EP2049235B1 - Emulsifying device and process for forming an emulsion - Google Patents

Emulsifying device and process for forming an emulsion Download PDF

Info

Publication number
EP2049235B1
EP2049235B1 EP07786556A EP07786556A EP2049235B1 EP 2049235 B1 EP2049235 B1 EP 2049235B1 EP 07786556 A EP07786556 A EP 07786556A EP 07786556 A EP07786556 A EP 07786556A EP 2049235 B1 EP2049235 B1 EP 2049235B1
Authority
EP
European Patent Office
Prior art keywords
channel
emulsifying device
injection
dispersed
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07786556A
Other languages
German (de)
French (fr)
Other versions
EP2049235A1 (en
Inventor
Stephan Herminghaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP2049235A1 publication Critical patent/EP2049235A1/en
Application granted granted Critical
Publication of EP2049235B1 publication Critical patent/EP2049235B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31424Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations aligned in a row perpendicular to the flow direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section

Definitions

  • the invention relates to an emulsifying device for forming an emulsion having a continuous and at least one dispersed phase, in particular an emulsifying device having a channel (or gap) adapted to receive laminar, flowing liquid filaments of the different phases and having a channel widening on which the at least one dispersed phase decomposes into individual drops.
  • the invention further relates to a process for forming an emulsion having a continuous phase and at least one dispersed phase, in particular a process for producing a mixed emulsion having a plurality of dispersed phases.
  • the invention relates to an emulsifying device and an emulsifying method having the features of the preambles of the independent claims.
  • a conventional emulsifier 100 'for forming a continuous phase emulsion and at least one dispersed phase derived from C. Priest et al. in Applied Physics Letters (Vol. 88, 2006, 024106-01 ) is schematically shown in FIG FIG. 11 illustrated.
  • the emulsifying device 100 ' comprises a dispersion region 10' which is formed as part of a channel 20 'in the interior of a fluidic microsystem.
  • the channel 20 ' is connected to a supply line 30' for supplying the continuous phase 2 'and to a injection line 40' for supplying the dispersed phase 3 '.
  • Bottom and top walls of the channel 20 ' have such a small vertical distance that the immiscible liquids of the continuous and dispersed phases in the channel 20' as thin filaments flow side by side.
  • the interface which separates the two liquids extends between the bottom and top walls.
  • the continuous and dispersed phases form a dynamic stable, laminar flow.
  • the channel 20' widens stepwise.
  • An edge 11 ' is provided at which the thread-like liquid flows become unstable and disintegrate into individual drops.
  • the dispersed phase 3' is distributed drop-wise in the continuous phase 2 ', so that downstream of the dispersion region 10' the phases 2 ', 3' in the channel 20 'continue to flow as emulsion 1'.
  • the conventional emulsifying device 100 ' according to FIG. 11 has the disadvantage that the dispersion region 10 'with the widening channel 20' is located inside the microsystem. The droplets of the dispersed phase are generated substantially serially. As a result, with the conventional emulsifying device 100 ', only small amounts of emulsion can be produced, which are too low for practical applications, for example in liquid phase processing technology. In order to increase the amount of emulsion, a large number of emulsifying devices 100 ' would have to be combined, which, however, represents an unacceptably high expenditure on equipment.
  • a solution to this problem could be achieved with a mixture of the different liquids, based not on the phenomenon of turbulence, but on a common emulsification.
  • instantaneously a mixed emulsion with a certain mixing ratio can be set, which is then constant for the entire duration of the reaction.
  • the initially existing phase boundaries in the emulsion can be interrupted by an external influence, such as a microwave field or an electrical voltage, in order to obtain a defined starting time for the start of the reaction of the liquids.
  • the conventional emulsifier 100 'in addition to the mentioned problem of low emulsion yield additionally has the disadvantage that it is only limited suitable for the preparation of a mixed emulsion. So far, in particular, no way has been published, as with the conventional emulsifier 100 'a mixed emulsion could be produced.
  • the invention has for its object to provide an improved emulsifying device, with which the disadvantages of the conventional emulsification techniques are overcome.
  • the invention is further based on the object of providing an improved emulsification process which overcomes the disadvantages of conventional emulsification techniques.
  • the emulsifier and the emulsification process should in particular have a broader field of application and be particularly suitable for the preparation of mixed emulsions.
  • the invention is based on the general technical teaching to provide an emulsifier for forming a continuous phase emulsion and at least one dispersed phase having a dispersion area for forming the emulsion by decomposing laminar flows of the continuous and the at least one dispersed phase , wherein a channel for receiving the laminar flows and a plurality of injection bores are provided, through which the at least one dispersed phase is injectable into the channel, and the dispersion region is formed by a gap mouth of the channel, which directly into a free environment of Emulgerer wisdom opens.
  • the combination according to the invention of a multiplicity of injection bores opening into the channel with a dispersion region formed by a channel end advantageously provides a compact emulsion source with which an emulsion of practically interesting rates and volumes can be provided directly in a reaction vessel.
  • the injection wells allow numerous liquid filaments to be formed from a single or multiple, e.g. B. two different dispersed phases in the channel are formed simultaneously and flow to the dispersion region. Unlike conventional serial emulsion production, parallel emulsion production is enabled.
  • the invention is based on the general technical teaching of providing an emulsification process in which the continuous phase and the at least one dispersed phase in the form of a multiplicity of laminar liquid filaments flowing from one channel at a split mouth into a free environment escape.
  • the emulsifying device contains a supply line for feeding the continuous phase into the channel.
  • the supply line has, at least adjacent to the channel, a straight direction with which an axial reference direction (z-direction) of the emulsifying device is determined.
  • the output of the emulsion from the emulsifying means may also be parallel to the axial reference direction (first embodiment of the invention) or in a direction other than the axial reference direction, particularly in a plane perpendicular to the axial reference direction, i. H. in a radial reference direction (x-direction) (second embodiment of the invention).
  • the emulsifying device according to the invention further comprises at least one injection line for feeding the dispersed phase into the channel. From each injection line, the dispersed phase is distributed through the injection wells in the channel.
  • the term "channel” or “gap” generally refers to a volume area between the injection wells and the dispersion area bounded by walls having such a small vertical distance that fluids injected through the injection wells form laminar flows.
  • the terms "continuous phase” and “dispersed phase” generally refer to liquids herein.
  • the liquid of the dispersed phase reactant, eg aqueous solution
  • carrier liquid eg an oil
  • environment of the emulsifying device refers to an area adjacent to the gap mouth of the channel, in which the emulsion can freely spread in at least two spatial directions.
  • the gap mouth has a curved Mouth history, so that advantageously the space density and thus the yield of the emulsion formation can be increased.
  • the dispersion region may extend in the reaction vessel for receiving the emulsion with a curved perpendicular to the axial extent of the emulsifying edge, the length of which is greater than would be the case with a straight course of the mouth.
  • Particularly preferred is an endless gap mouth with a closed mouth course, for example provided with a circular mouth course (annular gap). If the gap mouth of the channel is circular, there may be advantages for adjusting the exit of the emulsion in the axial or radial direction relative to the axial reference direction of the emulsifying device.
  • two injection lines for supplying the at least one dispersed phase are provided in the channel, each having a plurality of injection holes.
  • the injection holes open in opposite, z. B. upper and lower side walls in the channel. This simplifies the feeding of a dispersed phase with a high filament density in the channel and / or the separate feeding of different dispersed phases into the channel.
  • the mouths of the injection holes in the channel are distributed transversely to the flow direction in the channel so that from each injection hole a laminar remplisstechniksfilament can be formed to the gap mouth of the channel.
  • the at least one dispersed phase is distributed over the channel in the transverse direction thereof with the injection bores.
  • the two injection lines are provided for supplying various dispersed phases in the channel.
  • the injection lines are connected to separate reservoirs of a Fluidik adopted containing the dispersed phases.
  • the emulsifying device can thus be used for mixing the dispersed phases.
  • the injection bores have funnel-shaped injection openings, via which the injection line (s) is (are) connected to the injection bores.
  • the flow resistance during the supply of the at least one dispersed phase is thus reduced.
  • the funnel-shaped injection openings of adjacent injection bores can be connected by a groove, for example an annular groove.
  • the emulsion may advantageously be dispensed into a reaction vessel in a single direction.
  • the injection bores preferably run in the radial direction, that is to say perpendicular to the axial reference direction of the emulsifying device.
  • the at least one injection line and the supply line are arranged coaxially relative to one another, advantages for a compact construction of the emulsifying device can result.
  • the emulsifying device can advantageously have an outer shape of a cylinder, in which the injection line and the supply line extend axially and at the free end (front side) of the dispersion region is formed.
  • the channel extending to the dispersion region is aligned in the radial direction, that is, perpendicular to the axial reference direction of the emulsifying device (second embodiment of the invention)
  • advantages may be related by radially discharging the emulsion in different directions result in the emulsifier.
  • the channel extends in the radial direction from the supply line to an inner or outer peripheral edge of the emulsifying device.
  • the injection bores may advantageously be aligned parallel to the axial reference direction of the emulsifying device.
  • the channel is particularly preferably formed as a planar gap between two plates, which extend in the radial direction, that is perpendicular to the axial reference direction of the emulsifying.
  • the injection bores can be arranged in one or in both of the plates in order to open into the channel correspondingly on one or both sides.
  • the injection bores opening into the channel on both sides are preferably arranged offset relative to one another azimuthally. In this case, various dispersed phases can be alternately introduced side by side into the channel.
  • FIGS. 1 to 4 First, the geometry and in particular the mutual orientation of the supply line, the injection bores and the channel with the dispersion region in the emulsifying device according to the invention will be described. Details of the liquid transport into the supply line and the injection wells are exemplified in the FIGS. 5 to 10 shown.
  • the described emulsifying device is connected to a fluidic device for supplying liquid and controlling the emulsifying device. Details of the Fluidik worn (not shown), such as.
  • As liquid reservoirs, feed pumps, lines, valves and the like. Are known per se and are therefore not described here.
  • FIG. 1 shows the first embodiment of the emulsifying device 100 according to the invention with an inner part 110 and an outer part 120.
  • the inner part 110 has the shape of a straight circular cylinder with an outer diameter which is smaller than the inner diameter of the hollow cylindrical outer part 120.
  • the cylinder axes of the concentrically arranged inner and outer parts 110, 120 form the axial reference direction (z) of the emulsifying device 100.
  • the channel 20 (gap 20) is formed, which leads to the dispersion region 10.
  • the channel 20 is adapted for receiving a hollow cylindrical liquid layer of the continuous and dispersed phases 2, 3, which form liquid liquid filaments on liquid supply, which flow to the dispersion region 10.
  • the distance between the outer diameter of the inner part 110 and the inner diameter of the outer part 120 (radial channel height) is selected such that interfaces between the continuous and dispersed phases 2, 3 extend between the inner and outer parts 110, 120.
  • the radial channel height is selected, for example, in the range of 1 .mu.m to 0.1 mm.
  • the dispersion region 10 is formed by the mouth of the channel 20 into the surroundings of the emulsifying device 100.
  • the annular gap opening 11 is formed, at which the channel 20 extends stepwise in the radial direction.
  • the laminar liquid filaments of the continuous and dispersed phases 2, 3 in the channel 20 are unstable, so that they disintegrate into individual drops.
  • the droplet size is determined essentially by the radial channel height, which is the same for all droplets, so that advantageously a monodisperse droplet size distribution is generated.
  • the droplet size may be further influenced by a filling pressure or a delivery rate of the dispersed phases in the injection lines.
  • the filling pressure and / or the delivery rate of the dispersed phases may be in each injection line z. B. with a feed pump, in particular a syringe pump can be adjusted.
  • the feeding of the continuous phase 2 into the channel 20 takes place through the feed line 30.
  • the feed line 30, like the channel 20, is formed by the distance between the inner and outer parts 110, 120. Preferably, this distance in the regions of the channel 20 and the supply line 30, so that the channel 20 is substantially a continuation of the supply line 30.
  • the radial channel height in the channel 20 may deviate from the channel height in the supply line, in particular be smaller.
  • each injection well 42 extends from an injection port 43 in the outer surface of the outer member 120 to the channel 20.
  • an emulsion 1 comprising the continuous phase 2 and the dispersed phase 3
  • the continuous phase 2 is passed through the supply line 30 into the channel 20.
  • the feeding of the dispersed phase 3 through the injection bores 42 likewise takes place in the channel 20.
  • the flows of the continuous and dispersed phases 2, 3 flow as laminar liquid filaments to the dispersion region 10, at which the drop formation takes place.
  • the flow of the liquid filaments in the gap-shaped channel 20 is an essential feature for the production of monodisperse emulsions. Without the channel 20, the dispersed phase would expire on exiting small holes directly into the free environment even in single drops, but would have a polydisperse size distribution.
  • the droplets of the dispersed phase 3 flow in the variant according to FIG. 1 in the axial direction and with increasing distance from the gap opening 11 radially outwards, since the inner part 110 continues over the radial length of the outer part 120.
  • the outer part 120 can continue over the axial end of the inner part 110, as shown schematically in FIG FIG. 2 is illustrated.
  • the dispersion region 10 the channel 20, the supply line 30, and the injection wells 42 are as in FIG FIG. 1 arranged, which is limited by the limiting effect of the outer part 120, the exiting through the gap mouth 11 in the environment emulsion 1 radially inwardly.
  • FIGS. 3 and 4 show two variants of the second embodiment of the invention, in which the supply line 30 also extends in the axial direction of the emulsifying device 100, the channel 20, however, in contrast to the first embodiment ( FIGS. 1, 2 ) is aligned in the radial direction.
  • the upper and lower parts 130, 140 are arranged at a distance relative to each other, wherein between the mutually facing, flat side surfaces of the upper and lower parts 130, 140 of the channel 20 is formed.
  • the upper part 130 has the shape of a straight hollow cylinder.
  • the supply line 30 for supplying the continuous phase 2 into the channel 20 is provided inside the upper part 130.
  • the injection bores 42 also extend in the axial direction in the upper part 130. They extend parallel to the supply line 30 from the injection openings 43 to the channel 20. For reasons of clarity, only two injection bores 42 are illustrated again.
  • the continuous phase 2 is conducted through the supply line 30 into the channel 20.
  • the dispersed phase 3 is conducted from an injection line 40 above the upper part 130 via the injection bores 42 into the channel 20.
  • the continuous and the dispersed phase 2, 3 radially outwardly flowing laminar remplisstechniksfilrait formed at the annular gap mouth 11 of the dispersion region 10 decay into single drops according to the mechanism described above.
  • FIG. 4 shows a modified variant of the second embodiment of the emulsifying device 100 according to the invention, in which the supply line 30 is formed outside of the upper part 130 and the continuous and dispersed phases 2, 3 in the channel 20 to flow radially inwardly. Accordingly, the emulsion 1 is generated inside the hollow cylindrical shell 130.
  • the injection holes 40 of the emulsifying device 100 according to the Figures 1 or 2 can be applied alternately with different dispersed phases, so a mixed emulsion can be generated accordingly.
  • the structure of the emulsifying device 100 for producing the mixed emulsion can be simplified if the different dispersed phases 3 are injected into the channel 20 on both sides. Details of corresponding variants of the first embodiment of the emulsifying device according to the invention are in the FIGS. 5 and 6 illustrated.
  • the emulsifying device 100 has a concentric construction of the inner and outer parts 110, 120.
  • the outer part 120 comprises a hollow cylinder, in whose wall a first injection line 40 extends. From the first injection line 40, the first dispersed phase 3.1 can be injected into the channel 20 via external injection bores 42.
  • the inner part 110 likewise comprises a hollow cylinder in which a second injection line 41 extends, from which the second dispersed phase 3.2 can be injected into the channel 20 via inner injection bores 42.
  • the injection bores 42 each have funnel-shaped injection openings 43.
  • the channel 20 and the supply line 30 are formed by the distance between the inner and outer parts 110, 120, as described above.
  • the first embodiment of the invention has the advantage that the mixing emulsion 1 is produced at the front side of the emulsifying device 100 with a high density.
  • the continuous phase 2 and the dispersed phases 3.1, 3.2 are introduced into the channel 20.
  • laminar liquid filaments are formed, wherein the first and second dispersed phases are preferably arranged alternately side by side.
  • the dispersed phases decompose according to the mechanism described above into single drops distributed in the continuous phase.
  • the mixing ratio of the dispersed phases 3.1, 3.2 in the continuous phase 2 can be adjusted by the volume flows in the first and second injection lines 40, 41.
  • a droplet size ratio can also be set.
  • the droplets with defined droplet number densities form a specific arrangement in the structure of the emulsion.
  • FIG. 6 A further variant of the first embodiment of the emulsifying device 100 according to the invention is shown in FIG. 6 exemplified.
  • the emulsifying device 100 comprises the inner part 110 and the outer part 120, in which the injection lines 41, 40 are arranged.
  • the supply line 30 in the gap between the inner and outer parts 110, 120 is connected via a line connection (not shown) with a reservoir of the continuous phase.
  • the first and second injection lines 40, 41 are respectively connected to reservoirs of the first and second dispersed phases.
  • the injection holes are in the immediate vicinity of the dispersion area 10.
  • the axial length of the channel 20 from the injection holes to the gap mouth can be chosen so small that in the channel 20 just the stable laminar remplisstechniksfil noir be formed.
  • the axial length of the channel 20 may be selected, for example, in the range of 10 microns to 1 mm.
  • the emulsifying device 100 according to FIG. 5 or 6 is manufactured by providing the inner and outer parts 110, 120 by mechanical shaping (for example turning) and providing them with the injection bores 42 and the injection openings 43.
  • the holes can be generated for example by means of spark erosion.
  • available lithography techniques, etching processes, and / or electroplating techniques may be used.
  • the emulsifying device 100 according to FIG. 6 was tested in practice in which by the first injection line 40 and water through the second injection line 41 an oil-surfactant mixture (mono-olein in tetradecane) were led to the dispersion region 10. Within a few seconds, a volume of about one eighth of a cubic centimeter could be filled with a mixed emulsion of the two dispersed phases.
  • the radial channel height (distance between the inner and outer parts 110, 120) was 50 ⁇ m.
  • the diameter of the injection wells was around 100 ⁇ m.
  • the droplet size of the dispersed phases was around 200 ⁇ m. To produce smaller drop diameters, the injection wells can be provided with a correspondingly reduced diameter.
  • FIGS. 7 and 8 show further variants of the second embodiment of the emulsifying device 100 according to the invention for generating a radially outwardly, to a peripheral edge 12 of the emulsifying 100 flowing mixing emulsion (see FIG. 3 ).
  • FIG. 7 shows a schematic sectional view of the intended to produce the mixing emulsion 1 parts of the emulsifying 100.
  • the top and bottom parts 130, 140 include two round plates, the two planar, corresponding to the desired channel height z 0 spaced side surfaces.
  • FIG. 8 Illustrates the top view of the top 130.
  • the supply line 30 for supplying the continuous phase 2 is provided in the middle of the upper and lower parts 130, 140.
  • the injection bores 42 have funnel-shaped injection openings 43, which are connected via an annular groove 44.
  • Injection holes 42 are provided both in the upper part 130 and in the lower part 140. From the two sides of the channel 20, various dispersed phases 3.1, 3.2 are introduced into the channel.
  • the structure according to the FIGS. 7 and 8 can be realized, for example, with the following dimensions.
  • the upper and lower parts 130, 140 have a diameter of 2 cm.
  • the distance z 0 of the upper and lower parts 130, 140 and thus the axial channel height is preferably comparable to the diameter of the injection holes 42 or less than this, for example in the range of 1 .mu.m to 0.1 mm.
  • the number of injection bores 42 in the upper and lower parts 130, 140 is preferably the same size (for example, 240).
  • the hole circle formed by the injection holes 42 has a radius of about 8 mm.
  • the injection holes 42 are arranged at a distance which is preferably greater than twice the bore diameter, for example in the range of 5 microns to 0.5 mm, is selected and z. B. at a diameter of 30 microns is about 120 microns. Accordingly, 480 liquid filaments each with a width of about 30 microns can be formed. The width of the liquid filaments grows slightly in the radial direction, because the liquids flow slower due to the growing extent to the outside.
  • the upper and lower parts 130, 140 are arranged so rotated relative to each other that the injection holes 42 different azimuth angles relative to the radial reference direction of Emulsifier 100 have.
  • the various dispersed phases can advantageously be arranged side by side in the channel 20.
  • the continuous phase 2 and the dispersed phases 3.1, 3.2 are introduced into the channel 20. From each liquid entering into the channel 20 through one of the injection bores 42, a liquid filament is formed whose boundary surface is spanned relative to the liquid of the continuous phase 2 between the walls of the channel 20, ie between the upper and lower parts 130, 140. By acting on all of the injection bores 42 with dispersed phases, a ring of liquid filaments is formed in the gap-shaped channel 20 and flows radially and laminarly outwards in the flow of the continuous phase 2.
  • the differently dispersed phases 3.1, 3.2 are arranged azimuthally alternately next to each other. When the liquid filaments flow radially outward through the circular gap mouth 11 of the dispersion region 10, they decompose into single droplets in the free environment.
  • FIG. 9 shows a structure analogous to FIG. 7 with an upper part 130 and a lower part 140, between which the channel 20, the supply line 30 and the injection bores 42 are formed.
  • the continuous phase 2 is transported by the supply line 30 radially inward to the channel 20, where the injection of the dispersed phases 3.1, 3.2 takes place on both sides.
  • the radially inwardly flowing liquid filaments in the channel 20 decay at the gap mouth 11 of the dispersion region 10 into individual drops.
  • the emulsion 1 formed is transported away in the axial direction.
  • the upper and lower parts 130, 140 for providing the injection bores 40 and the corresponding injection lines 41, 42 are composed of a plurality of structured plates. Between the upper and lower parts 130, 140, an azimuthally interrupted spacer 21 is provided to form the channel 20, through which the continuous phase 2 and the dispersed phases 3.1, 3.2 flow to the channel 20.

Abstract

An emulsifying device (100) for forming an emulsion (1) having a continuous phase (2) and at least one dispersed phase (3.1, 3.2) includes a dispersion region (10) for forming the emulsion (1), a channel (20) which leads to the dispersion region (10) and is designed to accommodate laminar-flowing liquid filaments of the continuous and dispersed phases (2, 3.1, 3.2), a feed line (30) for feeding the continuous phase (2) into the channel (20), and at least one injection line (40, 41) for supplying the at least one dispersed phase (3.1, 3.2) into the channel (20), wherein the at least one injection line (40, 41) is connected to the channel (20) via a multitude of injection bores (42), and the dispersion region (10) includes a gap opening (11) of the channel (20) which opens into an environment of the emulsifying device (100). A process is also described for forming an emulsion (1) having a continuous phase (2) and at least one dispersed phase (3.1, 3.2).

Description

Die Erfindung betrifft eine Emulgiereinrichtung zur Bildung einer Emulsion mit einer kontinuierlichen und mindestens einer dispergierten Phase, insbesondere eine Emulgiereinrichtung mit einem Kanal (oder: Spalt), der zur Aufnahme laminarer, strömender Flüssigkeitsfilamente der verschiedenen Phasen eingerichtet ist und der eine Kanalerweiterung aufweist, an der die mindestens eine dispergierte Phase in einzelne Tropfen zerfällt. Des weiteren betrifft die Erfindung ein Verfahren zur Bildung einer Emulsion mit einer kontinuierlichen Phase und mindestens einer dispergierten Phase, insbesondere ein Verfahren zur Erzeugung einer Mischemulsion mit mehreren dispergierten Phasen. Speziell betrifft die Erfindung eine Emulgiereinrichtung und ein Emulgierverfahren mit den Merkmalen der Oberbegriffe der nebengeordneten Ansprüche.The invention relates to an emulsifying device for forming an emulsion having a continuous and at least one dispersed phase, in particular an emulsifying device having a channel (or gap) adapted to receive laminar, flowing liquid filaments of the different phases and having a channel widening on which the at least one dispersed phase decomposes into individual drops. The invention further relates to a process for forming an emulsion having a continuous phase and at least one dispersed phase, in particular a process for producing a mixed emulsion having a plurality of dispersed phases. Specifically, the invention relates to an emulsifying device and an emulsifying method having the features of the preambles of the independent claims.

Eine herkömmliche Emulgiereinrichtung 100' zur Bildung einer Emulsion aus einer kontinuierlichen Phase und mindestens einer dispergierten Phase, die von C. Priest et al. in "Applied Physics Letters" (Band 88, 2006, 024106-01 ) beschrieben wurde, ist schematisch in Figur 11 illustriert. Die Emulgiereinrichtung 100' umfasst einen Dispersionsbereich 10' der als Teil eines Kanals 20' im Inneren eines fluidischen Mikrosystems gebildet ist. Der Kanal 20' ist mit einer Zufuhrleitung 30' zur Zuführung der kontinuierlichen Phase 2' und mit einer Injektionsleitung 40' zur Zuführung der dispergierten Phase 3' verbunden. Boden- und Deckwände des Kanals 20' haben einen derart geringen senkrechten Abstand, dass die miteinander nicht mischbaren Flüssigkeiten der kontinuierlichen und dispergierten Phasen im Kanal 20' als dünne Filamente nebeneinander strömen. Die Grenzfläche, welche die beiden Flüssigkeiten trennt, erstreckt sich zwischen den Boden- und Deckwänden. Die kontinuierlichen und dispergierten Phasen bilden eine dynamisch stabile, laminare Strömung. Im Dispersionsbereich 10' erweitert sich der Kanal 20' stufenförmig. Es ist eine Kante 11' vorgesehen, an der die fadenförmigen Flüssigkeitsströmungen instabil werden und in einzelne Tropfen zerfallen. Im Dispersionsbereich 10' wird die dispergierte Phase 3' tropfenförmig in der kontinuierlichen Phase 2' verteilt, so dass stromabwärts vom Dispersionsbereich 10' die Phasen 2', 3' im Kanal 20' als Emulsion 1' weiter strömen.A conventional emulsifier 100 'for forming a continuous phase emulsion and at least one dispersed phase derived from C. Priest et al. in Applied Physics Letters (Vol. 88, 2006, 024106-01 ) is schematically shown in FIG FIG. 11 illustrated. The emulsifying device 100 'comprises a dispersion region 10' which is formed as part of a channel 20 'in the interior of a fluidic microsystem. The channel 20 'is connected to a supply line 30' for supplying the continuous phase 2 'and to a injection line 40' for supplying the dispersed phase 3 '. Bottom and top walls of the channel 20 'have such a small vertical distance that the immiscible liquids of the continuous and dispersed phases in the channel 20' as thin filaments flow side by side. The interface which separates the two liquids extends between the bottom and top walls. The continuous and dispersed phases form a dynamic stable, laminar flow. In the dispersion region 10 ', the channel 20' widens stepwise. An edge 11 'is provided at which the thread-like liquid flows become unstable and disintegrate into individual drops. In the dispersion region 10 ', the dispersed phase 3' is distributed drop-wise in the continuous phase 2 ', so that downstream of the dispersion region 10' the phases 2 ', 3' in the channel 20 'continue to flow as emulsion 1'.

Die herkömmliche Emulgiereinrichtung 100' gemäß Figur 11 hat den Nachteil, dass sich der Dispersionsbereich 10' mit dem sich erweiternden Kanal 20' im Inneren des Mikrosystems befindet. Die Tropfen der dispergierten Phase werden im Wesentlichen seriell erzeugt. Im Ergebnis können mit der herkömmlichen Emulgiereinrichtung 100' nur geringer Emulsionsmengen erzeugt werden, die für praktische Anwendungen, zum Beispiel in der Flüssigphasen-Verfahrenstechnik zu gering sind. Um die Emulsionsmenge zu vergrößern, müssten eine Vielzahl von Emulgiereinrichtungen 100' kombiniert werden, was jedoch einen unakzeptabel hohen gerätetechnischen Aufwand darstellt.The conventional emulsifying device 100 'according to FIG. 11 has the disadvantage that the dispersion region 10 'with the widening channel 20' is located inside the microsystem. The droplets of the dispersed phase are generated substantially serially. As a result, with the conventional emulsifying device 100 ', only small amounts of emulsion can be produced, which are too low for practical applications, for example in liquid phase processing technology. In order to increase the amount of emulsion, a large number of emulsifying devices 100 'would have to be combined, which, however, represents an unacceptably high expenditure on equipment.

Ein weiteres generelles Problem der herkömmlichen Flüssigphasen-Verfahrenstechnik besteht bei der Steuerung von chemischen Reaktionen zwischen Ausgangsstoffen, die im flüssigen Zustand vermischt werden. Bei vielen Anwendungen ist es unerwünscht, dass die Reaktion zwischen den Ausgangsstoffen bereits beim Beginn des Mischens spontan beginnt. Da der Mischvorgang eine bestimmte Dauer hat, ist das Mischungsverhältnis der miteinander reagierenden Substanzen während des Mischens und der weiteren Reaktion nicht konstant. Im Ergebnis können Beschränkungen bei der Einstellung einer bestimmten Reaktionsstöchiometrie oder anderer Reaktionsbedingungen auftreten. Dieses Problem stellt insbesondere bei der Herstellung hochwertiger chemischer Spezialprodukte mit einer bestimmten chemischen Zusammensetzung einen erheblich Nachteil dar. Beispielsweise muss bei der Erzeugung von Halbleiter-Nanopartikeln aus der Flüssigphase bisher eine relative breite Größenverteilung der Nanopartikel in Kauf genommen werden.Another general problem of conventional liquid phase process technology is the control of chemical reactions between starting materials which are mixed in the liquid state. In many applications it is undesirable that the reaction between the starting materials begins spontaneously at the beginning of the mixing. Since the mixing process has a certain duration, the mixing ratio of the substances reacting with each other during mixing and the further reaction is not constant. As a result, limitations may occur in the adjustment of a particular reaction stoichiometry or other reaction conditions. This problem is a considerable disadvantage, in particular in the production of high-quality chemical specialty products with a specific chemical composition. For example, in the production of semiconductor nanoparticles from the Liquid phase so far a relatively broad size distribution of the nanoparticles are accepted.

Eine Lösung dieses Problems könnte mit einer Mischung der verschiedenen Flüssigkeiten erreicht werden, die nicht auf dem Phänomen der Turbulenz, sondern auf einem gemeinsamen Emulgieren basiert. Beim Emulgieren kann instantan eine Mischemulsion mit einem bestimmten Mischungsverhältnis eingestellt werden, welches dann für die gesamte Dauer der Reaktion konstant ist. In der Folge können die zunächst bestehenden Phasengrenzen in der Emulsion durch einen äußeren Einfluss, wie zum Beispiel ein Mikrowellenfeld oder eine elektrische Spannung unterbrochen werden, um für den Beginn der Reaktion der Flüssigkeiten einen definierten Startzeitpunkt zu erhalten.A solution to this problem could be achieved with a mixture of the different liquids, based not on the phenomenon of turbulence, but on a common emulsification. During emulsification, instantaneously a mixed emulsion with a certain mixing ratio can be set, which is then constant for the entire duration of the reaction. As a result, the initially existing phase boundaries in the emulsion can be interrupted by an external influence, such as a microwave field or an electrical voltage, in order to obtain a defined starting time for the start of the reaction of the liquids.

Die herkömmliche Emulgiereinrichtung 100' hat neben dem genannten Problem der geringen Emulsionsausbeute zusätzlich den Nachteil, dass sie zur Herstellung einer Mischemulsion nur beschränkt geeignet ist. Bisher wurde insbesondere keine Möglichkeit veröffentlicht, wie mit der herkömmlichen Emulgiereinrichtung 100' eine Mischemulsion herstellbar sein könnte.The conventional emulsifier 100 'in addition to the mentioned problem of low emulsion yield additionally has the disadvantage that it is only limited suitable for the preparation of a mixed emulsion. So far, in particular, no way has been published, as with the conventional emulsifier 100 'a mixed emulsion could be produced.

Dokument US-A-2004/228882 ofenbart eine Emulgiervorrichtung gemäß den Oberbegriff des Anspruchs 1 und ein Verfahren gemäß den Oberbegriff des Anspruchs 20.document US-A-2004/228882 discloses an emulsifying apparatus according to the preamble of claim 1 and a method according to the preamble of claim 20.

Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte Emulgiereinrichtung bereitzustellen, mit der die Nachteile der herkömmlichen Emulgiertechniken überwunden werden. Die Erfindung basiert ferner auf der Aufgabe, ein verbessertes Emulgierverfahren bereitzustellen, mit dem die Nachteile der herkömmlichen Emulgiertechniken überwunden werden. Die Emulgiereinrichtung und das Emulgierverfahren sollen insbesondere einen erweiterten Anwendungsbereich haben und speziell für die Herstellung von Mischemulsionen geeignet sein.The invention has for its object to provide an improved emulsifying device, with which the disadvantages of the conventional emulsification techniques are overcome. The invention is further based on the object of providing an improved emulsification process which overcomes the disadvantages of conventional emulsification techniques. The emulsifier and the emulsification process should in particular have a broader field of application and be particularly suitable for the preparation of mixed emulsions.

Diese Aufgaben werden durch eine Emulgiereinrichtung und ein Verfahren mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.These objects are achieved by an emulsifying device and a method having the features of the independent claims. Advantageous embodiments and applications of the invention will become apparent from the dependent claims.

Gemäß einem ersten Gesichtspunkt basiert die Erfindung auf der allgemeinen technischen Lehre, eine Emulgiereinrichtung zur Bildung einer Emulsion mit einer kontinuierlichen Phase und mindestens einer dispergierten Phase bereitzustellen, die einen Dispersionsbereich zur Bildung der Emulsion durch einen Zerfall laminarer Strömungen der kontinuierlichen und der mindestens einen dispergierten Phase aufweist, wobei ein Kanal zur Aufnahme der laminaren Strömungen und eine Vielzahl von Injektionsbohrungen vorgesehen sind, durch welche die mindestens eine dispergierte Phase in den Kanal injizierbar ist, und der Dispersionsbereich durch eine Spaltmündung des Kanals gebildet wird, die sich unmittelbar in eine freie Umgebung der Emulgiereinrichtung öffnet.According to a first aspect, the invention is based on the general technical teaching to provide an emulsifier for forming a continuous phase emulsion and at least one dispersed phase having a dispersion area for forming the emulsion by decomposing laminar flows of the continuous and the at least one dispersed phase , wherein a channel for receiving the laminar flows and a plurality of injection bores are provided, through which the at least one dispersed phase is injectable into the channel, and the dispersion region is formed by a gap mouth of the channel, which directly into a free environment of Emulgerereinrichtung opens.

Durch die erfindungsgemäße Kombination einer Vielzahl von in den Kanal mündenden Injektionsbohrungen mit einem durch ein Kanalende gebildeten Dispersionsbereich wird vorteilhafterweise eine kompakte Emulsionsquelle geschaffen, mit der eine Emulsion mit praktisch interessierenden Geschwindigkeiten und Volumina unmittelbar in einem Reaktionsgefäß bereitgestellt werden kann. Die Injektionsbohrungen ermöglichen, dass zahlreiche Flüssigkeitsfilamente aus einer einzigen oder mehreren, z. B. zwei verschiedenen dispergierten Phasen im Kanal zeitgleich gebildet werden und zum Dispersionsbereich strömen. Abweichend von der herkömmlichen seriellen Emulsionserzeugung wird eine parallele Emulsionserzeugung ermöglicht.The combination according to the invention of a multiplicity of injection bores opening into the channel with a dispersion region formed by a channel end advantageously provides a compact emulsion source with which an emulsion of practically interesting rates and volumes can be provided directly in a reaction vessel. The injection wells allow numerous liquid filaments to be formed from a single or multiple, e.g. B. two different dispersed phases in the channel are formed simultaneously and flow to the dispersion region. Unlike conventional serial emulsion production, parallel emulsion production is enabled.

Gemäß einem zweiten Gesichtspunkt basiert die Erfindung auf der allgemeinen technischen Lehre, ein Emulgierverfahren bereitzustellen, bei dem zur Bildung der Emulsion die kontinuierliche Phase und die mindestens eine dispergierte Phase in Form einer Vielzahl nebeneinander strömender laminarer Flüssigkeitsfilamente von einem Kanal an einer Spaltmündung in eine freie Umgebung austreten.According to a second aspect, the invention is based on the general technical teaching of providing an emulsification process in which the continuous phase and the at least one dispersed phase in the form of a multiplicity of laminar liquid filaments flowing from one channel at a split mouth into a free environment escape.

Die erfindungsgemäße Emulgiereinrichtung enthält eine Zufuhrleitung zur Zuführung der kontinuierlichen Phase in den Kanal. Die Zufuhrleitung hat zumindest an den Kanal angrenzend eine gerade Richtung, mit der eine axiale Bezugsrichtung (z-Richtung) der Emulgiereinrichtung festgelegt wird. Die Ausgabe der Emulsion aus der Emulgiereinrichtung kann ebenfalls parallel zu der axialen Bezugsrichtung (erste Ausführungsform der Erfindung) oder in einer von der axialen Bezugsrichtung abweichenden Richtung, insbesondere in einer Ebene senkrecht zu der axialen Bezugsrichtung, d. h. in einer radiale Bezugsrichtung (x-Richtung) erfolgen (zweite Ausführungsform der Erfindung). Die erfindungsgemäße Emulgiereinrichtung enthält eine des Weiteren mindestens eine Injektionsleitung zur Zuführung der dispergierten Phase in den Kanal. Von jeder Injektionsleitung wird die dispergierte Phase über die Injektionsbohrungen im Kanal verteilt.The emulsifying device according to the invention contains a supply line for feeding the continuous phase into the channel. The supply line has, at least adjacent to the channel, a straight direction with which an axial reference direction (z-direction) of the emulsifying device is determined. The output of the emulsion from the emulsifying means may also be parallel to the axial reference direction (first embodiment of the invention) or in a direction other than the axial reference direction, particularly in a plane perpendicular to the axial reference direction, i. H. in a radial reference direction (x-direction) (second embodiment of the invention). The emulsifying device according to the invention further comprises at least one injection line for feeding the dispersed phase into the channel. From each injection line, the dispersed phase is distributed through the injection wells in the channel.

Mit dem Begriff "Kanal" oder "Spalt" wird hier allgemein ein Volumenbereich zwischen den Injektionsbohrungen und dem Dispersionsbereich bezeichnet, der durch Wände mit einem derart geringen senkrechten Abstand begrenzt wird, dass durch die Injektionsbohrungen injizierte Flüssigkeiten laminare Strömungen bilden. Mit den Begriffen "kontinuierliche Phase" und "dispergierte Phase" werden hier allgemein Flüssigkeiten bezeichnet. Die Flüssigkeit der dispergierten Phase (Reaktand, z. B. wässrige Lösung) ist mit der Flüssigkeit der kontinuierlichen Phase (Trägerflüssigkeit, z. B. ein Öl) nicht mischbar. Mit dem Begriff "Umgebung der Emulgiereinrichtung" wird ein an die Spaltmündung des Kanals angrenzender Bereich bezeichnet, in dem sich die Emulsion in wenigstens zwei Raumrichtungen frei ausbreiten kann.As used herein, the term "channel" or "gap" generally refers to a volume area between the injection wells and the dispersion area bounded by walls having such a small vertical distance that fluids injected through the injection wells form laminar flows. The terms "continuous phase" and "dispersed phase" generally refer to liquids herein. The liquid of the dispersed phase (reactant, eg aqueous solution) is immiscible with the liquid of the continuous phase (carrier liquid, eg an oil). The term "environment of the emulsifying device" refers to an area adjacent to the gap mouth of the channel, in which the emulsion can freely spread in at least two spatial directions.

Vorteilhafterweise ist eine breite Variabilität bei der geometrischen Gestaltung des Dispersionsbereiches und der Ausrichtung des Kanals gegeben. Gemäß einer bevorzugten Ausführungsform der Erfindung weist die Spaltmündung einen gekrümmten Mündungsverlauf auf, so dass vorteilhafterweise die Raumdichte und damit die Ausbeute der Emulsionsbildung vergrößert werden können. Der Dispersionsbereich kann sich im Reaktionsgefäß zur Aufnahme der Emulsion mit einer senkrecht zur axialen Ausdehnung der Emulgiereinrichtung gekrümmten Kante erstrecken, deren Länge größer ist, als dies bei einem geraden Mündungsverlauf der Fall wäre. Besonders bevorzugt ist eine endlose Spaltmündung mit einem geschlossenen Mündungsverlauf, zum Beispiel mit einem kreisförmigen Mündungsverlauf (Ringspalt) vorgesehen. Wenn die Spaltmündung des Kanals kreisförmig gebildet ist, können sich Vorteile für die Anpassung des Austritts der Emulsion in axialer oder radialer Richtung relativ zu der axialen Bezugsrichtung der Emulgiereinrichtung ergeben.Advantageously, there is a wide variability in the geometric design of the dispersion region and the orientation of the channel. According to a preferred embodiment of the invention, the gap mouth has a curved Mouth history, so that advantageously the space density and thus the yield of the emulsion formation can be increased. The dispersion region may extend in the reaction vessel for receiving the emulsion with a curved perpendicular to the axial extent of the emulsifying edge, the length of which is greater than would be the case with a straight course of the mouth. Particularly preferred is an endless gap mouth with a closed mouth course, for example provided with a circular mouth course (annular gap). If the gap mouth of the channel is circular, there may be advantages for adjusting the exit of the emulsion in the axial or radial direction relative to the axial reference direction of the emulsifying device.

Bei der erfindungsgemäßen Emulgiereinrichtung sind vorzugsweise zwei Injektionsleitungen zur Zuführung der mindestens einen dispergierten Phase in den Kanal vorgesehen, die jeweils eine Vielzahl von Injektionsbohrungen aufweisen. Die Injektionsbohrungen münden in entgegengesetzten, z. B. oberen und unteren Seitenwänden in den Kanal. Dadurch werden die Zuführung einer dispergierten Phase mit einer hohen Filamentdichte im Kanal und/oder die getrennte Zuführung verschiedener dispergierter Phasen in den Kanal vereinfacht. Die Mündungen der Injektionsbohrungen in den Kanal sind quer zur Strömungsrichtung im Kanal so verteilt, dass von jeder Injektionsbohrung ein laminares Flüssigkeitsfilament zur Spaltmündung des Kanals gebildet werden kann. Vorteilhafterweise wird mit den Injektionsbohrungen die mindestens eine dispergierte Phase über den Kanal in dessen Querrichtung verteilt.In the emulsifying device according to the invention preferably two injection lines for supplying the at least one dispersed phase are provided in the channel, each having a plurality of injection holes. The injection holes open in opposite, z. B. upper and lower side walls in the channel. This simplifies the feeding of a dispersed phase with a high filament density in the channel and / or the separate feeding of different dispersed phases into the channel. The mouths of the injection holes in the channel are distributed transversely to the flow direction in the channel so that from each injection hole a laminar Flüssigkeitsfilament can be formed to the gap mouth of the channel. Advantageously, the at least one dispersed phase is distributed over the channel in the transverse direction thereof with the injection bores.

Besonders bevorzugt ist eine Variante der Erfindung, bei der die zwei Injektionsleitungen zur Zuführung verschiedener dispergierter Phasen in den Kanal vorgesehen sind. Hierzu sind die Injektionsleitungen mit getrennten Reservoiren einer Fluidikeinrichtung verbunden, welche die dispergierter Phasen enthalten. Vorteilhafterweise kann damit die Emulgiereinrichtung zur Mischung der dispergierten Phasen verwendet werden.Particularly preferred is a variant of the invention in which the two injection lines are provided for supplying various dispersed phases in the channel. For this purpose, the injection lines are connected to separate reservoirs of a Fluidikeinrichtung containing the dispersed phases. Advantageously, the emulsifying device can thus be used for mixing the dispersed phases.

Gemäß einer weiteren vorteilhaften Variante der Erfindung weisen die Injektionsbohrungen trichterförmige Injektionsöffnungen auf, über die die Injektionsleitung(en) mit den Injektionsbohrungen verbunden ist (sind). Vorteilhafterweise wird damit der Strömungswiderstand bei der Zuführung der mindestens einen dispergierten Phase vermindert. Die trichterförmigen Injektionsöffnungen benachbarter Injektionsbohrungen können durch eine Nut, zum Beispiel eine Ringnut, verbunden sein. Vorteilhafterweise wird damit die Einführung der mindestens einen dispergierten Phase in die Injektionsbohrungen vereinfacht.According to a further advantageous variant of the invention, the injection bores have funnel-shaped injection openings, via which the injection line (s) is (are) connected to the injection bores. Advantageously, the flow resistance during the supply of the at least one dispersed phase is thus reduced. The funnel-shaped injection openings of adjacent injection bores can be connected by a groove, for example an annular groove. Advantageously, this simplifies the introduction of the at least one dispersed phase into the injection wells.

Wenn der Kanal parallel zu der axialen Bezugsrichtung der Emulgiereinrichtung verläuft (erste Ausführungsform der Erfindung), kann die Emulsion vorteilhafterweise in einer einzigen Richtung in ein Reaktionsgefäß abgegeben werden. Bei der ersten Ausführungsform der Erfindung verlaufen die Injektionsbohrungen vorzugsweise in radialer Richtung, das heißt senkrecht zu der axialen Bezugsrichtung der Emulgiereinrichtung. Wenn gemäß einer bevorzugten Variante die mindestens eine Injektionsleitung und die Zufuhrleitung relativ zueinander koaxial angeordnet sind, können sich Vorteile für in einen kompakten Aufbau der Emulgiereinrichtung ergeben. In diesem Fall kann die Emulgiereinrichtung vorteilhafterweise eine äußere Form eines Zylinders aufweisen, in dem die Injektionsleitung und die Zufuhrleitung axial verlaufen und an dessen freien Ende (Stirnseite) der Dispersionsbereich gebildet ist.When the channel is parallel to the axial reference direction of the emulsifier (first embodiment of the invention), the emulsion may advantageously be dispensed into a reaction vessel in a single direction. In the first embodiment of the invention, the injection bores preferably run in the radial direction, that is to say perpendicular to the axial reference direction of the emulsifying device. If, according to a preferred variant, the at least one injection line and the supply line are arranged coaxially relative to one another, advantages for a compact construction of the emulsifying device can result. In this case, the emulsifying device can advantageously have an outer shape of a cylinder, in which the injection line and the supply line extend axially and at the free end (front side) of the dispersion region is formed.

Wenn der zu dem Dispersionsbereich verlaufende Kanal in radialer Richtung, das heißt senkrecht zu der axialen Bezugsrichtung der Emulgiereinrichtung ausgerichtet ist (zweite Ausführungsform der Erfindung), können sich Vorteile durch eine radiale Abgabe der Emulsion in verschiedene Richtungen relativ zu der Emulgiereinrichtung ergeben. Vorzugsweise verläuft der Kanal in radialer Richtung von der Zufuhrleitung zu einem inneren oder äußeren Umfangsrand der Emulgiereinrichtung. In diesem Fall können die Injektionsbohrungen vorteilhafterweise parallel zu der axialen Bezugsrichtung der Emulgiereinrichtung ausgerichtet sein.When the channel extending to the dispersion region is aligned in the radial direction, that is, perpendicular to the axial reference direction of the emulsifying device (second embodiment of the invention), advantages may be related by radially discharging the emulsion in different directions result in the emulsifier. Preferably, the channel extends in the radial direction from the supply line to an inner or outer peripheral edge of the emulsifying device. In this case, the injection bores may advantageously be aligned parallel to the axial reference direction of the emulsifying device.

Bei der zweiten Ausführungsform der Erfindung ist der Kanal besonders bevorzugt als ebener Spalt zwischen zwei Platten gebildet, die sich in radialer Richtung, das heißt senkrecht zu der axialen Bezugsrichtung der Emulgiereinrichtung erstrecken. Vorteilhafterweise können die Injektionsbohrungen in einer oder in beiden der Platten angeordnet sein, um entsprechend einseitig oder beidseitig in den Kanal zu münden. Für die Herstellung von Mischemulsionen sind die beidseitig in den Kanal mündenden Injektionsbohrungen vorzugsweise azimutal relativ zueinander versetzt angeordnet. In diesem Fall können verschiedene dispergierte Phasen abwechselnd nebeneinander in den Kanal eingeführt werden.In the second embodiment of the invention, the channel is particularly preferably formed as a planar gap between two plates, which extend in the radial direction, that is perpendicular to the axial reference direction of the emulsifying. Advantageously, the injection bores can be arranged in one or in both of the plates in order to open into the channel correspondingly on one or both sides. For the production of mixed emulsions, the injection bores opening into the channel on both sides are preferably arranged offset relative to one another azimuthally. In this case, various dispersed phases can be alternately introduced side by side into the channel.

Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben. Es zeigen:

Figuren 1 und 2:
schematische Illustrationen von zwei Varianten der ersten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung mit einem sich axial öffnenden Dispersionsbereich;
Figuren 3 und 4:
schematische Illustrationen von zwei Varianten der zweiten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung mit einem sich radial öffnenden Dispersionsbereich;
Figuren 5 und 6:
Illustrationen von weiteren Einzelheiten der ersten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung;
Figuren 7 bis 10:
Illustrationen von weiteren Einzelheiten der zweiten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung; und
Figur 11:
eine schematische Illustration einer herkömmlichen Emulgiereinrichtung.
Further details and advantages of the invention will be described below with reference to the accompanying drawings. Show it:
FIGS. 1 and 2:
schematic illustrations of two variants of the first embodiment of the emulsifying device according to the invention with an axially opening dispersion region;
FIGS. 3 and 4:
schematic illustrations of two variants of the second embodiment of the emulsifying device according to the invention with a radially opening dispersion region;
FIGS. 5 and 6:
Illustrations of further details of the first embodiment of the emulsifying device according to the invention;
FIGS. 7 to 10:
Illustrations of further details of the second embodiment of the emulsifying device according to the invention; and
FIG. 11:
a schematic illustration of a conventional emulsifying device.

Bezug nehmend auf die Figuren 1 bis 4 werden zunächst die Geometrie und insbesondere die gegenseitige Ausrichtung der Zufuhrleitung, der Injektionsbohrungen und des Kanals mit dem Dispersionsbereich in der erfindungsgemäßen Emulgiereinrichtung beschrieben. Einzelheiten des Flüssigkeitstransports in die Zufuhrleitung und die Injektionsbohrungen werden beispielhaft in den Figuren 5 bis 10 gezeigt. Die beschriebene Emulgiereinrichtung ist mit einer Fluidikeinrichtung zur Flüssigkeitszufuhr und Steuerung der Emulgiereinrichtung verbunden. Einzelheiten der Fluidikeinrichtung (nicht gezeigt), wie z. B. Flüssigkeitsreservoire, Förderpumpen, Leitungen, Ventile und dgl. sind an sich bekannt und werden daher hier nicht beschrieben.Referring to the FIGS. 1 to 4 First, the geometry and in particular the mutual orientation of the supply line, the injection bores and the channel with the dispersion region in the emulsifying device according to the invention will be described. Details of the liquid transport into the supply line and the injection wells are exemplified in the FIGS. 5 to 10 shown. The described emulsifying device is connected to a fluidic device for supplying liquid and controlling the emulsifying device. Details of the Fluidikeinrichtung (not shown), such as. As liquid reservoirs, feed pumps, lines, valves and the like. Are known per se and are therefore not described here.

Figur 1 zeigt die erste Ausführungsform der erfindungsgemäßen Emulgiereinrichtung 100 mit einem Innenteil 110 und einem Außenteil 120. Das Innenteil 110 hat die Form eines gerade Kreiszylinders mit einem Außendurchmesser, der kleiner als der Innendurchmesser des hohlzylinderförmigen Außenteils 120 ist. Die Zylinderachsen der konzentrisch angeordneten Innen- und Außenteile 110, 120 bilden die axiale Bezugsrichtung (z) der Emulgiereinrichtung 100. FIG. 1 shows the first embodiment of the emulsifying device 100 according to the invention with an inner part 110 and an outer part 120. The inner part 110 has the shape of a straight circular cylinder with an outer diameter which is smaller than the inner diameter of the hollow cylindrical outer part 120. The cylinder axes of the concentrically arranged inner and outer parts 110, 120 form the axial reference direction (z) of the emulsifying device 100.

Zwischen den Innen- und Außenteilen 110, 120 ist der Kanal 20 (Spalt 20) gebildet, der zu dem Dispersionsbereich 10 führt.Between the inner and outer parts 110, 120, the channel 20 (gap 20) is formed, which leads to the dispersion region 10.

Der Kanal 20 ist zur Aufnahme einer hohlzylinderförmigen Flüssigkeitsschicht aus den kontinuierlichen und dispergierten Phasen 2, 3 eingerichtet, die bei Flüssigkeitszufuhr laminare Flüssigkeitsfilamente bilden, die zum Dispersionsbereich 10 strömen. Der Abstand zwischen dem Außendurchmesser des Innenteils 110 und dem Innendurchmesser des Außenteils 120 (radiale Kanalhöhe) ist so gewählt, dass sich Grenzflächen zwischen den kontinuierlichen und dispergierten Phasen 2, 3 zwischen den Innen- und Außenteilen 110, 120 erstrecken. Die radiale Kanalhöhe ist beispielsweise im Bereich von 1 µm bis 0,1 mm gewählt.The channel 20 is adapted for receiving a hollow cylindrical liquid layer of the continuous and dispersed phases 2, 3, which form liquid liquid filaments on liquid supply, which flow to the dispersion region 10. The distance between the outer diameter of the inner part 110 and the inner diameter of the outer part 120 (radial channel height) is selected such that interfaces between the continuous and dispersed phases 2, 3 extend between the inner and outer parts 110, 120. The radial channel height is selected, for example, in the range of 1 .mu.m to 0.1 mm.

Der Dispersionsbereich 10 wird durch die Mündung des Kanals 20 in die Umgebung der Emulgiereinrichtung 100 gebildet. Durch die Zylinderoberfläche des Innenteils 110 und die kreisförmige Innenkante des Außenteils 120 wird die kreisringförmige Spaltmündung 11 gebildet, an der sich der Kanal 20 in radialer Richtung stufenförmig erweitert. An der Spaltmündung 11 werden entsprechend dem von C. Priest et al. beschriebenen Mechanismus die laminaren Flüssigkeitsfilamente der kontinuierlichen und dispergierten Phasen 2, 3 im Kanal 20 instabil, so dass sie in einzelne Tropfen zerfallen. Die Tropfengröße wird im Wesentlichen durch die radiale Kanalhöhe bestimmt, die für alle Tropfen gleich groß ist, so dass vorteilhafterweise eine monodisperse Tropfengrößenverteilung erzeugt wird. Die Tropfengröße kann des Weiteren durch einen Fülldruck oder eine Fördermenge der dispergierten Phasen in den Injektionsleitungen beeinflusst werden. Der Fülldruck und/oder die Fördermenge der dispergierten Phasen können in jeder Injektionsleitung z. B. mit einer Förderpumpe, insbesondere einer Spritzenpumpe eingestellt werden.The dispersion region 10 is formed by the mouth of the channel 20 into the surroundings of the emulsifying device 100. Through the cylinder surface of the inner part 110 and the circular inner edge of the outer part 120, the annular gap opening 11 is formed, at which the channel 20 extends stepwise in the radial direction. At the gap mouth 11 are in accordance with that of C. Priest et al. described mechanism, the laminar liquid filaments of the continuous and dispersed phases 2, 3 in the channel 20 are unstable, so that they disintegrate into individual drops. The droplet size is determined essentially by the radial channel height, which is the same for all droplets, so that advantageously a monodisperse droplet size distribution is generated. The droplet size may be further influenced by a filling pressure or a delivery rate of the dispersed phases in the injection lines. The filling pressure and / or the delivery rate of the dispersed phases may be in each injection line z. B. with a feed pump, in particular a syringe pump can be adjusted.

Die Zuführung der kontinuierlichen Phase 2 in den Kanal 20 erfolgt durch die Zufuhrleitung 30. Die Zufuhrleitung 30 wird wie der Kanal 20 durch den Abstand zwischen den Innen- und Außenteilen 110, 120 gebildet. Vorzugsweise ist dieser Abstand in den Bereichen des Kanals 20 und der Zufuhrleitung 30 identisch, so dass der Kanal 20 im Wesentlichen eine Fortsetzung der Zufuhrleitung 30 darstellt. Alternativ kann die radiale Kanalhöhe im Kanal 20 von der Kanalhöhe in der Zufuhrleitung abweichen, insbesondere geringer sein.The feeding of the continuous phase 2 into the channel 20 takes place through the feed line 30. The feed line 30, like the channel 20, is formed by the distance between the inner and outer parts 110, 120. Preferably, this distance in the regions of the channel 20 and the supply line 30, so that the channel 20 is substantially a continuation of the supply line 30. Alternatively, the radial channel height in the channel 20 may deviate from the channel height in the supply line, in particular be smaller.

Von einer äußeren, das Außenteil 120 umgebenden Injektionsleitung 40, deren Wände in Figur 1 nicht gezeigt sind, führen radial ausgerichtete Injektionsbohrungen 42 zum Kanal 20 (siehe auch Figur 5). Aus Klarheitsgründen sind lediglich zwei Injektionsbohrungen 42 gezeigt. Jede Injektionsbohrungen 42 erstreckt sich von einer Injektionsöffnung 43 in der äußeren Oberfläche des Außenteils 120 zum Kanal 20.From an outer, the outer part 120 surrounding injection line 40, whose walls in FIG. 1 are not shown, lead radially aligned injection holes 42 to the channel 20 (see also FIG. 5 ). For clarity, only two injection bores 42 are shown. Each injection well 42 extends from an injection port 43 in the outer surface of the outer member 120 to the channel 20.

Zur Herstellung einer Emulsion 1 umfassend die kontinuierliche Phase 2 und die dispergierte Phase 3 wird die kontinuierliche Phase 2 durch die Zufuhrleitung 30 in den Kanal 20 geleitet. Gleichzeitig erfolgt die Zuführung der dispergierten Phase 3 durch die Injektionsbohrungen 42 ebenfalls in den Kanal 20. Im Kanal 20 fließen die Strömungen der kontinuierlichen und dispergierten Phasen 2, 3 als laminare Flüssigkeitsfilamente zum Dispersionsbereich 10, an dem die Tropfenbildung erfolgt. Die Strömung der Flüssigkeitsfilamente im spaltförmigen Kanal 20 stellt ein wesentliches Merkmal für die Erzeugung monodisperser Emulsionen dar. Ohne den Kanal 20 würde die dispergierte Phase beim Austritt von kleinen Löchern unmittelbar in die freie Umgebung auch in Einzeltropfen verfallen, die jedoch eine polydisperse Größenverteilung aufweisen würden.To prepare an emulsion 1 comprising the continuous phase 2 and the dispersed phase 3, the continuous phase 2 is passed through the supply line 30 into the channel 20. At the same time, the feeding of the dispersed phase 3 through the injection bores 42 likewise takes place in the channel 20. In the channel 20, the flows of the continuous and dispersed phases 2, 3 flow as laminar liquid filaments to the dispersion region 10, at which the drop formation takes place. The flow of the liquid filaments in the gap-shaped channel 20 is an essential feature for the production of monodisperse emulsions. Without the channel 20, the dispersed phase would expire on exiting small holes directly into the free environment even in single drops, but would have a polydisperse size distribution.

Die Tropfen der dispergierten Phase 3 strömen bei der Variante gemäß Figur 1 in axialer Richtung und mit zunehmendem Abstand von der Spaltmündung 11 radial nach außen, da sich das Innenteil 110 über die radiale Länge des Außenteils 120 fortsetzt. Abweichend von dieser Geometrie kann sich das Außenteil 120 über das axiale Ende des Innenteils 110 fortsetzen, wie dies schematisch in Figur 2 illustriert ist. Bei der Emulgiereinrichtung 100 gemäß Figur 2 sind der Dispersionsbereich 10, der Kanal 20, die Zufuhrleitung 30 und die Injektionsbohrungen 42 wie in Figur 1 angeordnet, wobei durch die begrenzende Wirkung des Außenteils 120 die durch die Spaltmündung 11 in die Umgebung austretende Emulsion 1 radial nach innen beschränkt wird.The droplets of the dispersed phase 3 flow in the variant according to FIG. 1 in the axial direction and with increasing distance from the gap opening 11 radially outwards, since the inner part 110 continues over the radial length of the outer part 120. Deviating from this geometry, the outer part 120 can continue over the axial end of the inner part 110, as shown schematically in FIG FIG. 2 is illustrated. At the emulsifying device 100 according to FIG. 2 For example, the dispersion region 10, the channel 20, the supply line 30, and the injection wells 42 are as in FIG FIG. 1 arranged, which is limited by the limiting effect of the outer part 120, the exiting through the gap mouth 11 in the environment emulsion 1 radially inwardly.

Die Figuren 3 und 4 zeigen zwei Varianten der zweiten Ausführungsform der Erfindung, bei der die Zufuhrleitung 30 ebenfalls in axialer Richtung der Emulgiereinrichtung 100 verläuft, der Kanal 20 jedoch im Unterschied zu der ersten Ausführungsform (Figuren 1, 2) in radialer Richtung ausgerichtet ist.The FIGS. 3 and 4 show two variants of the second embodiment of the invention, in which the supply line 30 also extends in the axial direction of the emulsifying device 100, the channel 20, however, in contrast to the first embodiment ( FIGS. 1, 2 ) is aligned in the radial direction.

Gemäß Figur 3 umfasst die Emulgiereinrichtung 100 ein Oberteil 130 und ein Unterteil 140. Die Ober- und Unterteile 130, 140 sind mit einem Abstand relativ zueinander angeordnet, wobei zwischen den zueinander weisenden, ebenen Seitenflächen der Ober- und Unterteile 130, 140 der Kanal 20 gebildet wird. Das Oberteil 130 hat die Form eines geraden Hohlzylinders. Im Innern des Oberteils 130 ist die Zufuhrleitung 30 zur Zuführung der kontinuierlichen Phase 2 in den Kanal 20 vorgesehen. Die Injektionsbohrungen 42 verlaufen ebenfalls in axialer Richtung im Oberteil 130. Sie erstrecken sich parallel zur Zufuhrleitung 30 von den Injektionsöffnungen 43 zum Kanal 20. Aus Klarheitsgründen sind wieder nur zwei Injektionsbohrungen 42 illustriert.According to FIG. 3 The upper and lower parts 130, 140 are arranged at a distance relative to each other, wherein between the mutually facing, flat side surfaces of the upper and lower parts 130, 140 of the channel 20 is formed. The upper part 130 has the shape of a straight hollow cylinder. Inside the upper part 130, the supply line 30 for supplying the continuous phase 2 into the channel 20 is provided. The injection bores 42 also extend in the axial direction in the upper part 130. They extend parallel to the supply line 30 from the injection openings 43 to the channel 20. For reasons of clarity, only two injection bores 42 are illustrated again.

Zur erfindungsgemäßen Bildung einer Emulsion 1 wird die kontinuierliche Phase 2 durch die Zufuhrleitung 30 in den Kanal 20 geleitet. Des weiteren wird die dispergierte Phase 3 von einer Injektionsleitung 40 oberhalb des Oberteils 130 über die Injektionsbohrungen 42 in den Kanal 20 geleitet. Im Kanal 20 bilden die kontinuierliche und die dispergierte Phase 2, 3 radial nach außen strömende, laminare Flüssigkeitsfilamente, die an der ringförmigen Spaltmündung 11 des Dispersionsbereiches 10 entsprechend dem oben beschriebenen Mechanismus in Einzeltropfen zerfallen.For the formation of an emulsion 1 according to the invention, the continuous phase 2 is conducted through the supply line 30 into the channel 20. Furthermore, the dispersed phase 3 is conducted from an injection line 40 above the upper part 130 via the injection bores 42 into the channel 20. In the channel 20, the continuous and the dispersed phase 2, 3 radially outwardly flowing laminar Flüssigkeitsfilamente formed at the annular gap mouth 11 of the dispersion region 10 decay into single drops according to the mechanism described above.

Figur 4 zeigt eine abgewandelte Variante der zweiten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung 100, bei der die Zufuhrleitung 30 außerhalb des Oberteils 130 gebildet ist und die kontinuierlichen und dispergierten Phasen 2, 3 im Kanal 20 radial nach innen strömen. Entsprechend wird die Emulsion 1 im Inneren des hohlzylinderförmigen Oberteils 130 erzeugt. FIG. 4 shows a modified variant of the second embodiment of the emulsifying device 100 according to the invention, in which the supply line 30 is formed outside of the upper part 130 and the continuous and dispersed phases 2, 3 in the channel 20 to flow radially inwardly. Accordingly, the emulsion 1 is generated inside the hollow cylindrical shell 130.

Wenn die Injektionsbohrungen 40 der Emulgiereinrichtung 100 gemäß den Figuren 1 oder 2 abwechselnd mit verschiedenen dispergierten Phasen beaufschlagt werden, so kann entsprechend eine Mischemulsion erzeugt werden. Der Aufbau der Emulgiereinrichtung 100 zur Erzeugung der Mischemulsion kann vereinfacht werden, wenn die verschiedenen dispergierten Phasen 3 beidseitig in den Kanal 20 injiziert werden. Einzelheiten entsprechender Varianten der ersten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung sind in den Figuren 5 und 6 illustriert.When the injection holes 40 of the emulsifying device 100 according to the Figures 1 or 2 can be applied alternately with different dispersed phases, so a mixed emulsion can be generated accordingly. The structure of the emulsifying device 100 for producing the mixed emulsion can be simplified if the different dispersed phases 3 are injected into the channel 20 on both sides. Details of corresponding variants of the first embodiment of the emulsifying device according to the invention are in the FIGS. 5 and 6 illustrated.

Gemäß Figur 5 weist die Emulgiereinrichtung 100 einen konzentrischen Aufbau der Innen- und Außenteile 110, 120 auf. Das Außenteil 120 umfasst einen Hohlzylinder, in dessen Wand eine erste Injektionsleitung 40 verläuft. Von der ersten Injektionsleitung 40 kann die erste dispergierte Phase 3.1 über äußere Injektionsbohrungen 42 in den Kanal 20 injiziert werden. Das Innenteil 110 umfasst ebenfalls einen Hohlzylinder, in dem eine zweite Injektionsleitung 41 verläuft, von der die zweite dispergierte Phase 3.2 über innere Injektionsbohrungen 42 in den Kanal 20 injizierbar ist. Die Injektionsbohrungen 42 weisen jeweils trichterförmige Injektionsöffnungen 43 auf. Der Kanal 20 und die Zufuhrleitung 30 werden durch den Abstand zwischen den Innen- und Außenteilen 110, 120 gebildet, wie dies oben beschrieben ist. Die in Figur 5 gezeigte Variante der ersten Ausführungsform der Erfindung hat den Vorteil, dass die Mischemulsion 1 an der Stirnseite der Emulgiereinrichtung 100 mit einer hohen Dichte erzeugt wird.According to FIG. 5 For example, the emulsifying device 100 has a concentric construction of the inner and outer parts 110, 120. The outer part 120 comprises a hollow cylinder, in whose wall a first injection line 40 extends. From the first injection line 40, the first dispersed phase 3.1 can be injected into the channel 20 via external injection bores 42. The inner part 110 likewise comprises a hollow cylinder in which a second injection line 41 extends, from which the second dispersed phase 3.2 can be injected into the channel 20 via inner injection bores 42. The injection bores 42 each have funnel-shaped injection openings 43. The channel 20 and the supply line 30 are formed by the distance between the inner and outer parts 110, 120, as described above. In the FIG. 5 shown variant The first embodiment of the invention has the advantage that the mixing emulsion 1 is produced at the front side of the emulsifying device 100 with a high density.

Zur Herstellung einer Mischemulsion 1 mit der Emulgiereinrichtung 100 gemäß Figur 5 werden die kontinuierliche Phase 2 und die dispergierten Phasen 3.1, 3.2 in den Kanal 20 eingeführt. Im Kanal 20 werden laminare Flüssigkeitsfilamente gebildet, wobei die ersten und zweiten dispergierten Phasen vorzugsweise abwechselnd nebeneinander angeordnet sind. Beim Austritt aus der kreisförmigen Spaltmündung 11 zerfallen die dispergierten Phasen entsprechend dem oben beschriebenen Mechanismus in Einzeltropfen, die in der kontinuierlichen Phase verteilt sind. Das Mischungsverhältnis der dispergierten Phasen 3.1, 3.2 in der kontinuierlichen Phase 2 kann durch die Volumenströme in den ersten und zweiten Injektionsleitungen 40, 41 eingestellt werden.For producing a mixed emulsion 1 with the emulsifying device 100 according to FIG FIG. 5 the continuous phase 2 and the dispersed phases 3.1, 3.2 are introduced into the channel 20. In the channel 20 laminar liquid filaments are formed, wherein the first and second dispersed phases are preferably arranged alternately side by side. Upon exiting the circular gap mouth 11, the dispersed phases decompose according to the mechanism described above into single drops distributed in the continuous phase. The mixing ratio of the dispersed phases 3.1, 3.2 in the continuous phase 2 can be adjusted by the volume flows in the first and second injection lines 40, 41.

Vorteilhafterweise kann durch die Auswahl eines vorbestimmten Verhältnis der Volumenströme auch ein Tropfengrößenverhältnis eingestellt werden. In Abhängigkeit vom Tropfengrößenverhältnis bilden die Tropfen mit definierten Tropfenanzahldichten eine spezifische Anordnung im Gefüge der Emulsion.Advantageously, by selecting a predetermined ratio of the volume flows, a droplet size ratio can also be set. Depending on the droplet size ratio, the droplets with defined droplet number densities form a specific arrangement in the structure of the emulsion.

Eine weitere Variante der ersten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung 100 ist in Figur 6 beispielhaft illustriert. Wie bei der konzentrischen Variante gemäß Figur 5 umfasst die Emulgiereinrichtung 100 das Innenteil 110 und das Außenteil 120, in denen die Injektionsleitungen 41, 40 angeordnet sind. Die Zufuhrleitung 30 im Spalt zwischen den Innen- und Außenteilen 110, 120 ist über eine Leitungsverbindung (nicht dargestellt) mit einem Reservoir der kontinuierlichen Phase verbunden. Die ersten und zweiten Injektionsleitungen 40, 41 sind entsprechend mit Reservoiren der ersten und zweiten dispergierten Phasen verbunden. Die Injektionsbohrungen befinden sich in unmittelbare Nähe des Dispersionsbereiches 10. Die axiale Länge des Kanals 20 von den Injektionsbohrungen zur Spaltmündung kann so gering gewählt werden, dass im Kanal 20 gerade die stabilen laminaren Flüssigkeitsfilamente gebildet werden. Die axiale Länge des Kanals 20 kann beispielsweise im Bereich von 10 µm bis 1 mm gewählt werden.A further variant of the first embodiment of the emulsifying device 100 according to the invention is shown in FIG FIG. 6 exemplified. As with the concentric variant according to FIG. 5 The emulsifying device 100 comprises the inner part 110 and the outer part 120, in which the injection lines 41, 40 are arranged. The supply line 30 in the gap between the inner and outer parts 110, 120 is connected via a line connection (not shown) with a reservoir of the continuous phase. The first and second injection lines 40, 41 are respectively connected to reservoirs of the first and second dispersed phases. The injection holes are in the immediate vicinity of the dispersion area 10. The axial length of the channel 20 from the injection holes to the gap mouth can be chosen so small that in the channel 20 just the stable laminar Flüssigkeitsfilamente be formed. The axial length of the channel 20 may be selected, for example, in the range of 10 microns to 1 mm.

Die Emulgiereinrichtung 100 gemäß Figur 5 oder 6 wird hergestellt, indem die Innen- und Außenteile 110, 120 durch mechanische Formgebung (zum Beispiel Drehen) bereitgestellt und mit den Injektionsbohrungen 42 und den Injektionsöffnungen 43 versehen werden. Die Bohrungen können beispielsweise mittels Funkenerosion erzeugt werden. Alternativ können verfügbare Lithographieverfahren, Ätzprozesse und/oder Galvaniktechniken verwendet werden.The emulsifying device 100 according to FIG. 5 or 6 is manufactured by providing the inner and outer parts 110, 120 by mechanical shaping (for example turning) and providing them with the injection bores 42 and the injection openings 43. The holes can be generated for example by means of spark erosion. Alternatively, available lithography techniques, etching processes, and / or electroplating techniques may be used.

Die Emulgiereinrichtung 100 gemäß Figur 6 wurde in der Praxis getestet, in dem durch die erste Injektionsleitung 40 Wasser und durch die zweite Injektionsleitung 41 eine Öl-Tensid-Mischung (Mono-Olein in Tetradekan) zum Dispersionsbereich 10 geführt wurden. Innerhalb von wenigen Sekunden konnte ein Volumen von rund einem Achtel Kubikzentimeter mit einer Mischemulsion aus den beiden dispergierten Phasen gefüllt werden. Die radiale Kanalhöhe (Abstand der Innen- und Außenteile 110, 120) betrug 50 µm. Die Durchmesser der Injektionsbohrungen betrug rund 100 µm. Die Tropfengröße der dispergierten Phasen betrug rund 200 µm. Zur Herstellung geringerer Tropfendurchmesser können die Injektionsbohrungen mit einem entsprechend verringerten Durchmesser bereitgestellt werden.The emulsifying device 100 according to FIG. 6 was tested in practice in which by the first injection line 40 and water through the second injection line 41 an oil-surfactant mixture (mono-olein in tetradecane) were led to the dispersion region 10. Within a few seconds, a volume of about one eighth of a cubic centimeter could be filled with a mixed emulsion of the two dispersed phases. The radial channel height (distance between the inner and outer parts 110, 120) was 50 μm. The diameter of the injection wells was around 100 μm. The droplet size of the dispersed phases was around 200 μm. To produce smaller drop diameters, the injection wells can be provided with a correspondingly reduced diameter.

Die Figuren 7 und 8 zeigen weitere Varianten der zweiten Ausführungsform der erfindungsgemäßen Emulgiereinrichtung 100 zur Erzeugung einer radial nach außen, zu einem Umfangsrand 12 der Emulgiereinrichtung 100 strömenden Mischemulsion (siehe Figur 3). Figur 7 zeigt in schematischer Schnittansicht die zur Erzeugung der Mischemulsion 1 vorgesehenen Teile der Emulgiereinrichtung 100. Die Ober- und Unterteile 130, 140 umfassen zwei runde Platten, die zwei ebene, entsprechend der gewünschten Kanalhöhe z0 beabstandete Seitenflächen aufweisen. Figur 8 illustriert die Draufsicht auf das Oberteil 130.The FIGS. 7 and 8 show further variants of the second embodiment of the emulsifying device 100 according to the invention for generating a radially outwardly, to a peripheral edge 12 of the emulsifying 100 flowing mixing emulsion (see FIG. 3 ). FIG. 7 shows a schematic sectional view of the intended to produce the mixing emulsion 1 parts of the emulsifying 100. The top and bottom parts 130, 140 include two round plates, the two planar, corresponding to the desired channel height z 0 spaced side surfaces. FIG. 8 Illustrates the top view of the top 130.

In der Mitte der Ober- und Unterteile 130, 140 ist die Zufuhrleitung 30 zur Zuführung der kontinuierlichen Phase 2 vorgesehen. Die Injektionsbohrungen 42 weisen trichterförmige Injektionsöffnungen 43 auf, die über eine Ringnut 44 verbunden sind. Im Unterschied zu Figur 3 sind Injektionsbohrungen 42 sowohl im Oberteil 130 als auch im Unterteil 140 vorgesehen. Von den beiden Seiten des Kanals 20 her werden verschiedene dispergierte Phasen 3.1, 3.2 in den Kanal eingeführt.In the middle of the upper and lower parts 130, 140, the supply line 30 for supplying the continuous phase 2 is provided. The injection bores 42 have funnel-shaped injection openings 43, which are connected via an annular groove 44. In contrast to FIG. 3 Injection holes 42 are provided both in the upper part 130 and in the lower part 140. From the two sides of the channel 20, various dispersed phases 3.1, 3.2 are introduced into the channel.

Der Aufbau gemäß den Figuren 7 und 8 kann zum Beispiel mit den folgenden Dimensionen realisiert werden. Die Ober- und Unterteile 130, 140 weisen einen Durchmesser von 2 cm auf. Der Abstand z0 der Ober- und Unterteile 130, 140 und damit die axiale Kanalhöhe wird vorzugsweise vergleichbar mit dem Durchmesser der Injektionsbohrungen 42 oder kleiner als dieser, zum Beispiel im Bereich von 1 µm bis 0,1 mm gewählt. Die Anzahl der Injektionsbohrungen 42 in den Ober- und Unterteilen 130, 140 ist vorzugsweise gleich groß (zum Beispiel 240). Der durch die Injektionsbohrungen 42 gebildete Lochkreis hat einen Radius von rund 8 mm. Auf dem Lochkreis sind die Injektionsbohrungen 42 mit einem Abstand angeordnet, der vorzugsweise größer als der doppelte Bohrungsdurchmesser, zum Beispiel im Bereich von 5 µm bis 0,5 mm, gewählt ist und z. B. bei einem Durchmesser von 30 µm rund 120 µm beträgt. Entsprechend können 480 Flüssigkeitsfilamente jeweils mit einer Breite von rund 30 µm gebildet werden. Die Breite der Flüssigkeitsfilamente wächst in radialer Richtung geringfügig an, da die Flüssigkeiten wegen des wachsenden Umfangs nach außen hin langsamer strömen.The structure according to the FIGS. 7 and 8 can be realized, for example, with the following dimensions. The upper and lower parts 130, 140 have a diameter of 2 cm. The distance z 0 of the upper and lower parts 130, 140 and thus the axial channel height is preferably comparable to the diameter of the injection holes 42 or less than this, for example in the range of 1 .mu.m to 0.1 mm. The number of injection bores 42 in the upper and lower parts 130, 140 is preferably the same size (for example, 240). The hole circle formed by the injection holes 42 has a radius of about 8 mm. On the bolt circle, the injection holes 42 are arranged at a distance which is preferably greater than twice the bore diameter, for example in the range of 5 microns to 0.5 mm, is selected and z. B. at a diameter of 30 microns is about 120 microns. Accordingly, 480 liquid filaments each with a width of about 30 microns can be formed. The width of the liquid filaments grows slightly in the radial direction, because the liquids flow slower due to the growing extent to the outside.

Die Ober- und Unterteile 130, 140 sind relativ zueinander so verdreht angeordnet, dass die Injektionsbohrungen 42 verschiedene Azimutwinkel relativ zur radialen Bezugsrichtung der Emulgiereinrichtung 100 aufweisen. Damit können die verschiedenen dispergierten Phasen vorteilhafterweise im Kanal 20 nebeneinander angeordnet werden.The upper and lower parts 130, 140 are arranged so rotated relative to each other that the injection holes 42 different azimuth angles relative to the radial reference direction of Emulsifier 100 have. Thus, the various dispersed phases can advantageously be arranged side by side in the channel 20.

Zur Herstellung einer Mischemulsion 1 werden die kontinuierliche Phase 2 und die dispergierten Phasen 3.1, 3.2 in den Kanal 20 eingeführt. Aus jeder durch eine der Injektionsbohrungen 42 in den Kanal 20 eintretenden Flüssigkeit wird ein Flüssigkeitsfilament gebildet, dessen Grenzfläche relativ zur Flüssigkeit der kontinuierlichen Phase 2 zwischen den Wänden des Kanals 20, das heißt zwischen den Ober- und Unterteilen 130, 140 aufgespannt ist. Durch die Beaufschlagung aller Injektionsbohrungen 42 mit dispergierten Phasen entsteht im spaltförmigen Kanal 20 ein Kranz von Flüssigkeitsfilamenten, die im Strom der kontinuierlichen Phase 2 radial und laminar nach außen fließen. Die verschieden dispergierten Phasen 3.1, 3.2 sind dabei azimutal abwechselnd nebeneinander angeordnet. Wenn die Flüssigkeitsfilamente durch die kreisförmige Spaltmündung 11 des Dispersionsbereiches 10 radial nach außen fließen, zerfallen sie in der freien Umgebung in Einzeltropfen.To prepare a mixed emulsion 1, the continuous phase 2 and the dispersed phases 3.1, 3.2 are introduced into the channel 20. From each liquid entering into the channel 20 through one of the injection bores 42, a liquid filament is formed whose boundary surface is spanned relative to the liquid of the continuous phase 2 between the walls of the channel 20, ie between the upper and lower parts 130, 140. By acting on all of the injection bores 42 with dispersed phases, a ring of liquid filaments is formed in the gap-shaped channel 20 and flows radially and laminarly outwards in the flow of the continuous phase 2. The differently dispersed phases 3.1, 3.2 are arranged azimuthally alternately next to each other. When the liquid filaments flow radially outward through the circular gap mouth 11 of the dispersion region 10, they decompose into single droplets in the free environment.

Die zweite Ausführungsform der erfindungsgemäßen Emulgiereinrichtung kann entsprechend dem in Figur 4 gezeigten Schema dahingehend angewandelt werden, dass die Flüssigkeitsfilamente im Kanal 20 radial in die Mitte fließen, wie dies mit weiteren Einzelheiten in den Figuren 9 und 10 gezeigt ist. Figur 9 zeigt ein Aufbau analog zu Figur 7 mit einem Oberteil 130 und einem Unterteil 140, zwischen denen der Kanal 20, die Zufuhrleitung 30 und die Injektionsbohrungen 42 gebildet sind. Die kontinuierliche Phase 2 wird durch die Zufuhrleitung 30 radial nach innen zum Kanal 20 transportiert, wo beidseitig die Injektion der dispergierten Phasen 3.1, 3.2 erfolgt. Die radial einwärts fließenden Flüssigkeitsfilamente im Kanal 20 zerfallen an der Spaltmündung 11 des Dispersionsbereichs 10 in einzelne Tropfen. Die dabei gebildete Emulsion 1 wird in axialer Richtung abtransportiert.The second embodiment of the emulsifying device according to the invention can according to the in FIG. 4 are shown in that the liquid filaments flow in the channel 20 radially in the middle, as described in more detail in the FIGS. 9 and 10 is shown. FIG. 9 shows a structure analogous to FIG. 7 with an upper part 130 and a lower part 140, between which the channel 20, the supply line 30 and the injection bores 42 are formed. The continuous phase 2 is transported by the supply line 30 radially inward to the channel 20, where the injection of the dispersed phases 3.1, 3.2 takes place on both sides. The radially inwardly flowing liquid filaments in the channel 20 decay at the gap mouth 11 of the dispersion region 10 into individual drops. The emulsion 1 formed is transported away in the axial direction.

Bei der in Figur 10 gezeigten Variante der erfindungsgemäßen Emulgiereinrichtung 100 sind die Ober- und Unterteile 130, 140 zur Bereitstellung der Injektionsbohrungen 40 und der entsprechenden Injektionsleitungen 41, 42 aus mehreren strukturierten Platten zusammengesetzt. Zwischen den Ober- und Unterteilen 130, 140 ist zur Bildung des Kanals 20 ein azimutal unterbrochener Abstandhalter 21 vorgesehen, durch den die kontinuierliche Phase 2 und die dispergierten Phasen 3.1, 3.2 zum Kanal 20 strömen.At the in FIG. 10 In the variant of the emulsifying device 100 according to the invention shown, the upper and lower parts 130, 140 for providing the injection bores 40 and the corresponding injection lines 41, 42 are composed of a plurality of structured plates. Between the upper and lower parts 130, 140, an azimuthally interrupted spacer 21 is provided to form the channel 20, through which the continuous phase 2 and the dispersed phases 3.1, 3.2 flow to the channel 20.

Die in der vorstehenden Beschreibung, den Zeichnungen und den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.The features of the invention disclosed in the foregoing description, drawings and claims may be significant to the realization of the invention in its various forms both individually and in combination.

Claims (27)

  1. An emulsifying device (100) for forming an emulsion (1) with a continuous phase (2) and at least one dispersed phase (3, 3.1, 3.2) comprising:
    - a dispersion region (10) for forming the emulsion (1),
    - a channel (20) that is directed to the dispersion region (10) and is arranged for the reception of liquid filaments of the continuous and dispersed phases (2, 3, 3.1, 3.2) flowing in a laminar manner,
    - a feed line (30) for the feeding of the continuous phase (2) into the channel (20), and
    - at least one injection line (40, 41) for feeding the at least one dispersed phase (3, 3.1, 3.2) into the channel (20),
    characterized in that
    - the at least one injection line (40, 41) is connected via a plurality of injection bores (42) to the channel (20), and
    - the dispersion region (10) comprises a gap opening (11) of the channel (20) that opens into an environment of the emulsifying device (100).
  2. The emulsifying device according to claim 1, in which the gap opening (11) has a course of the opening that is curved in a plane vertical to an axial reference direction (z) of the emulsifying device (100).
  3. The emulsifying device according to claim 2, in which the gap opening (11) has a course of the opening that is represented by a geometrically closed curve.
  4. The emulsifying device according to claim 3, in which the gap opening (11) has a circular course of the opening.
  5. The emulsifying device according to at least one of the preceding claims, in which two injection lines (40, 41) are provided whose injection bores (42) open into the channel (20) on two opposite sides, respectively.
  6. The emulsifying device according to claim 5, in which the injection bores (42) of one of the injection lines (40) are arranged offset relative to the injection bores (42) of the other one of the injection lines (41).
  7. The emulsifying device according to at least one of the preceding claims, in which the injection bores (42) comprise funnel-shaped injection openings (43).
  8. The emulsifying device according to claim 7, in which the funnel-shaped injection openings (43) are connected by a groove (44).
  9. The emulsifying device according to at least one of the preceding claims, in which the channel (20) runs parallel to the axial reference direction (z).
  10. The emulsifying device according to claim 9, in which the injection bores (40) run in a plane vertically to the axial reference direction (z).
  11. The emulsifying device according to claim 9 or 10, in which the at least one injection line (40, 41) and the feed line (30) are arranged concentrically relative to each other.
  12. The emulsifying device according to claim 11, that has the form of a cylinder in which the at least one injection line (40, 41) and the feed line (30) are arranged concentrically relative to each other, wherein the gap opening (11) of the channel (20) is arranged in a front side of the cylinder.
  13. The emulsifying device according to at least one of the claims 1 to 10, in which the channel (20) runs in a plane vertically to the axial reference direction (z).
  14. The emulsifying device according to claim 13, in which the channel (20) runs radially on all sides from the feed line (30) to a circumferential edge (12) of the emulsifying device.
  15. The emulsifying device according to at least one of the claims 13 or 14, in which the injection bores (42) run parallel to the axial reference direction (z) of the emulsifying device.
  16. The emulsifying device according to at least one of the claims 13 to 15, in which the channel (20) is formed between two plates (130, 140) that extend vertically to the axial reference direction (z) of the emulsifying device.
  17. The emulsifying device according to claim 16, in which the injection bores (42) are provided in one of the plates (130, 140) and open into the channel (20) on one side.
  18. The emulsifying device according to claim 16, in which the injection bores (42) are provided in both plates (130, 140) and open into the channel (20) on both sides.
  19. The emulsifying device according to claim 18, in which the injection bores (42) are arranged staggered relative to each other in both plates (130, 140).
  20. A process for forming an emulsion (1) with a continuous phase (2) and at least one dispersed phase (3, 3.1, 3.2) with an emulsifying device (100), with the steps:
    - feeding of the continuous phase (2) through a feed line (30) into a channel (20),
    - feeding of the at least one dispersed phase (3, 3.1, 3.2) through at least one injection line (40) into the channel (20),
    - forming of liquid filaments of the continuous phase (2) and of the at least one dispersed phase (3, 3.1, 3.2), which liquid filaments flow in a laminar manner adjacent to each other through the channel (20) to a dispersion region (10), and
    - forming of the emulsion (1) from the continuous phase (2) and the at least one dispersed phase (3, 3.1, 3.2) in the dispersion region (10),
    characterized in that
    - an injection of the at least one dispersed phase (3, 3.1, 3.2) via a plurality of injection bores (42) into the channel (20) is provided for feeding the at least one dispersed phase (3, 3.1, 3.2), and
    - forming the emulsion (1) comprises an exiting of the continuous phase (2) and of the at least one dispersed phase (3, 3.1, 3.2) through the gap opening (11) of the channel (20) into an environment of the emulsifying device.
  21. The process according to claim 20, in which at least one dispersed phase (3, 3.1, 3.2) is fed through injection bores (42) to two opposite sides of the channel (20).
  22. The process according to claim 21, in which the at least one dispersed phase (3, 3.1, 3.2) is fed through two separate injection lines (40, 41) into the injection bores (42) on both sides of the channel (20).
  23. The process according to at least one of the claims 20 to 22, in which the exiting of the continuous phase (2) and of the at least one dispersed phase (3, 3.1, 3.2) is provided through the gap opening (11) of the channel (20) in a direction parallel to the axial reference direction (z).
  24. The process according to at least one of the claims 21 to 22, in which the exiting of the continuous phase (2) and of the at least one dispersed phase (3, 3.1, 3.2) is provided through the gap opening (11) of the channel (20) in a plane vertical to the axial reference direction (z).
  25. The process according to at least one of the claims 21 to 24, in which the feeding of two dispersed phases (3, 3.1, 3.2) into the channel (20) is provided and a mixing of the dispersed phases (3, 3.1, 3.2) is formed during the exiting of the continuous phase (2) and of the dispersed phases (3, 3.1, 3.2) through the gap opening (11) of the channel (20).
  26. The process according to claim 25, with the step:
    - adjustment of a predetermined mixing ratio of the dispersed phases (3, 3.1, 3.2).
  27. The process according to claim 26, in which the adjustment of the predetermined mixing ratio of the dispersed phases (3, 3.1, 3.2) comprises an adjustment of the viscosity of the dispersed phases, of a filling pressure and/or of a delivery amount of the dispersed phases.
EP07786556A 2006-08-07 2007-08-03 Emulsifying device and process for forming an emulsion Not-in-force EP2049235B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006036815A DE102006036815B4 (en) 2006-08-07 2006-08-07 Emulsifying means and method of forming an emulsion
PCT/EP2007/006899 WO2008017429A1 (en) 2006-08-07 2007-08-03 Emulsifying device and process for forming an emulsion

Publications (2)

Publication Number Publication Date
EP2049235A1 EP2049235A1 (en) 2009-04-22
EP2049235B1 true EP2049235B1 (en) 2010-06-09

Family

ID=38658322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07786556A Not-in-force EP2049235B1 (en) 2006-08-07 2007-08-03 Emulsifying device and process for forming an emulsion

Country Status (5)

Country Link
US (1) US20090312442A1 (en)
EP (1) EP2049235B1 (en)
AT (1) ATE470497T1 (en)
DE (2) DE102006036815B4 (en)
WO (1) WO2008017429A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726680B2 (en) 2015-03-16 2020-07-22 ルミネックス コーポレーション Apparatus and method for multi-stage channel emulsification
WO2017060349A1 (en) 2015-10-07 2017-04-13 Basf Se Hollow wax capsules with reduced carbon dioxide release for attracting soil-dwelling pests
JP6912161B2 (en) * 2016-02-25 2021-07-28 株式会社神戸製鋼所 Channel device and droplet formation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041823C2 (en) * 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Method and static micromixer for mixing at least two fluids
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
EP1804964A1 (en) * 2004-10-01 2007-07-11 Velocys Inc. Multiphase mixing process using microchannel process technology
DE102005037401B4 (en) * 2005-08-08 2007-09-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Formation of an emulsion in a fluidic microsystem

Also Published As

Publication number Publication date
DE102006036815A1 (en) 2008-02-28
ATE470497T1 (en) 2010-06-15
DE502007004085D1 (en) 2010-07-22
DE102006036815B4 (en) 2010-01-14
US20090312442A1 (en) 2009-12-17
WO2008017429A1 (en) 2008-02-14
EP2049235A1 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
DE102005037401B4 (en) Formation of an emulsion in a fluidic microsystem
DE19604289C2 (en) Micromixer
DE102005048259B4 (en) Apparatus and method for producing a mixture of two intractable phases
EP1171227B1 (en) Method and micromixer for producing a dispersion
EP0644271A1 (en) Method and device for producing a free dispersion system
EP2181827A2 (en) Static mixer
DE19908171A1 (en) Continual process to make microspheres by drawing particles through array of micro-passages of predetermined width
WO1996009112A1 (en) Device for generating liquid systems, in particular emulsions, suspensions or the like, in a hydrodynamic cavitation field
EP2608875B1 (en) Device and method for gas dispersion
DE10206083B4 (en) A method for producing monodisperse nanotubes and microfluidic reactor for carrying out the method
DE19927556A1 (en) Static micro mixer for producing emulsions and gas-liquid dispersions has a housing with fluid inlets, a fluid outlet and plates stacked in the housing
DE102007025214A1 (en) Procedure for high-pressure mixing of chemically reactive fluid components for producing polyurethane resin, two-component resin and shaped articles, comprises feeding volume flow of the fluid component to an injection device
DE2753788A1 (en) DEVICE FOR DUSTING AND DISPERSING FLUIDA
EP2915581B1 (en) Static mixer
DE2844753A1 (en) METHOD AND DEVICE FOR EXTRUSION PRESSING
EP2049235B1 (en) Emulsifying device and process for forming an emulsion
WO2004098758A1 (en) Dispersing device
DE10250406B4 (en) Reaction device and mixing system
EP3645148B1 (en) Vehicle-treatment device with a foam generator
EP3372308A1 (en) Focusing device, droplet generator and method for creating a multiplicity of droplets
EP2777806B1 (en) Device for the production of drops from a flowable material
EP2907582B1 (en) Method and nozzle for mixing and spraying medical fluids
DE102012104053B3 (en) emulsifying
DE1785135A1 (en) Device for inhomogeneous mixing of spinning solutions and other sticky liquids or masses
EP3189887A1 (en) Cavitation reactor for treating flowable substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERMINGHAUS, STEPHAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007004085

Country of ref document: DE

Date of ref document: 20100722

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

BERE Be: lapsed

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENS

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004085

Country of ref document: DE

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110726

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 470497

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100920

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WIS, DE

Free format text: FORMER OWNER: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141006

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004085

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301