EP2045554A2 - Radiator with radiating plate having high efficiency - Google Patents

Radiator with radiating plate having high efficiency Download PDF

Info

Publication number
EP2045554A2
EP2045554A2 EP08165160A EP08165160A EP2045554A2 EP 2045554 A2 EP2045554 A2 EP 2045554A2 EP 08165160 A EP08165160 A EP 08165160A EP 08165160 A EP08165160 A EP 08165160A EP 2045554 A2 EP2045554 A2 EP 2045554A2
Authority
EP
European Patent Office
Prior art keywords
radiator
tube
groove
previous
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08165160A
Other languages
German (de)
French (fr)
Other versions
EP2045554A3 (en
Inventor
Olivo Foglieni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fecs Partecipazioni Srl
Original Assignee
RIDEA Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIDEA Srl filed Critical RIDEA Srl
Publication of EP2045554A2 publication Critical patent/EP2045554A2/en
Publication of EP2045554A3 publication Critical patent/EP2045554A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/0286Radiating plates; Decorative panels
    • F28D2001/0293Radiating plates; Decorative panels with grooves for integration of conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels

Definitions

  • the present invention relates to a radiator with radiating plate having high efficiency.
  • radiators manufactured by means of a thick plate of thermally conducting material, e.g. aluminium, in which is obtained a groove (typically by milling) and, into said groove, is inserted a tube for conveying heat-carrying fluid.
  • a thick plate of thermally conducting material e.g. aluminium
  • radiators of the aforesaid type present a structure provided with two manifolds; a first manifold is positioned at the lower area of the radiator (when the radiator is installed) whilst a second manifold is positioned at the upper area of the radiator.
  • the plate is provided with vertical grooves positioned between the two manifolds and with tubes (typically made of copper) that are inserted in the grooves and that have the ends that project from the grooves and are connected by welding to each of the manifolds.
  • tubes typically made of copper
  • the radiator is provided with a single manifold (presenting both the inlet and the outlet of water as heat-carrying fluid) and, therefore, it is provided with one or more tubes and grooves (or also multiple tubes and grooves) that fold in "U" shape in order to present both ends connected to the single manifold.
  • the structure with two manifolds requires the manufacture of numerous welded joints to connect each tube to each manifold; this requires long production times and the use of a lot of specialised labour, with consequent costs that are very high.
  • both the structure with one manifold, and the one with two manifolds present a limited contact surface between tube and plate; this severely limits the heat exchange capacity between the tube (which contains the hot water that constitutes the heat-carrying fluid) and the plate (which heats the space in which the radiator is positioned); in practice, the ability of the radiator to heat the spaces is limited.
  • radiators with single manifold present considerable problems with venting the air that is introduced in the tube, because it can remain trapped at the curves of the "U" shaped tubes.
  • the technical task of the present invention is to provide a radiator with radiating plate having high efficiency that makes it possible to eliminate the aforesaid technical drawbacks of the prior art.
  • an object of the invention is to provide a radiator with radiating plate that has a limited number of welded joints, in order to reduce production times and use of specialised labour, with the purpose of limiting production costs.
  • Another object of the invention is to provide a radiator with radiating plate that presents a contact surface between tube and plate (through the walls of the groove) that is very high, in order to increase the heat exchanges between the tube and the plate relative to traditional radiators.
  • An object of the invention is also to provide a radiator with radiating plate in which the tubes and the grooves are able to cover the entire surface of the plate, even at lateral edges of non squared and/or irregular plates, in order to optimise the heat exchange between the heat-carrying fluid and the plate.
  • An additional object of the invention is to provide a plate radiator in which it is very simple and fast to vent the air that remained trapped within the tube, also for radiators with single manifold.
  • the radiator 1 ( figure 1 or 3 ) comprises a plate 2 (typically made of aluminium) which bears, at its rear side (when the radiator is installed) a manifold 3, (typically made of aluminium or copper or stainless steel or carbon steel) whereto is fastened (in the example shown) a tube 4 (made of copper, aluminium or stainless steel or carbon steel) for conveying a heat-carrying fluid.
  • a plate 2 typically made of aluminium
  • a manifold 3 typically made of aluminium or copper or stainless steel or carbon steel
  • a tube 4 made of copper, aluminium or stainless steel or carbon steel
  • the plate 2 has a groove 6 (obtained in the plate 2 e.g. by milling) into which is inserted the tube 4.
  • the tube 4 presents ( figure 6 ) its (outer) surfaces positioned in direct contact with the surfaces of the groove 6 in which it is inserted, without the interposition of glues; this makes it possible to make very efficient the heat exchange between the heat-carrying fluid contained in the tube 4 and the plate 2.
  • the tube 4 is connected within the groove with the interposition of a glue.
  • the edges of the groove 6 are converging at its own portion open outwards.
  • the tube 4 is inserted in the groove 6 by pressure and, preferably, by rolling.
  • the tube 4 and the groove 6 have at least one coil portion 11 defined by a plurality of first segments 12 substantially parallel to each other and able to assume substantially horizontal position when the radiator 1 is installed, and second segments 13 interposed between said first segments 12.
  • the coil portion 11 allows densely to cover the plate 2.
  • the coil portion 11 of the tube 4 and of the groove 6 is at the delivery of heat-carrying fluid of the manifold 3 and the first segments 12 of the tube 4 and of the groove 6 are rectilinear.
  • first segments 12 of the coil portion 11 of the tube 4 and of the groove 6 all have the same length, however other configurations are also possible and so figures 3 and 4 show an embodiment of the radiator according to the invention in which the first segments 12 of the coil portion 11 of the tube 4 and of the groove 6 have mutually different length.
  • the radiator may have one or two manifolds.
  • the manifold 3 is positioned at the lower portion of the radiator 1 when the radiator 1 is installed and the coil portion 11 of the tube 4 and of the groove 6 develops upwards.
  • an air venting valve 15 (typically made of aluminium or copper or stainless steel or carbon steel).
  • the radiator presents a tube 16 and a corresponding return groove, which are interposed between the vent valve 15 and the manifold 3.
  • Said tube 16 and corresponding return groove are substantially rectilinear or present two or more substantially rectilinear portions or, alternatively, they can be curved or coil shaped.
  • Figures 2 and 4 show two examples of radiators with two manifolds (an upper one and a lower one).
  • the tube 4 and the groove 6 defining the coil portion 11 extend from the lower area of the plate 2 and the tube 4 is fastened both to the lower manifold 3 and to an upper manifold 18, which also bears the vent valve 15.
  • the manifold 3 in the case of single manifold or both manifolds 3, 18 (in the case of two-manifold radiator) has parallelepiped shape and it is made of aluminium, copper or stainless steel or carbon steel, such as to favour the connection, mechanical or welded, to the plate 2 without using hooks, punches or other devices; hereafter reference shall be made only to the manifold 3 but the manifold 18 (when present) has the same structure.
  • the manifold 3 has two through holes delimited by cylindrical elements 20 projecting longitudinally, to which is fastened the tube 4 (or, when necessary, the vent valve 15).
  • connection systems are also possible, e.g. the threaded connection which can be accomplished threading the elements 20 and/or the ends of the tube 4 (threads meshing together or self-threading).
  • manifold 3 is provided with threaded union fittings 21 for the connection to the heating system of the building in which the radiator is to be installed or to receive appropriate plugs.
  • the heat-carrying fluid (hot water coming from the heating system of a building) enters the manifold 3 through a union fitting 21 and, passing through a cylindrical element 20, it passes into the tube 4.
  • the coil portion prefferably be connected to the delivery of the manifold 3 because in this case any air which may be contained in the tube 4 is favoured in its upward motion.
  • substantially rectilinear and horizontal portions 12 of the tubes and of the groove 16 can be oriented in slightly oblique manner, in order to promote the rising motion of the air.
  • the heat-carrying fluid enters the manifold 3 through a union fitting 21, through a cylindrical element 20 it passes into the tube 4, it flows through the whole tube 4 heating the radiating plate 2, and it enters the upper manifold 18 through a cylindrical element 20 thereof.
  • the radiator with radiating plate according to the invention is particularly advantageous because it can be manufactured in a simpler, more economic manner than traditional radiators and, at the same time, it enables to enhance the heat exchange performance of the radiator.
  • the horizontal coil shape enables to maintain the water in turbulent motion within the coil, to promote heat exchanges with the plate.
  • the radiator with radiating plate thus conceived can be subject to numerous modifications and variants, without thereby departing from the scope of the inventive concept; moreover, all details are replaceable by technically equivalent elements.
  • the materials used, as well as the dimensions, may be any depending on requirements and on the state of the art.

Abstract

The radiator (1) with radiating plate (2) having high efficiency comprises a plate (2) that bears at least one manifold (3, 18) whereto is fastened at least one tube (4) for conveying a heat-carrying fluid. The plate (2) presents at least one groove (6) in which is inserted the tube (4). The tube (4) and the groove (6) present at least one coil portion (11) defined by a plurality of first segments (12) substantially parallel to each other and able to assume a substantially horizontal position when the radiator (1) is installed, and second segments (13) interposed between said first segments (12).
Figure imgaf001

Description

  • The present invention relates to a radiator with radiating plate having high efficiency.
  • In particular hereafter reference shall be made to radiators manufactured by means of a thick plate of thermally conducting material, e.g. aluminium, in which is obtained a groove (typically by milling) and, into said groove, is inserted a tube for conveying heat-carrying fluid.
  • Currently, radiators of the aforesaid type present a structure provided with two manifolds; a first manifold is positioned at the lower area of the radiator (when the radiator is installed) whilst a second manifold is positioned at the upper area of the radiator.
  • The plate is provided with vertical grooves positioned between the two manifolds and with tubes (typically made of copper) that are inserted in the grooves and that have the ends that project from the grooves and are connected by welding to each of the manifolds.
  • Alternatively, the radiator is provided with a single manifold (presenting both the inlet and the outlet of water as heat-carrying fluid) and, therefore, it is provided with one or more tubes and grooves (or also multiple tubes and grooves) that fold in "U" shape in order to present both ends connected to the single manifold.
  • The structures of the traditional radiators described above, however, present some drawbacks.
  • The structure with two manifolds requires the manufacture of numerous welded joints to connect each tube to each manifold; this requires long production times and the use of a lot of specialised labour, with consequent costs that are very high.
  • Moreover, both the structure with one manifold, and the one with two manifolds present a limited contact surface between tube and plate; this severely limits the heat exchange capacity between the tube (which contains the hot water that constitutes the heat-carrying fluid) and the plate (which heats the space in which the radiator is positioned); in practice, the ability of the radiator to heat the spaces is limited.
  • An additional drawback of the traditional radiators described above is constituted by the fact that, in particular for plates whose shape is not squared, the tube and the groove cannot cover the entire surface; therefore, the edges, in particular the most irregular ones, are not adequately heated by the heat-carrying fluid with a consequent limitation of the heating power of the radiator.
  • Lastly, in particular the radiators with single manifold present considerable problems with venting the air that is introduced in the tube, because it can remain trapped at the curves of the "U" shaped tubes.
  • The technical task of the present invention, therefore, is to provide a radiator with radiating plate having high efficiency that makes it possible to eliminate the aforesaid technical drawbacks of the prior art.
  • Within this technical task, an object of the invention is to provide a radiator with radiating plate that has a limited number of welded joints, in order to reduce production times and use of specialised labour, with the purpose of limiting production costs.
  • Another object of the invention is to provide a radiator with radiating plate that presents a contact surface between tube and plate (through the walls of the groove) that is very high, in order to increase the heat exchanges between the tube and the plate relative to traditional radiators.
  • An object of the invention is also to provide a radiator with radiating plate in which the tubes and the grooves are able to cover the entire surface of the plate, even at lateral edges of non squared and/or irregular plates, in order to optimise the heat exchange between the heat-carrying fluid and the plate.
  • An additional object of the invention is to provide a plate radiator in which it is very simple and fast to vent the air that remained trapped within the tube, also for radiators with single manifold.
  • The technical task, as well as these and other purposes, according to the present invention are achieved by providing a radiator with radiating plate having high efficiency as claimed in claim 1.
  • Other characteristics of the present invention, moreover, are defined in the subsequent claims.
  • Additional characteristics and advantages of the invention shall become more readily apparent from the description of a preferred but not exclusive embodiment of the radiator with radiating plate according to the invention, illustrated purely by way of non limiting example in the accompanying drawings, in which:
    • figures 1 and 2 show a view of a radiator according to the invention with rectangular radiating plate respectively with one and with two manifolds;
    • figures 3 and 4 show a view of a radiator according to the invention with oval radiating plate respectively with one and with two manifolds;
    • figure 5 shows a manifold according to the invention; and
    • figure 6 shows a sectioned detail of a plate at the tube and the groove.
  • With reference to the aforementioned figures, a radiator with radiating plate having high efficiency indicated in its entirety with the reference number 1 is shown.
  • The radiator 1 (figure 1 or 3) comprises a plate 2 (typically made of aluminium) which bears, at its rear side (when the radiator is installed) a manifold 3, (typically made of aluminium or copper or stainless steel or carbon steel) whereto is fastened (in the example shown) a tube 4 (made of copper, aluminium or stainless steel or carbon steel) for conveying a heat-carrying fluid.
  • The plate 2 has a groove 6 (obtained in the plate 2 e.g. by milling) into which is inserted the tube 4.
  • The tube 4 presents (figure 6) its (outer) surfaces positioned in direct contact with the surfaces of the groove 6 in which it is inserted, without the interposition of glues; this makes it possible to make very efficient the heat exchange between the heat-carrying fluid contained in the tube 4 and the plate 2.
  • Alternatively the tube 4 is connected within the groove with the interposition of a glue.
  • The edges of the groove 6 are converging at its own portion open outwards.
  • The tube 4 is inserted in the groove 6 by pressure and, preferably, by rolling.
  • This allows to insert each tube 4 into the groove 6 without the tube being able to exit from the same groove 6 and, in addition, it allows to deform the surface of the tube 4, making it adhere to the surfaces of the groove 6.
  • In this way the retaining of the tube 4 in the groove 6 and the heat exchange between the heat-carrying fluid contained in the tube 4 and the plate 2 in which are obtained the grooves 6 are further improved; moreover, the surface 4a that faces the exterior of the tube 4 has its profile aligned with the profile 2a of the plate 2.
  • The tube 4 and the groove 6 have at least one coil portion 11 defined by a plurality of first segments 12 substantially parallel to each other and able to assume substantially horizontal position when the radiator 1 is installed, and second segments 13 interposed between said first segments 12.
  • The coil portion 11 allows densely to cover the plate 2.
  • Advantageously, the coil portion 11 of the tube 4 and of the groove 6 is at the delivery of heat-carrying fluid of the manifold 3 and the first segments 12 of the tube 4 and of the groove 6 are rectilinear.
  • In the example shown in figures 1 and 2, the first segments 12 of the coil portion 11 of the tube 4 and of the groove 6 all have the same length, however other configurations are also possible and so figures 3 and 4 show an embodiment of the radiator according to the invention in which the first segments 12 of the coil portion 11 of the tube 4 and of the groove 6 have mutually different length.
  • In different embodiments, the radiator may have one or two manifolds.
  • In the case of a radiator with a single manifold (figures 1 and 3) the manifold 3 is positioned at the lower portion of the radiator 1 when the radiator 1 is installed and the coil portion 11 of the tube 4 and of the groove 6 develops upwards.
  • Moreover, at the upper end (when the radiator is installed) of the coil portion 11, opposite the one where the manifold 3 is fastened, is fastened an air venting valve 15 (typically made of aluminium or copper or stainless steel or carbon steel).
  • Hence, the radiator presents a tube 16 and a corresponding return groove, which are interposed between the vent valve 15 and the manifold 3.
  • Said tube 16 and corresponding return groove are substantially rectilinear or present two or more substantially rectilinear portions or, alternatively, they can be curved or coil shaped.
  • Figures 2 and 4 show two examples of radiators with two manifolds (an upper one and a lower one).
  • In this case the tube 4 and the groove 6 defining the coil portion 11 extend from the lower area of the plate 2 and the tube 4 is fastened both to the lower manifold 3 and to an upper manifold 18, which also bears the vent valve 15.
  • Conveniently, the manifold 3 (in the case of single manifold) or both manifolds 3, 18 (in the case of two-manifold radiator) has parallelepiped shape and it is made of aluminium, copper or stainless steel or carbon steel, such as to favour the connection, mechanical or welded, to the plate 2 without using hooks, punches or other devices; hereafter reference shall be made only to the manifold 3 but the manifold 18 (when present) has the same structure.
  • The manifold 3 has two through holes delimited by cylindrical elements 20 projecting longitudinally, to which is fastened the tube 4 (or, when necessary, the vent valve 15).
  • This connection is typically achieved by welding, fitting the tube 4 over or under the element 20 and, then, performing the welding operation; thus, the presence of the cylindrical elements 20 is favourable to the welding, in particular when the tube 4 is made of copper whilst the manifold 3 is made of aluminium.
  • Naturally, other connection systems are also possible, e.g. the threaded connection which can be accomplished threading the elements 20 and/or the ends of the tube 4 (threads meshing together or self-threading).
  • Moreover, the manifold 3 is provided with threaded union fittings 21 for the connection to the heating system of the building in which the radiator is to be installed or to receive appropriate plugs.
  • The operation of the radiator with radiating plate according to the invention is readily apparent from what is described and illustrated above and, in particular, it is substantially as follows.
  • In the embodiment with single manifold, the heat-carrying fluid (hot water coming from the heating system of a building) enters the manifold 3 through a union fitting 21 and, passing through a cylindrical element 20, it passes into the tube 4.
  • Then, circulating in the tube 4, it heats the plate 2, it flows through the vent valve 15 and, through the tube 16, it returns into the manifold 3 and it is expelled therefrom through the other union fitting 21 into the pipeline of the heating system of the building.
  • The discharge of air that remained trapped in the tube 4 or in the tube 16 takes place opening the vent valve 15, so the air escapes.
  • In this regard it is preferable for the coil portion to be connected to the delivery of the manifold 3 because in this case any air which may be contained in the tube 4 is favoured in its upward motion.
  • For the same reason, the substantially rectilinear and horizontal portions 12 of the tubes and of the groove 16 can be oriented in slightly oblique manner, in order to promote the rising motion of the air.
  • In the embodiment with two manifolds, instead, the heat-carrying fluid (hot water) enters the manifold 3 through a union fitting 21, through a cylindrical element 20 it passes into the tube 4, it flows through the whole tube 4 heating the radiating plate 2, and it enters the upper manifold 18 through a cylindrical element 20 thereof.
  • Then, through a union fitting 21 of the manifold 18, the water is returned to the pipeline of the heating system of the building.
  • In this case, too, the discharge of air that remained trapped in the tube 4 takes place opening the vent valve 15 in such a way that the air escapes and, naturally, the substantially rectilinear and horizontal portions 12 of the tubes and of the groove 16 can be oriented in slightly oblique manner, in order to promote the rising motion of the air.
  • Naturally the union fittings 21 and the cylindrical elements 20 that are not used to connect tubes or vent valves are closed by means of plugs.
  • Moreover, it is clear that although only one coil tube (and one corresponding groove) has been described, in different embodiments there may also be more than one.
  • In practice, it has been noted that the radiator with radiating plate according to the invention is particularly advantageous because it can be manufactured in a simpler, more economic manner than traditional radiators and, at the same time, it enables to enhance the heat exchange performance of the radiator.
  • Advantageously, the horizontal coil shape enables to maintain the water in turbulent motion within the coil, to promote heat exchanges with the plate.
  • The radiator with radiating plate thus conceived can be subject to numerous modifications and variants, without thereby departing from the scope of the inventive concept; moreover, all details are replaceable by technically equivalent elements.
  • In practice, the materials used, as well as the dimensions, may be any depending on requirements and on the state of the art.

Claims (15)

  1. Radiator with radiating plate having high efficiency comprising a plate that bears at least one manifold whereto is fastened at least one tube for conveying a thermal carrier fluid, said plate presenting at least one groove in which is inserted the tube, characterised in that said tube and said groove present at least one coil portion defined by a plurality of first segments substantially parallel to each other and able to assume substantially horizontal position when the radiator is installed, and second segments interposed between said first segments.
  2. Radiator as claimed in claim 1, characterised in that said coil portion of said tube and of said groove are placed at the delivery of heat-carrying fluid of said manifold.
  3. Radiator as claimed in one or more of the previous claims, characterised in that said first segments of said tube and of said groove are rectilinear.
  4. Radiator as claimed in one or more of the previous claims, characterised in that said first segments of said coil portion of said tube and of said groove all have the same length.
  5. Radiator as claimed in one or more of the previous claims, characterised in that said first segments of said coil portion of said tube and of said groove have mutually different length.
  6. Radiator as claimed in one or more of the previous claims, characterised in that said manifold is positioned at a lower portion of said radiator when said radiator is installed and said coil portion of said tube and of said groove develops upwards.
  7. Radiator as claimed in one or more of the previous claims, characterised in that at the end of said coil portion of said tube and of said groove opposite the one where the manifold is fastened, a valve for venting air is fastened.
  8. Radiator as claimed in one or more of the previous claims, characterised in that it comprises a tube and a return groove interposed between said vent valve and said manifold.
  9. Radiator as claimed in one or more of the previous claims, characterised in that said tube and said return groove are substantially rectilinear or have substantially rectilinear portions or are curved or coil shaped.
  10. Radiator as claimed in one or more of the previous claims, characterised in that it comprises two manifolds positioned where said coil portion is interposed between said two manifolds.
  11. Radiator as claimed in any of the previous claims, characterised in that said manifold has parallelepiped shape.
  12. Radiator as claimed in one or more of the previous claims, characterised in that said manifold has two cylindrical elements each delimiting a through hole, preferably longitudinal, whereto said tube is fastened.
  13. Radiator as claimed in one or more of the previous claims, characterised in that said tube is inserted by pressure in said groove, preferably by rolling.
  14. Radiator as claimed in one or more of the previous claims, characterised in that said groove is obtained in said plate.
  15. Radiator as claimed in one or more of the previous claims, characterised in that said tube is connected within said groove with the interposition of a glue.
EP08165160A 2007-10-02 2008-09-25 Radiator with radiating plate having high efficiency Withdrawn EP2045554A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001883A ITMI20071883A1 (en) 2007-10-02 2007-10-02 HIGH EFFICIENCY RADIANT PLATE RADIATOR

Publications (2)

Publication Number Publication Date
EP2045554A2 true EP2045554A2 (en) 2009-04-08
EP2045554A3 EP2045554A3 (en) 2012-11-07

Family

ID=40149572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08165160A Withdrawn EP2045554A3 (en) 2007-10-02 2008-09-25 Radiator with radiating plate having high efficiency

Country Status (5)

Country Link
US (1) US20090084533A1 (en)
EP (1) EP2045554A3 (en)
CA (1) CA2640009A1 (en)
IT (1) ITMI20071883A1 (en)
RU (1) RU2008139156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20090178A1 (en) * 2009-10-08 2011-04-09 Milanese Claudio Ditta Individuale THERMAL RADIATOR FOR ENVIRONMENTS AND ITS CONSTRUCTION PROCEDURE
PL423370A1 (en) * 2017-11-07 2019-05-20 Instal Projekt Gawlowscy Scierzynscy Spolka Jawna Panel radiator with increased thermal efficiency

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2810423C (en) 2010-09-22 2019-10-08 Packers Plus Energy Services Inc. Delayed opening wellbore tubular port closure
CN106705306B (en) * 2017-01-13 2019-09-20 西安交通大学 The integrated operating system of domestic air conditioner and refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769929A (en) * 1954-12-14 1957-03-13 Porter & Co Salford Ltd T Improvements in and relating to heat exchangers
JP2003302068A (en) * 2002-04-12 2003-10-24 Tadashi Yamagami Ceramic panel heater
EP1568958A1 (en) * 2004-02-25 2005-08-31 Zehnder Verkaufs- und Verwaltungs AG Heat exchanger
EP1870654A2 (en) * 2006-06-20 2007-12-26 Hotech di Casassa M. & C.S.n.c. Decorative radiator
EP1956332A1 (en) * 2007-02-05 2008-08-13 Fecs Partecipazioni S.r.l. Radiant plate radiator and process for its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1982075A (en) * 1932-03-23 1934-11-27 Fedders Mfg Co Inc Method of making refrigerating apparatus
US2509011A (en) * 1947-03-04 1950-05-23 Gen Electric Heat transfer apparatus
US4324028A (en) * 1977-09-26 1982-04-13 Honeywell Inc. Method of fabricating a solar absorber panel
US4187901A (en) * 1977-11-02 1980-02-12 Beard Larry D Flat plate solar heat collector
JPH0620055Y2 (en) * 1988-07-09 1994-05-25 サンデン株式会社 Condenser
JPH0616310Y2 (en) * 1989-04-27 1994-04-27 サンデン株式会社 Heat exchanger
US4998584A (en) * 1990-06-07 1991-03-12 Itt Corporation Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769929A (en) * 1954-12-14 1957-03-13 Porter & Co Salford Ltd T Improvements in and relating to heat exchangers
JP2003302068A (en) * 2002-04-12 2003-10-24 Tadashi Yamagami Ceramic panel heater
EP1568958A1 (en) * 2004-02-25 2005-08-31 Zehnder Verkaufs- und Verwaltungs AG Heat exchanger
EP1870654A2 (en) * 2006-06-20 2007-12-26 Hotech di Casassa M. & C.S.n.c. Decorative radiator
EP1956332A1 (en) * 2007-02-05 2008-08-13 Fecs Partecipazioni S.r.l. Radiant plate radiator and process for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20090178A1 (en) * 2009-10-08 2011-04-09 Milanese Claudio Ditta Individuale THERMAL RADIATOR FOR ENVIRONMENTS AND ITS CONSTRUCTION PROCEDURE
PL423370A1 (en) * 2017-11-07 2019-05-20 Instal Projekt Gawlowscy Scierzynscy Spolka Jawna Panel radiator with increased thermal efficiency

Also Published As

Publication number Publication date
RU2008139156A (en) 2010-05-10
US20090084533A1 (en) 2009-04-02
EP2045554A3 (en) 2012-11-07
CA2640009A1 (en) 2009-04-02
ITMI20071883A1 (en) 2009-04-03

Similar Documents

Publication Publication Date Title
CN102589328B (en) Pure-countercurrent cellular plate-pin heat exchanger and combination thereof
CN106574808B (en) Low refrigerant charge microchannel heat exchanger
WO2011000137A1 (en) Microchannel parallel-flow all-aluminum flat-tube weld-type heat exchanger and use of same
WO2006009971A3 (en) Heat exchanger with header tubes
WO2011156700A3 (en) A micro-channel heat exchanger suitable for heat pump water heater and the manufacturing method
EP2045554A2 (en) Radiator with radiating plate having high efficiency
CN106403640B (en) A kind of high efficiency plate low temp heating piece and its personal module
CN105135753A (en) Micro channel heat exchanger for heat pump air conditioner
CN211855020U (en) Heat exchange tube and heat exchanger with same
CN107966057A (en) A kind of plate heat exchanger and its application method
CN205066240U (en) Heat pump idle call microchannel heat exchanger
CN209857688U (en) Novel little logical board, and possess radiator and air conditioner end equipment of this little logical board
CN103292617A (en) Finned heat exchanger
CN106969545A (en) Micro-channel heat exchanger and Teat pump boiler
EP1998131A1 (en) Gas cooler for hot-water supply system
CN105546823B (en) Frame-type plate heat-exchange device and water heater, wall-hung boiler, commercial boiler
CN211551843U (en) Heat exchanger and air conditioner with same
CN208269420U (en) A kind of water-heater water tank and air energy water heater
CN103115504A (en) Efficient automobile all-aluminum heat exchanger
CN210463271U (en) Annular C-shaped opening micro-channel parallel flow heat exchanger
CN201666746U (en) High-efficiency Tai Chi module high-speed heat exchange device
CN209512581U (en) Gas-liquid counter current heat-exchanger rig
CN101799248A (en) High-efficiency Taichi modular high-efficiency heat exchanger
CN207487450U (en) A kind of cellular air cooled fin tube heat exchanger
CN202470440U (en) Water heater with heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FECS PARTECIPAZIONI S.R.L.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 1/32 20060101ALI20121004BHEP

Ipc: F28D 1/047 20060101AFI20121004BHEP

Ipc: F28F 1/22 20060101ALI20121004BHEP

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20130710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130508