EP2047532A2 - Material for producing a functional layer of an organic electronic component - Google Patents

Material for producing a functional layer of an organic electronic component

Info

Publication number
EP2047532A2
EP2047532A2 EP07786387A EP07786387A EP2047532A2 EP 2047532 A2 EP2047532 A2 EP 2047532A2 EP 07786387 A EP07786387 A EP 07786387A EP 07786387 A EP07786387 A EP 07786387A EP 2047532 A2 EP2047532 A2 EP 2047532A2
Authority
EP
European Patent Office
Prior art keywords
functional
material according
organic electronic
polymer matrix
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07786387A
Other languages
German (de)
French (fr)
Inventor
Walter Fix
Jasmin WÖRLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
PolyIC GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PolyIC GmbH and Co KG filed Critical PolyIC GmbH and Co KG
Publication of EP2047532A2 publication Critical patent/EP2047532A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a material for producing a functional layer of an organic electronic component, in particular a material suitable for processing by printing.
  • Printable materials are known in particular for organic electronic components such as organic active components such as diodes, transistors, capacitors, self-emitting and / or photovoltaic devices, components based on electrochromic layers, and so forth, which preferably comprise polymeric substances in solvent.
  • organic active components such as diodes, transistors, capacitors, self-emitting and / or photovoltaic devices, components based on electrochromic layers, and so forth
  • solvent By dissolving the substance in a special solvent or by producing a stable suspension, it is processed into a printable solution or paste. After application, the solvent must be removed again.
  • the object of the present invention is therefore to provide a material or a matrix for various functional layers of organic electronic components, which can be processed in simple and therefore cost-effective working steps.
  • the invention relates to a material for a functional layer of an organic electronic component, wherein in a polymer as a matrix, a conductive, semiconducting, photo- and / or thermoactive, self-emitting, electrochromic and / or insulating material is dissolved or contained so that the functional properties of the functional material in the polymer matrix are at least maintained or even positively reinforced by the properties of the polymeric matrix, while the polymer matrix causes the simple processability and stability of the functional substance.
  • the invention likewise relates to the preparation of a gel or sol which is suitable for an organic electronic component and which contains in a polymer matrix the functional substance for forming the functional conductive, semiconductive, photoactive self-emitting, electrochromic and / or insulating layer.
  • the invention makes possible the cost-effective processing and / or application of otherwise unstable functional materials for organic electronics.
  • the polymer can only serve as a matrix, ie be inactive in the overall system, or can actively improve the functionality of the component. In this respect, the polymer is actively or inactively involved in the overall system while stabilizing the functional agent.
  • the material is present, for example, as a blend of various filled polymer matrices and / or as a material combination or mixture.
  • the functional substance is "contained” in the material, that is to say suspended or stabilized in sol / gel form, for example physically and / or chemically stabilized, It may well happen that solvent residues are contained in the material in the finished component after production of the functional layer are no longer detectable.
  • material for the functional layer denotes the combination of the polymeric matrix material with the functional substance contained, wherein the material always comprises at least both, but any further substances, such as additives for better processability, catalysts, color pigments, conductive pigments, etc. may be added.
  • An organic electronic device may be an organic field effect transistor, an organic diode, an organic capacitor, an organic photovoltaic active cell organic light-emitting element, an organic electrochromic layer, an organic photodetector or any other electronic component that can be mass produced.
  • print medium usually refers to what is printed, for example, the ink used for printing, and the print medium has a certain viscosity and rheology, the values of which vary widely depending on the printing methods used in standard works on printing technology, such as in the book Helmut Kipphan “Handbook of print media” Springer Verlag, readable.
  • the viscosity of a pressure medium therefore ranges from pasty (about 100 Pa * s) to thin liquid (about ImPa * s).
  • a printing medium is generally a liquid, thus has fluidity, but it transforms into a solid after printing. This either escapes solvent and / or crosslinking takes place.
  • a printing medium is designed to wet the respective surfaces of the printing material and / or the printing cylinder when interacting with printing cylinders and interacting with the printing material (where it is printed on it). For example, the print medium must not bead off.
  • volatile solvents in the printing medium will be removable again, in UV / thermally curing paints as the printing medium, however, escapes usually no solvent.
  • the polymer which can be used according to the invention as a matrix material are in principle no limits. It can be all types of polymeric plastics
  • all known semiconducting polymeric plastics such as polymers based on PEDOT / PSS or PANI, polythiophene, polyfluorene, PPVs or the like can be used.
  • the polymer serves not only as an aid to processability and / or stabilization, but can also contribute to the functional properties of the functional layer as a reinforcing material.
  • a polymer matrix can be taken which acts as a light intensifier; in the case of FETs or generally all conductive layers, the polymer matrix can bring about a stabilization of the overall system.
  • the polymer matrix can take over the stabilization of the overall system and / or an additional function (for example photovoltaically active, OFETs.
  • a conductive or semiconductive polymer matrix can be used, whereby the conductivity of the material is enhanced.
  • gels or sols ie stable suspensions of functional substances and / or nanoparticles of the functional substances with special functional properties are created, which can be printed easily and advantageously under normal conditions.
  • photochromic and / or thermochromic particles or nanoparticles, sensitive metal particles or metal alloy particles, dye particles, or other charge-transfer particles can be incorporated in polymer matrices in the manner described. These particles also improve the performance of organic photodetectors and / or electrochromic elements. The incorporation of these particles has not yet been possible at low cost, since these particles could otherwise only be processed in complex deposition processes.
  • n-conducting dyes electron acceptors
  • p-conducting polymeric support materials such as transition metal complexes.
  • transition metal complexes such as ruthenium complexes, iron complexes and other complexes such as A1Q3, boron complexes or the like.
  • nanoparticles with solubilizing side groups are used, such as e.g. Alkyl groups (e.g., silver nanoparticles, silicon nanoparticles, gold nanoparticles, zinc oxide, gallium arsenide, indium phosphorus compounds or the like) from which, for example, antennas are printed.
  • Alkyl groups e.g., silver nanoparticles, silicon nanoparticles, gold nanoparticles, zinc oxide, gallium arsenide, indium phosphorus compounds or the like
  • low molecular weight additives for functional modification or doping of the polymeric carrier material can be added as functional substances.
  • anionic and / or acid dyes for example indigo carmine, fuchsin
  • Metal complex dyes such as organic metal complex dyes (copper complexes, chromium complexes, palladium complexes, cyano metal complexes, in general transition metal complexes) and / or inorganic metal complex dyes (cobalt pigments, chromium complexes (chrome oxide green), Egyptian blue, iron oxide pigments, indigo, magenta, cinnabar) , Boron complexes, aluminum complexes, Lewis acids (eg FeC13), halogens (eg J2), polystyrenesulfonic acid (PSS), Lewis bases (eg amines), reducing agents, oxidizing agents, redox systems or allotropes.
  • organic metal complex dyes copper complexes, chromium complexes, palladium complexes, cyano metal complexes, in general transition metal complexes
  • nanoparticles having solubility-promoting side groups e.g. Alkygroups (eg, Ag nanoparticles, Si nanoparticles, Au nanoparticles, zinc oxide, GaAs, InP, nanotubes, especially carbon nanotubes, eg as electrode or antenna materials, both in dissolved and suspended form.)
  • Alkygroups e.g, Ag nanoparticles, Si nanoparticles, Au nanoparticles, zinc oxide, GaAs, InP, nanotubes, especially carbon nanotubes, eg as electrode or antenna materials, both in dissolved and suspended form.
  • materials are produced which are produced by simple printing processes in cost-effective roll-to-roll printing processes and / or by spincoating thinnest functional layers for electronic organic components, for example in a thickness of 10 to 500 nm (nm to ⁇ m range possible) ,
  • layer thicknesses of 10-300 nm are achieved (results in PFET see application example).
  • N-conducting dyes can be used in combination with p-conducting polymeric support materials in dye / Grätzel solar cells (eg Ru complexes, Fe complexes, possibly A1Q3, boron complexes, etc.).
  • Photochromic and thermochromic pigments such.
  • Leuco dyes e.g. Indigo-white, or spironaphthoxazines and / or naphthopyrans, for example with aluminum, gold bronze, cadmium can be printed from solution.
  • the extent to which the solvent or solvents can still be detected in the layer after the functional layer has been produced may vary and depends, on the one hand, on the nature of the solvent and, on the other, on the entire production process up to the encapsulation.
  • Dissolved or suspended nanoparticles such as nanotubes, especially carbon nanotubes, can be used as electrode and / or antenna materials.
  • Low molecular weight additives such as FeC13, J2, PSS can serve the functional modification (doping) of the polymeric carrier material.
  • the function of the nanoparticles compared to the polymeric semiconducting carrier material predominates at high levels
  • Metals are printable from solution, e.g. for electrodes or
  • the advantage of the invention is to be seen in the fact that, in contrast to the solvents of polymeric functional materials that have made them processable by the prior art, the polymeric matrix according to the invention in the finished component can be maintained and even depending on Choice of matrix can positively enhance the functional properties of the material. It is thus possible to print additives which were not printable without a polymer matrix, for example in a roll-to-roll process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

The invention relates to a material for producing a functional layer of an organic electronic component, in particular a material suitable for processing by printing. In the material proposed according to the invention, a functional layer is present in a polymer matrix, for example dissolved or suspended in it.

Description

Material zur Herstellung einer Funktionsschicht eines organischen elektronischen Bauelements Material for producing a functional layer of an organic electronic component
Die Erfindung betrifft ein Material zur Herstellung einer Funktionsschicht eines organischen elektronischen Bauelements, insbesondere ein zur Verarbeitung durch Drucken geeignetes Material .The invention relates to a material for producing a functional layer of an organic electronic component, in particular a material suitable for processing by printing.
Bekannt sind druckbare Materialien insbesondere für organische elektronische Bauelemente wie organische aktive Komponenten wie beispielsweise Dioden, Transistoren, Kondensatoren, selbstemittierende und/oder photovoltaische Bauelemente, Bauelemente basierend auf elektrochromen Schichten, und so weiter, die bevorzugt polymere Substanzen in Lösungsmittel umfassen. Durch die Lösung der Substanz im speziellen Lösungsmittel oder durch die Herstellung einer stabilen Suspension wird diese zu einer druckbaren Lösung bzw. Paste verarbeitet. Nach der Aufbringung muss das Lösungsmittel wieder entfernt werden. Diese Arbeitsschritte tragen nicht unerheblich zur gesamten Verteuerung der elektronischen organischen Bauelemente bei.Printable materials are known in particular for organic electronic components such as organic active components such as diodes, transistors, capacitors, self-emitting and / or photovoltaic devices, components based on electrochromic layers, and so forth, which preferably comprise polymeric substances in solvent. By dissolving the substance in a special solvent or by producing a stable suspension, it is processed into a printable solution or paste. After application, the solvent must be removed again. These steps contribute not insignificantly to the overall increase in the cost of electronic organic components.
So können im Großen und Ganzen zwar billige organische elektronische Bauelemente hergestellt werden, jedoch sind die Materialien zur Herstellung der einzelnen leitenden, halbleitenden und isolierenden Funktionsschichten noch nicht vollständig im Hinblick auf Druckbarkeit oder einer anderen massenfertigungstauglichen Herstellungsmethode optimiert. Insbesondere bei der Herstellung der oftmals metallischen leitfähigen Schichten muss noch auf aufwendige (also beispielsweise unter Inertgasatmosphäre stattfindende) Herstellungsverfahren wie Aufdampfen, Chemical Vapor Deposition und sonstige, nur unter Schutzgasatmosphäre ausführbare Methoden zurückgegriffen werden.Thus, while generally low cost organic electronic devices can be made, the materials for making the individual conductive, semiconductive, and insulating functional layers are not yet fully optimized for printability or other mass production method of manufacture. Particularly in the production of the often metallic conductive layers, it is still necessary to resort to costly (ie, for example under inert gas) production processes such as vapor deposition, chemical vapor deposition and other methods which can only be carried out under a protective gas atmosphere.
Aufgabe der vorliegenden Erfindung ist es daher, ein Material oder eine Matrix für verschiedene Funktionsschichten organischer elektronischer Bauelemente zu schaffen, das in einfachen und daher kostengünstigen Arbeitsschritten verarbeitbar ist.The object of the present invention is therefore to provide a material or a matrix for various functional layers of organic electronic components, which can be processed in simple and therefore cost-effective working steps.
Gegenstand der Erfindung ist ein Material für eine Funktionsschicht eines organischen elektronischen Bauelements, wobei in einem Polymer als Matrix ein leitfähiger, halbleitender, photo- und/oder thermoaktiver, selbstemittierender, elektrochromer und/oder isolierender Stoff so gelöst oder enthalten ist, dass die funktionellen Eigenschaften des Funktionsstoffs in der Polymermatrix zumindest erhalten oder sogar durch die Eigenschaften der polymeren Matrix positiv verstärkt werden, während die Polymermatrix die einfache Verarbeitbarkeit und Stabilität des Funktionsstoffes bewirkt. Ebenso ist Gegenstand der Erfindung die Herstellung eines für ein organisches elektronisches Bauelement geeigneten Gels oder SoIs, das in einer Polymermatrix den Funktionsstoff zur Bildung der funktionellen leitenden, halbleitenden, photoaktiven selbstemittierenden, elektrochromen und/oder isolierenden Schicht enthält. Die Erfindung ermöglicht erstmals die kostengünstige Verarbeitung und/oder Auftragung ansonsten instabiler funktioneller Materialien für die organische Elektronik.The invention relates to a material for a functional layer of an organic electronic component, wherein in a polymer as a matrix, a conductive, semiconducting, photo- and / or thermoactive, self-emitting, electrochromic and / or insulating material is dissolved or contained so that the functional properties of the functional material in the polymer matrix are at least maintained or even positively reinforced by the properties of the polymeric matrix, while the polymer matrix causes the simple processability and stability of the functional substance. The invention likewise relates to the preparation of a gel or sol which is suitable for an organic electronic component and which contains in a polymer matrix the functional substance for forming the functional conductive, semiconductive, photoactive self-emitting, electrochromic and / or insulating layer. For the first time, the invention makes possible the cost-effective processing and / or application of otherwise unstable functional materials for organic electronics.
Das Polymer kann nur als Matrix dienen, also im Gesamtsystem inaktiv sein, oder aktiv die Funktionalität des Bauelements verbessern. Insofern ist das Polymer aktiv oder inaktiv am Gesamtsystem beteiligt, während es den Funktionsstoff stabilisiert .The polymer can only serve as a matrix, ie be inactive in the overall system, or can actively improve the functionality of the component. In this respect, the polymer is actively or inactively involved in the overall system while stabilizing the functional agent.
Das Material liegt beispielsweise als Blend verschiedener gefüllter Polymermatrizen und/oder als eine Materialkombination oder - mischung vor.The material is present, for example, as a blend of various filled polymer matrices and / or as a material combination or mixture.
Der Funktionsstoff ist im Material „enthalten", also beispielsweise suspendiert oder in Sol/Gelform stabilisiert, beispielsweise physikalisch und/oder chemisch stabilisiert, enthalten. Dabei kann es durchaus vorkommen, dass Lösungsmittelreste im Material enthalten sind, die im fertigen Bauteil, nach Herstellung der funktionellen Schicht nicht mehr nachweisbar sind.The functional substance is "contained" in the material, that is to say suspended or stabilized in sol / gel form, for example physically and / or chemically stabilized, It may well happen that solvent residues are contained in the material in the finished component after production of the functional layer are no longer detectable.
Als „Material für die Funktionsschicht" wird die Kombination des polymeren Matrixmaterials mit dem enthaltenen Funktionsstoff bezeichnet, wobei das Material immer zumindest beides umfasst, aber beliebige weitere Stoffe, wie beispielsweise Additive zur besseren Verarbeitbarkeit , Katalysatoren, Farbpigmente, Leitfähigkeitspigmente etc. zugesetzt sein können.The term "material for the functional layer" denotes the combination of the polymeric matrix material with the functional substance contained, wherein the material always comprises at least both, but any further substances, such as additives for better processability, catalysts, color pigments, conductive pigments, etc. may be added.
Ein organisches elektronisches Bauelement kann ein organischer Feld-Effekt-Transistor, eine organische Diode, ein organischer Kondensator, eine organische photovoltaisch aktive Zelle, ein organisches Licht emittierendes Element, eine organische elektrochrome Schicht, ein organischer Photodetektor oder ein beliebiges anderes elektronisches Bauteil das massenfertigungstauglich herstellbar ist, sein.An organic electronic device may be an organic field effect transistor, an organic diode, an organic capacitor, an organic photovoltaic active cell organic light-emitting element, an organic electrochromic layer, an organic photodetector or any other electronic component that can be mass produced.
Als „Druckmedium" wird in der Regel das bezeichnet, was verdruckt wird. Es handelt sich beispielsweise um die Farbe beim Bedrucken. Dazu weist das Druckmedium eine bestimmte Viskosität und eine bestimmte Rheologie auf. Die Werte dieser Parameter variieren stark nach den eingesetzten Druckmethoden und sind in Standardwerken zur Drucktechnik, wie beispielsweise in dem Buch Helmut Kipphan „Handbuch der Printmedien" Springer Verlag, nachlesbar. Die Viskosität eines Druckmediums reicht demnach von pastös (ca. 100 Pa*s) bis dünnflüssig (ca. ImPa *s) .The term "print medium" usually refers to what is printed, for example, the ink used for printing, and the print medium has a certain viscosity and rheology, the values of which vary widely depending on the printing methods used in standard works on printing technology, such as in the book Helmut Kipphan "Handbook of print media" Springer Verlag, readable. The viscosity of a pressure medium therefore ranges from pasty (about 100 Pa * s) to thin liquid (about ImPa * s).
Ein Druckmedium ist im Allgemeinen eine Flüssigkeit, besitzt also Fließfähigkeit, jedoch wandelt es sich nach dem Verdrucken in einen Feststoff um. Dazu entweicht entweder Lösungsmittel und/oder eine Vernetzung findet statt. Ein Druckmedium ist so beschaffen, dass es bei der Wechselwirkung mit Druckzylinder und bei der Wechselwirkung mit dem Druckstoff (da wo es draufgedruckt wird) die jeweiligen Oberflächen des Druckstoffs und/oder des Druckzylinders benetzt. Dabei darf das Druckmedium beispielsweise nicht abperlen. Bevorzugt werden flüchtige Lösungsmittel im Druckmedium wieder entfernbar sein, bei UV/thermisch härtenden Lacken als Druckmedium entweicht hingegen in der Regel kein Lösungsmittel .A printing medium is generally a liquid, thus has fluidity, but it transforms into a solid after printing. This either escapes solvent and / or crosslinking takes place. A printing medium is designed to wet the respective surfaces of the printing material and / or the printing cylinder when interacting with printing cylinders and interacting with the printing material (where it is printed on it). For example, the print medium must not bead off. Preferably, volatile solvents in the printing medium will be removable again, in UV / thermally curing paints as the printing medium, however, escapes usually no solvent.
Dem Polymer, das gemäß der Erfindung als Matrixmaterial eingesetzt werden kann, sind grundsätzlich keine Grenzen gesetzt. Es kann sich um alle Arten polymerer Kunststoffe handeln, beispielsweise können alle bekannten halbleitenden polymere Kunststoffe wie Polymere auf der Basis von PEDOT/PSS oder PANI, Polythiophen, Polyfluoren, PPVs oder ähnlichem eingesetzt werden.The polymer which can be used according to the invention as a matrix material, are in principle no limits. It can be all types of polymeric plastics For example, all known semiconducting polymeric plastics such as polymers based on PEDOT / PSS or PANI, polythiophene, polyfluorene, PPVs or the like can be used.
Im Gegensatz zu den bisher verwendeten Systemen dient das Polymer hier nicht nur als Hilfe zur Verarbeitbarkeit und/oder zur Stabilisierung, sondern kann auch als Verstärkungsmaterial der funktionellen Eigenschaften der funktionellen Schicht beitragen. So kann beispielsweise bei der Herstellung einer photovoltaisch aktiven Schicht eine Polymermatrix genommen werden, die lichtverstärkend wirkt, bei FETs oder generell allen leitenden Schichten kann die Polymermatrix eine Stabilisierung des Gesamtsystems bewirken.In contrast to the systems used hitherto, the polymer serves not only as an aid to processability and / or stabilization, but can also contribute to the functional properties of the functional layer as a reinforcing material. Thus, for example, in the production of a photovoltaically active layer, a polymer matrix can be taken which acts as a light intensifier; in the case of FETs or generally all conductive layers, the polymer matrix can bring about a stabilization of the overall system.
Nach einer anderen Ausführungsform der Erfindung kann die Polymermatrix die Stabilisierung des Gesamtsystems und/oder eine zusätzliche Funktion (z.B. photovoltaisch aktive, OFETs...) übernehmen.According to another embodiment of the invention, the polymer matrix can take over the stabilization of the overall system and / or an additional function (for example photovoltaically active, OFETs.
Ebenso kann zur Herstellung einer leitfähigen Schicht, beispielsweise mit einem Metall als Funktionsstoff, eine leitfähige oder halbleitende Polymermatrix eingesetzt werden, wodurch die Leitfähigkeit des Materials verstärkt wird.Likewise, to produce a conductive layer, for example with a metal as a functional substance, a conductive or semiconductive polymer matrix can be used, whereby the conductivity of the material is enhanced.
Nach der Erfindung werden Gele oder Sole, also stabile Suspensionen von Funktionsstoffen und/oder Nanopartikel der Funktionsstoffe mit speziellen funktionellen Eigenschaften geschaffen, die einfach und vorteilhafterweise unter Normalbedingungen verdruckt werden können.According to the invention, gels or sols, ie stable suspensions of functional substances and / or nanoparticles of the functional substances with special functional properties are created, which can be printed easily and advantageously under normal conditions.
Als Funktionsstoffe oder funktionelle Grundsubstanzen kommen alle Substanzen zur Herstellung organischer elektronischer Bauelemente in Frage. Insbesondere können auf die Art photochrome und/oder thermochrome Partikel oder Nanopartikel, sensible Metallpartikel oder Metalllegierungspartikel, Farbstoffpartikel, oder sonstige charge-transfer Partikel in Polymermatrizen eingearbeitet werden. Diese Partikel verbessern auch die Performance von organischen Photodetektoren und/oder elektrochromen Elementen. Die Einarbeitung dieser Partikel war bislang noch nicht kostengünstig möglich, da diese Partikel sonst nur in aufwendigen Abscheidungsprozessen verarbeitbar waren.As functional substances or functional basic substances all substances come to the production of organic electronic Components in question. In particular, photochromic and / or thermochromic particles or nanoparticles, sensitive metal particles or metal alloy particles, dye particles, or other charge-transfer particles can be incorporated in polymer matrices in the manner described. These particles also improve the performance of organic photodetectors and / or electrochromic elements. The incorporation of these particles has not yet been possible at low cost, since these particles could otherwise only be processed in complex deposition processes.
Als Funktionsstoffe kommen n-leitende Farbstoffe (Elektronenakzeptoren) beispielsweise in Kombination mit p- leitenden polymeren Trägermaterialien zur Anwendung, wie Übergangsmetallkomplexe. Beispielhaft genannt seien Ruthenium- Komplexe, Eisen-Komplexe und andere Komplexe wie A1Q3, Bor- Komplexe oder ähnliches.Functional substances used are n-conducting dyes (electron acceptors), for example in combination with p-conducting polymeric support materials, such as transition metal complexes. Examples include ruthenium complexes, iron complexes and other complexes such as A1Q3, boron complexes or the like.
Weitere Funktionsstoffe sind photochrome und thermochrome Pigmente. Außerdem finden als Funktionsstoffe Nanopartikel mit löslichkeitsvermittelnden Seitengruppen Verwendung wie z.B. Alkylgruppen, (z.B. Silber-Nanopartikel, Silizium- Nanopartikel, Gold-Nanopartikel, Zinkoxid, Gallium-Arsenid, Indiumphosphorverbindungen oder ähnliches) , woraus beispielsweise Antennen gedruckt werden.Other functional substances are photochromic and thermochromic pigments. In addition, as functional substances, nanoparticles with solubilizing side groups are used, such as e.g. Alkyl groups (e.g., silver nanoparticles, silicon nanoparticles, gold nanoparticles, zinc oxide, gallium arsenide, indium phosphorus compounds or the like) from which, for example, antennas are printed.
Außerdem können als Funktionsstoffe niedermolekulare Zusatzstoffe zur Funktionsmodifikation oder Dotierung des polymeren Trägermaterials zugegeben werden. Beispiele dafür FeCl3, J2, PSS.In addition, low molecular weight additives for functional modification or doping of the polymeric carrier material can be added as functional substances. Examples of FeCl 3 , J 2 , PSS.
Es können beispielsweise auch anionische- und/oder Säurefarbstoffe (z.B. Indigocarmin, Fuchsin), Metallkomplexfarbstoffe wie organische Metallkomplexfarbstoffe (Kupfer-Komplexe, Chrom-Komplexe, Palladium-Komplexe, Cyano- Metall-Komplexe, generell Übergangsmetallkomplexe) und/oder anorganische Metallkomplexfarbstoffe (Cobaltpigmente, Chromkomplexe (Chromoxidgrün) , Ägyptisch Blau, Eisenoxidpigmente, Indigo, Purpur, Zinnober ), Bor- Komplexe, Aluminium Komplexe, Lewis Säuren (z.B. FeC13), Halogene (z.B. J2), Polystyrolsulfonsäure (PSS), Lewis-Basen, (z.B. Amine), Reduktionsmittel, Oxidationsmittel, Redoxsysteme oder Allotrope eingesetzt werden.For example, it is also possible to use anionic and / or acid dyes (for example indigo carmine, fuchsin), Metal complex dyes such as organic metal complex dyes (copper complexes, chromium complexes, palladium complexes, cyano metal complexes, in general transition metal complexes) and / or inorganic metal complex dyes (cobalt pigments, chromium complexes (chrome oxide green), Egyptian blue, iron oxide pigments, indigo, magenta, cinnabar) , Boron complexes, aluminum complexes, Lewis acids (eg FeC13), halogens (eg J2), polystyrenesulfonic acid (PSS), Lewis bases (eg amines), reducing agents, oxidizing agents, redox systems or allotropes.
Außerdem können Nanopartikel mit Löslichkeitsvermittelnden Seitengruppen, wie z.B. Alkygruppen (z.B. Ag-Nanopartikel, Si- Nanopartikel, Au-Nanopartikel, Zinkoxid, GaAs, InP, Nanotubes, insbesondere Carbonanotubes, z.B. als Elektroden- oder Antennenmaterialien, sowohl in gelöster als auch suspendierter Form eingesetzt werden. Die Veröffentlichung von Wessels et al in JACS, 2004, 126, 3349-3356 zeigt, dass Au-Nanopartikel in löslicher Form herstellbar sind und somit in einer Polymermatrix verdruckt werden können.In addition, nanoparticles having solubility-promoting side groups, e.g. Alkygroups (eg, Ag nanoparticles, Si nanoparticles, Au nanoparticles, zinc oxide, GaAs, InP, nanotubes, especially carbon nanotubes, eg as electrode or antenna materials, both in dissolved and suspended form.) The Wessels et al JACS, 2004, 126, 3349-3356 shows that Au nanoparticles can be prepared in soluble form and thus can be printed in a polymer matrix.
Überraschenderweise entstehen nach der Erfindung Materialien mit denen durch einfache Druckverfahren in kostengünstigen Rolle-zu-Rolle Druckprozessen und/oder durch Spincoaten dünnste Funktionsschichten für elektronische organische Bauelemente beispielweise in einer Dicke von 10 bis 500 nm (nm- bis μm-Bereich möglich) hergestellt werden. Zum Beispiel werden bei der Verarbeitung von Goldnanopartikeln (~ 4nm) in Lösung in Polythiophen als polymerer Matrix Schichtdicken von 10-300nm erreicht (Resultate in PFET siehe Anwendungsbeispiel) . N-Leitende Farbstoffe (Elektronenakzeptoren) können in Kombination mit p-leitenden polymeren Trägermaterialien in Farbstoff-/Grätzel-Solarzellen (z.B. Ru-Komplexe, Fe-Komplexe, evtl. A1Q3, Bor-Komplexe....) zur Anwendung kommen.Surprisingly, according to the invention, materials are produced which are produced by simple printing processes in cost-effective roll-to-roll printing processes and / or by spincoating thinnest functional layers for electronic organic components, for example in a thickness of 10 to 500 nm (nm to μm range possible) , For example, in the processing of gold nanoparticles (~ 4nm) in solution in polythiophene as the polymeric matrix, layer thicknesses of 10-300 nm are achieved (results in PFET see application example). N-conducting dyes (electron acceptors) can be used in combination with p-conducting polymeric support materials in dye / Grätzel solar cells (eg Ru complexes, Fe complexes, possibly A1Q3, boron complexes, etc.).
Photochrome und thermochrome Pigmente wie z. B. Leuco- farbstoffe, z.B. Indigo-Weiss, oder Spironaphtoxazine und/oder Naphtopyrane, beispielsweise mit Aluminium, Goldbronze, Cadmium können aus Lösung verdruckt werden. Inwieweit die oder das Lösungsmittel noch nach der Herstellung der funktionellen Schicht in der Schicht nachweisbar ist, kann variieren und ist zum einen von der Art des Lösumgsmittels abhängig und zum zweiten vom gesamten Herstellungsprozess bis zur Verkapselung .Photochromic and thermochromic pigments such. Leuco dyes, e.g. Indigo-white, or spironaphthoxazines and / or naphthopyrans, for example with aluminum, gold bronze, cadmium can be printed from solution. The extent to which the solvent or solvents can still be detected in the layer after the functional layer has been produced may vary and depends, on the one hand, on the nature of the solvent and, on the other, on the entire production process up to the encapsulation.
Gelöste oder suspendierte Nanopartikel, wie beispielsweise nanotubes, insbesondere Carbonanotubes, können als Elektroden- und/oder Antennenmaterialien eingesetzt werden.Dissolved or suspended nanoparticles, such as nanotubes, especially carbon nanotubes, can be used as electrode and / or antenna materials.
Niedermolekulare Zusatzstoffe wie FeC13, J2, PSS können der Funktionsmodifikation (Dotierung) des polymeren Trägermaterials dienen.Low molecular weight additives such as FeC13, J2, PSS can serve the functional modification (doping) of the polymeric carrier material.
Anwendungsbeispiel für Gold-NanopartikelApplication example for gold nanoparticles
• Herstellung von Gold-Nanopartikeln mit Löslichkeitsvermittelnden Gruppen zur Verwendung in organischen Solventien, wie beispielsweise Toluol (J. M. Wessels et al . , Optical and Electrical Properties of Three-Dimensional Interlinked Gold Nanoparticle Assemblies; JACS 2004, 126, 3349-3356)Preparation of Gold Nanoparticles with Solubility Promoting Groups for Use in Organic Solvents, Such as Toluene (J.M. Wessels et al., Optical and Electrical Properties of Three-Dimensional Interlinked Gold Nanoparticle Assemblies; JACS 2004, 126, 3349-3356)
• Mischung der in Toluol gelösten Gold-Nanopartikel mit (in organischen Lösungsmitteln) gelösten polymeren p- bzw. n- Halbleitern ist in unterschiedlichen Konzentrationen möglich. Die Losungen sind stabil.Mixture of the dissolved gold nanoparticles in toluene with (in organic solvents) dissolved polymeric p- or n- Semiconductors is possible in different concentrations. The solutions are stable.
• Einsatz der Mischung (keine Suspension sondern echte Losung) für alle gangigen Beschichtungsverfahren, wie Spincoaten oder alle Druckverfahren. Für Spincoaten und verschiedene Druckverfahren (bei PoIyIC und Kurz) bereits gezeigt.• Use of the mixture (not suspension but real solution) for all common coating processes, such as spincoats or all printing processes. For spincoats and different printing processes (at PoIyIC and Kurz) already shown.
• Funktionalität des Trägermaterials , beispielsweise F3HT wird verbessert: Fig. 1 und Fig. 2.• Functionality of the carrier material, for example F3HT is improved: FIG. 1 and FIG. 2.
Alle Konzentrationen an Metall-Nanopartikeln (z.B. GoId-All concentrations of metal nanoparticles (e.g.
Nanopartikeln) einstellbarNanoparticles) adjustable
-^ Die Funktionalltat der Nanopartikel verglichen mit dem polymeren halbleitenden Tragermaterial überwiegt bei hohenThe function of the nanoparticles compared to the polymeric semiconducting carrier material predominates at high levels
Konzentrationenconcentrations
-> Metalle sind aus Losung druckbar, z.B. für Elektroden oder-> Metals are printable from solution, e.g. for electrodes or
Antennenantennas
Der Vorteil der Erfindung ist vor allem darin zu sehen, dass im Gegensatz zu den Losungsmitteln der polymeren Funktionsmaterialien, die nach dem Stand der Technik diese durch Druck verarbeitbar gemacht haben, die polymere Matrix nach der Erfindung im fertigen Bauteil beibehalten werden kann und sogar je nach Wahl der Matrix die funktionellen Eigenschaften des Materials positiv verstarken kann. Es wird also das Verdrucken von Zusatzstoffen ermöglicht, die ohne Polymermatrix nicht, beispielsweise im roll-to-roll Prozess druckbar waren . The advantage of the invention is to be seen in the fact that, in contrast to the solvents of polymeric functional materials that have made them processable by the prior art, the polymeric matrix according to the invention in the finished component can be maintained and even depending on Choice of matrix can positively enhance the functional properties of the material. It is thus possible to print additives which were not printable without a polymer matrix, for example in a roll-to-roll process.

Claims

Patentansprüche claims
1. Material für eine Funktionsschicht eines organischen elektronischen Bauelements, wobei in einem Polymer als Matrix zumindest ein leitfähiger, halbleitender, photo- und/oder thermoaktiver, selbstemittierender, elektrochromer und/oder isolierender Funktionsstoff so gelöst oder enthalten ist, dass die funktionellen Eigenschaften des Funktionsstoffs in der Polymermatrix zumindest erhalten oder sogar positiv verstärkt werden, während die Polymermatrix die einfache Verarbeitbarkeit und Stabilität des Funktionsstoffes bewirkt.1. Material for a functional layer of an organic electronic component, wherein in a polymer as a matrix at least one conductive, semiconducting, photo- and / or thermoactive, self-emitting, electrochromic and / or insulating functional material is dissolved or contained so that the functional properties of the functional material in the polymer matrix at least obtained or even positively reinforced, while the polymer matrix causes the simple processability and stability of the functional material.
2. Material nach Anspruch 1, das ein Druckmedium ist.2. Material according to claim 1, which is a printing medium.
3. Material nach Anspruch 1 oder 2, das unter Normalbedingungen als Druckmedium eingesetzt werden kann.3. Material according to claim 1 or 2, which can be used under normal conditions as a pressure medium.
4. Material nach einem der vorstehenden Ansprüche, wobei der Funktionsstoff niedermolekular vorliegt.4. Material according to any one of the preceding claims, wherein the functional substance is present in low molecular weight.
5. Material nach einem der vorstehenden Ansprüche, wobei zumindest ein Funktionsstoff in Form eines n-leitenden Farbstoffs in Kombination mit einer p-leitenden Polymermatrix enthalten ist. 5. Material according to one of the preceding claims, wherein at least one functional material in the form of an n-type dye is contained in combination with a p-type polymer matrix.
6. Material nach einem der vorstehenden Ansprüche, wobei zumindest ein Funktionsstoff ein photochromes und/oder ein thermochromes Element umfasst.6. Material according to one of the preceding claims, wherein at least one functional substance comprises a photochromic and / or a thermochromic element.
7. Material nach einem der vorstehenden Ansprüche, wobei zumindest ein Funktionsstoff Nanopartikel umfasst.7. Material according to one of the preceding claims, wherein at least one functional substance comprises nanoparticles.
8. Material nach einem der vorstehenden Ansprüche, wobei die Nanopartikel zumindest zum Teil in Form von Nanotubes vorliegen .8. Material according to one of the preceding claims, wherein the nanoparticles are present at least partially in the form of nanotubes.
9. Material nach einem der vorstehenden Ansprüche, wobei zumindest ein Funktionsstoff Nanopartikel mit Löslichkeitsvermittelnden Seitenketten und/oder in einem Lösungsmittel umfasst.9. Material according to one of the preceding claims, wherein at least one functional substance comprises nanoparticles with solubility-promoting side chains and / or in a solvent.
10. Material nach einem der vorstehenden Ansprüche, wobei zusätzlich noch ein niedermolekularer Zusatzstoff zur Funktionsmodifikation der Polymermatrix enthalten ist.10. Material according to any one of the preceding claims, wherein additionally a low molecular weight additive for functional modification of the polymer matrix is included.
11. Material nach einem der vorstehenden Ansprüche, das als Gel, SoI oder Suspension, eine Polymermatrix und den Funktionsstoff zur Bildung der funktionellen leitenden, halbleitenden, photo- bzw. thermoaktiven, selbstemittierenden, elektrochromen und/oder isolierenden Schicht für ein organisches elektronisches Bauelement umfasst .11. A material according to any one of the preceding claims, comprising as gel, sol or suspension, a polymer matrix and the functional fabric for forming the functional conductive, semiconducting, photo or thermoactive, self-emitting, electrochromic and / or insulating layer for an organic electronic component ,
12.Verwendung eines Materials nach einem der vorstehenden Ansprüche zur Herstellung einer funktionellen Schicht eines organischen elektronischen Bauelements. 12.Use of a material according to one of the preceding claims for producing a functional layer of an organic electronic component.
13.Verwendung nach Anspruch 11, wobei die Herstellung der Schicht zumindest einen Druckprozessschritt umfasst.13. Use according to claim 11, wherein the production of the layer comprises at least one printing process step.
14. Organisches elektronisches Bauelement mit einer funktionellen Schicht, die ein Material nach einem der Ansprüche 1 bis 10 umfasst. 14. An organic electronic device with a functional layer comprising a material according to any one of claims 1 to 10.
EP07786387A 2006-07-28 2007-07-27 Material for producing a functional layer of an organic electronic component Withdrawn EP2047532A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035750A DE102006035750A1 (en) 2006-07-28 2006-07-28 Material for functional layer of organic electronic component, has conductive semiconductor photo or thermo active self emitting electro chrome and insulating functional material which is included or detached in polymer
PCT/EP2007/006675 WO2008022691A2 (en) 2006-07-28 2007-07-27 Material for producing a functional layer of an organic electronic component

Publications (1)

Publication Number Publication Date
EP2047532A2 true EP2047532A2 (en) 2009-04-15

Family

ID=38596146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07786387A Withdrawn EP2047532A2 (en) 2006-07-28 2007-07-27 Material for producing a functional layer of an organic electronic component

Country Status (4)

Country Link
US (1) US20090321724A1 (en)
EP (1) EP2047532A2 (en)
DE (1) DE102006035750A1 (en)
WO (1) WO2008022691A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057694A1 (en) * 2016-10-13 2018-04-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives DISPLAY SCREEN COMPRISING A HEATING LAYER BASED ON POLY (THIO- OR SELENO-) PHENIC POLYMERS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665342A (en) * 1984-07-02 1987-05-12 Cordis Corporation Screen printable polymer electroluminescent display with isolation
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
CA2473969A1 (en) * 2001-04-30 2002-11-07 Lumimove, Inc. Electroluminescent devices fabricated with encapsulated light emitting polymer particles
ATE401201T1 (en) * 2001-12-20 2008-08-15 Add Vision Inc SCREEN PRINTABLE ELECTROLUMINescent POLYMER INK
JP2005526876A (en) * 2002-03-01 2005-09-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Printing of organic conductive polymers containing additives
US7655961B2 (en) * 2003-10-02 2010-02-02 Maxdem Incorporated Organic diodes and materials
US7226818B2 (en) * 2004-10-15 2007-06-05 General Electric Company High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing
US7960037B2 (en) * 2004-12-03 2011-06-14 The Regents Of The University Of California Carbon nanotube polymer composition and devices
GB2460358B (en) * 2004-12-29 2010-01-13 Cambridge Display Tech Ltd Rigid amines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008022691A3 *

Also Published As

Publication number Publication date
DE102006035750A1 (en) 2008-01-31
US20090321724A1 (en) 2009-12-31
WO2008022691A2 (en) 2008-02-28
WO2008022691A3 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
EP1370619B1 (en) Solutions and dispersions of organic semiconductors
EP1565947B1 (en) Photovoltaic component and production method therefor
EP1338038B1 (en) Electronic component with semiconductor layers, electronic circuit and methods for production thereof
WO2014089708A1 (en) Conducting nanocomposite matrix and uses thereof
DE102013002855A1 (en) Formulations of washed silver wires and PEDOT
Sung et al. Room‐Temperature Tailoring of Vertical ZnO Nanoarchitecture Morphology for Efficient Hybrid Polymer Solar Cells
WO2005011013A1 (en) Organic electroluminescent element
EP1798785A2 (en) Transparent Polymer Electrode for Electro-Optical Devices
DE102010046661A1 (en) Electronic device
EP1227529A2 (en) Electroluminescent devices
WO2018069496A9 (en) Inductively doped mixed layers for an optoelectronic component, and method for the production thereof
DE102007023208A1 (en) Polymer solar cell and method of making the same
DE112012001014T5 (en) An electroconductive polymer solution and a process for producing the same, an electroconductive polymer material and a solid electrolytic capacitor using the same, and a process for producing the same
CN107431135A (en) Photo-electric conversion element
KR20240138124A (en) Conductive nanocomposites
EP2047532A2 (en) Material for producing a functional layer of an organic electronic component
DE112015004774T5 (en) Organic photoelectric conversion device and process for its production
Shabbir et al. Introduction to smart multifunctional metal nano-inks
EP2335302A1 (en) Method for manufacturing a metal electrode over a metal oxide layer
EP1513902A1 (en) Material for the production of a conductive organic functional layer and use thereof
Kukhta Organic-inorganic nanocomposites and their applications
DE102019004310B4 (en) Synthesis and stabilization of organic semiconductor nanoparticles by low electrical doping
DE102013226998B4 (en) Method for producing a nanowire electrode for optoelectronic components and their use
KR102721369B1 (en) Conductive nanocomposites
EP3597722A1 (en) An electro-luminescent device-using layer of photo-emissive quantum dots encapsulated into compartmentalized polymeric nano-vesicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090126

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOERLE, JASMIN

Inventor name: FIX, WALTER

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120624

R18W Application withdrawn (corrected)

Effective date: 20140624