventing spin out-of-balance conditions
US11479897B1 (en) Laundry washing machine weight sensing system
US12060670B2 (en) Washing machine appliances and methods for addressing out-of-balance states
EP4063552A1 (en) Washing machine with linen mass determination
US11725323B2 (en) Wash article entrapment detection for laundry washing machines
WO2022200928A1 (en) Washing machine with linen mass determination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SUEL, RICHARD D. II

Inventor name: HATFIELD, EDWARD

Inventor name: FILLIPA, MARIANO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120503