EP2044409A2 - Device, system and method of detecting and locating malfunctions in a hydraulic structure, and a hydraulic structure equipped with said device - Google Patents

Device, system and method of detecting and locating malfunctions in a hydraulic structure, and a hydraulic structure equipped with said device

Info

Publication number
EP2044409A2
EP2044409A2 EP07823567A EP07823567A EP2044409A2 EP 2044409 A2 EP2044409 A2 EP 2044409A2 EP 07823567 A EP07823567 A EP 07823567A EP 07823567 A EP07823567 A EP 07823567A EP 2044409 A2 EP2044409 A2 EP 2044409A2
Authority
EP
European Patent Office
Prior art keywords
geotextile
optical
optical fiber
detecting
optical cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07823567A
Other languages
German (de)
French (fr)
Inventor
Olivier Artieres
Cyril Guidoux
Jean-Jacques Fry
Jean-Marie Henault
Sylvain Blairon
Gauthier Vercoutere
Marc Voet
Johan Vlekken
Yves-Henri Faure
Paul Royet
Alain Bernard
Fabrice Daly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiber Optic Sensors & Sensing Systems bvba
Electricite de France SA
Universite Joseph Fourier Grenoble 1
TenCate Geosynthetics France
Original Assignee
Fiber Optic Sensors & Sensing Systems bvba
Electricite de France SA
Universite Joseph Fourier Grenoble 1
TenCate Geosynthetics France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiber Optic Sensors & Sensing Systems bvba, Electricite de France SA, Universite Joseph Fourier Grenoble 1, TenCate Geosynthetics France filed Critical Fiber Optic Sensors & Sensing Systems bvba
Publication of EP2044409A2 publication Critical patent/EP2044409A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • E02B3/102Permanently installed raisable dykes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Definitions

  • the invention relates to a device, a system and a method for detecting and locating malfunctions in a hydraulic structure, as well as a hydraulic structure equipped with this device.
  • structure or hydraulic structure we mean civil engineering works such as canal, pond or river embankments or dikes or levees for protection against floods and dams, but also sealed storage structures such as ponds. , dikes and dams and landfills or other sealing devices (eg pipelines, including pipelines).
  • leaks can come from many different causes among which we can mention, flood overflow, runoff, which can be combined with damage to the strength and / or cohesion of the structure, following a period of drought, land movement, land heterogeneity, aging of the structure, new localized stresses, plant root holes, animal burrows, drainage ducts created by erosion or soil a defect or damage to the sealing structure.
  • an optical cable is used longitudinally in the dike, at the foot of the dike, and which can measure the temperature.
  • it detects the presence of a leak of water up to the optical fiber.
  • S. Johansson (1997) (see page Monitoring in Embankment Dams, Doctoral Thesis, Royal Institute of Technology, Swiss, Sweden. 50 p) or patents DE19506180 and DE10052922.
  • the information relating to the occurrence of a leak in the structure can arrive relatively late, especially when this leak has been initiated at a location of the dike located high and which is distant from the position of the fiber optical.
  • the temperature measurement being modified because of the heterogeneity of the surrounding soil fiber optic, it results in greater uncertainty on the threshold of variation which must be considered significant of the presence of a leak.
  • the present invention aims to provide a device and a method for overcoming the disadvantages of the prior art and in particular offering the possibility of detecting a leak faster in a structure, particularly a hydraulic structure.
  • the leak detection and localization device is characterized in that it comprises a geotextile provided with at least one optical cable which comprises at least one optical fiber capable of detecting a temperature variation. and transmitting a modified signal when the temperature variation is detected, said optical cable being in contact with said geotextile.
  • the optical cable may contain several optical or electrical fibers
  • the geotextile it is realized via geotextile, a transfer of information from any area of the geotextile reached by a leak to the fiber / optical cable. Indeed, by the progress of the liquid in the geotextile which is permeable, the slightest water leak that reaches the geotextile, is conducted in a uniform manner to the optical fiber, at which the detected temperature variation triggers. an alert signal.
  • This solution has the advantage of not limiting the zone monitored to the only zone corresponding to the position of the optical cable but it allows to cover a larger area auscultated by the geotextile, thanks to this phenomenon of drainage and collection of the leak by the geotextile towards the cable.
  • the presence of the geotextile forms a wall, certainly permeable, but which slows the progression of the leak on both sides of the geotextile.
  • the geotextile slows the phenomenon of regressive erosion: it clogs locally by suspended soil particles, which has the effect of limiting the flow velocities and therefore the intensity of the scouring of the walls along from the leak.
  • This braking of the phenomenon of leakage and erosion is very advantageous because it makes it possible, in combination with an increased speed of detection and localization, to save time to allow intervention at a sufficiently early stage so as not to jeopardize the integrity of the work.
  • This contact between the optical fiber (cable) and the geotextile can be obtained in various ways from the simple laying of the optical fiber (cable) on or against the geotextile until the formation of a fixation or a link between the optical fiber (cable) and the geotextile.
  • said optical cable is connected to said geotextile by connecting means, in particular at least one connecting element.
  • connecting elements it is possible to note the ligature, sewing thread, the warp or weft thread when weaving the geotextile, the glue, a staple, a gripping band, or fibers of each of two geotextiles needled together, each of these connecting elements can be used alone or in combination.
  • this solution also has the additional advantage of allowing, in addition, a great ease of installation by the fact that the geotextile is in minus a layer in which the optical fiber (s) (s) is (are) already attached to the desired location (s) depending on the type and shape of the structure, as well as the location of the areas that will be estimated as sensitive to the risk of leakage.
  • geotextile is meant in the present description, its broadest meaning, ie a geotextile or a geotextile related product within the meaning of ISO 10318 including a nonwoven geotextile, a composite geotextile drainage, a woven geotextile , grid or knit type.
  • said geotextile is provided with at least one other fiber or optical cable capable of detecting a deformation of the geotextile in the vicinity of the preceding optical fiber (for example deformation of the geotextile if the first characteristic measured was the temperature) and of transmitting a signal modified when deformation of the geotextile is detected.
  • a deformation of the geotextile in the vicinity of the preceding optical fiber for example deformation of the geotextile if the first characteristic measured was the temperature
  • a signal modified when deformation of the geotextile is detected for example deformation of the geotextile if the first characteristic measured was the temperature
  • the cable optical and geotextile allows to measure the deformations of the structure by transfer of the movements of the ground towards the optical fiber (the cable) by means of the geotextile.
  • the simultaneous detection of the temperature variation and deformations in the structure provides additional information because the measured signals can correspond to cases already observed and recorded for the same type of structure, hence the possibility of to be informed about the nature of the cause of the leak.
  • said geotextile is provided with an additional optical fiber (cable) capable of detecting a variation of the moisture content near the optical fiber and of transmitting a modified signal when the variation in the moisture content is detected.
  • the relative humidity is measured around the optical fiber (cable) but more generally the measurement can relate to the moisture content of the soil or the environment surrounding the optical cable.
  • the measurement can relate to the moisture content of the soil or the environment surrounding the optical cable.
  • the device according to the invention comprises a plurality of optical fibers (cables) arranged substantially parallel to each other (them).
  • the device minimises the presence of several optical fibers (cables) which are similar and which measure the same parameter, notably the temperature, but also the deformations and / or the humidity, one can locate the location and the extent of the leak.
  • it concerns optical cables, among which several of them are located close to each other, forming a bundle of cables, and which measure different parameters, notably temperature and / or deformations. and / or humidity, so that several types of information are obtained on a given location of the geotextile.
  • said optical cables are grouped together in at least one bundle of optical cables, said bundle being disposed at a location of the geotextile that corresponds to a zone of the structure sensitive to leakage.
  • each beam measuring several parameters, including temperature and deformation, one can obtain a better diagnosis of the phenomenon of leakage, as well as a more precise location.
  • At least one of said optical cables transmitting a temperature-related signal is disposed at a location of the geotextile which is in an area located near the air.
  • the measurement of the air temperature is used by this appropriately placed optical cable, so that this measurement may constitute a reference measurement for monitoring temperature variations at the other locations where this measurement is made.
  • the device according to the invention further comprises at least one longitudinal heating device (electric heating wire, tube conveying a hot fluid) placed parallel to and adjacent to said optical fiber.
  • at least one longitudinal heating device electrical heating wire, tube conveying a hot fluid
  • This arrangement makes it possible to implement another measurement technique.
  • said optical cable is monomode or multimode.
  • said optical cable is linked, directly or indirectly, to said geotextile.
  • said optical cable or said (other) optical fiber is bonded to the geotextile by at least one connecting element (for example ligating wire, cable, needling, gluing, stapling, gripping tape).
  • at least one connecting element for example ligating wire, cable, needling, gluing, stapling, gripping tape.
  • the device according to the invention comprises a first geotextile and a second geotextile and said optical cable or said optical fiber is inserted (e) between the first geotextile and the second geotextile.
  • said optical fiber is linked to the first and second geotextiles or to one of the two of the first and second geotextiles.
  • the two geotextiles are assembled by two gripping strips parallel to the fibers, which can move, in a limited way, inside the space delimited by the two bands.
  • the intimate link between each optical fiber and the two geotextiles is ensured by different techniques for connecting each optical fiber to the first and second geotextiles, these techniques being able to be used separately or in combination.
  • this connection can be made by gluing, needling, welding, use of gripping strips, stapling or sewing between the two geotextiles.
  • the device according to the invention comprises at least one optical fiber placed freely inside a protective tube connected to the geotextile, so that it is not subjected to external mechanical stresses.
  • optical fibers preferably two optical fibers formed respectively of a monomode fiber and a multimode fiber, which are advantageously placed in close proximity to one another.
  • These two optical fibers of different nature can be used for the measurement of different parameters or else to measure the same parameter, using different measurement techniques. In the latter case, this measurement can be carried out for different types of equipment, for example equipment operating according to detection techniques based on the Raman effect or on the Brillouin effect.
  • the type, the number and the location of the optical fibers in the (or between) geotextile (s) in order to adapt the type of detection (temperature only, temperature and deformation, temperature and humidity or temperature and deformation and humidity), and location (s) monitored (s) to the type of structure, site and sensitivity of the desired detection, which allows to predict in a product easy to install, a solution of detection and localization to measure.
  • the optimal properties of geotextiles are calculated according to the characteristics of the structure.
  • a protective function thick non-woven geotextiles are generally used.
  • the filtration opening and the permeability of the geotextile are calculated as a function of the characteristics of the soil to be filtered: it is known, however, in the case of nonwovens, that the number of filter constrictions should preferably be between 25 and 40.
  • the number of filter constrictions should preferably be between 25 and 40.
  • erosion retarder of fine material one will look for filtration openings small enough to retain the particles transported in suspension by the flow.
  • the invention also relates to a system for detecting and locating leakage of a fluid in a hydraulic structure, which comprises a leak detection and localization device of the type presented above and at least one measuring device connected to said fiber optical and to indicate a variation of the signal transmitted by the optical fiber.
  • the invention relates to a hydraulic structure equipped with such a device for detecting and locating leakage, in particular a hydraulic structure formed by a dike (dry or in water), and in which said leak detection and locating device is placed longitudinally in the body of the dike so as to partially cover or at least almost the entire height of the dike.
  • said leak detection and localization device is placed in the body of the dike and on the opposite side to the water (downstream side).
  • said optical fiber which is disposed at a location of the geotextile which corresponds to an area located near the air is placed so as to be at the top of the work.
  • the present invention achieves the objective previously recalled by a method for detecting and locating leakage of a fluid in a hydraulic structure, which is characterized in that a temperature variation is detected by a modification of the emitted signal.
  • an optical fiber included in an optical cable with a geotextile this optical cable being placed on or against the geotextile or being linked, directly or indirectly, to said geotextile.
  • this method also makes it possible to detect:
  • FIG. 1 is a diagrammatic perspective view of a partially transparent view of an embodiment of the leak detection and localization device according to the present invention
  • FIG. 2 is a cross-sectional view of another embodiment of FIG. device for detecting and locating leakage
  • FIG. 3 to 7 show a sectional view of several possible uses of the device according to the invention for a water retaining dike.
  • the detection and leak location 10 comprises a geotextile 12 on the lower surface of which have been placed parallel to each other several optical fibers (or cables) 14 which are intimately connected to the geotextile 12 by connecting means formed in this case by sewing threads or ligature 16.
  • the optical cables 14 are directly integrated in a woven geotextile, in particular by being used as warp yarns in a weave of the straight warp construction type.
  • the weft threads are considered as connecting elements (or ligation) on the product.
  • the optical cables 14 are bonded to the geotextile by means of the coating coating (for example PVC) usually covering the son / strips of the grid.
  • the coating coating for example PVC
  • the optical cables can also be connected to the other yarns of the knit by the ligation yarn itself forming a yarn of the knit.
  • the leak detection and localization device comprises a first geotextile 12 and a second geotextile 13 between which have been inserted several optical fibers (or cables) 14 arranged parallel to each other. This assembly is secured by assembly between the two geotextiles 12 and 13 by connecting means which are, in the case shown, formed again of a sewing thread 16.
  • Other means of assembly between the two geotextiles 12 and 13 may be provided, in particular from the following: by gluing; by needling between the two geotextiles 12 and 13, especially if these two geotextiles 12 and 13 are formed by nonwovens,
  • the optical cable 14 is connected to only one of the two geotextiles 12 and 13, for example by means of a ligature wire or any other assembly means such as those mentioned above.
  • the means for connecting the optical cable 14 to the geotextile 12 or 13 may be different from the assembly means between the two geotextiles 12 and 13.
  • the bonding technique between the two geotextiles 12 and 13 is implemented on all of the surfaces opposite the two geotextiles 12 and 13, or else in strips parallel to the geotextile fibers.
  • optical cable is used to denote indifferently a sheathed optical fiber, several optical fibers tightly housed in a sheath, an optical fiber mounted freely in a tube or several optical fibers housed freely in a tube.
  • FIG. 3 illustrating a first use case of the leak detection and localization device 10 making it possible to measure the temperature by means of an optical cable 14.
  • a dike (in water) 20 separates a first "upstream” space filled with water 22 (left in the figure), a second space 24 “downstream” (right in the figure) which must remain dry and protected from any overflow of the water 22.
  • the dike 20 extends vertically between a dike foot 201 and a top 202 and horizontally under the two spaces 22 and 24.
  • a soil refill 26 composed for example of sand and / or gravel and / or rocks.
  • a leak detection and locating device 10 has been placed to cover the slope of the dike 20 turned towards the space 24 (downstream slope) by covering almost the entire height of the dike 20 and a substantially horizontal portion extending beneath the soil recharge 26 towards the space 24, beyond the dike foot 201.
  • the device 10 comprises a geotextile 12 connected to a single optical cable 14 which is located at a location considered to be the most sensitive to leakage, namely at the level of the dike foot 201, at the lowest point. from the downstream slope of the dike body 20 turned towards the space 24, namely at a location where the geotextile forms a bend.
  • FIG. 3 furthermore shows schematically the propagation of a leak (arrow 30) along a leakage channel 28 crossing the dam 20 between the spaces 22 and 24 at an average height of the embankment slopes. 20.
  • This channel 28 which has been dug due to the flow of water 22 at the side wall of the dike 20 turned towards this space 22 (upstream slope), is naturally slightly inclined from the space 22 towards the space 24. In addition, this channel 28 will normally tend to widen due to the phenomenon of regressive erosion which occurs essentially on the side of the side wall of the dike 20 turned towards the dry space 24 (downstream slope).
  • the geotextile 12 has a soil filtration function of the dike body 20 at the interface with the soil recharge 26.
  • the geotextile 12 forms at the outlet of the canal on the downstream slope of the dike 20 a barrier, not for the water flowing in the escape channel 28 because the geotextile is permeable, but for the soil particles suspended in the tailrace 28 by the flow of water: thus, the geotextile 12 clogs locally in the extension of the escape channel 28, which has the effect of limiting the flow velocities inside the escape channel 28 and therefore the intensity of the flushing of the walls along the escape channel 28, which delays the expansion of the leak.
  • the geotextile 12 makes it possible to drain (arrow 32) the water flowing in the escape channel 28 to the optical cable 14, which allows accelerate the water presence information at the device 10 to the fiber 14 which is positioned at a location at a different height (in this case below) than the height at which leakage channel 28 is located.
  • geotextile 12 there may be noted a single or multi-layer nonwoven geotextile, a woven geotextile, a knitted geotextile, a drainage geocomposite comprising a draining geosepterous core of any kind, or any combination thereof. structures, and in particular a composite geotextile produced by the combination of a needled nonwoven and knitted reinforcement cables.
  • the association of reinforcing cables parallel to the optical fibers is interesting to pull on the geotextile during its production or during its installation, during its winding or unwinding, without mechanically stressing the optical cables.
  • the optical cable 14 is a multimode type optical fiber 141 which has a sheath 14a tightly surrounding the optical fiber 141.
  • This type of optical cable 14 is generally used to perform temperature measurements using the Raman effect.
  • the optical cable 14 is composed a monomode type optical fiber 142 which is freely surrounded by a protective tube 14b. This type of optical cable 14 is used to make temperature measurements, using the Brillouin effect.
  • an optical cable 14 is used formed of two optical fibers 141 and 142, respectively multimode type and monomode type, which are housed freely in a protective tube 14b.
  • optical fibers 141 and 142 allow temperature measurements by Raman effect and / or Brillouin effect. In this case, depending on the equipment available and which is connected to one or the other or to the two optical fibers 141 and 142, it is possible, at any time and without having to install a different device 10, to realize the measure (s) considered the most adapted, technically and / or economically.
  • optical cable 14 is respectively connected to a light emitter and a measuring device (not shown) making it possible to interpret the light ray reaching up to it in an indication of the temperature of the light.
  • optical cable 14 that is to say the device 10 at the foot of the dike 201.
  • FIG. 4 illustrates a second use case of the leak detection and localization device 10 making it possible to perform both a temperature measurement and a deformation measurement by means of a beam 34 of FIG. optical cables 14 having two, three or more optical cables 14.
  • this second use case is similar to that of the first use case, the only difference being the use not of a single optical cable 14 but of a bundle 34 of optical cables 14. which is always disposed at the foot of said dike, at the bottom of the side wall of the dike turned towards the space 24 (downstream slope).
  • a bundle 34 of optical cables 14 which is always disposed at the foot of said dike, at the bottom of the side wall of the dike turned towards the space 24 (downstream slope).
  • the beam 34 is composed of two optical cables 14 arranged side by side: a monomode type optical fiber 142 (left) disposed tightly in a sheath 14a and a multimode type optical fiber 141 tightly disposed in another sheath 14a (right).
  • the monomode optical fiber 142 operates by the Brillouin effect and is intended to measure any deformations of the dike 20, via the deformations of the geotextile 12
  • the multimode optical fiber 141 operates by Raman effect and is for measuring the temperature at this height level of the geotextile 12.
  • two optical cables 14 are also used for the bundle 34, which are in this case composed of a fiber singlemode-type optics 142 (left) arranged tightly in a sheath 14a and a monomode type optical fiber 142 freely disposed in a tube 14b (right).
  • the optical fiber 142 clamped in the sheath 14a is used to perform the Brillouin effect deformation measurement
  • the monomode optical fiber 142 freely disposed in the tube 14b is used to perform the Brillouin effect temperature measurement.
  • a beam 34 composed of two optical cables 14 is also used. It is, on the one hand, still once of a monomode type optical fiber 142 (left) arranged tightly in a sheath 14a (measurement of deformation by Brillouin effect) and, on the other hand, a tube 14b (on the right) in which two optical fibers are housed: a multimode optical fiber 141 (on the left) and a monomode optical fiber 142 (on the other hand). right), this second optical cable 14 for performing the temperature measurement as in the case of the third variant III C of Figure 3.
  • an electric heating wire 15 so that the temperature measurement made by the optical cable 14 on the left is carried out by a so-called "active method” method, previously mentioned and,
  • optical cable used for the deformation measurement is not limited to those provided above, but it is possible to provide other types of optical cables such as those using optical fibers with Bragg gratings, particularly as in FIG. document FR 2 844874,
  • FIG. 5 illustrates a third use case of the leak detection and localization device 10 making it possible to perform both a temperature measurement and a deformation measurement, and this at several locations of the geotextile 12 , by means of several beams 34 of optical cables 14 arranged in the direction longitudinally at different locations of the geotextile, these different locations corresponding to different heights along the side wall (of the downstream slope) of the dike 20 facing the space 24.
  • this third use case is similar to that of the second use case illustrated in FIG. 4, the only difference being the use not of a single bundle 34 of optical cables 14 but of a multiplicity (two, three or more) of beams 34 of optical cables 14, which are arranged not only at the foot of the dike 20, at the bottom of the side wall of the dike turned towards the space 24, but also along the side wall of the dike 20 turned towards the space 24.
  • a multiplicity two, three or more
  • V A to V D are provided, which are respectively identical to the four variant embodiments IV A to IV D which have been previously described in relation to FIG. 4.
  • the presence of a multiplicity of beams 34 makes it possible not only to measure at each of the locations of these beams 34 both the temperature and the deformation, but also for each of these measurements to be able to identify the corresponding location. of the dike 20 (and also to reduce the path length between the point of convergence between the leakage channel 28 and the geotextile 12, and the beam 34, thus reducing the detection time and location).
  • FIG. 6 another variant embodiment in which the leak detection and localization device 10 is arranged, not only, as in the previous cases of FIGS. 3 to 5, along the wall, is now described.
  • lateral (of the downstream slope) of the dike 20 turned towards the space 24 and under the space 24, but also along the peak (crest) 202 of the dike 20, the soil recharge 26 also extending over the crest of the dike 20, above the device 10 and also downstream of the dike 20 (right in Figure 6).
  • the geotextile 12 comprises, all along the device 10, a multitude of bundles 34 of optical cables 14, which makes it possible to give indications of measurement of temperature, of deformation, and optionally of humidity, for each of the locations of its bundles 34 along the top, the dry lateral side and also downstream of the dike 20.
  • This variant embodiment also applies to the second and third use cases respectively represented in Figures 3 and 4.
  • This variant of embodiment must also be understood as encompassing another use case, namely the situation in which one disposes separately, all along the device 10 for detecting and locating leakage in its extent as represented on FIG. 6, not a multitude of bundles 34 of optical cables but a multitude of optical cables 14 separated individually and making it possible to perform each only the temperature measurement as it has been presented in relation to FIG.
  • FIG. 7 represents a fifth use case of the leak detection and localization device 10, in which, this time, it is not placed on the side of the side wall (of the downstream slope). of the dike 20 turned towards the space 24 but along the side wall (of the upstream slope) of the dike 20 turned towards the water retaining space 22.
  • a sealing structure of any kind such as, for example, hydraulically or bituminous binder concrete, a clay material, a geocomposite based on clay material (geocomposite clay line) or a geomembrane 36 which protects the leak detection and localization device 10 against any ingress of water which does not would not be due to the presence of a leak.
  • the leak detection and localization device 10 extends longitudinally along (the upstream slope) of the lateral wall of the dike 20 turned towards the space 22. as well as at the foot of the dike 201, slightly below the space 22, the geomembrane 36 projecting well beyond the maximum height of the device 10, along (the ridge) of the summit 202 of the dike 20, and under the space 22.
  • optical cable (s) 14 present in the geotextile 12 of the leak detection and localization device 10 a single optical cable 14 measuring the temperature, a plurality of separate optical cables 14 measuring the temperature at locations different, a single bundle of optical cables 14 measuring the temperature and the deformation, or, as illustrated in FIG. 7, several bundles 34 of optical cables are used in order to measure both the temperature and the deformation (as well as , possibly humidity) at different locations along the detection and location device 10.
  • the measurement of all the previously mentioned parameters can be carried out continuously or discontinuously at times t0, t1, t2, independently or simultaneously.
  • the detection and localization device can consist of strips or rollers placed parallel to each other either side by side, possibly with a small overlap of the one over the other, or spaced apart from each other. one of the other. In the latter case of spaced strips, it is envisaged that they are in contact with a draining layer placed below or below them, this draining layer can be made of granular material, sand or gravel type, or geotextile or related product.

Abstract

The invention relates to a device (10) for detecting and locating a fluid leak in a hydraulic structure, characterized in that it comprises a geotextile (12) provided with at least one optical fiber (14, 141, 142) in contact with said geotextile (12) and able to transmit a modified signal when the temperature varies. Application to leak detection and location in hydraulic structures.

Description

Dispositif, système et procédé de détection et de localisation de dysfonctionnement dans un ouvrage hydraulique, ainsi qu'un ouvrage hydraulique équipé de ce dispositif Device, system and method for detecting and locating malfunctions in a hydraulic structure, as well as a hydraulic structure equipped with this device
L'invention concerne un dispositif, un système et un procédé de détection et de localisation de dysfonctionnement dans un ouvrage hydraulique, ainsi qu'un ouvrage hydraulique équipé de ce dispositif.The invention relates to a device, a system and a method for detecting and locating malfunctions in a hydraulic structure, as well as a hydraulic structure equipped with this device.
Par dysfonctionnement, il faut comprendre en particulier, une fuite anormale de fluide, mais aussi notamment une déformation ou un tassement de l'ouvrage hydraulique.By dysfunction, it must be understood in particular, an abnormal fluid leak, but also in particular a deformation or a settlement of the hydraulic structure.
Par ouvrage ou ouvrage hydraulique, on entend les ouvrages de génie civil tels que les digues de canaux, de bassins ou de rivières ou, les digues ou levées de protection contre les crues et les barrages mais également les ouvrages de stockage étanchés tels que les bassins, digues et barrages et les décharges ou encore d'autres dispositifs d'étanchéité (par exemple des pipelines, y compris les gazoducs).By structure or hydraulic structure, we mean civil engineering works such as canal, pond or river embankments or dikes or levees for protection against floods and dams, but also sealed storage structures such as ponds. , dikes and dams and landfills or other sealing devices (eg pipelines, including pipelines).
Dans tous ces ouvrages, il existe un risque de fuite avéré du fluide, et en particulier de l'eau, contenu par l'ouvrage.In all these works, there is a risk of leakage proven fluid, especially water, contained by the book.
Ces fuites peuvent provenir de nombreuses causes différentes parmi lesquelles on peut mentionner, le débordement par crue, le ruissellement, qui peuvent se combiner à un endommagement de la résistance et/ou de la cohésion de l'ouvrage, suite à une période de sécheresse, un mouvement de terrain, une hétérogénéité des terrains, le vieillissement de l'ouvrage, de nouvelles contraintes localisées, des trous de racines de végétaux, des terriers d'animaux, des conduits d'écoulement créés par une érosion ou un entraînement du sol ou un défaut ou un endommagement de la structure d'étanchéité.These leaks can come from many different causes among which we can mention, flood overflow, runoff, which can be combined with damage to the strength and / or cohesion of the structure, following a period of drought, land movement, land heterogeneity, aging of the structure, new localized stresses, plant root holes, animal burrows, drainage ducts created by erosion or soil a defect or damage to the sealing structure.
Habituellement, pour la détection et la localisation de fuites dans une digue, on utilise un câble optique disposé en direction longitudinale dans la digue, en pied de digue, et qui permet de mesurer la température. Ainsi, par une variation de la température, on détecte la présence d'une fuite d'eau parvenue jusqu' à la fibre optique. C'est ce qui ressort par exemple de la publication de S. Johansson (1997) {Seepage Monitoring in Embankment Dams, Doctoral Thesis, Royal instîtute of Technology, Stockholm, Sweden. 50 p) ou encore des brevets DE19506180 et DE10052922. Dans ce cas, l'information relative à la survenue d'une fuite dans l'ouvrage peut arriver relativement tardivement, notamment lorsque cette fuite a été initiée à un emplacement de la digue situé en hauteur et qui est éloigné de la position de la fibre optique. De plus, la mesure de température étant modifiée du fait de l'hétérogénéité des sols environnants la fibre optique, il en résulte une plus grande incertitude sur le seuil de variation qui doit être considéré comme significatif de la présence d'une fuite.Usually, for the detection and location of leaks in a dike, an optical cable is used longitudinally in the dike, at the foot of the dike, and which can measure the temperature. Thus, by a variation of the temperature, it detects the presence of a leak of water up to the optical fiber. This is evident, for example, from the publication of S. Johansson (1997) (see page Monitoring in Embankment Dams, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden. 50 p) or patents DE19506180 and DE10052922. In this case, the information relating to the occurrence of a leak in the structure can arrive relatively late, especially when this leak has been initiated at a location of the dike located high and which is distant from the position of the fiber optical. In addition, the temperature measurement being modified because of the heterogeneity of the surrounding soil fiber optic, it results in greater uncertainty on the threshold of variation which must be considered significant of the presence of a leak.
Il est également connu du document EP0978715 d'utiliser de fibres optiques contenues dans des câbles pour contrôler l'état des tubes ou analogues transportant des fluides gazeux ou liquides sous pression. Dans ce cas, il faut placer les câbles dans les tubes à surveiller. Enfin, une autre technique dite « active » combine un fil électrique chauffe à une fibre optique de mesure de la température, c'est- à-dire que l'on élève la température au voisinage de la fibre optique et on mesure la variation de température dans le temps, cette variation étant d'autant plus rapide que la circulation du fluide est importante (voir la publication de S. Perzlmaier et al (2004) : Distributed Fiber Optic Température Measurements in Hydraulic Engineering - Prospects of the Heat-up Method, ICOLD annual meeting, Séoul 2004 ou le brevet DE 10052922).It is also known from EP0978715 to use optical fibers contained in cables to monitor the condition of tubes or the like carrying gaseous or liquid fluids under pressure. In this case, the cables must be placed in the tubes to be monitored. Finally, another so-called "active" technique combines an electric wire heated with an optical fiber for measuring the temperature, that is to say that the temperature is raised in the vicinity of the optical fiber and the variation in This change is all the more rapid as the circulation of the fluid is important (see the publication of S. Perzlmaier et al (2004): Distributed Fiber Optic Temperature Measurements in Hydraulic Engineering - Prospects of the Heat-up Method , ICOLD annual meeting, Seoul 2004 or patent DE 10052922).
La présente invention a pour objectif de fournir un dispositif et un procédé permettant de surmonter les inconvénients de l'art antérieur et en particulier offrant la possibilité de détecter plus rapidement une fuite dans un ouvrage, en particulier un ouvrage hydraulique.The present invention aims to provide a device and a method for overcoming the disadvantages of the prior art and in particular offering the possibility of detecting a leak faster in a structure, particularly a hydraulic structure.
A cet effet, selon la présente invention, le dispositif de détection et de localisation de fuite est caractérisé en ce qu'il comporte un géotextile pourvu d'au moins un câble optique qui comprend au moins une fibre optique apte à détecter une variation de température et à transmettre un signal modifié lorsque la variation de température est détectée, ledit câble optique étant en contact avec ledit géotextile.For this purpose, according to the present invention, the leak detection and localization device is characterized in that it comprises a geotextile provided with at least one optical cable which comprises at least one optical fiber capable of detecting a temperature variation. and transmitting a modified signal when the temperature variation is detected, said optical cable being in contact with said geotextile.
De cette manière, on comprend que par le contact entre la fibre optique (ou de façon plus générale son support, l'ensemble étant dénommé câble optique, le câble optique pouvant contenir plusieurs fibres optiques ou électrique) et le géotextile, on réalise, via le géotextile, un transfert d'information depuis toute zone du géotextile atteinte par une fuite jusqu'à la fibre/au câble optique. En effet, par la progression du liquide dans le géotextile qui est perméable, la moindre fuite d'eau qui atteint le géotextile, est conduite d'une façon uniforme jusqu'à la fibre optique, au niveau de laquelle la variation de température détectée déclenche un signal d'alerte.In this way, it is understood that by the contact between the optical fiber (or more generally its support, the assembly being called optical cable, the optical cable may contain several optical or electrical fibers) and the geotextile, it is realized via geotextile, a transfer of information from any area of the geotextile reached by a leak to the fiber / optical cable. Indeed, by the progress of the liquid in the geotextile which is permeable, the slightest water leak that reaches the geotextile, is conducted in a uniform manner to the optical fiber, at which the detected temperature variation triggers. an alert signal.
Cette solution présente l'avantage de ne pas limiter la zone surveillée à la seule zone correspondant à la position du câble optique mais elle permet de couvrir une plus grande surface auscultée par le géotextile, grâce à ce phénomène de drainage et collecte de la fuite par le géotextile vers le câble.This solution has the advantage of not limiting the zone monitored to the only zone corresponding to the position of the optical cable but it allows to cover a larger area auscultated by the geotextile, thanks to this phenomenon of drainage and collection of the leak by the geotextile towards the cable.
Ainsi, pour l'ensemble des caractéristiques mesurées, on s'affranchit en partie du choix « a priori» de l'emplacement du câble optique dans l'ouvrage. Ceci peut permettre d'éviter de recourir à l'emploi d'un grand nombre de fibres ou câbles optiques ayant pour objectif de couvrir (par un maillage relativement serré) toute la zone sensible de l'ouvrage, en permettant ainsi de réaliser des économies.Thus, for all the measured characteristics, it is partly offset by the choice "a priori" of the location of the optical cable in the structure. This may make it possible to avoid the use of a large number of optical fibers or cables for the purpose of covering (by a relatively tight mesh) the entire sensitive area of the structure, thereby enabling savings to be made. .
On peut encore mentionner le rôle de protection de la fibre (du câble) optique par le géotextile avec lequel elle (il) est en contact, ce qui évite de recourir à l'emploi de gros câbles gainés qui augmentent le temps de réponse de la mesure.We can also mention the protective role of the optical fiber (cable) by the geotextile with which it (he) is in contact, which avoids using the use of large sheathed cables that increase the response time of the measured.
Egalement, la présence du géotextile forme une paroi, certes perméable, mais qui ralentit la progression de la fuite de part et d'autre du géotextile. En effet, le géotextile ralentit le phénomène d'érosion régressive : il se colmate localement par les particules de sol en suspension, ce qui a pour conséquence de limiter les vitesses d'écoulement et donc l'intensité de l'affouillement des parois le long de la fuite.Also, the presence of the geotextile forms a wall, certainly permeable, but which slows the progression of the leak on both sides of the geotextile. Indeed, the geotextile slows the phenomenon of regressive erosion: it clogs locally by suspended soil particles, which has the effect of limiting the flow velocities and therefore the intensity of the scouring of the walls along from the leak.
Ce freinage du phénomène de fuite et d'érosion est très avantageux car il permet, en combinaison avec une rapidité accrue de détection et de localisation, de gagner du temps pour permettre une intervention à un stade suffisamment précoce pour ne pas mettre en péril l'intégrité de l'ouvrage.This braking of the phenomenon of leakage and erosion is very advantageous because it makes it possible, in combination with an increased speed of detection and localization, to save time to allow intervention at a sufficiently early stage so as not to jeopardize the integrity of the work.
Ceci est particulièrement important dans le cas des digues sèches pour intervenir rapidement et effectuer les réparations nécessaires avant rupture. Globalement, grâce à la solution selon la présente invention, il est possible d'apporter une facilité de mise en œuvre au cours de l'installation puis de l'utilisation du dispositif de détection et de localisation de fuite, avec une plus grande rapidité et sensibilité de détection de la survenue d'une fuite dans un ouvrage de génie civil.This is particularly important in the case of dry dikes to intervene quickly and make the necessary repairs before failure. Overall, thanks to the solution according to the present invention, it is possible to provide ease of implementation during the installation and then use of the detection device and leak location, with greater speed and sensitivity of detection of the occurrence of a leak in a civil engineering work.
Ce contact entre la fibre (le câble) optique et le géotextile peut être obtenu de diverses façons depuis la simple pose de la fibre (du câble) optique sur ou contre le géotextile jusqu'à la formation d'une fixation ou d'une liaison mécanique entre la fibre (le câble) optique et le géotextile. En effet, de préférence, ledit câble optique est lié audit géotextile par des moyens de liaison, en particulier au moins un élément de liaison. Parmi les éléments de liaison possible, on peut noter le fil de ligature, de couture, le fil de chaîne ou de trame en cas de tissage du géotextile, de la colle, une agrafe, une bande agrippante, ou des fibres de chacun parmi deux géotextiles aiguilletés entre eux, chacun de ces éléments de liaison pouvant être utilisés seuls ou en combinaison.This contact between the optical fiber (cable) and the geotextile can be obtained in various ways from the simple laying of the optical fiber (cable) on or against the geotextile until the formation of a fixation or a link between the optical fiber (cable) and the geotextile. Indeed, preferably, said optical cable is connected to said geotextile by connecting means, in particular at least one connecting element. Among the possible connecting elements, it is possible to note the ligature, sewing thread, the warp or weft thread when weaving the geotextile, the glue, a staple, a gripping band, or fibers of each of two geotextiles needled together, each of these connecting elements can be used alone or in combination.
Ainsi, lorsqu'un tel lien, notamment mécanique, existe entre le câble optique et le géotextile, cette solution présente aussi l'avantage supplémentaire, de permettre, en outre, une grande facilité de pose par le fait que le géotextîle se présente en au moins une nappe dans laquelle la (ou les) flbre(s) (câble(s)) optique(s) est (sont) déjà fixé(e)(s) à l'(aux) emplacement(s) souhaité(s) selon le type et la forme de l'ouvrage, ainsi que selon l'emplacement des zones qui seront estimées comme sensibles aux risques de fuite. Par géotextile, on entend dans la présente description, son sens le plus large, c'est à dire un géotextile ou un produit apparenté géotextile au sens de la norme ISO 10318 incluant un géotextile non tissé, un géotextile composite de drainage, un géotextile tissé, de type grille ou tricoté. Avantageusement, ledit géotextile est pourvu d'au moins une autre fibre ou câble optique apte à détecter une déformation du géotextile à proximité de la fibre optique précédente (par exemple déformation du géotextile si la première caractéristique mesurée était la température) et à transmettre un signal modifié lorsque la déformation du géotextile est détectée. De cette façon, par la détection simultanée de la variation de température et d'une déformation ou d'un mouvement du géotextile, via la déformation de la fibre optique, on peut mieux appréhender les phénomènes qui surviennent. Dans ce cas, le contact, et notamment la liaison, entre la fibreThus, when such a link, especially mechanical, exists between the optical cable and the geotextile, this solution also has the additional advantage of allowing, in addition, a great ease of installation by the fact that the geotextile is in minus a layer in which the optical fiber (s) (s) is (are) already attached to the desired location (s) depending on the type and shape of the structure, as well as the location of the areas that will be estimated as sensitive to the risk of leakage. By geotextile, is meant in the present description, its broadest meaning, ie a geotextile or a geotextile related product within the meaning of ISO 10318 including a nonwoven geotextile, a composite geotextile drainage, a woven geotextile , grid or knit type. Advantageously, said geotextile is provided with at least one other fiber or optical cable capable of detecting a deformation of the geotextile in the vicinity of the preceding optical fiber (for example deformation of the geotextile if the first characteristic measured was the temperature) and of transmitting a signal modified when deformation of the geotextile is detected. In this way, by simultaneously detecting the temperature variation and deformation or movement of the geotextile, via the deformation of the optical fiber, we can better understand the phenomena that occur. In this case, the contact, and especially the connection, between the fiber
(le câble) optique et le géotextile, permet de mesurer les déformations de l'ouvrage par transfert des mouvements du sol vers la fibre (le câble) optique par l'intermédiaire du géotextile.(the cable) optical and geotextile, allows to measure the deformations of the structure by transfer of the movements of the ground towards the optical fiber (the cable) by means of the geotextile.
Egalement, dans ce cas, du fait des bonnes propriétés de contact entre le géotextile et son environnement, en particulier le sol, les déformations ou mouvements du sol sont transmises par frottement au géotextile qui les transmet à son tour à la fibre (le câble) optique dont le signal lumineux est ainsi modifié, ce qui permet de détecter tout phénomène de déformation ou de mouvement pour une zone beaucoup plus étendue que lorsqu'il s'agit d'une fibre (d'un câble) optique seul(e), sans le géotextile.Also, in this case, because of the good contact properties between the geotextile and its environment, in particular the soil, deformations or movements of the soil are transmitted by friction to the geotextile which in turn transmits them to the fiber (the cable) optical system whose light signal is thus modified, which makes it possible to detect any phenomenon of deformation or movement for a much larger area than when it is an optical fiber (of a cable) alone, without the geotextile.
De plus la détection simultanée de la variation de température et des déformations dans l'ouvrage apporte une information complémentaire car les signaux mesurés peuvent correspondre à des cas de figures déjà observés et enregistrés pour le même type d'ouvrage, d'où la possibilité d'être informé sur la nature de la cause de la fuite.In addition, the simultaneous detection of the temperature variation and deformations in the structure provides additional information because the measured signals can correspond to cases already observed and recorded for the same type of structure, hence the possibility of to be informed about the nature of the cause of the leak.
Selon une autre disposition avantageuse, ledit géotextile est pourvu d'une fibre (câble) optique supplémentaire apte à détecter une variation du taux d'humidité à proximité de la fibre optique et à transmettre un signal modifié lorsque la variation du taux d'humidité est détectée.According to another advantageous arrangement, said geotextile is provided with an additional optical fiber (cable) capable of detecting a variation of the moisture content near the optical fiber and of transmitting a modified signal when the variation in the moisture content is detected.
De préférence, on mesure l'humidité relative autour de la fibre (du câble) optique mais de façon plus générale la mesure peut porter sur le taux d'humidité du sol ou du milieu environnant le câble optique. De cette façon, par la détection simultanée de la variation de la température et du taux d'humidité, on peut obtenir un meilleur diagnostic du phénomène de fuite.Preferably, the relative humidity is measured around the optical fiber (cable) but more generally the measurement can relate to the moisture content of the soil or the environment surrounding the optical cable. In this way, by the simultaneous detection of the variation of the temperature and the humidity rate, a better diagnosis of the phenomenon of leakage can be obtained.
De préférence, le dispositif selon l'invention comporte plusieurs fibres (câbles) optiques disposé(e)s de façon sensiblement parallèles entre elles (eux). Ainsi, grâce à la présence de plusieurs fibres (câbles) optiques qui sont similaires et qui mesurent le même paramètre, notamment la température, mais aussi les déformations et/ou l'humidité, on peut localiser l'emplacement et l'étendue de la fuite. II faut envisager également le cas où il s'agit de câbles optiques parmi lesquels plusieurs d'entre eux sont situés à proximité les uns des autres, en formant un faisceau de câbles, et qui mesurent des paramètres différents, notamment température et/ou déformations et/ou humidité, de sorte qu'on obtient plusieurs types d'informations sur un emplacement donné du géotextile.Preferably, the device according to the invention comprises a plurality of optical fibers (cables) arranged substantially parallel to each other (them). Thus, thanks to the presence of several optical fibers (cables) which are similar and which measure the same parameter, notably the temperature, but also the deformations and / or the humidity, one can locate the location and the extent of the leak. It is also necessary to consider the case where it concerns optical cables, among which several of them are located close to each other, forming a bundle of cables, and which measure different parameters, notably temperature and / or deformations. and / or humidity, so that several types of information are obtained on a given location of the geotextile.
Selon une variante, lesdits câbles optiques sont regroupés en au moins un faisceau de câbles optiques, ledit faisceau étant disposé à un emplacement du géotextile qui correspond à une zone de l'ouvrage sensible aux fuites. De cette façon, en utilisant plusieurs faisceaux de câbles optiques, chaque faisceau mesurant plusieurs paramètres, notamment température et déformation, on peut obtenir un meilleur diagnostic du phénomène de fuite, ainsi qu'une localisation plus précise.According to one variant, said optical cables are grouped together in at least one bundle of optical cables, said bundle being disposed at a location of the geotextile that corresponds to a zone of the structure sensitive to leakage. In this way, by using several bundles of optical cables, each beam measuring several parameters, including temperature and deformation, one can obtain a better diagnosis of the phenomenon of leakage, as well as a more precise location.
Selon une autre disposition préférentielle, au moins un desdits câbles optiques transmettant un signal lié à la température est disposé à un emplacement du géotextile qui est dans une zone située à proximité de l'air.According to another preferred arrangement, at least one of said optical cables transmitting a temperature-related signal is disposed at a location of the geotextile which is in an area located near the air.
Ainsi, on utilise la mesure de la température de l'air par ce câble optique placé de façon adéquate, de sorte que cette mesure peut constituer une mesure de référence pour le suivi des variations de la température aux autres emplacements où cette mesure est effectuée.Thus, the measurement of the air temperature is used by this appropriately placed optical cable, so that this measurement may constitute a reference measurement for monitoring temperature variations at the other locations where this measurement is made.
Avantageusement, le dispositif selon l'invention comporte en outre au moins un dispositif longitudinal chauffant (fil électrique chauffant, tube convoyant un fluide chaud) placé parallèlement et à côté de ladite fibre optique.Advantageously, the device according to the invention further comprises at least one longitudinal heating device (electric heating wire, tube conveying a hot fluid) placed parallel to and adjacent to said optical fiber.
Cette disposition permet de mettre en œuvre une autre technique de mesure.This arrangement makes it possible to implement another measurement technique.
Selon une autre disposition préférentielle, ledit câble optique est monomode ou multimode. Selon une autre disposition avantageuse, ledit câble optique est lié, directement ou indirectement, audit géotextile. Selon un mode de réalisation préférentiel, ledit câble optique ou ladite (autre) fibre optique est lié(e) au géotextile par au moins un élément de liaison (par exemple fil de ligature, câble, aiguilletage, collage, agrafage, bande agrippant). De cette façon, on assure un contact intime entre le câble et le géotextile de sorte que le premier devient le reflet de l'état (notamment température, déformation et/ ou humidité) du second. Ce contact intime par liaison mécanique serrée est particulièrement important pour que les déformations de l'ouvrage que subit également le géotextile, soient tout à fait retransmises à la ou aux fibre(s) optique(s). Selon un autre mode de réalisation, le dispositif selon l'invention comporte un premier géotextile et un deuxième géotextile et ledit câble optique ou ladite fibre optique est inséré(e) entre le premier géotextile et le deuxième géotextile. Dans ce cas, selon une des possibilités de mise en œuvre, ladite fibre optique est liée aux premier et deuxième géotextiles ou à l'un des deux parmi les premier et deuxième géotextiles.According to another preferred arrangement, said optical cable is monomode or multimode. According to another advantageous arrangement, said optical cable is linked, directly or indirectly, to said geotextile. According to a preferred embodiment, said optical cable or said (other) optical fiber is bonded to the geotextile by at least one connecting element (for example ligating wire, cable, needling, gluing, stapling, gripping tape). In this way, it ensures intimate contact between the cable and the geotextile so that the first becomes a reflection of the state (including temperature, deformation and / or humidity) of the second. This intimate contact by tight mechanical connection is particularly important so that the deformations of the structure that also undergoes the geotextile, are fully retransmitted to the optical fiber (s) (s). According to another embodiment, the device according to the invention comprises a first geotextile and a second geotextile and said optical cable or said optical fiber is inserted (e) between the first geotextile and the second geotextile. In this case, according to one of the implementation possibilities, said optical fiber is linked to the first and second geotextiles or to one of the two of the first and second geotextiles.
Selon une autre possibilité de mise en œuvre, il n'y a pas de « liaison intime» entre la fibre optique et les géotextiles : par exemple, les deux géotextiles sont assemblés par deux bandes agrippantes parallèles aux fibres, celles-ci peuvent bouger, de façon limitée, à l'intérieur de l'espace délimité par les deux bandes.According to another implementation possibility, there is no "intimate connection" between the optical fiber and the geotextiles: for example, the two geotextiles are assembled by two gripping strips parallel to the fibers, which can move, in a limited way, inside the space delimited by the two bands.
Dans ce cas, on assure le lien intime entre chaque fibre optique et les deux géotextiles par différentes techniques pour relier chaque fibre optique aux premier et deuxième géotextiles, ces techniques pouvant êtres utilisées séparément ou en combinaison. Ainsi, par exemple, cette liaison peut être réalisée par collage, aiguilletage, soudage, utilisation de bandes agrippantes, agrafage ou couture entre les deux géotextiles.In this case, the intimate link between each optical fiber and the two geotextiles is ensured by different techniques for connecting each optical fiber to the first and second geotextiles, these techniques being able to be used separately or in combination. Thus, for example, this connection can be made by gluing, needling, welding, use of gripping strips, stapling or sewing between the two geotextiles.
Selon une autre disposition préférentielle, le dispositif selon l'invention comporte au moins une fibre optique placée librement à l'intérieur d'un tube de protection lié au géotextile, pour qu'elle ne soit pas soumise aux contraintes mécaniques extérieures.According to another preferred arrangement, the device according to the invention comprises at least one optical fiber placed freely inside a protective tube connected to the geotextile, so that it is not subjected to external mechanical stresses.
Dans le cas d'au moins deux fibres optiques, de préférence on utilise deux fibres optiques formées respectivement d'une fibre monomode et d'une fibre multimode, qui sont avantageusement placées de façon proche l'une de l'autre. Ces deux fibres optiques de nature différente peuvent être employée pour la mesure de paramètres différents ou bien pour effectuer la mesure du même paramètre, selon des techniques de mesure différentes. Dans ce dernier cas, on peut effectuer cette mesure pour des types d'appareillages différents, par exemple des appareillages fonctionnant selon les techniques de détection basées sur l'effet Raman ou sur l'effet Brillouin.In the case of at least two optical fibers, preferably two optical fibers formed respectively of a monomode fiber and a multimode fiber, which are advantageously placed in close proximity to one another, are used. These two optical fibers of different nature can be used for the measurement of different parameters or else to measure the same parameter, using different measurement techniques. In the latter case, this measurement can be carried out for different types of equipment, for example equipment operating according to detection techniques based on the Raman effect or on the Brillouin effect.
Ainsi, globalement selon l'invention, on peut choisir le type, le nombre et l'emplacement des fibres optiques dans le (ou entre les) géotextile(s) afin d'adapter le type de détection (température seulement, température et déformation, température et humidité ou température et déformation et humidité), et le (ou les) emplaœment(s) surveillé(s) au type d'ouvrage, au site et à la sensibilité de la détection souhaitée, ce qui permet de prévoir dans un produit facile à installer, une solution de détection et de localisation sur mesure.Thus, globally according to the invention, it is possible to choose the type, the number and the location of the optical fibers in the (or between) geotextile (s) in order to adapt the type of detection (temperature only, temperature and deformation, temperature and humidity or temperature and deformation and humidity), and location (s) monitored (s) to the type of structure, site and sensitivity of the desired detection, which allows to predict in a product easy to install, a solution of detection and localization to measure.
On peut choisir également le type de géotextile correspondant au niveau de protection souhaité de la fibre optique, ou pour répondre aux conditions de filtration du sol, ou encore pour adapter sa perméabilité ou ses propriétés drainantes.We can also choose the type of geotextile corresponding to the desired level of protection of the optical fiber, or to meet the conditions of soil filtration, or to adapt its permeability or its draining properties.
De façon classique, les propriétés optimales des géotextiles se calculent en fonction des caractéristiques de l'ouvrage. Par exemple, pour une fonction de protection, des géotextiles non-tissés épais sont en général utilisés. Pour une fonction de filtration, on calcule l'ouverture de flltration et la perméabilité du géotextile en fonctions des caractéristiques du sol à filtrer : on sait cependant dans le cas de non-tissés que le nombre de constrictions du filtre doit être de préférence compris entre 25 et 40. Pour une fonction de ralentisseur d'érosion de matériau fin, on cherchera des ouvertures de filtration suffisamment petites pour retenir les particules transportées en suspension par l'écoulement.Conventionally, the optimal properties of geotextiles are calculated according to the characteristics of the structure. For example, for a protective function, thick non-woven geotextiles are generally used. For a filtration function, the filtration opening and the permeability of the geotextile are calculated as a function of the characteristics of the soil to be filtered: it is known, however, in the case of nonwovens, that the number of filter constrictions should preferably be between 25 and 40. For a function of erosion retarder of fine material, one will look for filtration openings small enough to retain the particles transported in suspension by the flow.
L'invention porte également sur un système de détection et de localisation de fuite d'un fluide dans un ouvrage hydraulique, qui comporte un dispositif de détection et de localisation de fuite du type présenté précédemment et au moins un appareil de mesure relié à ladite fibre optique et permettant d'indiquer une variation du signal transmis par la fibre optique.The invention also relates to a system for detecting and locating leakage of a fluid in a hydraulic structure, which comprises a leak detection and localization device of the type presented above and at least one measuring device connected to said fiber optical and to indicate a variation of the signal transmitted by the optical fiber.
En outre, l'invention concerne un ouvrage hydraulique équipé d'un tel dispositif de détection et de localisation de fuite, en particulier un ouvrage hydraulique formé d'une digue (sèche ou en eau), et dans lequel ledit dispositif de détection et de localisation de fuite est placé longitudinalement dans le corps de la digue de façon à recouvrir partiellement ou au moins quasiment toute la hauteur de la digue.In addition, the invention relates to a hydraulic structure equipped with such a device for detecting and locating leakage, in particular a hydraulic structure formed by a dike (dry or in water), and in which said leak detection and locating device is placed longitudinally in the body of the dike so as to partially cover or at least almost the entire height of the dike.
Dans ce dernier cas, de préférence, ledit dispositif de détection et de localisation de fuite est placé dans le corps de la digue et du côté opposé à l'eau (côté aval).In the latter case, preferably, said leak detection and localization device is placed in the body of the dike and on the opposite side to the water (downstream side).
Egalement, de préférence, ladite fibre optique qui est disposée à un emplacement du géotextile qui correspond à une zone située à proximité de l'air, est placée de façon à être en haut de l'ouvrage. De plus, la présente invention atteint l'objectif rappelé précédemment par un procédé de détection et de localisation de fuite d'un fluide dans un ouvrage hydraulique, qui se caractérise en ce qu'on détecte une variation de température par une modification du signal émis par une fibre optique comprise dans un câble optique avec un géotextile, ce câble optique étant posé sur ou contre le géotextile ou bien étant lié, directement ou indirectement, audit géotextile.Also, preferably, said optical fiber which is disposed at a location of the geotextile which corresponds to an area located near the air, is placed so as to be at the top of the work. In addition, the present invention achieves the objective previously recalled by a method for detecting and locating leakage of a fluid in a hydraulic structure, which is characterized in that a temperature variation is detected by a modification of the emitted signal. by an optical fiber included in an optical cable with a geotextile, this optical cable being placed on or against the geotextile or being linked, directly or indirectly, to said geotextile.
De préférence, ce procédé permet, en outre, de détecter :Preferably, this method also makes it possible to detect:
- une déformation du géotextile par une modification du signal émis par une fibre optique liée, directement ou indirectement, audit géotextile, notamment par un fil de ligature, et/oua deformation of the geotextile by a modification of the signal emitted by an optical fiber linked, directly or indirectly, to said geotextile, in particular by a ligation wire, and / or
- une variation du taux d'humidité du géotextile par une modification du signal émis par une fibre optique liée, directement ou indirectement, audit géotextile, notamment par un fil de ligature.a variation of the humidity level of the geotextile by a modification of the signal emitted by an optical fiber linked, directly or indirectly, to said geotextile, in particular by a ligation wire.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :Other advantages and characteristics of the invention will become apparent on reading the following description given by way of example and with reference to the appended drawings in which:
- la figure 1 représente schématiquement en perspective une vue partiellement transparente d'un mode de réalisation du dispositif de détection et de localisation de fuite selon la présente invention, - la figure 2 représente une vue en coupe transversale d'un autre mode de réalisation du dispositif de détection et de localisation de fuite, etFIG. 1 is a diagrammatic perspective view of a partially transparent view of an embodiment of the leak detection and localization device according to the present invention; FIG. 2 is a cross-sectional view of another embodiment of FIG. device for detecting and locating leakage, and
- les figures 3 à 7 représentent une vue en coupe de plusieurs utilisations possibles du dispositif selon l'invention pour une digue de retenue d'eau.- Figures 3 to 7 show a sectional view of several possible uses of the device according to the invention for a water retaining dike.
Si l'on se reporte à la figure 1, le dispositif de détection et de localisation de fuite 10 comporte un géotextile 12 à la surface inférieure de laquelle ont été placées parallèlement entre elles plusieurs fibres (ou câbles) optiques 14 qui sont intimement reliées au géotextile 12 par des moyens de liaison formés en l'espèce par des fils de couture ou ligature 16.If we refer to FIG. 1, the detection and leak location 10 comprises a geotextile 12 on the lower surface of which have been placed parallel to each other several optical fibers (or cables) 14 which are intimately connected to the geotextile 12 by connecting means formed in this case by sewing threads or ligature 16.
De façon équivalente, on peut prévoir que les câbles optiques 14 sont directement intégrés dans un géotextile tissé, notamment en étant utilisés à titre de fils de chaîne dans un tissage de type à fil de chaîne rectiligne ( straight warp construction). Dans le cas d'une géotextile tissé, les fils de trame sont considérés comme des éléments de liaison (ou de ligature) sur le produit.Equivalently, it can be provided that the optical cables 14 are directly integrated in a woven geotextile, in particular by being used as warp yarns in a weave of the straight warp construction type. In the case of a woven geotextile, the weft threads are considered as connecting elements (or ligation) on the product.
Selon une autre possibilité, notamment dans le cas d'un géotextile de type grille, les câbles optiques 14 sont collés sur le géotextile au moyen du revêtement d'enduction (par exemple PVC) recouvrant habituellement les fils/bandelettes de la grille.According to another possibility, particularly in the case of a grid-type geotextile, the optical cables 14 are bonded to the geotextile by means of the coating coating (for example PVC) usually covering the son / strips of the grid.
Dans le cas d'un géotextile de type grille tricotée contituée de plusieurs fils ou câbles de chaîne et de trame, les câbles optiques peuvent également être liés aux autres fils du tricot par le fil de ligature formant lui-même un fil du tricot. Selon un autre mode de réalisation visible sur la figure 2, le dispositif de détection et de localisation de fuite comprend un premier géotextile 12 et un deuxième géotextile 13 entre lesquels ont été insérées plusieurs fibres (ou câbles) optiques 14 disposées parallèlement entre elles. Cet ensemble est solidarisé par assemblage entre les deux géotextiles 12 et 13 par des moyens de liaison qui sont, dans le cas de figure représenté, formés à nouveau d'un fil de couture 16.In the case of a knitted grid-type geotextile made up of several warp and weft yarns or cables, the optical cables can also be connected to the other yarns of the knit by the ligation yarn itself forming a yarn of the knit. According to another embodiment visible in Figure 2, the leak detection and localization device comprises a first geotextile 12 and a second geotextile 13 between which have been inserted several optical fibers (or cables) 14 arranged parallel to each other. This assembly is secured by assembly between the two geotextiles 12 and 13 by connecting means which are, in the case shown, formed again of a sewing thread 16.
D'autres moyens d'assemblage entre les deux géotextiles 12 et 13 peuvent être prévus, notamment parmi les suivants : -par collage ; -par un aiguilletage entre les deux géotextiles 12 et 13, notamment si ces deux géotextiles 12 et 13 sont formés par des non- tissés,Other means of assembly between the two geotextiles 12 and 13 may be provided, in particular from the following: by gluing; by needling between the two geotextiles 12 and 13, especially if these two geotextiles 12 and 13 are formed by nonwovens,
-par un soudage résultant en une fusion des surfaces en regard des deux géotextiles 12 et 13 ; -par l'utilisation de plusieurs paires de bandes agrippantes autocollantes, respectivement pourvues de crochets et d'éléments en saillie formés d'excroissances à leur extrémité libre (type « Velcro » (marque déposée)) ou de plusieurs bandes dont les deux faces sont autocollantes ;by welding resulting in a melting of the surfaces facing the two geotextiles 12 and 13; by the use of several pairs of adhesive gripping strips, respectively provided with hooks and elements protrusion formed protuberances at their free end (type "Velcro" (registered trademark)) or several bands whose two sides are self-adhesive;
-par agrafage ; -par couture.-by stapling; -by sewing.
On peut également prévoir que le câble optique 14 soit relié à l'un seulement parmi les deux géotextiles 12 et 13, par exemple au moyen d'un fil de ligature ou de tout autre moyen d'assemblage tels que ceux précités. Dans ce cas, le moyen de relier le câble optique 14 au géotextile 12 ou 13 peut être différent du moyen d'assemblage entre les deux géotextiles 12 et 13.It is also possible that the optical cable 14 is connected to only one of the two geotextiles 12 and 13, for example by means of a ligature wire or any other assembly means such as those mentioned above. In this case, the means for connecting the optical cable 14 to the geotextile 12 or 13 may be different from the assembly means between the two geotextiles 12 and 13.
Dans tous ces cas, on peut prévoir que la technique de liaison entre les deux géotextiles 12 et 13 est mise en oeuvre sur la totalité des surfaces en regard des deux géotextiles 12 et 13, ou bien selon des bandes parallèles aux fibres du géotextile .In all these cases, it can be expected that the bonding technique between the two geotextiles 12 and 13 is implemented on all of the surfaces opposite the two geotextiles 12 and 13, or else in strips parallel to the geotextile fibers.
Dans toute la description, on utilise le terme générique câble optique pour désigner indifféremment une fibre optique gainée, plusieurs fibres optiques logées de façon serrées dans une gaine, une fibre optique montée de façon libre dans un tube ou plusieurs fibres optiques logées de façon libre dans un tube.Throughout the description, the generic term optical cable is used to denote indifferently a sheathed optical fiber, several optical fibers tightly housed in a sheath, an optical fiber mounted freely in a tube or several optical fibers housed freely in a tube.
On se reportera maintenant à la figure 3 illustrant un premier cas d'utilisation du dispositif de détection et de localisation de fuite 10 permettant de réaliser une mesure de température par le biais d'un câble optique 14. Une digue (en eau) 20 sépare un premier espace « amont » rempli d'eau 22 (à gauche sur la figure), d'un second espace 24 « aval » (à droite sur la figure) qui doit rester sec et à l'abri de tout débordement de l'eau 22.Reference will now be made to FIG. 3 illustrating a first use case of the leak detection and localization device 10 making it possible to measure the temperature by means of an optical cable 14. A dike (in water) 20 separates a first "upstream" space filled with water 22 (left in the figure), a second space 24 "downstream" (right in the figure) which must remain dry and protected from any overflow of the water 22.
La digue 20 s'étend verticalement entre un pied de digue 201 et un sommet 202 et horizontalement sous les deux espaces 22 et 24. Au niveau de l'espace 24, afin de maintenir le dispositif 10 bien plaqué contre le talus aval du corps de la digue 20 et sous l'espace 24, on a disposé une recharge de sol 26 composée par exemple de sable et/ou de graviers et/ou de roches. Un dispositif de détection et de localisation de fuite 10 a été placé afin de recouvrir le talus de la digue 20 tourné en direction de l'espace 24 (talus aval) en recouvrant quasiment toute la hauteur de la digue 20 ainsi qu'une portion sensiblement horizontale s'étendant sous la recharge de sol 26 en direction de l'espace 24, au-delà du pied de digue 201.The dike 20 extends vertically between a dike foot 201 and a top 202 and horizontally under the two spaces 22 and 24. At the level of the space 24, in order to keep the device 10 well pressed against the downstream slope of the body of the dike 20 and under the space 24, there is arranged a soil refill 26 composed for example of sand and / or gravel and / or rocks. A leak detection and locating device 10 has been placed to cover the slope of the dike 20 turned towards the space 24 (downstream slope) by covering almost the entire height of the dike 20 and a substantially horizontal portion extending beneath the soil recharge 26 towards the space 24, beyond the dike foot 201.
Dans ce premier cas, le dispositif 10 comprend un géotextile 12 relié à un câble optique 14 unique qui est situé à un emplacement considéré comme le plus sensible aux fuites, à savoir au niveau du pied de digue 201, à l'aplomb le plus bas de du talus aval du corps de digue 20 tournée en direction de l'espace 24, à savoir à un emplacement où le géotextile forme un coude. Sur la figure 3, on a en outre représenté de façon schématique la propagation d'une fuite (flèche 30) le long d'un canal de fuite 28 traversant la digue 20 entre les espaces 22 et 24 à une hauteur moyenne des talus de digue 20.In this first case, the device 10 comprises a geotextile 12 connected to a single optical cable 14 which is located at a location considered to be the most sensitive to leakage, namely at the level of the dike foot 201, at the lowest point. from the downstream slope of the dike body 20 turned towards the space 24, namely at a location where the geotextile forms a bend. FIG. 3 furthermore shows schematically the propagation of a leak (arrow 30) along a leakage channel 28 crossing the dam 20 between the spaces 22 and 24 at an average height of the embankment slopes. 20.
Ce canal 28, qui a été creusé du fait de l'écoulement de l'eau 22 au niveau de la paroi latérale de la digue 20 tournée en direction de cet espace 22 (talus amont), est naturellement légèrement incliné depuis l'espace 22 en direction de l'espace 24. En outre, ce canal 28 va avoir normalement tendance à s'élargir du fait du phénomène d'érosion régressive qui se produit essentiellement du côté de la paroi latérale de la digue 20 tournée en direction de l'espace sec 24 (talus aval).This channel 28, which has been dug due to the flow of water 22 at the side wall of the dike 20 turned towards this space 22 (upstream slope), is naturally slightly inclined from the space 22 towards the space 24. In addition, this channel 28 will normally tend to widen due to the phenomenon of regressive erosion which occurs essentially on the side of the side wall of the dike 20 turned towards the dry space 24 (downstream slope).
Le géotextile 12 a une fonction de filtration du sol du corps de digue 20 à l'interface avec la recharge de sol 26. Cependant, en l'espèce, conformément à la présente invention, le géotextile 12 forme au droit de la sortie du canal de fuite 28 sur le talus aval de la digue 20 une barrière, non pas pour l'eau qui s'écoule dans le canal de fuite 28 car le géotextile est perméable, mais pour les particules de sol mises en suspension dans le canal de fuite 28 par l'écoulement de l'eau : ainsi, le géotextile 12 se colmate localement dans le prolongement du canal de fuite 28, ce qui a pour conséquence de limiter les vitesses d'écoulement à l'intérieur du canal de fuite 28 et donc l'intensité de Paffouîllement des parois le long du canal de fuite 28, ce qui retarde l'expansion de la fuite.The geotextile 12 has a soil filtration function of the dike body 20 at the interface with the soil recharge 26. However, in this case, according to the present invention, the geotextile 12 forms at the outlet of the canal on the downstream slope of the dike 20 a barrier, not for the water flowing in the escape channel 28 because the geotextile is permeable, but for the soil particles suspended in the tailrace 28 by the flow of water: thus, the geotextile 12 clogs locally in the extension of the escape channel 28, which has the effect of limiting the flow velocities inside the escape channel 28 and therefore the intensity of the flushing of the walls along the escape channel 28, which delays the expansion of the leak.
Par ailleurs, outre ce rôle de colmatage et de ralentisseur d'érosion régressive, le géotextile 12 permet de drainer (flèche 32) l'eau qui s'écoule dans le canal de fuite 28 jusqu'au câble optique 14, ce qui permet d'accélérer l'information de présence d'eau au niveau du dispositif 10 jusqu'à la fibre 14 qui est positionnée à un emplacement situé à une hauteur différente, (en l'espèce plus bas) que la hauteur à laquelle est situé le canal de fuite 28.Moreover, in addition to this role of clogging and regressive erosion retarder, the geotextile 12 makes it possible to drain (arrow 32) the water flowing in the escape channel 28 to the optical cable 14, which allows accelerate the water presence information at the device 10 to the fiber 14 which is positioned at a location at a different height (in this case below) than the height at which leakage channel 28 is located.
Parmi les possibilités de choix pour le géotextile 12, on peut noter un géotextile non-tissé mono ou multi-couches, un géotextile tissé, un géotextile tricoté, un géocomposite de drainage comportant une âme drainante géoespaceur de toute nature, ou toute combinaison de ces structures, et notamment un géotextile composite réalisé par l'association d'un non-tissé aiguilleté et de câbles de renfort tricotés. L'association de câble de renfort parallèles aux fibres optiques est intéressante pour tirer sur le géotextile lors de sa production ou lors de son installation, lors de son enroulage ou de son déroulage, sans solliciter mécaniquement les câbles optiques.Among the possibilities of choice for the geotextile 12, there may be noted a single or multi-layer nonwoven geotextile, a woven geotextile, a knitted geotextile, a drainage geocomposite comprising a draining geosepterous core of any kind, or any combination thereof. structures, and in particular a composite geotextile produced by the combination of a needled nonwoven and knitted reinforcement cables. The association of reinforcing cables parallel to the optical fibers is interesting to pull on the geotextile during its production or during its installation, during its winding or unwinding, without mechanically stressing the optical cables.
Dans le bas de la figure 3, on a en outre représenté de façon agrandie le détail III correspondant à l'emplacement du câble optique 14 selon trois variantes de réalisation.At the bottom of FIG. 3, the detail III corresponding to the location of the optical cable 14 according to three variant embodiments is further enlarged.
Dans le cas de la première variante de réalisation représentée à gauche (III A) et en bas de la figure 3, le câble optique 14 est une fibre optique de type multimode 141 qui présente une gaine 14a entourant de façon serrée la fibre optique 141. Ce type de câble optique 14 est généralement utilisé pour réaliser des mesures de température en utilisant l'effet Raman.In the case of the first embodiment shown on the left (III A) and bottom of Figure 3, the optical cable 14 is a multimode type optical fiber 141 which has a sheath 14a tightly surrounding the optical fiber 141. This type of optical cable 14 is generally used to perform temperature measurements using the Raman effect.
Dans ce cas, on comprend que lorsque la fuite parvient au câble optique 14, une variation significative de la température est détectée, qui correspond à la variation entre la température de la digue 20 et la température de l'eau contenue dans l'espace 22, ce qui permet de créer un signal susceptible de donner l'alerte de la présence d'une fuite au niveau de la digue 20.In this case, it is understood that when the leak reaches the optical cable 14, a significant variation of the temperature is detected, which corresponds to the variation between the temperature of the dike 20 and the temperature of the water contained in the space 22. , which makes it possible to create a signal likely to give warning of the presence of a leak at the dike 20.
Dans ce cas, on comprend que cette mesure doit présenter une relative précision afin de permettre de donner plutôt une indication de la présence d'une fuite. En particulier, on estime qu'il est nécessaire de pouvoir différencier un écart de température de 0,1 0C dans les cas les plus critiques, ce qui permet de réaliser cette mesure directement et sans avoir recours à un chauffage de la zone dans laquelle la mesure est effectuée . Dans le cas de la deuxième variante de réalisation représentée au milieu (III B) et en bas de la figure 3, le câble optique 14 est composé d'une fibre optique de type monomode 142 qui est entourée de façon libre par un tube de protection 14b. Ce type de câble optique 14 est utilisé pour réaliser des mesures de température, en utilisant l'effet Brillouin.In this case, it is understood that this measure must have a relative accuracy to allow to give rather an indication of the presence of a leak. In particular, it is estimated that it is necessary to be able to differentiate a temperature difference of 0.1 ° C. in the most critical cases, which makes it possible to carry out this measurement directly and without resorting to heating the zone in which the measurement is done. In the case of the second embodiment shown in the middle (III B) and at the bottom of Figure 3, the optical cable 14 is composed a monomode type optical fiber 142 which is freely surrounded by a protective tube 14b. This type of optical cable 14 is used to make temperature measurements, using the Brillouin effect.
Dans le cas de la troisième variante de réalisation représentée à droite (III C) et en bas de la figure 3, on utilise un câble optique 14 formé de deux fibres optiques 141 et 142, respectivement de type multimode et de type monomode, qui sont logées de façon libre dans un tube de protection 14b.In the case of the third embodiment shown at right (III C) and at the bottom of Figure 3, an optical cable 14 is used formed of two optical fibers 141 and 142, respectively multimode type and monomode type, which are housed freely in a protective tube 14b.
La présence des deux types de fibres optiques 141 et 142 permet de réaliser des mesures de température par effet Raman et/ou par effet Brillouin. Dans ce cas, en fonction de l'appareillage disponible et qui est relié à l'une, à l'autre ou aux deux fibres optiques 141 et 142, on peut, à tout moment et sans avoir à installer un dispositif 10 différent, réaliser la (ou les) mesure(s) jugée(s) la (les) plus adaptée(s), techniquement et/ou économiquement.The presence of the two types of optical fibers 141 and 142 allows temperature measurements by Raman effect and / or Brillouin effect. In this case, depending on the equipment available and which is connected to one or the other or to the two optical fibers 141 and 142, it is possible, at any time and without having to install a different device 10, to realize the measure (s) considered the most adapted, technically and / or economically.
Évidemment, dans tous les cas, les deux extrémités du câble optique 14 sont respectivement reliées à un émetteur de lumière et un appareil de mesure (non représentés) permettant d'interpréter le rayon lumineux parvenant jusqu'à lui en une indication de la température du câble optique 14, c'est-à-dire du dispositif 10 au niveau du pied de la digue 201.Of course, in all cases, the two ends of the optical cable 14 are respectively connected to a light emitter and a measuring device (not shown) making it possible to interpret the light ray reaching up to it in an indication of the temperature of the light. optical cable 14, that is to say the device 10 at the foot of the dike 201.
On se reportera maintenant à la figure 4 qui illustre un deuxième cas d'utilisation du dispositif de détection et de localisation de fuite 10 permettant de réaliser à la fois une mesure de température et une mesure de déformation par le biais d'un faisceau 34 de câbles optiques 14 comportant deux, trois ou davantage de câbles optiques 14.Referring now to FIG. 4, which illustrates a second use case of the leak detection and localization device 10 making it possible to perform both a temperature measurement and a deformation measurement by means of a beam 34 of FIG. optical cables 14 having two, three or more optical cables 14.
Dans la suite de la description, les mêmes signes de référence que ceux utilisés précédemment en relation avec la figure 3 désignent les mêmes éléments, seuls les éléments différents de ceux du premier cas d'utilisation présenté à la figure 3 étant décrit ci-après.In the remainder of the description, the same reference signs as those previously used in connection with FIG. 3 designate the same elements, only the elements different from those of the first use case presented in FIG. 3 being described below.
L'agencement général de ce deuxième cas d'utilisation est similaire à celui du premier cas d'utilisation, la seule différence résidant dans l'utilisation non pas d'un câble optique 14 unique mais d'un faisceau 34 de câbles optiques 14, qui est toujours disposé au niveau du pied de ladite digue, en bas de la paroi latérale de la digue tournée en direction de l'espace 24 (talus aval). À cet effet, comme il est représenté sur les quatre agrandissements du détail IV, plusieurs variantes de réalisation sont possibles.The general arrangement of this second use case is similar to that of the first use case, the only difference being the use not of a single optical cable 14 but of a bundle 34 of optical cables 14. which is always disposed at the foot of said dike, at the bottom of the side wall of the dike turned towards the space 24 (downstream slope). For this purpose, as shown in the four enlargements of detail IV, several alternative embodiments are possible.
Dans le cas de la première variante de réalisation représentée à gauche et en bas de la figure 4, désignée IV A, le faisceau 34 est composé de deux câbles optiques 14 disposés côte à côte: une fibre optique de type monomode 142 (à gauche) disposée de façon serrée dans une gaine 14a et une fibre optique de type multimode 141 disposée de façon serrée dans autre une gaine 14a (à droite). Dans ce cas, la fibre optique de type monomode 142 fonctionne par effet Brillouin et elle est destinée à mesurer les éventuelles déformations de la digue 20, via les déformations du géotextile 12 et la fibre optique de type multimode 141 fonctionne par effet Raman et elle est destinée à mesurer la température à ce niveau de hauteur du géotextile 12.In the case of the first embodiment shown at the left and bottom of Figure 4, designated IV A, the beam 34 is composed of two optical cables 14 arranged side by side: a monomode type optical fiber 142 (left) disposed tightly in a sheath 14a and a multimode type optical fiber 141 tightly disposed in another sheath 14a (right). In this case, the monomode optical fiber 142 operates by the Brillouin effect and is intended to measure any deformations of the dike 20, via the deformations of the geotextile 12 and the multimode optical fiber 141 operates by Raman effect and is for measuring the temperature at this height level of the geotextile 12.
Dans ce cas, on comprend que la possibilité d'obtenir ces deux informations de nature différente, à savoir la température et la déformation, permet de mieux appréhender les phénomènes qui se produisent au niveau de la digue 20, pour réaliser une surveillance plus approfondie.In this case, it is understood that the possibility of obtaining these two information of a different nature, namely the temperature and the deformation, makes it possible to better understand the phenomena that occur at the level of the dike 20, to carry out a more thorough monitoring.
Dans le cas de la deuxième variante de réalisation représentée en deuxième position à gauche et en bas de la figure 4, qui est désignée IV B, on utilise également pour le faisceau 34 deux câbles optiques 14 qui sont dans ce cas composés d'une fibre optique de type monomode 142 (à gauche) disposée de façon serrée dans une gaine 14a et d'une fibre optique de type monomode 142 disposée de façon libre dans un tube 14b (à droite).In the case of the second embodiment shown in the second position on the left and bottom of FIG. 4, which is designated IV B, two optical cables 14 are also used for the bundle 34, which are in this case composed of a fiber singlemode-type optics 142 (left) arranged tightly in a sheath 14a and a monomode type optical fiber 142 freely disposed in a tube 14b (right).
Dans ce cas, la fibre optique 142 serrée dans la gaine 14a sert à effectuer la mesure de déformation par effet Brillouin, tandis que la fibre optique monomode 142 disposée de façon libre dans le tube 14b est utilisée pour réaliser la mesure de température par effet Brillouin.In this case, the optical fiber 142 clamped in the sheath 14a is used to perform the Brillouin effect deformation measurement, whereas the monomode optical fiber 142 freely disposed in the tube 14b is used to perform the Brillouin effect temperature measurement. .
Dans le cas de la troisième variante de réalisation représentée en troisième position en bas de la figure 4, qui est désignée IV C, on utilise également un faisceau 34 composé de deux câbles optiques 14. Il s'agit , d'une part, encore une fois d'une fibre optique de type monomode 142 (à gauche) disposée de façon serrée dans une gaine 14a (mesure de déformation par effet Brillouin) et, d'autre part, d'un tube 14b (à droite) dans lequel sont logées deux fibres optiques : une fibre optique de type multimode 141 (à gauche) et une fibre optique de type monomode 142 (à droite), ce deuxième câble optique 14 servant à réaliser la mesure de température comme dans le cas de la troisième variante III C de la figure 3.In the case of the third embodiment shown in the third position at the bottom of FIG. 4, which is designated IV C, a beam 34 composed of two optical cables 14 is also used. It is, on the one hand, still once of a monomode type optical fiber 142 (left) arranged tightly in a sheath 14a (measurement of deformation by Brillouin effect) and, on the other hand, a tube 14b (on the right) in which two optical fibers are housed: a multimode optical fiber 141 (on the left) and a monomode optical fiber 142 (on the other hand). right), this second optical cable 14 for performing the temperature measurement as in the case of the third variant III C of Figure 3.
Dans le cas de la quatrième variante de réalisation représentée en quatrième et dernière position, à droite et en bas de la figure 4, et qui est désignée IV D, on utilise dans ce cas un faisceau 34 composé de deux câbles optiques 14 et d'un fil supplémentaire 15:In the case of the fourth variant embodiment shown in the fourth and last position, on the right and bottom of FIG. 4, and which is designated IV D, a beam 34 composed of two optical cables 14 and an additional thread 15:
- à gauche :une fibre optique de type monomode 142 disposée de façon serrée dans une gaine 14a (mesure de déformation par effet Brillouin) ;- Left: a monomode type optical fiber 142 arranged tightly in a sheath 14a (Brillouin effect deformation measurement);
-au milieu : un fil électrique 15 de chauffe pour que la mesure de température réalisée par le câble optique 14 de gauche se réalise par une méthode dite « méthode active», précédemment mentionnée et,in the middle: an electric heating wire 15 so that the temperature measurement made by the optical cable 14 on the left is carried out by a so-called "active method" method, previously mentioned and,
- à droite : un tube 14b dans lequel sont logées deux fibres optiques : une fibre optique de type multimode 141 à gauche et une fibre optique de type monomode 142 à droite, ce deuxième câble optique 14 servant à réaliser la mesure de température comme dans le cas de la troisième variante III C de la figure 3.on the right: a tube 14b in which two optical fibers are housed: a multimode type optical fiber 141 on the left and a monomode type optical fiber 142 on the right, this second optical cable 14 serving to carry out the temperature measurement as in FIG. case of the third variant III C of FIG.
Dans Ie cas de ces quatre variantes, on comprend que la possibilité d'obtenir ces deux informations de nature différenteIn the case of these four variants, it is understood that the possibility of obtaining these two different types of information
(température et déformation) permet de mieux appréhender les phénomènes qui se produisent au niveau de la digue 20, pour réaliser une surveillance plus approfondie.(temperature and deformation) makes it possible to better understand the phenomena that occur at the level of the dike 20, to carry out a more thorough monitoring.
La nature du câble optique utilisé pour la mesure de déformation n'est pas limitée à celles prévus ci-dessus mais on peut prévoir d'autres types de câbles optiques tels que ceux utilisant des fibres optiques avec des réseaux de Bragg, notamment comme dans le document FR 2 844874,The nature of the optical cable used for the deformation measurement is not limited to those provided above, but it is possible to provide other types of optical cables such as those using optical fibers with Bragg gratings, particularly as in FIG. document FR 2 844874,
On se reportera maintenant à la figure 5 qui illustre un troisième cas d'utilisation du dispositif de détection et de localisation de fuite 10 permettant de réaliser à la fois une mesure de température et une mesure de déformation, et ceci à plusieurs emplacements du géotextile 12, par le biais de plusieurs faisceaux 34 de câbles optiques 14 disposés en direction longitudinale à des emplacements différents du géotextile, ces différents emplacements correspondant à des hauteurs différentes le long de la paroi latérale (du talus aval) de la digue 20 tournée vers l'espace 24.Reference will now be made to FIG. 5 which illustrates a third use case of the leak detection and localization device 10 making it possible to perform both a temperature measurement and a deformation measurement, and this at several locations of the geotextile 12 , by means of several beams 34 of optical cables 14 arranged in the direction longitudinally at different locations of the geotextile, these different locations corresponding to different heights along the side wall (of the downstream slope) of the dike 20 facing the space 24.
Dans la suite de la description, les mêmes signes de référence que ceux utilisés précédemment désignent les mêmes éléments, seuls les éléments différents étant décrit ci-après.In the remainder of the description, the same reference signs as those used previously designate the same elements, only the different elements being described below.
L'agencement général de ce troisième cas d'utilisation est similaire à celui du deuxième cas d'utilisation illustré sur la figure 4, la seule différence résidant dans l'utilisation non pas d'un unique faisceau 34 de câbles optiques 14 mais d'une multiplicité (deux, trois ou davantage) de faisceaux 34 de câbles optiques 14, qui sont disposés non seulement au niveau du pied de la digue 20, en bas de la paroi latérale de la digue tournée en direction de l'espace 24, mais aussi le long de la paroi latérale de la digue 20 tournée en direction de l'espace 24. À cet effet, comme il est représenté sur les quatre agrandissements du détail chiffre V, plusieurs variantes de réalisation sont possibles pour chacun des faisceaux 34, ces faisceaux 34 pouvant être identiques ou différents entre eux.The general arrangement of this third use case is similar to that of the second use case illustrated in FIG. 4, the only difference being the use not of a single bundle 34 of optical cables 14 but of a multiplicity (two, three or more) of beams 34 of optical cables 14, which are arranged not only at the foot of the dike 20, at the bottom of the side wall of the dike turned towards the space 24, but also along the side wall of the dike 20 turned towards the space 24. For this purpose, as shown on the four enlargements of the detail figure V, several variants are possible for each of the beams 34, these beams 34 which may be identical or different from each other.
Plus précisément, on prévoit quatre variantes de réalisation, désignées V A à V D en bas de la figure 5, et qui sont respectivement identiques aux quatre variantes de réalisation IV A à IV D qui ont été décrites précédemment relation avec la figure 4.More precisely, four variant embodiments, designated V A to V D at the bottom of FIG. 5, are provided, which are respectively identical to the four variant embodiments IV A to IV D which have been previously described in relation to FIG. 4.
Dans ce cas, la présence d'une multiplicité de faisceaux 34 permet, non seulement de mesurer à chacun des emplacements de ces faisceaux 34 à la fois la température et la déformation, mais également pour chacune de ces mesures de pouvoir identifier l'emplacement correspondant de la digue 20 (et aussi de réduire la longueur de cheminement entre le point de convergence entre le canal de fuite 28 et le géotextile 12, et le faisceau 34, donc de réduire le temps de détection et de localisation).In this case, the presence of a multiplicity of beams 34 makes it possible not only to measure at each of the locations of these beams 34 both the temperature and the deformation, but also for each of these measurements to be able to identify the corresponding location. of the dike 20 (and also to reduce the path length between the point of convergence between the leakage channel 28 and the geotextile 12, and the beam 34, thus reducing the detection time and location).
En relation avec la figure 6, on décrit maintenant une autre variante de réalisation dans laquelle le dispositif de détection et de localisation de fuite 10 est disposé, non pas seulement, comme dans les cas précédents des figures 3 à 5, le long de la paroi latérale (du talus aval) de la digue 20 tournée en direction de l'espace 24 et sous l'espace 24, mais en outre le long du sommet (crête) 202 de la digue 20, la recharge de sol 26 s'étendant dans ce cas également par-dessus la crête de la digue 20, au-dessus du dispositif 10 et également en aval de la digue 20 (à droite sur la figure 6).In relation to FIG. 6, another variant embodiment in which the leak detection and localization device 10 is arranged, not only, as in the previous cases of FIGS. 3 to 5, along the wall, is now described. lateral (of the downstream slope) of the dike 20 turned towards the space 24 and under the space 24, but also along the peak (crest) 202 of the dike 20, the soil recharge 26 also extending over the crest of the dike 20, above the device 10 and also downstream of the dike 20 (right in Figure 6).
Dans le quatrième cas d'utilisation représenté à la figure 6, le géotextile 12 comprend, tout le long du dispositif 10 une multitude de faisceaux 34 de câbles optiques 14, ce qui permet de donner des indications de mesure de température, de déformation, et éventuellement d'humidité, pour chacun des emplacements de ses faisceaux 34 le long du sommet, du côté latéral sec et également en aval de la digue 20. Cette variante de réalisation s'applique aussi pour les deuxième et troisième cas d'utilisation respectivement représentés sur les figures 3 et 4.In the fourth use case shown in FIG. 6, the geotextile 12 comprises, all along the device 10, a multitude of bundles 34 of optical cables 14, which makes it possible to give indications of measurement of temperature, of deformation, and optionally of humidity, for each of the locations of its bundles 34 along the top, the dry lateral side and also downstream of the dike 20. This variant embodiment also applies to the second and third use cases respectively represented in Figures 3 and 4.
Cette variante de réalisation doit également pouvoir se comprendre comme englobant un autre cas d'utilisation, à savoir la situation dans laquelle on dispose de façon séparée, tout le long du dispositif 10 de détection et de localisation de fuite dans son étendue telle que représentée sur la figure 6, non pas une multitude de faisceaux 34 de câbles optiques mais une multitude de câbles optiques 14 séparés individuellement et permettant de réaliser chacun uniquement la mesure de température comme il a été présenté en relation avec la figure 3.This variant of embodiment must also be understood as encompassing another use case, namely the situation in which one disposes separately, all along the device 10 for detecting and locating leakage in its extent as represented on FIG. 6, not a multitude of bundles 34 of optical cables but a multitude of optical cables 14 separated individually and making it possible to perform each only the temperature measurement as it has been presented in relation to FIG.
Il faut noter que dans le cas de la présente invention, on doit également inclure un autre cas de figure non représenté qui serait celui dans lequel, à partir du mode de réalisation illustré sur la figure 3 on disposerait un câble 14 unique pour la mesure de température à différents emplacements du géotextile 12, le long de la hauteur de la paroi latérale (du talus aval) de la digue 20 tournée en direction de l'espace 24, et ceci afin d'identifier l'emplacement de chacune des mesures de température.It should be noted that in the case of the present invention, it should also include another case not shown which would be one in which, from the embodiment illustrated in Figure 3 there would be a single cable 14 for the measurement of temperature at different locations of the geotextile 12, along the height of the side wall (of the downstream slope) of the dike 20 turned towards the space 24, and this in order to identify the location of each of the temperature measurements .
On se reporte maintenant la figure 7 qui représente un cinquième cas d'utilisation du dispositif 10 de détection et de localisation de fuite dans lequel, cette fois-ci, il n'est pas placé du côté de la paroi latérale (du talus aval) de la digue 20 tournée en direction de l'espace 24 mais le long de la paroi latérale (du talus amont) de la digue 20 tournée en direction de l'espace 22 de retenue d'eau.Reference is now made to FIG. 7, which represents a fifth use case of the leak detection and localization device 10, in which, this time, it is not placed on the side of the side wall (of the downstream slope). of the dike 20 turned towards the space 24 but along the side wall (of the upstream slope) of the dike 20 turned towards the water retaining space 22.
À cet effet, on dispose, entre le dispositif de détection et de localisation de fuite 10 et la paroi latérale de la digue 20 tournée en direction de l'espace 22 une structure d'étanchéité de toute nature, comme par exemple du béton à liant hydraulique ou bitumineux, un matériau argileux, un géocomposite à base de matériau argileux {geocomposite clay lineή ou une géomembrane 36 qui protège le dispositif de détection et de localisation de fuite 10 contre toute pénétration d'eau qui ne serait pas due à la présence d'une fuite.For this purpose, between the leak detection and localization device 10 and the side wall of the dike 20 turned towards the space 22, there is provided a sealing structure of any kind, such as, for example, hydraulically or bituminous binder concrete, a clay material, a geocomposite based on clay material (geocomposite clay line) or a geomembrane 36 which protects the leak detection and localization device 10 against any ingress of water which does not would not be due to the presence of a leak.
Dans ce cas, comme il est illustré sur la figure 7, le dispositif de détection et de localisation de fuite 10 s'étend longitudinalement le long (du talus amont) de la paroi latérale de la digue 20 tournée en direction de l'espace 22 ainsi qu'au niveau du pied de la digue 201, légèrement en dessous de l'espace 22, la géomembrane 36 débordant largement au-delà de l'étendue maximale en hauteur du dispositif 10, le long (de la crête) du sommet 202 de la digue 20, et sous l'espace 22.In this case, as illustrated in FIG. 7, the leak detection and localization device 10 extends longitudinally along (the upstream slope) of the lateral wall of the dike 20 turned towards the space 22. as well as at the foot of the dike 201, slightly below the space 22, the geomembrane 36 projecting well beyond the maximum height of the device 10, along (the ridge) of the summit 202 of the dike 20, and under the space 22.
Là encore, plusieurs configurations sont possibles pour le ou les câbles optiques 14 présents dans le géotextile 12 du dispositif de détection et de localisation de fuite 10 : un seul câble optique 14 mesurant la température, plusieurs câbles optiques 14 séparés mesurant la température à des emplacements différents, un seul faisceau de câbles optiques 14 mesurant la température et la déformation, ou bien , comme il est illustré sur la figure 7, on utilise plusieurs faisceaux 34 de câbles optiques afin de mesurer à la fois la température et la déformation (ainsi que, éventuellement l'humidité) en différents emplacements le long du dispositif détection et de localisation 10.Again, several configurations are possible for the optical cable (s) 14 present in the geotextile 12 of the leak detection and localization device 10: a single optical cable 14 measuring the temperature, a plurality of separate optical cables 14 measuring the temperature at locations different, a single bundle of optical cables 14 measuring the temperature and the deformation, or, as illustrated in FIG. 7, several bundles 34 of optical cables are used in order to measure both the temperature and the deformation (as well as , possibly humidity) at different locations along the detection and location device 10.
Il faut noter que dans le cadre de ces deuxième à sixième utilisations respectivement décrites en relation avec les figures 3 à 7, il est possible (cas de figure non représenté) de réaliser en plus de la mesure de température et de l'éventuelle mesure de déformation, une mesure d'humidité en disposant dans chaque faisceau 34 un fil supplémentaire permettant de réaliser cette mesure (voir par exemple EP 1 235 089).It should be noted that in the context of these second to sixth uses respectively described in connection with FIGS. 3 to 7, it is possible (not shown) to perform in addition to the temperature measurement and the possible measurement of deformation, a moisture measurement by arranging in each beam 34 an additional wire to perform this measurement (see for example EP 1 235 089).
Egalement, parmi les autres variantes possibles dans le cadre de la présente invention, il faut noter la possibilité d'insérer dans le dispositif de détection et de localisation de fuite 10, en particulier dans ou sur le (ou les) géotextile(s) 12 (et 13), des fibres/câbles de renforcement (en polymère comme polyester, polypropylène, aramide, kevlar, etc...ou autre matériau offrant un fort module de raideur en traction) parallèlement aux câbles optiques 14, et ceci notamment pour pouvoir, lors de l'installation sur site du dispositif de détection et de localisation de fuite 10, dévider un rouleau et tirer sur le produit sans endommager les câbles optiques 14.Also, among the other possible variants within the scope of the present invention, it is necessary to note the possibility of inserting in the leak detection and localization device 10, in particular in or on the geotextile (s) 12 (and 13), fibers / reinforcing cables (made of polymer such as polyester, polypropylene, aramid, Kevlar, etc ... or other material offering a high modulus of tensile stiffness) parallel to the optical cables 14, and this in particular to be able to , during installation on site of the leak detection and localization device 10, unwinding a roll and pulling the product without damaging the optical cables 14.
La mesure de tous les paramètres mentionnés précédemment (notamment température, signal représentatif d'une déformation et humidité) peut être effectuée en continu ou de façon discontinue à des moments tO, tl, t2 , de façon indépendante ou simultanée.The measurement of all the previously mentioned parameters (in particular temperature, signal representative of a deformation and humidity) can be carried out continuously or discontinuously at times t0, t1, t2, independently or simultaneously.
On peut aussi prévoir que le dispositif de détection et de localisation est constitué de bandes ou de rouleaux posés parallèlement soit côte à côte, avec éventuellement un petit recouvrement de l'un(e) sur l'autre, soit espacé(e)s l'un(e) de l'autre. Dans ce dernier cas de bandes espacées, il est envisagé qu'elles soient en contact avec une couche drainante placée au-dessous ou au-dessous d'elles, cette couche drainante pouvant être réalisée en matériau granulaire, type sable ou gravier, ou en géotextile ou produit apparenté. It is also possible for the detection and localization device to consist of strips or rollers placed parallel to each other either side by side, possibly with a small overlap of the one over the other, or spaced apart from each other. one of the other. In the latter case of spaced strips, it is envisaged that they are in contact with a draining layer placed below or below them, this draining layer can be made of granular material, sand or gravel type, or geotextile or related product.

Claims

REVENDICATIONS
1. Dispositif (10) de détection et de localisation de fuite d'un fluide dans un ouvrage hydraulique, caractérisé en ce qu'il comporte un géotextile (12) pourvu d'au moins un câble optique (14) qui comprend au moins une fibre optique (141,142) apte à détecter une variation de température et à transmettre un signal modifié lorsque la variation de température est détectée, ledit câble optique étant en contact avec ledit géotextile.1. Device (10) for detecting and locating leakage of a fluid in a hydraulic structure, characterized in that it comprises a geotextile (12) provided with at least one optical cable (14) which comprises at least one optical fiber (141,142) adapted to detect a temperature variation and to transmit a modified signal when the temperature variation is detected, said optical cable being in contact with said geotextile.
2. Dispositif (10) selon la revendication 1, caractérisé en ce que ledit câble optique (14) est lié audit géotextile par des moyens de liaison (16).2. Device (10) according to claim 1, characterized in that said optical cable (14) is connected to said geotextile by connecting means (16).
3. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit géotextile est pourvu d'au moins une autre fibre optique (141,142) apte à détecter une déformation du géotextile à proximité de la fibre optique et à transmettre un signal modifié lorsque la déformation du géotextile (12) est détectée.3. Device (10) according to any one of the preceding claims, characterized in that said geotextile is provided with at least one other optical fiber (141,142) capable of detecting a deformation of the geotextile near the optical fiber and to transmit a signal modified when the deformation of the geotextile (12) is detected.
4. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit géotextile est pourvu d'au moins une autre fibre optique (141,142) apte à détecter une variation de taux d'humidité à proximité de la fibre optique et à transmettre un signal modifié lorsque la variation du taux d'humidité est détectée.4. Device (10) according to any one of the preceding claims, characterized in that said geotextile is provided with at least one other optical fiber (141,142) capable of detecting a variation in moisture content near the optical fiber and transmitting a modified signal when the variation of the humidity level is detected.
5. Dispositif (10) selon la revendication 3 ou 4, caractérisé en ce que ladite au moins une autre fibre optique (141, 142) est liée audit géotextile par des moyens de liaison (16). 5. Device (10) according to claim 3 or 4, characterized in that said at least one other optical fiber (141, 142) is bonded to said geotextile by connecting means (16).
6. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte plusieurs fibres optiques (141,142) disposées de façon sensiblement parallèles entre elles.6. Device (10) according to any one of the preceding claims, characterized in that it comprises a plurality of optical fibers (141,142) disposed substantially parallel to each other.
7. Dispositif (10) selon la revendication 6, caractérisé en ce que lesdites fibres optiques sont regroupées en au moins un faisceau (34) de fibres optiques, ledit faisceau (34) étant disposé à un emplacement du géotextile (12) qui correspond à une zone de l'ouvrage sensible aux fuites.7. Device (10) according to claim 6, characterized in that said optical fibers are grouped into at least one bundle (34) of optical fibers, said bundle (34) being disposed at a location of the geotextile (12) which corresponds to an area of the work susceptible to leaks.
8. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une desdites fibres optiques (141,142) transmettant un signal lié à la température est disposée à un emplacement du géotextile (12) qui est dans une zone située à proximité de l'air.8. Device (10) according to any one of the preceding claims, characterized in that at least one of said optical fibers (141,142) transmitting a temperature-related signal is disposed at a location of the geotextile (12) which is in an area near the air.
9. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre au moins un élément longitudinal (15) chauffant placé parallèlement et à côté de ladite fibre optique (141,142).9. Device (10) according to any one of the preceding claims, characterized in that it further comprises at least one longitudinal heating element (15) placed parallel to and adjacent to said optical fiber (141,142).
10. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite fibre optique (141,142) est monomode ou multimode.10. Device (10) according to any one of the preceding claims, characterized in that said optical fiber (141,142) is monomode or multimode.
11. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un premier géotextile (12) et un deuxième géotextile (13) et en ce que ledit câble optique (14) est inséré entre le premier géotextile (12) et le deuxième géotextile (13). 11. Device (10) according to any one of the preceding claims, characterized in that it comprises a first geotextile (12) and a second geotextile (13) and in that said optical cable (14) is inserted between the first geotextile (12) and the second geotextile (13).
12. Dispositif (10) selon la revendication précédente, caractérisé en ce que ledit câble optique (14) est lié à l'un au moins parmi les premier et deuxième géotextiles (12, 13) par des moyens de liaison.12. Device (10) according to the preceding claim, characterized in that said optical cable (14) is bonded to at least one of the first and second geotextiles (12, 13) by connecting means.
13. Dispositif (10) selon la revendication 2, 5 ou 12 caractérisé en ce que lesdits moyens de liaison comportent au moins un élément de liaison (16).13. Device (10) according to claim 2, 5 or 12 characterized in that said connecting means comprise at least one connecting element (16).
14. Dispositif (10) selon la revendication 7, caractérisé en ce qu'il comporte au moins une fibre optique (14, 141,142) placée librement à l'intérieur d'un tube de protection (14b) lié au géotextile (12).14. Device (10) according to claim 7, characterized in that it comprises at least one optical fiber (14, 141, 142) freely placed inside a protective tube (14b) connected to the geotextile (12).
15. Système de détection et de localisation de fuite d'un fluide dans un ouvrage hydraulique, caractérisé en ce qu'il comporte un dispositif (10) selon l'une quelconque des revendications précédentes et au moins un appareil de mesure relié à ladite fibre optique (141,142) et permettant d'indiquer une variation du signal transmis par la fibre optique (141,142). 15. System for detecting and locating leakage of a fluid in a hydraulic structure, characterized in that it comprises a device (10) according to any one of the preceding claims and at least one measuring device connected to said fiber optical (141,142) and for indicating a variation of the signal transmitted by the optical fiber (141,142).
16. Ouvrage hydraulique équipé d'un dispositif (10) de détection et de localisation de fuite selon l'une quelconque des revendications 1 à 14. Hydraulic structure equipped with a device (10) for detecting and locating leakage according to any one of claims 1 to 14.
17. Ouvrage hydraulique selon la revendication précédente, caractérisé en ce qu'il est formé d'une digue sèche ou en eau (20) et en ce que ledit dispositif (10) de détection et de localisation de fuite est placé longitudinalement dans le corps de la digue de façon à recouvrir au moins une partie de la hauteur de la digue.17. Hydraulic structure according to the preceding claim, characterized in that it is formed of a dry dam or water (20) and in that said device (10) for detecting and locating leakage is placed longitudinally in the body the dike so as to cover at least part of the height of the dike.
18. Ouvrage hydraulique selon la revendication précédente, utilisant un dispositif (10) de détection et de localisation de fuite selon la revendication 8, caractérisé en ce que ladite fibre optique (141,142) qui est disposée à un emplacement du géotextile (12) qui est dans une zone située à proximité de l'air, est placée de façon à être en haut de l'ouvrage.18. Hydraulic structure according to the preceding claim, using a device (10) for detecting and locating leakage according to claim 8, characterized in that said optical fiber (141,142) which is disposed at a location of the geotextile (12) which is in an area close to the air, is placed so as to be at the top of the work.
19. Procédé de détection et de localisation de fuite d'un fluide dans un ouvrage hydraulique, caractérisé en ce qu'on détecte une variation de température par une modification du signal émis par une fibre optique (141,142) comprise dans un câble optique (14) en contact avec un géotextile (12) et lié à ce dernier.19. A method for detecting and locating leakage of a fluid in a hydraulic structure, characterized in that a variation in temperature is detected by a modification of the signal emitted by an optical fiber (141, 142) included in an optical cable (14). ) in contact with and linked to a geotextile (12).
20. Procédé selon la revendication précédente, caractérisé en ce qu'on détecte, en outre, une déformation du géotextile (12) par une modification du signal émis par une fibre optique (141,142) comprise dans un câble optique (14) lié audit géotextile (12). 20. Method according to the preceding claim, characterized in that detects, in addition, a deformation of the geotextile (12) by a modification of the signal emitted by an optical fiber (141,142) included in an optical cable (14) related to said geotextile (12).
21. Procédé selon l'une quelconque des revendications 19 et21. Method according to any one of claims 19 and
20, caractérisé en ce qu'on détecte, en outre, une variation du taux d'humidité du géotextile (12) par une modification du signal émis par une fibre optique (141,142) comprise dans un câble optique (14) lié audit géotextile (12). 20, characterized in that, furthermore, a variation of the humidity level of the geotextile (12) is detected by a modification of the signal emitted by an optical fiber (141,142) included in an optical cable (14) connected to said geotextile ( 12).
22. Procédé selon l'une quelconque des revendications 19 à22. Process according to any one of claims 19 to
21, caractérisé en ce que ledit câble optique (14) est lié audit géotextile par des moyens de liaison.21, characterized in that said optical cable (14) is connected to said geotextile by connecting means.
23. Procédé selon la revendication précédente, caractérisé en ce que lesdits moyens de liaison comportent au moins un élément de liaison (16).23. Method according to the preceding claim, characterized in that said connecting means comprise at least one connecting element (16).
24. Procédé selon l'une quelconque des revendications 19 à 23, caractérisé en ce que l'on utilise plusieurs fibres optiques (141,142) similaires disposées de façon sensiblement parallèles entre elles. 24. Method according to any one of claims 19 to 23, characterized in that one uses several optical fibers (141,142) similar disposed substantially parallel to each other.
25. Procédé selon l'une quelconque des revendications 19 à 24, caractérisé en ce lesdites fibres optiques (141,142) sont regroupées en au moins un faisceau (34) de fibres optiques, ledit faisceau (34) étant disposé à un emplacement du géotextile (12) qui correspond à une zone de l'ouvrage sensible aux fuites. 25. A method according to any one of claims 19 to 24, characterized in that said optical fibers (141,142) are grouped into at least one bundle (34) of optical fibers, said bundle (34) being disposed at a location of the geotextile ( 12) which corresponds to an area of the work susceptible to leaks.
EP07823567A 2006-07-13 2007-07-12 Device, system and method of detecting and locating malfunctions in a hydraulic structure, and a hydraulic structure equipped with said device Withdrawn EP2044409A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0652958A FR2903773B1 (en) 2006-07-13 2006-07-13 DEVICE, SYSTEM AND METHOD FOR DETECTING AND LOCATING DYSFUNCTION IN A HYDRAULIC WORK, AND A HYDRAULIC WORK EQUIPPED WITH SAID DEVICE.
PCT/FR2007/051645 WO2008007025A2 (en) 2006-07-13 2007-07-12 Device, system and method of detecting and locating malfunctions in a hydraulic structure, and a hydraulic structure equipped with said device

Publications (1)

Publication Number Publication Date
EP2044409A2 true EP2044409A2 (en) 2009-04-08

Family

ID=37781286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07823567A Withdrawn EP2044409A2 (en) 2006-07-13 2007-07-12 Device, system and method of detecting and locating malfunctions in a hydraulic structure, and a hydraulic structure equipped with said device

Country Status (10)

Country Link
US (1) US8316694B2 (en)
EP (1) EP2044409A2 (en)
KR (1) KR101448103B1 (en)
CN (1) CN101490522B (en)
AU (1) AU2007274104A1 (en)
CA (1) CA2657712C (en)
FR (1) FR2903773B1 (en)
MY (1) MY152613A (en)
TW (1) TWI471543B (en)
WO (1) WO2008007025A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027254A1 (en) * 2009-06-26 2011-01-05 Huesker Synthetic Gmbh Textile fabric with integrated optical fiber
CN101793502B (en) * 2010-02-20 2013-05-15 昆明理工大学 Method for detecting breakage position of built-in geomembrane by fiber strain
CN101799430B (en) * 2010-02-20 2013-05-08 昆明理工大学 Built-in anti-seepage geomembrane damage monitoring method based on optical fiber temperature-measurement principle
BR112013013608B1 (en) 2010-12-02 2020-10-13 Wsp Global Inc. method for monitoring the progress of leaching operations
US8528385B2 (en) 2010-12-30 2013-09-10 Eaton Corporation Leak detection system
US9291521B2 (en) 2010-12-30 2016-03-22 Eaton Corporation Leak detection system
CN102995619A (en) * 2012-12-28 2013-03-27 泰安路德工程材料有限公司 Highly smart LDTG composite geotechnical material and engineering monitoring system thereof
FR3014552B1 (en) * 2013-12-05 2019-08-09 Agence Nationale Pour La Gestion Des Dechets Radioactifs DEVICE FOR MONITORING THE DEFORMATION OF A WORK, USE OF AN OPTICAL FIBER AND SURVEILLANCE METHOD PARTICULARLY ADAPTED TO IRRADIATED ENVIRONMENTS
DE102014112383A1 (en) * 2014-08-28 2016-03-03 Universität Innsbruck Monitoring the structural integrity of shut-off structures
DE102014019232A1 (en) * 2014-12-19 2016-06-23 Johann Gerner Electro-optical measuring system for measuring movement in structures
CN104515653B (en) * 2014-12-29 2015-08-12 河海大学 A kind of device and method of monitoring hydro-structure body seepage
CN104570148B (en) * 2014-12-29 2015-09-02 河海大学 Paddle works seepage without thermal source fiber orientation orientation system and monitoring method
FR3034517B1 (en) * 2015-04-01 2017-04-28 Geoscan DEVICE FOR EVALUATING THE FLOW OF A FIRST FLUID TO A SECOND FLUID THROUGH A WALL
CN105181362B (en) * 2015-06-19 2016-04-13 河海大学 Hydraulic structure observed seepage behavior distribution type fiber-optic perception integrated system and method
CN105297783B (en) * 2015-10-22 2017-03-08 昆明理工大学 One kind can monitor many material joint seepage prevention systems
CN105738652B (en) * 2016-05-05 2017-11-03 河海大学 A kind of instant tracing system of Hydraulic Projects seepage velocity distribution type fiber-optic and method
CN105738268B (en) * 2016-05-10 2017-06-16 河海大学 Hydraulic Projects observed seepage behavior Integrated Monitoring System and monitoring method under complex environment
CA3065320C (en) 2017-06-16 2023-09-05 Saint-Gobain Adfors Canada, Ltd. Sensing textile
CN109307570A (en) * 2017-07-27 2019-02-05 李政璇 A kind of dam leak-checking apparatus
CN107558508A (en) * 2017-08-28 2018-01-09 中冶集团武汉勘察研究院有限公司 A kind of method that the monitoring of friction pile solidification stages hydration heat temperature is carried out based on BOTDA distributed optical fiber temperature measurements technology
CN108489680B (en) * 2018-04-26 2020-12-18 中铁十一局集团第二工程有限公司 Method and system for detecting leakage of foundation surface of basement with room soil
CN109356091B (en) * 2018-11-21 2024-01-19 中国电建集团成都勘测设计研究院有限公司 Mountain stream river embankment project
CN111502280B (en) * 2020-05-11 2021-06-11 中铁城建集团第三工程有限公司 Construction method for detecting water leakage area by tool
CN113375751B (en) * 2021-06-28 2022-12-13 中国电建集团成都勘测设计研究院有限公司 Method for detecting leakage of deep and thick covering layer riverbed dam
CN113668465B (en) * 2021-08-27 2023-09-19 山东黄河顺成水利水电工程有限公司 Dyke breach warning device in hydraulic engineering construction

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723910B2 (en) * 1986-03-04 1995-03-15 株式会社本田電子技研 Optical fiber mat
US5028146A (en) * 1990-05-21 1991-07-02 Kabushiki Kaisha Toshiba Apparatus and method for measuring temperatures by using optical fiber
JP2880836B2 (en) * 1991-10-18 1999-04-12 株式会社東芝 measuring device
JPH0792054A (en) * 1993-09-27 1995-04-07 Toda Constr Co Ltd Water barrier sheet having leak detecting function, and method for detecting leak of water barrier sheet
US5399854A (en) * 1994-03-08 1995-03-21 United Technologies Corporation Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating
US5663490A (en) * 1995-04-14 1997-09-02 Daito Kogyo Co., Ltd. Breakage detection system for water-barrier sheet in waste disposal facility
US5567932A (en) * 1995-08-01 1996-10-22 Sandia Corporation Geomembrane barriers using integral fiber optics to monitor barrier integrity
DE19621797B4 (en) * 1996-05-30 2011-03-24 Gtc Kappelmeyer Gmbh Method and device for leakage monitoring on objects and structures
US6004639A (en) * 1997-10-10 1999-12-21 Fiberspar Spoolable Products, Inc. Composite spoolable tube with sensor
JPH11142281A (en) * 1997-11-11 1999-05-28 Reideikku:Kk Ground-water measuring instrument
EP0978715B1 (en) 1998-08-03 2003-03-26 Avu Aktiengesellschaft Für Versorgungsunternehmen Monitoring and communication in pipings with multiple fiber cables and the positioning thereof
US6097862A (en) * 1998-09-11 2000-08-01 Lucent Technologies Inc. Optical fiber grating devices with enhanced sensitivity cladding for reconfigurability
DE10052922B4 (en) 1999-10-18 2009-02-26 GESO Gesellschaft für Sensorik, Geotechnischen Umweltschutz und Mathematische Modellierung mbH Jena Sensor cable for fiber optic temperature measurements
US6305427B1 (en) * 1999-11-19 2001-10-23 Kenway Corporation Double walled apparatus and methods
JP2001296151A (en) * 2000-04-14 2001-10-26 Foundation Of River & Basin Integrated Communications Japan Optical fiber scouring sensor and scouring and sensing system using the same
BE1013983A3 (en) * 2001-02-27 2003-01-14 Voet Marc Optical cable for the measurement of temperature and / or stretch.
GB0110223D0 (en) 2001-04-26 2001-06-20 Sensor Highway Ltd Method and apparatus for leak detection and location
US7038190B2 (en) * 2001-12-21 2006-05-02 Eric Udd Fiber grating environmental sensing system
FR2844874B1 (en) 2002-09-23 2004-12-10 Bidim Geosynthetics Sa METHOD FOR LOCATING AND MEASURING DEFORMATIONS OF A CIVIL ENGINEERING WORK
MX2007006917A (en) * 2004-12-13 2008-01-28 Smart Pipe Company Lp Systems and methods for making pipe liners.
US20070065071A1 (en) 2005-06-30 2007-03-22 Infoscitex Humidity sensor and method for monitoring moisture in concrete
US7543982B2 (en) * 2005-09-29 2009-06-09 Sumitomo Electric Industries, Ltd. Sensor and disturbance measurement method using the same
DE102006023588B3 (en) 2006-05-17 2007-09-27 Sächsisches Textilforschungsinstitut eV Use of a geo-textile system made from a textile structure and integrated sensor fibers for improving and monitoring a dam

Also Published As

Publication number Publication date
TWI471543B (en) 2015-02-01
US20100175460A1 (en) 2010-07-15
TW200829900A (en) 2008-07-16
CA2657712C (en) 2015-11-10
CA2657712A1 (en) 2008-01-17
KR20090101432A (en) 2009-09-28
CN101490522B (en) 2013-09-25
KR101448103B1 (en) 2014-10-07
FR2903773A1 (en) 2008-01-18
CN101490522A (en) 2009-07-22
WO2008007025A3 (en) 2008-08-14
MY152613A (en) 2014-10-31
AU2007274104A1 (en) 2008-01-17
FR2903773B1 (en) 2009-05-08
US8316694B2 (en) 2012-11-27
WO2008007025A2 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
CA2657712C (en) Device, system and method of detecting and locating malfunctions in a hydraulic structure, and a hydraulic structure equipped with said device
EP2029993B1 (en) Reinforcement element with sensor fiber, monitoring system, and monitoring method
FR2953943A1 (en) FLEXIBLE STRIP COMPRISING AT LEAST ONE OPTICAL FIBER FOR PERFORMING DEFORMATION AND / OR TEMPERATURE MEASUREMENTS
FR2939157A1 (en) REINFORCED GROUND WORK AND FACING ELEMENTS FOR ITS CONSTRUCTION
EP1730467B1 (en) Method for locating and measuring deformations in a work of civil engineering
Côté et al. Water leakage detection using optical fiber at the Peribonka dam
FR2728677A1 (en) Deformation detection method for civil engineering works
EP3230509A1 (en) Geosynthetic for soil reinforcement with multi-modulus behaviour
JP4911667B2 (en) Optical fiber scour detector and system
CN204679657U (en) A kind of face dam leak detection apparatus
WO2018172668A1 (en) Equipment for watertight earthworks and earthworks comprising a drainage geocomposite associated with a device for detecting leaks, infiltration or flows of a fluid
EP0874214B1 (en) Procedure for detecting ground subsidence under a civil engineering work
FR2844874A1 (en) Building structure deformation locating and measuring method in which a fiber optical grating network within a geosynthetic material layer is applied to or below the building
JP4792129B1 (en) Earth and sand disaster detection system
FR3074900A1 (en) CIVIL ENGINEERING WORK EQUIPPED WITH A STRAIN SENSOR AND METHOD OF EQUIPPING SAME OF CIVIL ENGINEERING
FR2899613A1 (en) REINFORCING GEOTEXTILE PRODUCT WITH HITCH ELEMENTS
FR3080864A1 (en) GEOTEXTILE PRODUCT OR CONSTRUCTION OF REINFORCING INSTRUMENTE
JP2006317461A (en) Optical distortion sensor and bank monitoring system using it
EP0897035B1 (en) Geosynthetic reinforcement for soil with high settling risk
Thiele et al. Dike monitoring
EP0758810B1 (en) Composite material for protecting buried objects, process for protecting electrical power cables by means of said material and corresponding cable assembly
JP3850526B2 (en) Scour detection sensor and bank monitoring system using the same
CN116024936A (en) Seepage monitoring and positioning and leakage repairing impermeable membrane for tailing dam and construction method thereof
Dornstädter et al. Retrofit of Fibre Optics to existing Dams
FR3002791A1 (en) Net for protection of buried pipework e.g. electric cable, has set of meshes that is formed by connections between segments, where segments of set of chords of chain are spaced in frame direction with variable spacings over width of net

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLAIRON, SYLVAIN

Inventor name: HENAULT, JEAN-MARIE

Inventor name: BERNARD, ALAIN

Inventor name: DALY, FABRICE

Inventor name: GUIDOUX, CYRIL

Inventor name: ARTIERES, OLIVIER

Inventor name: FRY, JEAN-JACQUES

Inventor name: VOET, MARC

Inventor name: ROYET, PAUL

Inventor name: VERCOUTERE, GAUTHIER

Inventor name: VLEKKEN, JOHAN

Inventor name: FAURE, YVES-HENRI

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120604

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01B 11/16 20060101AFI20160830BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VERCOUTERE, GAUTHIER

Inventor name: VOET, MARC

Inventor name: VLEKKEN, JOHAN

Inventor name: HENAULT, JEAN-MARIE

Inventor name: GUIDOUX, CYRIL

Inventor name: BERNARD, ALAIN

Inventor name: BLAIRON, SYLVAIN

Inventor name: ROYET, PAUL

Inventor name: ARTIERES, OLIVIER

Inventor name: FAURE, YVES-HENRI

Inventor name: FRY, JEAN-JACQUES

Inventor name: DALY, FABRICE

INTG Intention to grant announced

Effective date: 20160919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170131