EP2029724A2 - Derivation of embryonic stem cells and embryo-derived cells - Google Patents

Derivation of embryonic stem cells and embryo-derived cells

Info

Publication number
EP2029724A2
EP2029724A2 EP07794602A EP07794602A EP2029724A2 EP 2029724 A2 EP2029724 A2 EP 2029724A2 EP 07794602 A EP07794602 A EP 07794602A EP 07794602 A EP07794602 A EP 07794602A EP 2029724 A2 EP2029724 A2 EP 2029724A2
Authority
EP
European Patent Office
Prior art keywords
cells
human
cell
embryo
blastomere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07794602A
Other languages
German (de)
French (fr)
Other versions
EP2029724A4 (en
Inventor
Young Chung
Robert Lanza
Irina V. Klimanskaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astellas Institute for Regenerative Medicine
Original Assignee
Advanced Cell Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Cell Technology Inc filed Critical Advanced Cell Technology Inc
Priority to EP16178734.6A priority Critical patent/EP3133150A3/en
Priority to EP12197502.3A priority patent/EP2612906A3/en
Publication of EP2029724A2 publication Critical patent/EP2029724A2/en
Publication of EP2029724A4 publication Critical patent/EP2029724A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/02Coculture with; Conditioned medium produced by embryonic cells

Definitions

  • This invention generally relates to novel methods for deriving embryonic stem (ES) cells and embryo-derived (ED) cells, those cells and cell lines, and the use of the cells for therapeutic and research purposes. It also relates to novel methods of establishing and storing an autologous stem cell line prior to implantation of an embryo, e.g. in conjunction with assisted reproductive technologies such as in vitro fertilization.
  • ES embryonic stem
  • ED embryo-derived
  • embryonic stem cells have only been grown from blastocyst-stage embryos.
  • ES cell lines are conventionally isolated from the inner cell mass of blastocysts.
  • the techniques used to create these cells From the perspective of the technique, the culturing of embryos to blastocysts occasionally has a relatively low success rate.
  • certain members of the public object to embryonic stem (ES) cell research using cell lines derived from the inner cell mass of blastocysts because this derivation procedure destroys the preimplantation, blastocyst-stage embryo.
  • the blastocyst-stage embryo from which ES cells are conventionally produced cannot be cryopreserved, frozen for later use, or permitted to develop further.
  • the present invention provides novel methods for deriving ES cells, ES cell lines, and other embryo-derived (ED) cells for use in research and medicine.
  • the methods described herein permit the derivation of ES cells, ES cell lines, and other ED cells from embryos but without the need to destroy those embryos.
  • the present invention provides novel methods for deriving embryonic stem cells and embryo-derived cells from an embryo, those cells and cell lines, and uses of the embryonic stem cells and cell lines for therapeutic and research purposes. It also relates to a method of establishing and storing an autologous stem cell line from a blastomere retrieved prior to implantation of an embryo, e.g. in conjunction with assisted reproductive technologies such as in vitro fertilization ("IVF").
  • IVF in vitro fertilization
  • the invention provides a method of producing human embryonic stem (ES) cells.
  • the method generally comprises culturing a blastomere obtained from a human embryo.
  • the blastomere is cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm to generate a cluster of two or more blastomeres.
  • the cultured cluster of two or more blastomeres is contacted (directly or indirectly) with embryonic or fetal cells, and the cluster of two or more blastomeres is then further cultured (in the presence or absence of embryonic or fetal cells) to produce ES cells.
  • the method initially comprises culturing a blastomere obtained from a human embryo for at least one day in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm.
  • the method is similarly used to produce partially differentiated cells directly from a blastomere without the need to first derive ES cells.
  • the cultured cluster of two or more blastomeres comprises an aggregate of two or more blastomeres, and the aggregate of two or more blastomeres is contacted with embryonic or fetal cells.
  • the cluster of two or more blastomeres is cultured in medium containing at least 5 mM glucose and/or having an osmolarity of at least 310 mosm.
  • two or more blastomeres are initially obtained from an embryo, and the two or more blastomeres are initially cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm. These blastomeres may be from the same or a different embryo, and these blastomeres may be cultured in direct contact with one another or without contact but in the same culture vessel or microdrop.
  • obtaining the blastomere from a human embryo yields a blastomere and a remaining human embryo, and the remaining human embryo is not destroyed following obtaining the blastomere.
  • the remaining embryo is viable.
  • the remaining embryo is cultured for one or more days following removal of the blastomere to assess viability.
  • the remaining embryo is cryopreserved.
  • a blastomere is obtained from a human embryo after compaction of the morula.
  • the blastomere is obtained from a human embryo before formation of the blastocoel.
  • the blastomere is obtained from a 4-16 cell embryo, a 4-10 cell human embryo, or a 4-8 cell human embryo.
  • the cluster of two or more blastomeres and the embryonic or fetal cells are directly or indirectly contacted with each other.
  • the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates.
  • the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
  • the cells are cultured in microdrop culture.
  • the embryo (for example, a human embryo) was previously frozen and is thawed prior to obtaining the blastomere.
  • a blastomere is removed without substantially decreasing the viability of the remainder of the embryo.
  • the remainder of the embryo can continue to grow.
  • the ability to continue to grow and survive in culture for at least one day following blastomere removal indicates that blastomere removal did not substantially decrease viability.
  • the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo.
  • the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated.
  • exemplary embryonic or fetal cells are human cells.
  • the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid cell or stem cells, or human embryo carcinoma cells.
  • the embryonic or fetal cells are optionally cultured on a fibroblast feeder layer.
  • the blastomere or cluster of two or more blastomeres is cultured with a factor that inhibits differentiation of the ES cells.
  • recombinant Oct-4 is introduced into the blastomere or endogenous Oct-4 is activated in the blastomere during a step of culturing the blastomere to produce the human ES cells.
  • the ES cells or cell lines for example the human ES cells or cell lines, are pluripotent.
  • ES cells express one or more ES cell marker proteins selected from any of Oct-4, alkaline phosphatase, SSEA-3, SSEA-4, TRA- 1-60 and TRA-1-81.
  • the blastomere undergoes cell division and one progeny cell is used for genetic testing and a different progeny cell is used to produce human ES cells.
  • the method further comprises isolating the ES cells derived from the blastomere and culturing the ES cells to generate an ES cell line.
  • the invention provides a method of generating autologous stem cells concomitantly to performing genetic diagnosis.
  • a blastomere is removed from an embryo, as is typically done during pre-implantation genetic diagnosis (PGD).
  • the blastomere is cultured and permitted to divide at least once. After division, one progeny cell is used for genetic diagnosis, and the other progeny cell is further cultured (using any of the methods described herein) to produce an ES cell or ES cell line.
  • PLD pre-implantation genetic diagnosis
  • ES cell or ES cell lines would be a suitable source of autologous cells and tissue for the embryo or individual that resulted from that embryo.
  • the invention provides human ES cells derived from a human embryo but without destroying the human embryo.
  • the ES cells are produced using any of the methods described herein.
  • the invention provides a human ES cell line derived from a human embryo but without destroying the human embryo.
  • the ES cell lines is produced using any of the methods described herein.
  • the human ES cell or ES cell line has one or more characteristics of previously identified, blastocyst-derived ES cell lines.
  • the human ES cell or ES cell line is pluripotent and expresses one or more ES cell marker proteins selected from any of Oct-4, SSEA-I, nanog, alkaline phosphatase and Res-1.
  • the human ES cell or ES cell line maintains a normal karyotype.
  • the invention provides a differentiated cell or tissue directly produced from a blastomere.
  • the invention provides a differentiated cell or tissue derived from a human ES cell or cell line produced from a blastomere.
  • the differentiated cell or tissue is lineage committed.
  • the differentiated cell or tissue is a mesodermal, endodermal or ectodermal cell or tissue.
  • the differentiated cell or tissue is partially or terminally differentiated.
  • the invention provides a method of producing a desired differentiated cell or tissue by inducing differentiation of a human ES cell or cell line into the desired cell or tissue.
  • the method comprises contacting an ES cell or ES cell line produced from a blastomere with one or more agents that promote differentiation of an ES cell or cell line along a particular developmental lineage.
  • the invention provides compositions and preparations comprising a differentiated cell or tissue produced from an ES cell or cell line derived from a blastomere.
  • the compositions and preparations are pharmaceutical preparations formulated in a pharmaceutically acceptable carrier.
  • the invention provides a method of treating a disorder amenable to cell therapy in a patient by administering an effective amount of an ES cell or cell line produced from a blastomere using any of the methods described herein.
  • the invention provides a method of treating a disorder amenable to cell therapy in a patient by administering to the patient an effective amount of a differentiated cell or tissue produced either directly from a blastomere culture or produced from an ES cell or cell line.
  • the invention provides a method of producing a trophoblast stem (TS) cell.
  • the method comprises culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm to generate a cluster of two or more blastomeres; directly or indirectly contacting the cultured cluster of two or more blastomeres to embryonic or fetal cells; and further culturing the cluster of two or more blastomeres until TS cells are produced.
  • TS trophoblast stem
  • method comprises culturing a blastomere obtained from a human embryo for at least one day in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm.
  • the cultured cluster of two or more blastomeres comprises an aggregate of two or more blastomeres, and the aggregate of two or more blastomeres is contacted with embryonic or fetal cells.
  • the cluster of two or more blastomeres is cultured in medium containing at least 5 mM glucose and/or having an osmolarity of at least 310 mosm.
  • the one that one blastomere is initially obtained from an embryo, and the two or more blastomeres are initially cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm.
  • These blastomeres may be from the same or a different embryo, and these blastomeres may be cultured in direct contact with one another or without contact but in the same culture vessel or microdrop.
  • obtaining the blastomere from a human embryo yields a blastomere and a remaining human embryo, and the remaining human embryo is not destroyed following obtaining the blastomere.
  • the remaining embryo is viable.
  • the remaining embryo is cultured for one or more days following removal of the blastomere to assess viability.
  • the remaining embryo is cryopreserved.
  • a blastomere is obtained from a human embryo after compaction of the morula. In certain embodiments, the blastomere is obtained from a human embryo before formation of the blastocoel. In certain embodiments, the blastomere is obtained from a 4-16 cell embryo, a 4-10 cell human embryo, or a 4-8 cell human embryo.
  • the cluster of two or more blastomeres and the embryonic or fetal cells are directly or indirectly contacted with each other.
  • the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates.
  • the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
  • the cells are cultured in microdrop culture.
  • the embryo for example, human embryo
  • a blastomere is removed without substantially decreasing the viability of the remainder of the embryo.
  • the remainder of the embryo can continue to grow.
  • the ability to continue to grow and survive in culture for at least one day following blastomere removal indicates that blastomere removal did not substantially decrease viability.
  • the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo.
  • the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated.
  • exemplary embryonic or fetal cells are human cells.
  • the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid cell or stem cells, or human embryo carcinoma cells.
  • the embryonic or fetal cells are optionally cultured on a fibroblast feeder layer.
  • the method further comprises isolating the TS cells derived from the blastomere. In certain embodiments, the method further comprises establishing a TS cell line from the TS cells derived from the blastomere.
  • exemplary TS cells or TS cell lines express at least one TS cell marker protein selected from the any of cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG). In certain embodiments, exemplary TS cells or TS cell lines do not express Oct-4 or ⁇ - feto protein.
  • the invention provides a human TS cell derived from a human embryo but without destroying the human embryo.
  • exemplary TS cells or TS cell lines express at least one TS cell marker protein selected from the any of cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG).
  • exemplary TS cells or TS cell lines do not express Oct-4 or ⁇ -feto protein.
  • the invention provides a differentiated cell or tissue derived from a TS cell or TS cell line produced from a blastomere.
  • the invention provides a method of isolating a blastomere from an embryo.
  • the method comprises immobilizing the embryo and tapping the immobilized embryo until a blastomere is isolated.
  • a single blastomere is isolated from the remainder of the embryo.
  • multiple blastomeres are isolated from the remainder of the embryo.
  • this method is combined with other methods used to obtain a blastomere from an embryo (e.g., removal of the zona pelucida, exposure to enzymes, exposure to Ca2+ and/or Mg2+ free medium).
  • the embryo is immobilized using a micropipette.
  • the embryo is a 4-16 cell stage embryo, a 4-10 cell stage embryo, or an 8-10 cell stage embryo.
  • the invention provides a method of conducting embryonic stem cell research without destroying a human embryo.
  • the method comprises obtaining a human ES cell or ES cell line that is derived from a human embryo but without destroying the human embryo.
  • Such lines may be generated using any of the methods for deriving ES cell or cell lines from a blastomere.
  • the method further comprises conducting embryonic stem cell research using the human ES cell or ES cell line.
  • conducting embryonic stem cell research comprises contacting the human ES cell or ES cell line with one or more factors, and identifying factors that promote differentiation of the ES cell or ES cell line to one or more mesodermal, endodermal, or ectodermal cell types.
  • the invention provides a method of producing an embryonic stem (ES) cell.
  • the method comprises culturing a blastomere obtained from a mammalian embryo to generate a cluster of two or more blastomeres; directly or indirectly contacting the cultured cluster of two or more blastomeres with embryonic or fetal cells; and culturing the cluster of two or more blastomeres of (b) until ES cells are produced.
  • the cultured cluster of two or more blastomeres comprises an aggregate of two or more blastomeres, and the aggregate of two or more blastomeres is contacted with embryonic or fetal cells.
  • the cluster of two or more blastomeres is cultured in medium containing at least 5 mM glucose and/or having an osmolarity of at least 310 mosm.
  • the one that one blastomere is initially obtained from an embryo, and the two or more blastomeres are initially cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm.
  • These blastomeres may be from the same or a different embryo, and these blastomeres may be cultured in direct contact with one another or without contact but in the same culture vessel or microdrop.
  • obtaining the blastomere from a embryo yields a blastomere and a remaining embryo, and the remaining embryo is not destroyed following obtaining the blastomere.
  • the remaining embryo is viable.
  • the remaining embryo is cultured for one or more days following removal of the blastomere to assess viability.
  • the remaining embryo is cryopreserved.
  • a blastomere is obtained from a embryo after compaction of the morula. In certain embodiments, the blastomere is obtained from an embryo before formation of the blastocoel. In certain embodiments, the blastomere is obtained from a 4-16 cell embryo, a 4-10 cell embryo, or a 4-8 cell human embryo.
  • the cluster of two or more blastomeres and the embryonic or fetal cells are directly or indirectly contacted with each other.
  • the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates.
  • the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
  • the cells are cultured in microdrop culture.
  • the embryo (for example, a human embryo) was previously frozen and is thawed prior to obtaining the blastomere.
  • a blastomere is removed without substantially decreasing the viability of the remainder of the embryo.
  • the remainder of the embryo can continue to growth.
  • the ability to continue to grow and survive in culture for at least one day following blastomere removal indicates that blastomere removal did not substantially decrease viability.
  • the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo.
  • the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated.
  • exemplary embryonic or fetal are mouse cells or human cells.
  • the embryonic or fetal cells are from the same species as the blastomere.
  • the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid cells or stem cells, or human embryo carcinoma cells, hi certain embodiments, the embryonic or fetal cells are optionally cultured on a fibroblast feeder layer.
  • the method further comprises the step of isolating the ES cells derived from the blastomere and generating an ES cell line.
  • the invention provides a method of producing ES cells.
  • the method comprises obtaining a blastomere from a mammalian embryo; culturing the blastomere to generate a cluster of two or more blastomeres; aggregating the cluster of two or more blastomeres with embryonic or fetal cells; culturing the aggregated cluster of two or more blastomeres and the embryonic or fetal cells until the aggregated cluster of blastomeres exhibits properties of ES cells; and isolating the ES cells derived from the blastomere from the embryonic cells.
  • the invention provides a method of producing TS cells.
  • the method comprises: obtaining a blastomere from a mammalian embryo; culturing the blastomere to generate a cluster of two or more blastomeres; aggregating the cluster of two or more blastomeres with embryonic or fetal cells; obtaining outgrowths from the cluster of two or more blastomeres, wherein the outgrowths exhibit properties of trophoblast or extraembryonic endoderm cells; contacting the outgrowths with FGF-4 to produce TS cells; and isolating the TS cells derived from the blastomere.
  • the mammalian embryo is a human embryo and the TS cells are human cells.
  • the method further comprises producing a TS cell line by culturing the TS cells derived from the blastomere to produce a TS cell line.
  • the invention provides a method of producing human embryonic stem (ES) cells.
  • the method comprises: culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and/or having an osmolality of less than 310 mosm to generate a cluster of two or more blastomeres; directly or indirectly contacting the cultured cluster of two or more blastomeres with medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres; and further culturing the cluster of two or more blastomeres to produce ES cells.
  • ES human embryonic stem
  • the method comprises culturing a blastomere obtained from a human embryo for at least one day in medium containing less than 5 mM glucose and/or having an osmolality of less than 310 mosm to generate a cluster of two or more blastomeres.
  • the medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres is medium conditioned with embryonic or fetal cells. In certain other embodiments, the medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres is supplemented with ACTH.
  • the invention provides a method of producing an embryonic stem cell, comprising the step of culturing a blastomere in embryo medium wherein the blastomere is obtained from an embryo and wherein the embryo remains viable.
  • the method comprises the step of directly or indirectly contacting the cultured blastomere with embryonic stem cells with the proviso that the contacting is not carried out by aggregating the cultured blastomere with embryonic stem cells as had been previously described in Chung et al., Nature (2006) 439:216-9.
  • the cultured blastomere can be cultured in a microdrop and the embryonic stem cells are cultured in separate microdrops. Each microdrop can contain a single blastomere or multiple blastomeres.
  • the microdrop containing the blastomere(s) can be connected to or merged with the microdrop containing the embryonic stem cells using any means known to those of ordinary skill in the art.
  • the connecting or merging of the two microdrops is carried out by dragging a manipulation pipette between two drops under light mineral oil such as paraffin oil or Squibb's oil.
  • the method of producing an ES or ED cell may also be used to culture single cells from morula stage embryo, inner cell mass, or embryonic disk, or single embryonic cell or single embryonic germ cell.
  • the blastomere is obtained from an embryo prior to compaction of the morula.
  • the entire one cell zygote may be used, though this does not provide the advantage of circumventing the ethical objections some people have to the use of the entire embryo in cell line derivation. Therefore, the preferred method is the use of a donor cell from an embryo between the two cell stage and the blastocyst stage of development.
  • the embryo is obtained before formation of the blastocoel.
  • the blastomere may be obtained by partial or complete removal of the zona pellucida surrounding the embryo.
  • the biopsied embryo may be implanted or cryopreserved.
  • the initial embryo may have been obtained from oocytes fertilized in vivo or in vitro and may or may not have been previously cryopreserved.
  • the culture of the blastomere obtained from the embryo is directly or indirectly contacted with cultures of any suitable cell to produce an ES cell line or to produce ED cells, or both.
  • suitable cells include, but are not limited to, embryonic stem cells, such as from already established lines, embryo carcinoma cells, embryonic fibroblasts including murine embryonic cells, other embryo-like cells, cells of embryonic origin or cells derived from embryos, many of which are known in the art and available from the American Type Culture Collection, Manassas, VA 20110-2209, USA, and other sources.
  • the blastomere may also be cultured with factors that inhibit differentiation of the ES cell derived from the blastomere. Such factors include, without limitation, any factor that blocks or modifies the expression of genes involved in trophoblast development.
  • the blastomere is cultured in the presence of heparin.
  • Oct-4 is introduced into the blastomere or alternatively, expression of endogenous Oct-4 is induced in the blastomere.
  • a blastomere obtained from an embryo undergoes cell division and one progeny cell is used for genetic testing and another progeny cell is used to produce an ES cell or cell line.
  • the ES cells produced from the blastomere may be pluripotent or by some definitions totipotent.
  • the degree of pluripotency of the ES cell may be determined by assaying for ES cell marker proteins.
  • Such proteins are known in the art and include Oct-4, SSEA-3, SSEA-4, TRA- 1-60, TRA-1-81, and alkaline phosphatase.
  • the present method of producing an ES or ED cell may be performed on human embryos as well as non-human embryos, e.g., non-human mammalian embryos, other primate embryos, horse embryos, avian embryos or dog embryos.
  • non-human embryos e.g., non-human mammalian embryos, other primate embryos, horse embryos, avian embryos or dog embryos.
  • the present invention provides a method for producing differentiated progenitor cells, comprising:
  • blastomere cells obtained from an embryo that has at least one cell, preferable two cells, but has not yet developed to the stage of a compacted morula; and (ii) inducing differentiation of the blastomere cells to produce differentiated progenitor cells without producing an embryonic stem cell line.
  • the differentiated progenitor cells can be used to derive cells, tissues and/or organs which are advantageously used in the area of cell, tissue, and/or organ transplantation.
  • Another aspect of the present invention provides a method for producing differentiated progenitor cells, comprising:
  • blastomere cells obtained from an embryo that has at least one cell, preferably two cells, but has not yet developed to the stage of a compacted morula; (ii) culturing the blastomere to obtain an aggregate of more than one cell; and (iii) inducing differentiation of the blastomere-derived cells to produce differentiated progenitor cells without producing an embryonic stem cell line.
  • the differentiated progenitor cells can be used to derive cells, tissues and/or organs which are advantageously used in the area of cell, tissue, and/or organ transplantation.
  • the present invention also provides methods of differentiating the ES or ED cells produced by the methods of the invention.
  • the ES or ED cells may be differentiated into any cell type including those of mesodermal, endodermal and ectodermal origin.
  • the blastomere may also be cultured with factors that induce differentiation of the ES or ED cell.
  • the blastomere is cultured in the presence of FGF-4.
  • the ES or ED cell derived from the blastomere is directly differentiated into the desired cell or tissue type without the intermediate state of propagating the undifferentiated ES cells as undifferentiated cell lines.
  • a differentiated cell type e.g., mesoderm, endoderm or ectoderm
  • the invention also encompasses the ES or ED cells produced by the methods of this invention, ES cell lines derived from the ES cells, ED cell lines derived from the ED cells, as well as differentiated cells derived from the ES or ED cells or cell lines.
  • the ES or ED cells provided by this invention or cells derived from the ES or ED cells are useful for treating disorders amenable to cell therapy.
  • Pharmaceutical compositions comprising these cells together with a pharmaceutically acceptable medium or carrier are also provided.
  • the TS cell produced by the methods of the invention may express a TS cell marker, e.g., fibroblast growth factor receptor 2 (fgfr2), placental lactogen 1 (PL-I) and eomesodermin (mEomes).
  • the TS cell may also lack expression of Oct-4 or ⁇ -fetoprotein.
  • the TS cell may also be cultured to produce a TS cell line or differentiated cell line.
  • This invention also provides novel methods of isolating blastomeres from an embryo.
  • the method comprises the step of immobilizing the embryo and tapping the immobilized embryo until a blastomere is isolated.
  • the embryo can be immobilized by any means known to those of skill in the art.
  • the embryo is immobilized using a micropipette and the micropipette holder is tapped to isolate the blastomere.
  • the embryo is cultured in medium that is calcium and magnesium free.
  • the embryo may be from the 2-cell stage to the 16 cell stage.
  • the embryo is from the 4 cell stage to the 10 cell stage.
  • the embryo is a 6-8 cell stage embryo.
  • the embryo is an 8-10 cell stage embryo.
  • the invention provides the use of the cell culture as described above in the manufacture of a medicament to treat a condition in a patient in need thereof.
  • the invention provides the use of the pharmaceutical preparation as described above in the manufacture of a medicament to treat a condition in a patient in need thereof.
  • a blastomere is obtained from a mammalian embryo.
  • mammalian embryos include, but are not limited to, mice embryos, rat embryos, dog embryos, cat embryos, rabbit embryos, cow embryos, sheep embryos, pig embryos, non-human primate embryos, and human embryos.
  • a blastomere is obtained from a human embryo and the method comprises producing ES cells, ES cell lines, TS cells, TS cell lines, ED cells, or any partially or terminally differentiated cell type thereof.
  • a cluster of two or more blastomeres may be directly or indirectly contacted with embryonic or fetal cells.
  • the embryonic or fetal cells are from the same species as the blastomere.
  • the embryonic or fetal cells are from a different species as the blastomere.
  • the embryonic or fetal cells are human cells. Regardless of the particular embryonic or fetal cells used, the cells may be grown in the presence or absence of feeder layers. In certain embodiments, contact with embryonic or fetal cells is not necessary.
  • a cluster of two or more blastomeres is cultured in the presence of one or more factors sufficient to promote further survival and/or maturation so that ES cells, TS cells, and/or ED cells can be produced from a blastomere.
  • the invention contemplates various methods for producing ES cells, TS cells, and/or ED cells from a blastomere obtained from an embryo.
  • a culture produces a combination of cells types. If desired, one or more particular cell types in the culture can be separated and further cultured to produce a substantially purified population of cells or a cell line.
  • Figure IA shows a biopsy of a single human blastomere.
  • Figures IB-C show blastomere- derived outgrowths (see arrows) close to a colony of GFP-positive human embryonic stem (hES) cells.
  • Figure ID illustrates the morphology of hES cell colonies.
  • Figure IE shows Oct-4 staining in hES cells.
  • Figures IF-H show immunofluorescence analysis of molecular markers of primitive endoderm ( ⁇ -feto protein, Fig. IF), mesoderm (smooth muscle actin, Fig. IG) and ectoderm (tubulin ⁇ III, Fig. IH). (Scale bar: 50 ⁇ m for Fig. IA; 200 ⁇ m for Fig IB-H).
  • Figure 2(a) shows a biopsy of a single blastomere
  • 2(b) shows the development of a blastomere-biopsied embryo into a hatching blastocyst
  • 2(c) and (d) shows blastomere-derived outgrowth (arrows) close to a colony of GFP-positive hES cells
  • 2(e) shows the morphology of blastomere-derived hES cell colonies.
  • Figure 3 shows the results of characterizing human ES cells derived from single blastomeres.
  • Figure 3(a) through 3(g) show immunofluorescence staining for molecular markers for pluripotency: (a) Oct-4 and corresponding DAPI staining (b), (c)TRA-l-60, (d) TRA- 1-81, (e) SSEA-3, (f) SSEA-4, (g) alkaline phosphatase (Scale bar, 200 um).
  • Figure 3(h) shows representative chromosome spreads of the two single-blastomere-derived hES cell lines (MAOl and MA09).
  • Figure 4 shows the in vitro differentiation of single blastomere-derived human ES cells into all three germ layers.
  • Figure 4(a) shows teratoma formation after transplantation of the human ES cells under the kidney capsule of NOD-SCID mice for seven weeks. Inserts show enlargement of adjacent sections; left, neural tissue stained for Nestin (ectoderm); center, alpha smooth muscle actin (mesoderm); right, intestine stained for cdx2 (endoderm) to confirm presence of all three germ layers.
  • Figure 4(b) through 4(d) shows immunofluorescence analysis of molecular markers of (b) ectoderm (tubulin ⁇ III), (c) mesoderm (smooth muscle actin), and (d) primitive endoderm ( ⁇ -feto protein).
  • Figure 4(e) through (i) show results of in vitro differentiation of single blastomere-derived human ES cells into cells of specific therapeutic interest; (e) endothelial cells plated on Matrigel showing formation of typical capillary tube-like structures, (f) Ac-LDL uptake by endothelial cells, (g) and (h) retinal pigment epithelium (RPE) showing pigmented phenotype and typical "cobblestone” morphology (g) and bestrophin staining (h).
  • RPE retinal pigment epithelium
  • Figure 4(i) shows results of RT-PCR confirming the presence of PEDF (lanes 1 and 2) and RPE65 (lanes 3 and 4) in the human ES cell that was differentiated into RPE cells (Lanes 1 and 3: hES-derived RPE cells; lanes 2 and 4: fetal RPE controls).
  • Figure 5 shows microsatellite and PCR analysis of single blastomere-derived human ES cell lines (MAOl and MA09) and the cell line (WAOl) used for co-culture.
  • Figure 5(a), (b) and (c) show results of PCR to detect the presence of amelogenin, SRY and eGFP, respectively.
  • Figure 5(d) shows the results of the microsatellite analysis.
  • Figure 6 (a-i) shows photographs of different morphologies of embryo-derived directly- differentiated cells originating from isolated blastomeres in the absence of such blastomeres leading to hES cell lines.
  • Figure 7 shows the results of RT-PCR analysis of the expression of markers of pluripotency in single blastomere-derived hES cells lines.
  • Top panel Oct-4; center panel, nanog; bottom panel, GAPDH.
  • Lane 1 no template; lane 2, negative control (MEFs); lane 3, MAOl; lane 4, MA09; lane 5, WAOl .
  • Figure 8 shows the results of RT-PCR analysis for markers of RPE in single-blastomere- derived RPE.
  • lane 1 negative control (undifferentiated hES cells, line WA09); lane 2, RPE from hES cells.
  • the present invention is based, in part, on the discovery that stem cells can be generated from embryos without affecting viability of the embryo using novel methods disclosed herein.
  • these methods utilize in vitro techniques related to those currently used in pre- implantation genetic diagnosis (PGD) to isolate single blastomeres from embryos without destroying the embryos or otherwise significantly altering their viability.
  • PGD pre- implantation genetic diagnosis
  • hES pluripotent human embryonic stem cells and cell lines can be generated from a single blastomere removed from an embryo without interfering with the embryo's normal development to birth.
  • ES ceils, ES cell lines, TS cells and cell lines, and cells differentiated therefrom can be used to study basic developmental biology, and can be used therapeutically in the treatment of numerous diseases and conditions. Additionally, these cells can be used in screening assays to identify factors and conditions that can be used to modulate the growth, differentiation, survival, or migration of these cells. Identified agents can be used to regulate cell behavior in vitro and in vivo, and may form the basis of cellular or cell- free therapies.
  • blastomere is used throughout to refer to at least one blastomere (e.g., 1, 2, 3, 4, etc) obtained from an embryo.
  • cluster of two or more blastomeres is used interchangeably with “blastomere-derived outgrowths” to refer to the cells generated during the in vitro culture of a blastomere. For example, after a blastomere is obtained from an embryo and initially cultured, it generally divides at least once to produce a cluster of two or more blastomeres (also known as a blastomere-derived outgrowth). The cluster can be further cultured with embryonic or fetal cells. Ultimately, the blastomere-derived outgrowths will continue to divide. From these structures, ES cells, TS cells, and partially differentiated cell types will develop over the course of the culture method.
  • the present invention provides methods for deriving ES cells, ES cell lines, and differentiated cell types from single blastomeres of an early stage embryo without necessarily destroying the embryo.
  • Various features of the method a described in detail below. All of the combinations of the various aspects and embodiments of the invention detailed above and below are contemplated.
  • the blastomere may be removed from an embryo at various developmental stages prior to implantation including but not limited to: before compaction of the morula, during compaction of the morula, right after compaction of the morula, before formation of the blastocoel or during the blastocyst stage.
  • a blastomere (one blastomere, two blastomeres, or more than two blastomeres) is removed from an embryo at the 4-16 cell stage, or at the 4-10 cell stage, or at the 4-8 cell stage.
  • the invention provides methods for biopsy of a blastocyst which will produce embryonic stem cells, and the remainder of the blastocyst is implanted and results in a pregnancy and later in a live birth.
  • the zona pellucida is removed from the blastocyst by any means known to those of ordinary skill in the art and then the blastocyst is biopsied.
  • the controversies associated with the derivation of human ES cells are circumvented by using a technique similar to that used in preimplantation genetic diagnosis (PGD) where a single blastomere is removed from the embryo.
  • PPD preimplantation genetic diagnosis
  • the single blastomere is removed before the compaction of the morula.
  • the biopsied blastomere could be allowed to undergo cell division and one progeny cell is used for genetic testing and the remaining cells are used to generate human stem cells.
  • the biopsied embryo may also be implanted at the blastocyst stage or frozen for implantation at a later time.
  • biopsy e.g., removal of a blastomere from an embryo
  • biopsy consists of two stages. The first is to make a hole in, or in some instances fully remove, the zone pellucida that surrounds the embryo. Once the hole is made, the cells (preferably one or two) may then be removed from the human embryo.
  • the method involves removing or generating an extraction hole in the zona pellucida, and can be carried out by one or more techniques such as physical manipulation, chemical treatment and enzymatic digestion. Exemplary techniques that could be used include:
  • Partial zone dissection (PZD:): partial dissection of the zona pellucida, using a micro-pipette;
  • Zona drilling enzymatic opening of the zona pellucida zone through partial digestion with pronase or other protease;
  • the procedure is performed on 8-10 cell stage embryos.
  • the embryo is placed in a drop of biopsy medium under mineral oil by holding it with a holding pipette.
  • the zona pellucida is locally digested, by releasing acidified Tyrode's solution (Sigma, St. Louis, Mo. 63178) through an assistant hatching pipette. Once the hole is made, cells (blastomeres) could be aspirated through the hole.
  • the zona pellucida of the blastocyst may be at least partially digested by treatment with one or more enzymes or mixture of enzymes such as pronase.
  • one or more enzymes or mixture of enzymes such as pronase.
  • Other types of proteases with the same or similar protease activity as pronase may also be used.
  • Single blastomeres may also be obtained by disaggregating zona-denuded embryos in Ca ⁇ /Mg ⁇ * free PBS.
  • This invention also provides a novel and more efficient method of isolating single blastomeres.
  • the embryo is immobilized and the immobilized embryo is then tapped until a single blastomere is released from the blastocyst.
  • This method is not limited to human embryos and can be performed on embryos of other species including, without limitation, non-human embryos such as non-human mammals, mice, rabbits, pigs, cows, sheep, dogs and primates.
  • the embryo can be immobilized by any means known to those of skill in the art.
  • the embryo is immobilized using a micropipette and the micropipette holder is tapped to isolate the blastomere.
  • the embryo is cultured in medium that is calcium and magnesium free.
  • the embryo may be from the 2-cell stage to the 16 cell stage.
  • the embryo is from the 4 cell stage to the 10 cell stage.
  • the embryo is a 6-8 cell stage embryo.
  • the embryo is an 8-10 cell stage embryo.
  • tapping involves generating an amount of force sufficient to remove at least one blastomere without substantially decreasing the viability of the remainder of the embryo. Maintenance of viability can be shown, for example, by culturing the remaining embryo for at least one day and confirming that the remaining embryo can continue to divide in culture.
  • blastomere one blastomere or more than one blastomere
  • a particular method can be used alone or in combination with another method to facilitate removal of a blastomere.
  • the embryo is a mammalian embryo.
  • the mammalian embryo is a human embryo.
  • Exemplary mammals include, but are not limited to, mice, rats, rabbits, cows, dogs, cats, sheep, hamsters, pigs, non-human primates, and humans.
  • a blastomere is removed from an embryo without destroying the remainder of the embryo.
  • the remaining embryo (the embryo minus the removed blastomere) can be cultured and/or cryopreserved.
  • the remaining embryo is cultured for a time sufficient to confirm that the remaining embryo can continue to divide (e.g., is still viable), and then once viability is confirmed, the remaining embryo is cryopreserved. In certain other embodiments, the remaining embryo is immediately cryopreserved.
  • multiple blastomeres are removed from a single embryo and the embryo is destroyed during or subsequent to the removal of multiple blastomeres.
  • Multiple blastomeres can be used together in one experiment, for example, by aggregating multiple blastomeres during the initial blastomere culture.
  • multiple blastomeres can be used in separate experiments in an effort to maximize the number of lines or cell types than can be generated from a single embryo.
  • Embryos from which a blastomere is obtained can be generated by sexual or asexual methods.
  • the embryo is produced by fertilization of an egg with a sperm.
  • the embryo is produced by somatic cell nuclear transfer, parthenogenesis, androgenesis, or other asexual techniques. Note that embryos derived from asexual techniques may not look identical to embryos generated by fertilization. However, despite any differences in appearance, the term embryo is intended to encompass the products of asexual reproduction and the products of fertilization or other means of sexual reproduction.
  • the isolated blastomere(s) can be initially cultured in any type of medium, e.g., embryo medium such as Quinn's cleavage medium (Cooper Surgical Inc. Cat #ART1529). Any medium that supports growth of an embryo can be used, including, without limitation, any commercial formulations.
  • embryo medium is used to refer to a medium that promotes survival of blastomeres (especially human blastomeres) in culture.
  • the embryo medium is a medium containing less than 5 mM glucose.
  • the embryo medium is a medium that has an osmolarity of less that 310 mosm.
  • the embryo medium is a medium that contains less than 5 mM glucose and has an osmolarity of less than 310 mosm.
  • the medium used to initially culture blastomeres has an osmolarity of less than 300 mosm, less than 280 mosm, or less than 260 mosm, and optionally contains less than 5 mM glucose.
  • the medium used to initially culture blastomeres has an osmolarity about 260-280 mosm, and optionally contains less than 5 mM glucose. Note that regardless of the osmolarity and particular concentration of glucose in the medium used to initially culture the blastomeres, the medium may also be supplemented with antibiotics, minerals, amino acids, and other factors typically found in commercial media formulations.
  • the blastomeres may not initially grow well in standard ES cell medium. However, as described in detail herein, once the blastomeres have been cultured in the presence of certain embryonic or fetal cells and/or allowed to divide one or more times, the cluster of blastomeres can optionally be cultured in ES cell medium, or may be slowly transferred from embryo medium to ES cell medium by gradually replacing the medium.
  • ES cell medium is used to refer to a medium that promotes maintenance of ES cells in culture and can be used to culture clusters of blastomeres as they continue to divide and produce ES cells, ED cells, etc. Such a medium is at least somewhat optimized for ES cells.
  • the ES cell medium contains at least 5 mM glucose (relatively high glucose). In certain other embodiments, the ES cell medium has an osmolarity of at least 310 mosm. In certain other embodiments, the medium contains at least 5 mM glucose and has an osmolarity of at least 310 mosm. In certain embodiments, this medium has an osmolarity of at least 320 mosm, or at least 330 mosm, and optionally contains at least 5 mM glucose. In certain embodiments, this medium has an osmolarity of about 310-340 mosm, and optionally contains at least 5 mM glucose. ES cell medium may also be supplemented with factors known in the art to promote the growth of ES cells, and the medium may contain antibiotics, minerals, amino acids, and other factors typically found in commercial media formulations. .
  • a blastomere is obtained from a human or other mammalian embryo and cultured in embryo medium.
  • a blastomere is cultured in embryo medium for at least one day or until the blastomere divides at least once.
  • a blastomere may be cultured in embryo medium for more than 1 day (at least 2, 3, 4 days, etc.) and/or the blastomere may be cultured in contact with embryonic or fetal cells before dividing to produce a cluster of blastoemre.
  • the blastomere may divide one or more times or produce a cluster of two or more blastomeres. Further culturing of the cluster of blastomeres includes culturing the blastomere along with its progeny.
  • the blastomere divides and the progeny are cultured as an aggregate.
  • the blastomere can be cultured in a microdrop.
  • Each microdrop can contain a single blastomere or multiple blastomeres. After about at least 1 day, at least 2-3 days, or at least 4 days, the cultured blastomeres may divide and form vesicles or aggregates. The benefit of culturing the blastomere prior to direct or indirect contact with the embryonic cells is to prevent the embryonic cells from overgrowing the blastomere.
  • the cultured cluster of two or more blastomeres is contacted directly or indirectly with embryonic or fetal cells, or alternatively with a medium that promotes further maturation of the blastomeres in the absence of embryonic or fetal cells.
  • a medium includes medium conditioned with embryonic or fetal cells (conditioned medium) or medium supplemented with growth factors or cytokines that promote maturation of the blastomeres.
  • the medium is supplemented with ACTH (adrenocorticotropic hormone).
  • the embryonic or fetal cells may be derived from, for example, a mammal.
  • the embryonic or fetal cells are mouse or human cells.
  • Exemplary embryonic or fetal cells include, but are not limited to, embryonic stem (ES) cells (whether derived from blastocysts, blastomeres, or by other methods, and whether derived using somatic cell nuclear transfer or other asexual reproduction), embryonic germ cells, embryonic carcinoma cells, placental cells, trophoblasts/trophectoderm cells, trophoblast stem cells, primordial germ cells embryonic germ cells, amniotic fluid cells, amniotic stem cells, placental cells, placental stem cells, and umbilical cord cells.
  • ES embryonic stem
  • the medium in which the blastomeres are cultured is further supplemented with ACTH or other growth factors or cytokines that promote maturation of the blastomeres.
  • the embryonic or fetal cells may be grown in the presence or absence of a feeder layer of cells.
  • Feeder cells may be used to help maintain the embryonic or fetal cells and to prevent their differentiation.
  • the specific feeder cell may be chosen based on the particular embryonic or fetal cell used.
  • Exemplary feeder cells include, but are not limited to, fibroblast feeder cells. Such fibroblast feeder cells may be derived from the same species as the embryonic or fetal cells or they may be derived from a different species. Similarly, the feeder cells and the embryonic or fetal cells may be derived from the same species as the blastomere or from a different species.
  • the feeder cells are irradiated or otherwise treated to prevent overgrowth relative to the embryonic or fetal cells.
  • Exemplary feeder cells include, but are not limited to, mouse embryonic fibroblasts (MEF cells), human embryonic fibroblasts, human foreskin fibroblasts, human skin fibroblasts, human endometrial fibroblasts, human oviductal fibroblasts, and placental cells. Similar cell types derived from other animals (mammals, chickens, etc) are also contemplated.
  • the feeder and/or embryonic cells are human cells that are autologous cells derived from the same embryo as the blastomere.
  • the embryonic or fetal cells are grown in ES cell medium or any medium that supports growth of the embryonic or fetal cells, e.g., Knockout DMEM (Invitrogen Cat # 10829-018).
  • exemplary embryonic or fetal cells include, but are not limited to, embryonic stem cells, such as from already established lines, embryo carcinoma cells, murine embryonic fibroblasts, other embryo-like cells, cells of embryonic origin or cells derived from embryos, many of which are known in the art and available from the American Type Culture Collection, Manassas, VA 20110-2209, USA, and other sources.
  • the embryonic or fetal cells may be added directly to the cultured blastomeres or may be grown in close proximity to, but not in direct contact with, the cultured blastomere(s).
  • Various direct and indirect co-culture systems are possible to facilitate providing the cultured blastomeres with factors or signals from the embryonic or fetal cells.
  • "contacting the cultured cluster of two or more blastomeres” refers to any method of direct or indirect contact or co-culture.
  • contacting the cluster of two or more blastomere comprises aggregating blastomere clusters with embryonic or fetal cells. In certain other embodiments, contacting comprises co-culturing the cluster of two or mores blastomeres so that the cells are in direct contact with the embryonic or fetal cells but are not aggregated to them. In other embodiments, contacting comprises co-culturing the cluster of two or more blastomeres with the embryonic or fetal cells so that the cells are in indirect contact, for example, maintained in the same culture vessel but without direct contact of the cells or maintained as contiguous microdrops.
  • the method comprises the step of directly or indirectly contacting the cultured cluster of two or more blastomere(s) with embryonic or fetal cells, with the proviso that the contacting is not carried out by aggregating the cultured blastomere with embryonic cells as described in Chung et al., Nature (2006) 439:216-9.
  • the culture of blastomere(s) and the culture of embryonic or fetal cells are indirectly connected or merged. This can be achieved by any method known in the art including, for example, dragging a manipulation pipette between two drops under light mineral oil such as Cooper Surgical ACT# ART4008, paraffin oil or Squibb's oil.
  • the connections can be made by using a glass capillary or similar device.
  • the blastomere(s) may be co-cultured with the remaining embryo.
  • the blastomere is co-cultured with the remaining embryo in a microdroplet culture system or other culture system known in the art, which does not permit cell-cell contact but could permit cell-secreted factor and/or cell-matrix contact.
  • the volume of the microdrop may be reduced, e.g., from 50 microliters to about 5 microliters to intensify the signal.
  • the embryonic cells may be from a species other than human, e.g., non-human primate or mouse.
  • the particular media formulations used to culture a blastomere, a cluster of two or more blastomeres, and embryonic or fetal cells may vary slightly depending on the species. Additionally, whether initial blastomere culture benefits from a media formulation different from that used to culture the clusters of blastomeres or the embryonic cells may also vary slightly depending on the species.
  • the medium used to separately culture a blastomere and the medium used to culture embryonic or fetal cells is not necessarily the same.
  • the cluster of two or more blastomeres which has now divided multiple times to give rise to a cluster of cells and cell outgrowths, can gradually be transferred (for example by exchanging the medium) and cultured in medium having the properties of ES cell medium.
  • the blastomere(s) exhibit properties of ES cells. Specifically, as the cells continue to divide and the blastomere progeny cluster, various cell types emerge and can be identified phenotypically. Amongst the emerging cell types are trophectoderm-like cells, ES cells, and partially or terminally differentiated ED cells. As such, these methods can be used to produce ES cells, TS or other trophectoderm cells, or ED cells. While not wishing to be bound by any particular theory, it is believed that over a period of days or weeks the cultured blastomeres exhibit ES cell growth perhaps as a result of factors secreted by the embryonic or fetal cells or by the extracellular matrix.
  • the dividing cluster of blastomere progeny resemble, in some respects, the changes observed during development of the preimplantation blastocyst.
  • the cell types emerging in these cultures recapitulate to some extent the cell types observed when whole blastocysts or ICMs are plated.
  • the blastomere culture conditions may include contacting the cells with factors that can inhibit or otherwise potentiate the differentiation of the cells, e.g., prevent the differentiation of the cells into non-ES cells, trophectoderm or other cell types.
  • Such conditions can include contacting the cultured cells with heparin or introducing Oct-4 into the cells (such as by including Oct-4 in the media) or activating endogenous Oct-4 in the cells.
  • expression of cdx-2 is prevented by any means known in the art including, without limitation, introducing CDX-2 RNAi into blastomeres, thereby inhibiting differentiation of the blastomere into TS cells.
  • the invention provides methodologies for producing ES cells, ED cells, and TS cells from a blastomere obtained from an embryo.
  • This approach can be used to generate ES cells, ED cell, and TS cells, as well as cell line without necessarily destroying the embryo from which the blastomere is obtained.
  • Blastomere-derived ED cells have broader differentiation potential than human ES cells produced using methods known in the art because the ED cells can be readily differentiated into germ-line cells using techniques known in the art, e.g. using methods to differentiate murine ES cell lines into germ- line cells.
  • human ES cell lines derived from inner mass cells are not expected to be capable of differentiation into germ-line cells. This phenomenon has been observed in ES cells derived from inner mass cells in animal such as pigs, cows, chickens and rats and is likely due to the fact that germ-line is one of the first cell lineages to branch out in differentiation.
  • blastomeres from embryos with at least two cells, and before the embryo enters the stage of development of a compacting morula are induced to directly differentiate into differentiated progenitor cells which are then used for cell therapy and for the generation of cells, tissues, and organs for transplantation.
  • genetic modifications can be introduced, for example, into somatic cells prior to nuclear transfer to produce a morula or blastocyst or into somatic cells prior to the reprogramming of said somatic cell into undifferentiated cells through the juxtaposition of the DNA of said somatic cell with factors capable of reprogramming said somatic cells or into ES cell lines made using these methods. See US Patent Application No.
  • the differentiated progenitor cells of the present invention do not possess the pluripotency of an embryonic stem cell, or an embryonic germ cell, and are, in essence, tissue- specific partially or fully differentiated cells. These differentiated progenitor cells may give rise to cells from any of three embryonic germ layers, i.e., endoderm, mesoderm, and ectoderm.
  • the differentiated progenitor cells may differentiate into bone, cartilage, smooth muscle, dermis with a prenatal pattern of gene expression and capable of promoting scarless wound repair, and hematopoietic or hemangioblast cells (mesoderm), definitive endoderm, liver, primitive gut, pancreatic beta cells, and respiratory epithelium (endoderm); or neurons, glial cells, hair follicles, or eye cells including retinal neurons and retinal pigment epithelium.
  • the differentiated progenitor cells of the present invention it is not necessary for the differentiated progenitor cells of the present invention to express the catalytic component of telomerase (TERT) and be immortal, or that the progenitor cells express cell surface markers found on embryonic stem cells such as the cell surface markers characteristic of primate embryonic stem cells: positive for SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, alkaline phosphatase activity, and negative for SSEA-I.
  • the differentiated progenitor cells of the present invention are distinct from embryoid bodies, i.e., embryoid bodies are derived from embryonic stem cells whereas the differentiated stem cells of the present invention are derived from blastomeres.
  • the differentiated cells of the present invention are produced by culturing blastomere-derived cells in the absence of embryonic stem cells. Growth of undifferentiated embryonic stem cells can be prevented, for example, by culturing blastomeres in the presence of differentiation-inducing agents or by introducing genetic modifications into the cells such that the growth of embryonic stem cells is prevented.
  • Any vertebrate embryo may be used as a source of blastomeres or cells equivalent in development to a mammalian blastomere.
  • Human blastomeres in particular, have important utility in the generation of human cell-based therapies.
  • the original embryo may have been produced by in vitro-fertilization, derived by fertilization within the reproductive tract by normal sexual reproduction, artificial insemination, or gamete intrafallopian transfer (GIFT), and subsequently retrieved, derived by somatic cell nuclear transfer.
  • GIFT gamete intrafallopian transfer
  • Isolated blastomeres can be induced directly or via ES cells or cell lines to differentiate in the presence of differentiation-inducing conditions including various combinations of growth factors, sera, hormones, extracellular matrices useful in making the particular desired differentiated cell type as known in the art (see Table 2 for list of exemplary molecules), or as disclosed in the pending applications PCT/US2006/013573 filed April 11, 2006, US Application No. 60/835,779, filed August 3, 2006, 60/792,224 filed April 14, 2006, 60/801,993 filed May 19, 2006, PCT/US2006/013519 filed April 11, 2006, US Application No.
  • blastomeres or ES cells may be cultured on various inducer cell types such as those isolated as single cell-derived populations of cells, or on particular extracellular matrix components and other differentiation-inducing factors such as factors or combinations of factors shown in Table 2 below.
  • inducer cell types such as those isolated as single cell-derived populations of cells, or on particular extracellular matrix components and other differentiation-inducing factors such as factors or combinations of factors shown in Table 2 below.
  • FGF-BP 65 IGFBP-rpl/IGFBP-7
  • IGFBP GF Binding Protein
  • TGF-beta Superfamily (199-218 above) Ligands TGF-beta Superfamily Modulators
  • IL-I 486) MMP-10 460) IL-2 487) MMP-I l 461) IL-3 488) MMP- 12 462) IL-4 489) MMP- 13 463) IL-5 49O) MMP-H 464) IL-6 491) MMP-15 465) IL-7 492) MMP- 16 466) IL-8 493) MMP- 17 467) IL-9 494) MMP- 18 468) IL-10 495) MMP- 19 469) IL-I l 496) MMP-20 470) IL-12 497) MMP-21 471) IL-13 498) MMP-22 472) IL-14 499) MMP-23 473) IL- 15 500) MMP-24 474) IL-16 501) Cathepsin B 475) IL-I 7 501) Cathepsin C 476) IL- 18 503) Cathepsin D
  • Retinoic acid receptor isotype 5808 chorionic gonadotropin RARbeta 589) adrenocorticotropic hormone
  • LIDOCAINE 920 MISOPROSTOL, FREE ACID 921) mitomycin C 950) okadaic acid
  • NICARDIPINE 963 PENITREM A
  • Cadherin 5 (VE-Cadherin)
  • Cadherin 11 (OB-Cadherin)
  • Cadherin 12 (BR-Cadherin)
  • Cadherin 14 (same as Cadherin 18)
  • Cadherin 15 (M-Cadherin)
  • Partially or terminally differentiated endodermal, mesodermal, or ectodermal cell types can be used in screening assays, to study developmental and stem cell biology, or to produce therapeutics.
  • Partially or terminally differentiated cell types can optionally be substantially purified, formulated as pharmaceutical preparations, and/or cryopreserved.
  • Pluripotency of the human ES cells or cell lines produced by the methods of this invention can be determined by detecting expression of human ES cell marker proteins.
  • human ES cell marker proteins include but are not limited to octamer binding protein 4 (Oct-4), stage-specific embryonic antigen (SSEA)-3, SSEA-4, TRA-1-60, TRA-1-81 and alkaline phosphatase.
  • the putative ES cell lines maintain pluripotency after more than 13, 20, 30, 40, 50, 60, 70, 80, 90 or 100 passages.
  • the ES cells may also be assayed for maintenance of normal karyotype.
  • Pluripotency may also be confirmed by differentiating the ES cell produced by the methods of this invention into cells of ectoderm, endoderm and mesoderm lineage using methods known in the art. Pluripotency may also be tested by transplanting ES cells in vivo, for example into an immunodeficient mouse (such as a SCID mouse), and evaluating teratoma formation.
  • an immunodeficient mouse such as a SCID mouse
  • the ES cells or cell lines produced from a blastomere express one or more ES cell marker protein. Additionally or alternatively, in certain embodiments, the cells maintain a normal karyotype. Additionally or alternatively, in certain embodiments, the cells maintain pluripotency after more than 13, 20, 30, 40, 50, 60, 70, 80, 90 or 100 passages.
  • the ES cell or cell line produced from a blastomere can be generated without destroying the embryo from which the blastomere used to generate the cell or line is obtained. This characteristic of the cells distinguishes these cells from currently available ES cells and lines which were generated using methods that necessarily destroyed the underlying embryo. Production of TS Cells
  • TS cells are produced by contacting blastomere outgrowths, which morphologically resemble trophoblast and/or extraembryonic endoderm, but which do not resemble ES cells, with FGF-4.
  • FGF-4 is added to the culture media of the outgrowths.
  • TS cells can be detected by assaying expression of proteins such as cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG) using procedures standard in the art.
  • hCG human chorionic gonadotropin
  • cell lines can be produced.
  • a particular cell type is identified in a culture comprising a cluster of two or more blastomeres (blastomere-derived outgrowths)
  • blastomere-derived outgrowths that cell can be separated from the remainder of the culture for further use. Once separated, the desired cell can be propagated as a purified or substantially purified population, or it can be maintained as a cell line.
  • an ES cell produced from culturing a blastomere obtained from an embryo is separated from the culture of blastomere-derived outgrowths, and an ES cell line is established using standard techniques developed when establishing ES cell lines from blastocyst stage embryos.
  • a partially differentiated ED cell of interest can be select based on, for example, morphology and that cell can be separated from the culture and purified or otherwise further analyzed.
  • Exemplary cell lines include stable cell lines.
  • ES cell lines established in this way may have the properties of existing ES cell lines, for example, differentiation potential, protein expression, karyotype, and the like.
  • ES cell lines established in this way may differ from existing ES cell lines in one or more ways.
  • the ES or ED cells of this invention are suitable for any use for which ES cells are useful.
  • the present invention provides a method of treating a disorder amenable to cell therapy comprising administering to the affected subject a therapeutically effective amount of the ES cells of the invention.
  • the methods of the invention are used to remove a blastomere preceding implantation of a human embryo after which the blastomere would be cultured as described above in order to derive and store human ES cells for therapeutic uses using cell therapy should the child resulting from the human embryo require, for example, disease therapy, tissue repair, transplantation, treatment of a cellular debilitation, or treatment of cellular dysfunctions in the future.
  • cells derived from a blastomere, precompaction morula, compacting morula, or sectioned blastocyst are directly differentiated in vitro or in vivo to generate differentiating or differentiated cells without generating an embryonic stem cell line.
  • a blastomere precompaction morula, compacting morula, or sectioned blastocyst
  • the cells of the invention are useful in medical, veterinary and biological research and in the treatment of disease by providing cells for use in cell therapy, e.g., allogeneic cell therapy.
  • an ES cell or cell line is derived from a blastomere and the ES cell or cell line is induced to differentiate to produce one or more mesodermal, endodermal, or ectodermal cell types.
  • Exemplary cell types include, but are not limited to, RPE cells, hematopoietic stem cells, hematopoietic cell types (e.g., RBCs, platelets, etc.), pancreatic beta cells, skin cells, cardiomyocytes, smooth muscle cells, endothelial cells, hepatocytes, neurons, glia, skeletal muscle cells, vascular cells, and the like.
  • RPE cells hematopoietic stem cells
  • hematopoietic cell types e.g., RBCs, platelets, etc.
  • pancreatic beta cells pancreatic beta cells
  • skin cells cardiomyocytes, smooth muscle cells, endothelial cells, hepatocytes, neurons, glia, skeletal muscle cells, vascular cells, and the like.
  • the methods of the present invention may be used to generate stem cells from blastomeres wherein the stem cells are hemizygous or homozygous for MHC antigens. These cells are useful for reduced immunogenicity during transplantation and cell therapy.
  • the stem cells so produced may be assembled into a bank with reduced complexity in the MHC genes.
  • the blastomeres of this invention could be derived from embryos that are hemizygous or homozygous for MHC antigens. These embryos may be either selected to be hemizygous or homozygous for MHC antigens or made, by any methods known in the art, to be hemizygous or homozygous for MHC antigens.
  • stem cells derived from blastomeres may be made hemizygous or homozygous for MHC antigens, e.g., by gene targeting. See, e.g., WO 03/018760 published March 6, 2003 and US provisional patent application no. 60/729, 173 the disclosures of which are incorporated herein in their entirety.
  • the ES cells and human embryo-derived cells generated by the above-mentioned novel techniques are utilized in research relating to cell biology, drug discovery, and in cell therapy, including but not limited to, production of hematopoietic and hemangioblastic cells for the treatment of blood disorders, vascular disorders, heart disease, cancer, and wound healing, pancreatic beta cells useful in the treatment of diabetes, retinal cells such as neural cells and retinal pigment epithelial cells useful in the treatment of retinal disease such as retinitis pigmentosa and macular degeneration, neurons useful in treating Parkinson's disease, Alzheimer's disease, chronic pain, stroke, psychiatric disorders, and spinal cord injury, heart muscle cells useful in treating heart disease such as heart failure, skin cells useful in treating wounds for scarless wound repair, burns, promoting wound repair, and in treating skin aging, liver cells for the treatment of liver disease such as cirrhotic liver disease, kidney cells for the treatment of kidney disease such as renal failure, cartilage for the treatment of arthritis, lung cells for the treatment of lung disease
  • Such cell therapy methods may involve use of the ES cells of this invention in combination with proliferation factors, lineage-commitment factors, or gene or proteins of interest.
  • Treatment methods may include providing stem or appropriate precursor cells directly for transplantation where the tissue is regenerated in vivo or recreating the desired tissue in vitro and then providing the tissue to the affected subject.
  • the invention provides methods of generating ES cells, ES cell lines, TS cells, and various partially and terminally differentiated cells and cell lines.
  • Cells and cell lines so produced can be studied in vitro and in vivo.
  • the study of these cells provides information about basic developmental biology and stem cell biology.
  • the study of these cells and/or the factors that can be used to manipulate the proliferation, differentiation, and survival of these cells can be used to develop stem-cell based therapies to treat or ameliorate any of a variety of diseases or conditions.
  • stem-cell based therapies to treat or ameliorate any of a variety of diseases or conditions.
  • cells and cell lines produced by these methods can be used in screening assays to identify agents and conditions that can be used therapeutically. Identified therapeutics may be used to develop cellular therapies or may themselves be useful when delivered to patients.
  • ES cells, ES cell lines, TS cells, TS cell lines, or partially or terminally differentiated cells may be formulated as pharmaceutical preparations by combining the cells with a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutical preparation contains a certain number of cells per unit volume of carrier so that cellular therapies can be administered to deliver a particular dosage of cells.
  • pharmaceutical preparations can be formulated to permit delivery of, for example, Ix 10 5 , 1x10 6 , 2x10 6 , 3x10 6 , 4x10 6 , 5x10 6 , 1x10 7 , or greater than 1x10 7 cells in a volume of carrier appropriate for the condition being treated and the route of administration.
  • the present invention not only provides an alternative method for efficiently generating cells and cell lines, including ES cells and cell lines, the present invention also provides a method that does not require that new embryos be destroyed as part of the process of ES cell derivation. Remaining embryos can be cryopreserved and perpetually preserved or reserved for additional, future research use.
  • the ability to derive ES cells and cell lines (or partially or terminally differentiated cell types differentiated from ES cells or directly differentiated from embryos) without necessarily destroying new embryos will provide substantial benefits beyond the significant technical advanced reflected in these methods.
  • the invention provides novel methods of conducting embryonic stem cell research without destroying a human embryo.
  • the method entails obtaining a human ES cell or ES cell line derived from a human embryo but without destroying that human embryo.
  • the ES cell or cell line can be generated from a blastomere obtained from a human embryo using any of the methodologies disclosed herein. Once an ES cell or cell line is derived, the method further entails conducting embryonic stem cell research using the human ES cell or ES cell line.
  • the embryonic stem cell research involves research examining the differentiation potential of ES cells or cell lines.
  • the research may involve contacting the human ES cell or ES cell line with one or more factors, and identifying factors that promote differentiation of the ES cell or ES cell line to one or more mesodermal, endodermal, or ectodermal cell types.
  • the embryonic stem cell research involves the study of possible therapeutic uses of ES cells or cell differentiated there from.
  • this method may expand the opportunities for collaboration with researchers around the world, particularly researchers working in countries with laws regulating embryo destruction.
  • Example 1 Generation of human ES cell lines
  • Pronuclear and multi-cell stage human embryos were thawed and cultured until the 8-10 cell stage at 37C in 20 ⁇ l drops of Quinn's cleavage medium (Cooper Surgical Inc., Cat # ARTl 526) under paraffin oil (Cooper Surgical Inc. Cat # 4008) in a high humidified incubator with 5.5% CO 2 /5%O 2 /89.5%N 2 .
  • the zona pellucida was disrupted using either Acidic Tyroides solution or multiple Piezo- pulses and individual blastomeres were mechanically separated from the denuded embryos by holding the embryo with a micropipette and gently tapping the pipette holder.
  • the separated blastomeres were cultured together in the same media (Quinn's cleavage medium (Cooper Surgical Inc., Cat # ART 1526)) and arranged so as to avoid contact with each other by using depressions created in the bottom of the plastic tissue culture plate as previously described (Nagy, A. et al., Manipulating the Mouse Embryos: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 2002).
  • hES culture medium Keratin-DMEM (Invitrogen Cat # 10829-018 supplemented with 5% plasmanate, 5% serum replacement, 10% fetal bovine serum, 20 ng/ml leukemia inhibiting factor (LIF) and 8-16 ng/ml basic fibroblast growth factor (bFGF)) containing green fluorescent protein (GFP)-labeled hES cells growing on a mitomycin C-treated mouse embryonic fibroblasts (MEF) feeder layer.
  • Knockout-DMEM Invitrogen Cat # 10829-018 supplemented with 5% plasmanate, 5% serum replacement, 10% fetal bovine serum, 20 ng/ml leukemia inhibiting factor (LIF) and 8-16 ng/ml basic fibroblast growth factor (bFGF)
  • GFP green fluorescent protein
  • initial outgrowths After formation of initial outgrowths approximately half of the medium was changed every other day until the outgrowths reached approximately 50-100 cells. Although the initial outgrowths generally contained cells of different morphologies over a period of several days we observed several fates: (1) cells resembling trophectoderm took over, (2) cells that initially resembled ES-cells differentiated, or (3) ES-like cells continued undifferentiated proliferation. All of these outcomes are typical of derivation of ES cells from human embryos, especially when intact blastocysts are plated without removal of the trophectoderm using immunosurgery. The putative human ES cells were mechanically passaged onto fresh MEF feeder layers in hES culture medium which was changed every 1-2 days.
  • the colonies were passaged by mechanical dispersion and transferred to fresh feeders every 2-3 days until enough cells were produced to initiate adaption to trypsin.
  • the colony morphology, growth rate, procedures and culture media used were very similar to those of blastocyst-derived ES cells.
  • Karyotyping of the cells derived from the human blastomere were determined using the following procedure: Cells were passaged onto gelatin in ES culture medium which was replaced the day before harvest until the cells were approximately 50% confluent. Colcemid (Invitrogen) was added to the culture at a concentration of 0.12 ⁇ g/ml for 40 minutes. The cells were then rinsed twice with PBS and then trypsinized and centrifuged in DMEM (Invitrogen) with 10% FBS (Hyclone). 0.075 M KCl was added to the pellet and the cells were incubated for 10 minutes at 37 0 C. The cells were then centrifuged and fixed with 3:1 methanol/acetic acid (Baker) for 10 minutes, centrifuged again and suspended in this fixative. Cytogenetic analysis was performed on metaphase cells using G-banding on 10 cells.
  • Results of these experiments are shown in Table 1.
  • the results in row 10 of Table 1 were obtained using the method of isolating ES cells as described in Chung et ah, Nature (2006) 439:216-219.
  • Nineteen ES cell like outgrowths and two stable human ES cell lines (MAOl and MA09) were obtained.
  • the MAOl and MA09 cell lines maintained undifferentiated proliferation for more than seven months.
  • the initial outgrowths generally contained cells of different morphologies, over a period of several days, fates typical of derivation of ES cells from human blastocysts were observed.
  • PCR Polymerase chain reaction
  • amplification was performed with 30 cycles of 94 0 C for 45 sec, 56°C for 60 sec, and 72 0 C for 60 sec. Labeled amplicons were separated and sized using an ABI 3730 sequencer.
  • genomic DNA was isolated using a QI Aamp DNA Mini Kit (Qiagen), and 200 ng DNA per reaction in 50 ⁇ l was used for eGFP, amelogenin and SRY amplification.
  • Primers used for eGFP were forward 5'- TTGAATTCGCCACCATGGTGAGC-3' (SEQ ID NO: 1) and reverse 5'-
  • TTGAATTCTTACTTGTACAGCTCGTCC-3' SEQ ID NO: 2
  • PCR reactions were performed as described previously.
  • both amelogenin and SRY genes were amplified by PCR.
  • Primers used for amelogenin gene were forward 5'- CTCATCCTGGGCACCCTGGTTATATC-3' (SEQ ID NO: 3), reverse, 5'- GGTACC ACTTC AAAGGGGTAAGC AC-3' (SEQ ID NO: 4), which generated a fragment of 1310 bp for Y-chromosome and a fragment of 1490 bp for X-chromosome.
  • primers used were forward 5'-
  • the ability of the human ES cells to differentiate into different germ layers was analyzed both in vitro and in teratomas using techniques known in the art.
  • the human ES cells were separated by treating with either collagenase or trypsin and then cultured in cell culture dishes without feeder cells in embryoid body (EB) medium. Approximately one week later, the ES cells formed embryoid bodies (EB). The EBs were then fixed in 4% formaldehyde, washed in PBS, embedded in paraffin, sectioned and analyzed for the presence of derivatives from endoderm, mesoderm and ectoderm using tissue specific antibodies ( ⁇ -feto protein for primitive endoderm, muscle actin for mesoderm, and ⁇ III tubulin for ectoderm) ( Figure 4).
  • tissue specific antibodies ⁇ -feto protein for primitive endoderm, muscle actin for mesoderm, and ⁇ III tubulin for ectoderm
  • the single blastomere-derived human ES cell could also be differentiated in vitro into cells of specific therapeutic interest, including endothelial cells which after replating on Matrigel, formed typical capillary- vascular like structures ( Figure 4(e)) that expressed high levels of von Willebrand Factor (vWF) and took up acetylated low-density-lipoprotein (Ac-LDL) ( Figure 4(f)).
  • vWF von Willebrand Factor
  • Ac-LDL acetylated low-density-lipoprotein
  • RPE Retinal pigment epithelium clusters also appeared in adherent human ES cell cultures and in embryoid bodies and were used to establish passageable RPE lines using methods known in the art.
  • RPE lines displayed pigmented phenotype and typical "cobblestone” morphology ( Figure 4(g)), bestrophin immunostaining ( Figure 4(h)) and expressed bestrophin, RPE65, CRALBP and PEDF as shown by RT-PCR ( Figure 4(i) and Figure 8).
  • hES cells small clumps of 50-100 hES cells were mechanically removed from the culture and transplanted under the kidney capsules of 6-8 week old NOD-SCID mice under anesthesia. After 2-3 weeks, the kidneys were removed, fixed with 4% paraformaldehyde overnight, washed for 24 hours in PBS, embedded in paraffin, sectioned and analyzed for the presence of the derivatives of three germ layers: endoderm, mesoderm and ectoderm. Alternatively, approximately 1 million hES cells were injected into the rear thigh of NOD-SCID mice. After approximately two months the mice were sacrificed and the teratomas excised, fixed in 4% paraformaldehyde, embedded in paraffin and sectioned.
  • ⁇ III tubulin for ectoderm ⁇ III tubulin for ectoderm
  • smooth muscle actin for mesoderm
  • ⁇ -feto protein for endoderm
  • the teratomas contained tissues from all three germ layers including neural rosettes (ectoderm), liver and hematopoietic cells (mesoderm) and liver, respiratory and intestinal epithelia (endoderm) among others ( Figure 4(a)).
  • cells were fixed with 2% paraformaldehye, permeabilized with 0.1% NP-40 and blocked with 10% goat serum, 10% donkey serum (Jackson Immunoresearch Laboratories, West Grove, PA) in PBS (Invitrogen) for one hour. Incubation with primary antibodies was carried out overnight at 4C. After washing in PBS containing 0.1% Tween-20, fluorescently labeled or biotinylated secondary antibodies (Jackson Immunoresearch Laboratories, West Grove, PA) were added for one hour; some samples were subsequently incubated for 15 minutes with fluorescently labeled Steptavidin (Amersham, Piscataway, NJ).
  • Antibodies used were anti-Oct-4 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-SSEA-3, anti-SSEA-4 (Developmental Studies Hybridoma Bank, University of Iowa), anti-TRA-I-60, anti-TRA-I-81 (Chemicon), tubulin ⁇ III (BABCO, Berkeley, CA), anti- ⁇ -feto protein (DACO), and anti-smooth muscle actin (Sigma-Aldrich).
  • the blastomere-derived cell lines MAOl and MA09 appear to differentiate more readily into certain cell types, For example, neural progenitors were generated without the need for embryoid intermediates, stromal feeder layers or low-density passaging. When transferred to laminin-coated substrate and maintained in defined medium containing laminin and basic fibroblast growth factor, they began to express neuronal and neuronal progenitor markers such as Nestin, ⁇ III tubulin and Pax6.
  • MAOl human ES cells also formed hematopoietic colony forming units (CFU) 3-5 times more efficiently than WAOl (Hl)-GFP cells and 5-10 times more efficiently than WA09 (H9) cells.
  • MA09 human ES cells showed similar potential as WA 09 cells for hemaopoietic differentiation but demonstrated higher capability to differentiate toward endothelial lineage as compared to both WAOl-GFP and WA09 cells.
  • Example 4 Production of ED-derived endoderm and pancreatic beta cells. Isolated blastomeres as described herein or similar ED cells are added onto mitotically- inactivated feeder cells that express high levels of NODAL or cell lines that express members of the TGF beta family that activate the same receptor as NODAL such as CM02 cells that express relatively high levels of Activin-A, but low levels of Inhibins or follistatin. The cells are then incubated for a period of five days in DMEM medium with 0.5% human serum.
  • the resulting cells which include definitive endodermal cells are purified by flow cytometry or other affinity-based cell separation techniques such as magnetic bead sorting using an antibody specific to the CXCR4 receptor and then permeabilized and exposed to cellular extracts from isolated bovine pancreatic beta cells as described in US Application No. 11/025,893 (published as US 20050265976), which is incorporated by reference.
  • the resulting cells that have been induced toward beta cell differentiation are then cloned using techniques described in international patent application no. PCT/US2006/013573 filed April 11, 2006 and US Application No. 60/835,779, filed August 3, 2006, the disclosure of which are incorporated by reference.
  • pancreatic beta cells or beta cell precursors are then directly differentiated into pancreatic beta cells or beta cell precursors using techniques known in the art for differentiating said cells from human embryonic stem cell lines or by culturing the cells on inducer cell mesodermal cell lines (see international patent application no. PCT/US2006/013573 filed April 11, 2006 and US Application No. 60/835,779, filed August 3, 2006, the disclosure of which are incorporated by reference).
  • Example 5 Derivation of embryonic stem cells without destruction of the embryo.
  • Embryos produced by in-vitro fertilization for clinical purposes are obtained. Pronuclear and multi-cell stage human embryos are thawed and cultured until the 8-10 cell stage at 37 0 C in 20 ⁇ l drops of Quinn's cleavage medium (Cooper Surgical Inc., Cat # ARTl 526) under paraffin oil (Cooper Surgical Inc. Cat # 4008) in a high humidified incubator with 5.5% CO 2 /5%O 2 /89.5%N 2 .
  • the zona pellucida is disrupted using either Acidic Tyroides solution or multiple Piezo- pulses and an individual blastomere is mechanically separated from each denuded embryo by holding the embryo with a micropipette and gently tapping the pipette holder. The embryos are subsequently cryopreserved.
  • the separated blastomeres are cultured as in Example 1.
  • Example 6 Isolation of a single blastomere for derivation of embryonic stem cells and pre- implantation genetic diagnosis.
  • Embryos produced by in-vitro fertilization for clinical purposes are obtained. Pronuclear and multi-cell stage human embryos are thawed and cultured until the 8-10 cell stage at 37 0 C in 20 ⁇ l drops of Quinn's cleavage medium (Cooper Surgical Inc., Cat # ARTl 526) under paraffin oil (Cooper Surgical Inc. Cat # 4008) in a high humidified incubator with 5.5% CO 2 /5%O 2 /89.5%N 2 .
  • the zona pellucida is disrupted using either Acidic Tyroides solution or multiple Piezo- pulses and an individual blastomere is mechanically separated from the denuded embryo by holding the embryo with a micropipette and gently tapping the pipette holder. The embryo is subsequently cryopreserved.
  • the separated blastomere undergoes cell division.
  • One progeny cell is used for genetic testing and a different progeny cell is cultured as in Example 1 to produce a human ES cell.

Abstract

This present invention provides novel methods for deriving embryonic stem cells and embryo-derived cells from an embryo without requiring destruction of the embryo. The invention further provides cells and cell lines derived without embryo destruction, and the use of the cells for therapeutic and research purposes. It also relates to novel methods of establishing and storing an autologous stem cell line prior to implantation of an embryo, e.g., in conjunction with reproductive therapies such as IVF.

Description

DERIVATION OF EMBRYONIC STEM CELLS AND EMBRYO-DERIVED CELLS
Field of the Invention
This invention generally relates to novel methods for deriving embryonic stem (ES) cells and embryo-derived (ED) cells, those cells and cell lines, and the use of the cells for therapeutic and research purposes. It also relates to novel methods of establishing and storing an autologous stem cell line prior to implantation of an embryo, e.g. in conjunction with assisted reproductive technologies such as in vitro fertilization.
Background of the Invention
With few exceptions, embryonic stem cells have only been grown from blastocyst-stage embryos. ES cell lines are conventionally isolated from the inner cell mass of blastocysts. There are several drawbacks to the techniques used to create these cells. From the perspective of the technique, the culturing of embryos to blastocysts occasionally has a relatively low success rate. Additionally, certain members of the public object to embryonic stem (ES) cell research using cell lines derived from the inner cell mass of blastocysts because this derivation procedure destroys the preimplantation, blastocyst-stage embryo. As such, the blastocyst-stage embryo from which ES cells are conventionally produced cannot be cryopreserved, frozen for later use, or permitted to develop further.
The present invention provides novel methods for deriving ES cells, ES cell lines, and other embryo-derived (ED) cells for use in research and medicine. The methods described herein permit the derivation of ES cells, ES cell lines, and other ED cells from embryos but without the need to destroy those embryos.
Summary of the Invention
The present invention provides novel methods for deriving embryonic stem cells and embryo-derived cells from an embryo, those cells and cell lines, and uses of the embryonic stem cells and cell lines for therapeutic and research purposes. It also relates to a method of establishing and storing an autologous stem cell line from a blastomere retrieved prior to implantation of an embryo, e.g. in conjunction with assisted reproductive technologies such as in vitro fertilization ("IVF").
In a first aspect, the invention provides a method of producing human embryonic stem (ES) cells. The method generally comprises culturing a blastomere obtained from a human embryo. In certain embodiments, the blastomere is cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm to generate a cluster of two or more blastomeres. The cultured cluster of two or more blastomeres is contacted (directly or indirectly) with embryonic or fetal cells, and the cluster of two or more blastomeres is then further cultured (in the presence or absence of embryonic or fetal cells) to produce ES cells.
In certain embodiments, the method initially comprises culturing a blastomere obtained from a human embryo for at least one day in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm.
In certain embodiments, the method is similarly used to produce partially differentiated cells directly from a blastomere without the need to first derive ES cells.
In certain embodiments, the cultured cluster of two or more blastomeres comprises an aggregate of two or more blastomeres, and the aggregate of two or more blastomeres is contacted with embryonic or fetal cells.
In certain embodiments, during or following contact with embryonic or fetal cells, the cluster of two or more blastomeres is cultured in medium containing at least 5 mM glucose and/or having an osmolarity of at least 310 mosm.
In certain embodiments, two or more blastomeres are initially obtained from an embryo, and the two or more blastomeres are initially cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm. These blastomeres may be from the same or a different embryo, and these blastomeres may be cultured in direct contact with one another or without contact but in the same culture vessel or microdrop.
In certain embodiments of any of the foregoing or following, obtaining the blastomere from a human embryo yields a blastomere and a remaining human embryo, and the remaining human embryo is not destroyed following obtaining the blastomere. In certain embodiments, the remaining embryo is viable. In certain embodiments, the remaining embryo is cultured for one or more days following removal of the blastomere to assess viability. In certain embodiments, the remaining embryo is cryopreserved. In certain embodiments of any of the foregoing, a blastomere is obtained from a human embryo after compaction of the morula. In certain embodiments, the blastomere is obtained from a human embryo before formation of the blastocoel. In certain embodiments, the blastomere is obtained from a 4-16 cell embryo, a 4-10 cell human embryo, or a 4-8 cell human embryo.
The cluster of two or more blastomeres and the embryonic or fetal cells are directly or indirectly contacted with each other. In certain embodiments, the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates. In certain other embodiments, the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
In certain other embodiments, the cells (blastomeres, clusters of blastomeres, and/or embryonic or fetal cells) are cultured in microdrop culture.
In certain embodiments, the embryo (for example, a human embryo) was previously frozen and is thawed prior to obtaining the blastomere.
Various methods and combinations can be used to remove a blastomere from an embryo. Preferably, a blastomere is removed without substantially decreasing the viability of the remainder of the embryo. In other words, following removal of a blastomere, the remainder of the embryo can continue to grow. In certain embodiments, the ability to continue to grow and survive in culture for at least one day following blastomere removal indicates that blastomere removal did not substantially decrease viability. In certain embodiments, the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo. In certain other embodiments, the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated.
In certain embodiments in which embryonic or fetal cells are used, exemplary embryonic or fetal cells are human cells. In certain embodiments, the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid cell or stem cells, or human embryo carcinoma cells. In certain embodiments, the embryonic or fetal cells are optionally cultured on a fibroblast feeder layer.
In certain embodiments, the blastomere or cluster of two or more blastomeres is cultured with a factor that inhibits differentiation of the ES cells. In certain embodiments, recombinant Oct-4 is introduced into the blastomere or endogenous Oct-4 is activated in the blastomere during a step of culturing the blastomere to produce the human ES cells.
In certain embodiments, the ES cells or cell lines, for example the human ES cells or cell lines, are pluripotent. In certain embodiments, ES cells express one or more ES cell marker proteins selected from any of Oct-4, alkaline phosphatase, SSEA-3, SSEA-4, TRA- 1-60 and TRA-1-81.
In certain embodiments, the blastomere undergoes cell division and one progeny cell is used for genetic testing and a different progeny cell is used to produce human ES cells.
In certain embodiments of any of the foregoing, the method further comprises isolating the ES cells derived from the blastomere and culturing the ES cells to generate an ES cell line.
In another aspect, the invention provides a method of generating autologous stem cells concomitantly to performing genetic diagnosis. A blastomere is removed from an embryo, as is typically done during pre-implantation genetic diagnosis (PGD). The blastomere is cultured and permitted to divide at least once. After division, one progeny cell is used for genetic diagnosis, and the other progeny cell is further cultured (using any of the methods described herein) to produce an ES cell or ES cell line. Such ES cell or ES cell lines would be a suitable source of autologous cells and tissue for the embryo or individual that resulted from that embryo.
In another aspect, the invention provides human ES cells derived from a human embryo but without destroying the human embryo. In certain aspects, the ES cells are produced using any of the methods described herein.
In another aspect, the invention provides a human ES cell line derived from a human embryo but without destroying the human embryo. In certain aspects, the ES cell lines is produced using any of the methods described herein.
In certain embodiments, the human ES cell or ES cell line has one or more characteristics of previously identified, blastocyst-derived ES cell lines. In certain embodiments, the human ES cell or ES cell line is pluripotent and expresses one or more ES cell marker proteins selected from any of Oct-4, SSEA-I, nanog, alkaline phosphatase and Res-1. In certain embodiments, the human ES cell or ES cell line maintains a normal karyotype.
In another aspect, the invention provides a differentiated cell or tissue directly produced from a blastomere. In another aspect, the invention provides a differentiated cell or tissue derived from a human ES cell or cell line produced from a blastomere. In certain embodiments, the differentiated cell or tissue is lineage committed. In certain embodiments, the differentiated cell or tissue is a mesodermal, endodermal or ectodermal cell or tissue. In certain embodiments, the differentiated cell or tissue is partially or terminally differentiated.
In another aspect, the invention provides a method of producing a desired differentiated cell or tissue by inducing differentiation of a human ES cell or cell line into the desired cell or tissue. In certain embodiments, the method comprises contacting an ES cell or ES cell line produced from a blastomere with one or more agents that promote differentiation of an ES cell or cell line along a particular developmental lineage.
In another aspect, the invention provides compositions and preparations comprising a differentiated cell or tissue produced from an ES cell or cell line derived from a blastomere. In certain embodiments, the compositions and preparations are pharmaceutical preparations formulated in a pharmaceutically acceptable carrier.
In another aspect, the invention provides a method of treating a disorder amenable to cell therapy in a patient by administering an effective amount of an ES cell or cell line produced from a blastomere using any of the methods described herein.
In another aspect, the invention provides a method of treating a disorder amenable to cell therapy in a patient by administering to the patient an effective amount of a differentiated cell or tissue produced either directly from a blastomere culture or produced from an ES cell or cell line.
In another aspect, the invention provides a method of producing a trophoblast stem (TS) cell. The method comprises culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm to generate a cluster of two or more blastomeres; directly or indirectly contacting the cultured cluster of two or more blastomeres to embryonic or fetal cells; and further culturing the cluster of two or more blastomeres until TS cells are produced.
In certain embodiments, method comprises culturing a blastomere obtained from a human embryo for at least one day in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm. In certain embodiments, the cultured cluster of two or more blastomeres comprises an aggregate of two or more blastomeres, and the aggregate of two or more blastomeres is contacted with embryonic or fetal cells.
In certain embodiments, during or following contact with embryonic or fetal cells, the cluster of two or more blastomeres is cultured in medium containing at least 5 mM glucose and/or having an osmolarity of at least 310 mosm.
In certain embodiments, the one that one blastomere is initially obtained from an embryo, and the two or more blastomeres are initially cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm. These blastomeres may be from the same or a different embryo, and these blastomeres may be cultured in direct contact with one another or without contact but in the same culture vessel or microdrop.
In certain embodiments of any of the foregoing or following, obtaining the blastomere from a human embryo yields a blastomere and a remaining human embryo, and the remaining human embryo is not destroyed following obtaining the blastomere. In certain embodiments, the remaining embryo is viable. In certain embodiments, the remaining embryo is cultured for one or more days following removal of the blastomere to assess viability. In certain embodiments, the remaining embryo is cryopreserved.
In certain embodiments of any of the foregoing, a blastomere is obtained from a human embryo after compaction of the morula. In certain embodiments, the blastomere is obtained from a human embryo before formation of the blastocoel. In certain embodiments, the blastomere is obtained from a 4-16 cell embryo, a 4-10 cell human embryo, or a 4-8 cell human embryo.
The cluster of two or more blastomeres and the embryonic or fetal cells are directly or indirectly contacted with each other. In certain embodiments, the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates. In certain other embodiments, the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
In certain other embodiments, the cells (blastomeres, clusters of blastomeres, and/or embryonic or fetal cells) are cultured in microdrop culture.
In certain embodiments, the embryo (for example, human embryo) was previously frozen and is thawed prior to obtaining the blastomere. Various methods and combinations can be used to remove a blastomere from an embryo. Preferably, a blastomere is removed without substantially decreasing the viability of the remainder of the embryo. In other words, following removal of a blastomere, the remainder of the embryo can continue to grow. In certain embodiments, the ability to continue to grow and survive in culture for at least one day following blastomere removal indicates that blastomere removal did not substantially decrease viability. In certain embodiments, the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo. In certain other embodiments, the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated.
In certain embodiments in which embryonic or fetal cells are used, exemplary embryonic or fetal cells are human cells. In certain embodiments, the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid cell or stem cells, or human embryo carcinoma cells. In certain embodiments, the embryonic or fetal cells are optionally cultured on a fibroblast feeder layer.
In certain embodiments, the method further comprises isolating the TS cells derived from the blastomere. In certain embodiments, the method further comprises establishing a TS cell line from the TS cells derived from the blastomere.
In certain embodiments, exemplary TS cells or TS cell lines express at least one TS cell marker protein selected from the any of cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG). In certain embodiments, exemplary TS cells or TS cell lines do not express Oct-4 or α- feto protein.
In another aspect, the invention provides a human TS cell derived from a human embryo but without destroying the human embryo. In certain embodiments, exemplary TS cells or TS cell lines express at least one TS cell marker protein selected from the any of cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG). In certain embodiments, exemplary TS cells or TS cell lines do not express Oct-4 or α-feto protein.
In another aspect, the invention provides a differentiated cell or tissue derived from a TS cell or TS cell line produced from a blastomere.
In another aspect, the invention provides a method of isolating a blastomere from an embryo. The method comprises immobilizing the embryo and tapping the immobilized embryo until a blastomere is isolated. In certain embodiments, a single blastomere is isolated from the remainder of the embryo. In certain embodiments, multiple blastomeres are isolated from the remainder of the embryo. In certain embodiments, this method is combined with other methods used to obtain a blastomere from an embryo (e.g., removal of the zona pelucida, exposure to enzymes, exposure to Ca2+ and/or Mg2+ free medium). In certain embodiments, the embryo is immobilized using a micropipette. In certain embodiments, the embryo is a 4-16 cell stage embryo, a 4-10 cell stage embryo, or an 8-10 cell stage embryo.
In another aspect, the invention provides a method of conducting embryonic stem cell research without destroying a human embryo. The method comprises obtaining a human ES cell or ES cell line that is derived from a human embryo but without destroying the human embryo. Such lines may be generated using any of the methods for deriving ES cell or cell lines from a blastomere. Once generated, the method further comprises conducting embryonic stem cell research using the human ES cell or ES cell line.
In certain embodiments, conducting embryonic stem cell research comprises contacting the human ES cell or ES cell line with one or more factors, and identifying factors that promote differentiation of the ES cell or ES cell line to one or more mesodermal, endodermal, or ectodermal cell types.
In another aspect, the invention provides a method of producing an embryonic stem (ES) cell. The method comprises culturing a blastomere obtained from a mammalian embryo to generate a cluster of two or more blastomeres; directly or indirectly contacting the cultured cluster of two or more blastomeres with embryonic or fetal cells; and culturing the cluster of two or more blastomeres of (b) until ES cells are produced.
In certain embodiments, the cultured cluster of two or more blastomeres comprises an aggregate of two or more blastomeres, and the aggregate of two or more blastomeres is contacted with embryonic or fetal cells.
In certain embodiments, during or following contact with embryonic or fetal cells, the cluster of two or more blastomeres is cultured in medium containing at least 5 mM glucose and/or having an osmolarity of at least 310 mosm.
In certain embodiments, the one that one blastomere is initially obtained from an embryo, and the two or more blastomeres are initially cultured in medium containing less than 5 mM glucose and/or having an osmolarity of less than 310 mosm. These blastomeres may be from the same or a different embryo, and these blastomeres may be cultured in direct contact with one another or without contact but in the same culture vessel or microdrop.
In certain embodiments of any of the foregoing or following, obtaining the blastomere from a embryo yields a blastomere and a remaining embryo, and the remaining embryo is not destroyed following obtaining the blastomere. In certain embodiments, the remaining embryo is viable. In certain embodiments, the remaining embryo is cultured for one or more days following removal of the blastomere to assess viability. In certain embodiments, the remaining embryo is cryopreserved.
In certain embodiments of any of the foregoing, a blastomere is obtained from a embryo after compaction of the morula. In certain embodiments, the blastomere is obtained from an embryo before formation of the blastocoel. In certain embodiments, the blastomere is obtained from a 4-16 cell embryo, a 4-10 cell embryo, or a 4-8 cell human embryo.
The cluster of two or more blastomeres and the embryonic or fetal cells are directly or indirectly contacted with each other. In certain embodiments, the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates. In certain other embodiments, the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
In certain other embodiments, the cells (blastomeres, clusters of blastomeres, and/or embryonic or fetal cells) are cultured in microdrop culture.
In certain embodiments, the embryo (for example, a human embryo) was previously frozen and is thawed prior to obtaining the blastomere.
Various methods and combinations can be used to remove a blastomere from an embryo. Preferably, a blastomere is removed without substantially decreasing the viability of the remainder of the embryo. In other words, following removal of a blastomere, the remainder of the embryo can continue to growth. In certain embodiments, the ability to continue to grow and survive in culture for at least one day following blastomere removal indicates that blastomere removal did not substantially decrease viability. In certain embodiments, the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo. In certain other embodiments, the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated. In certain embodiments in which embryonic or fetal cells are used, exemplary embryonic or fetal are mouse cells or human cells. In certain embodiments, the embryonic or fetal cells are from the same species as the blastomere. In certain embodiments, the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid cells or stem cells, or human embryo carcinoma cells, hi certain embodiments, the embryonic or fetal cells are optionally cultured on a fibroblast feeder layer.
In certain embodiments, the method further comprises the step of isolating the ES cells derived from the blastomere and generating an ES cell line.
In another aspect, the invention provides a method of producing ES cells. The method comprises obtaining a blastomere from a mammalian embryo; culturing the blastomere to generate a cluster of two or more blastomeres; aggregating the cluster of two or more blastomeres with embryonic or fetal cells; culturing the aggregated cluster of two or more blastomeres and the embryonic or fetal cells until the aggregated cluster of blastomeres exhibits properties of ES cells; and isolating the ES cells derived from the blastomere from the embryonic cells.
In another aspect, the invention provides a method of producing TS cells. The method comprises: obtaining a blastomere from a mammalian embryo; culturing the blastomere to generate a cluster of two or more blastomeres; aggregating the cluster of two or more blastomeres with embryonic or fetal cells; obtaining outgrowths from the cluster of two or more blastomeres, wherein the outgrowths exhibit properties of trophoblast or extraembryonic endoderm cells; contacting the outgrowths with FGF-4 to produce TS cells; and isolating the TS cells derived from the blastomere.
In certain embodiments, the mammalian embryo is a human embryo and the TS cells are human cells. In certain other embodiments, the method further comprises producing a TS cell line by culturing the TS cells derived from the blastomere to produce a TS cell line.
In another aspect, the invention provides a method of producing human embryonic stem (ES) cells. The method comprises: culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and/or having an osmolality of less than 310 mosm to generate a cluster of two or more blastomeres; directly or indirectly contacting the cultured cluster of two or more blastomeres with medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres; and further culturing the cluster of two or more blastomeres to produce ES cells.
In certain embodiment, the method comprises culturing a blastomere obtained from a human embryo for at least one day in medium containing less than 5 mM glucose and/or having an osmolality of less than 310 mosm to generate a cluster of two or more blastomeres.
In certain embodiments, the medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres is medium conditioned with embryonic or fetal cells. In certain other embodiments, the medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres is supplemented with ACTH.
In certain aspects, the invention provides a method of producing an embryonic stem cell, comprising the step of culturing a blastomere in embryo medium wherein the blastomere is obtained from an embryo and wherein the embryo remains viable. The method comprises the step of directly or indirectly contacting the cultured blastomere with embryonic stem cells with the proviso that the contacting is not carried out by aggregating the cultured blastomere with embryonic stem cells as had been previously described in Chung et al., Nature (2006) 439:216-9. For example, the cultured blastomere can be cultured in a microdrop and the embryonic stem cells are cultured in separate microdrops. Each microdrop can contain a single blastomere or multiple blastomeres. The microdrop containing the blastomere(s) can be connected to or merged with the microdrop containing the embryonic stem cells using any means known to those of ordinary skill in the art. In one embodiment, the connecting or merging of the two microdrops is carried out by dragging a manipulation pipette between two drops under light mineral oil such as paraffin oil or Squibb's oil.
The method of producing an ES or ED cell may also be used to culture single cells from morula stage embryo, inner cell mass, or embryonic disk, or single embryonic cell or single embryonic germ cell.
In one embodiment, the blastomere is obtained from an embryo prior to compaction of the morula. The entire one cell zygote may be used, though this does not provide the advantage of circumventing the ethical objections some people have to the use of the entire embryo in cell line derivation. Therefore, the preferred method is the use of a donor cell from an embryo between the two cell stage and the blastocyst stage of development. In another embodiment, the embryo is obtained before formation of the blastocoel. The blastomere may be obtained by partial or complete removal of the zona pellucida surrounding the embryo. The biopsied embryo may be implanted or cryopreserved. The initial embryo may have been obtained from oocytes fertilized in vivo or in vitro and may or may not have been previously cryopreserved.
The culture of the blastomere obtained from the embryo is directly or indirectly contacted with cultures of any suitable cell to produce an ES cell line or to produce ED cells, or both. Such suitable cells include, but are not limited to, embryonic stem cells, such as from already established lines, embryo carcinoma cells, embryonic fibroblasts including murine embryonic cells, other embryo-like cells, cells of embryonic origin or cells derived from embryos, many of which are known in the art and available from the American Type Culture Collection, Manassas, VA 20110-2209, USA, and other sources.
The blastomere may also be cultured with factors that inhibit differentiation of the ES cell derived from the blastomere. Such factors include, without limitation, any factor that blocks or modifies the expression of genes involved in trophoblast development. In one embodiment, the blastomere is cultured in the presence of heparin. In another embodiment, Oct-4 is introduced into the blastomere or alternatively, expression of endogenous Oct-4 is induced in the blastomere.
In another embodiment, a blastomere obtained from an embryo undergoes cell division and one progeny cell is used for genetic testing and another progeny cell is used to produce an ES cell or cell line.
The ES cells produced from the blastomere may be pluripotent or by some definitions totipotent. The degree of pluripotency of the ES cell may be determined by assaying for ES cell marker proteins. Such proteins are known in the art and include Oct-4, SSEA-3, SSEA-4, TRA- 1-60, TRA-1-81, and alkaline phosphatase.
The present method of producing an ES or ED cell may be performed on human embryos as well as non-human embryos, e.g., non-human mammalian embryos, other primate embryos, horse embryos, avian embryos or dog embryos.
In another embodiment, the present invention provides a method for producing differentiated progenitor cells, comprising:
(i) obtaining blastomere cells from an embryo that has at least one cell, preferable two cells, but has not yet developed to the stage of a compacted morula; and (ii) inducing differentiation of the blastomere cells to produce differentiated progenitor cells without producing an embryonic stem cell line.
The differentiated progenitor cells can be used to derive cells, tissues and/or organs which are advantageously used in the area of cell, tissue, and/or organ transplantation.
Another aspect of the present invention provides a method for producing differentiated progenitor cells, comprising:
(i) obtaining blastomere cells from an embryo that has at least one cell, preferably two cells, but has not yet developed to the stage of a compacted morula; (ii) culturing the blastomere to obtain an aggregate of more than one cell; and (iii) inducing differentiation of the blastomere-derived cells to produce differentiated progenitor cells without producing an embryonic stem cell line.
The differentiated progenitor cells can be used to derive cells, tissues and/or organs which are advantageously used in the area of cell, tissue, and/or organ transplantation.
The present invention also provides methods of differentiating the ES or ED cells produced by the methods of the invention. The ES or ED cells may be differentiated into any cell type including those of mesodermal, endodermal and ectodermal origin. For example, the blastomere may also be cultured with factors that induce differentiation of the ES or ED cell. In one embodiment, the blastomere is cultured in the presence of FGF-4. In some embodiments the ES or ED cell derived from the blastomere is directly differentiated into the desired cell or tissue type without the intermediate state of propagating the undifferentiated ES cells as undifferentiated cell lines.
Also contemplated are methods of differentiating the blastomere obtained from an embryo into a differentiated cell type, e.g., mesoderm, endoderm or ectoderm without first producing an ES cell from the blastomere.
The invention also encompasses the ES or ED cells produced by the methods of this invention, ES cell lines derived from the ES cells, ED cell lines derived from the ED cells, as well as differentiated cells derived from the ES or ED cells or cell lines.
The ES or ED cells provided by this invention or cells derived from the ES or ED cells are useful for treating disorders amenable to cell therapy. Pharmaceutical compositions comprising these cells together with a pharmaceutically acceptable medium or carrier are also provided. The TS cell produced by the methods of the invention may express a TS cell marker, e.g., fibroblast growth factor receptor 2 (fgfr2), placental lactogen 1 (PL-I) and eomesodermin (mEomes). The TS cell may also lack expression of Oct-4 or α-fetoprotein.
The TS cell may also be cultured to produce a TS cell line or differentiated cell line.
This invention also provides novel methods of isolating blastomeres from an embryo. The method comprises the step of immobilizing the embryo and tapping the immobilized embryo until a blastomere is isolated. The embryo can be immobilized by any means known to those of skill in the art. In one embodiment, the embryo is immobilized using a micropipette and the micropipette holder is tapped to isolate the blastomere. In another embodiment, the embryo is cultured in medium that is calcium and magnesium free. The embryo may be from the 2-cell stage to the 16 cell stage. In one embodiment, the embryo is from the 4 cell stage to the 10 cell stage. In another embodiment the embryo is a 6-8 cell stage embryo. In yet another embodiment, the embryo is an 8-10 cell stage embryo.
In certain embodiments, the invention provides the use of the cell culture as described above in the manufacture of a medicament to treat a condition in a patient in need thereof.
In certain embodiments, the invention provides the use of the pharmaceutical preparation as described above in the manufacture of a medicament to treat a condition in a patient in need thereof.
In certain embodiments of any of the foregoing, a blastomere is obtained from a mammalian embryo. Exemplary mammalian embryos include, but are not limited to, mice embryos, rat embryos, dog embryos, cat embryos, rabbit embryos, cow embryos, sheep embryos, pig embryos, non-human primate embryos, and human embryos. In certain embodiments of any of the foregoing, a blastomere is obtained from a human embryo and the method comprises producing ES cells, ES cell lines, TS cells, TS cell lines, ED cells, or any partially or terminally differentiated cell type thereof.
In certain embodiments of any of the foregoing, a cluster of two or more blastomeres may be directly or indirectly contacted with embryonic or fetal cells. In certain other embodiments, the embryonic or fetal cells are from the same species as the blastomere. In certain embodiments, the embryonic or fetal cells are from a different species as the blastomere. In certain embodiments, the embryonic or fetal cells are human cells. Regardless of the particular embryonic or fetal cells used, the cells may be grown in the presence or absence of feeder layers. In certain embodiments, contact with embryonic or fetal cells is not necessary. In certain embodiments, a cluster of two or more blastomeres is cultured in the presence of one or more factors sufficient to promote further survival and/or maturation so that ES cells, TS cells, and/or ED cells can be produced from a blastomere.
The invention contemplates various methods for producing ES cells, TS cells, and/or ED cells from a blastomere obtained from an embryo. In certain embodiments, a culture produces a combination of cells types. If desired, one or more particular cell types in the culture can be separated and further cultured to produce a substantially purified population of cells or a cell line.
The invention contemplates combinations of any of the foregoing or following aspects and embodiments of the invention.
Brief Description of the Figures
Figure IA shows a biopsy of a single human blastomere. Figures IB-C show blastomere- derived outgrowths (see arrows) close to a colony of GFP-positive human embryonic stem (hES) cells. Figure ID illustrates the morphology of hES cell colonies. Figure IE shows Oct-4 staining in hES cells. Figures IF-H show immunofluorescence analysis of molecular markers of primitive endoderm (α-feto protein, Fig. IF), mesoderm (smooth muscle actin, Fig. IG) and ectoderm (tubulin β III, Fig. IH). (Scale bar: 50 μm for Fig. IA; 200 μm for Fig IB-H).
Figure 2(a) shows a biopsy of a single blastomere; 2(b) shows the development of a blastomere-biopsied embryo into a hatching blastocyst; 2(c) and (d) shows blastomere-derived outgrowth (arrows) close to a colony of GFP-positive hES cells; 2(e) shows the morphology of blastomere-derived hES cell colonies.
Figure 3 shows the results of characterizing human ES cells derived from single blastomeres. Figure 3(a) through 3(g) show immunofluorescence staining for molecular markers for pluripotency: (a) Oct-4 and corresponding DAPI staining (b), (c)TRA-l-60, (d) TRA- 1-81, (e) SSEA-3, (f) SSEA-4, (g) alkaline phosphatase (Scale bar, 200 um). Figure 3(h) shows representative chromosome spreads of the two single-blastomere-derived hES cell lines (MAOl and MA09).
Figure 4 shows the in vitro differentiation of single blastomere-derived human ES cells into all three germ layers. Figure 4(a) shows teratoma formation after transplantation of the human ES cells under the kidney capsule of NOD-SCID mice for seven weeks. Inserts show enlargement of adjacent sections; left, neural tissue stained for Nestin (ectoderm); center, alpha smooth muscle actin (mesoderm); right, intestine stained for cdx2 (endoderm) to confirm presence of all three germ layers. Figure 4(b) through 4(d) shows immunofluorescence analysis of molecular markers of (b) ectoderm (tubulin β III), (c) mesoderm (smooth muscle actin), and (d) primitive endoderm (α-feto protein). Figure 4(e) through (i) show results of in vitro differentiation of single blastomere-derived human ES cells into cells of specific therapeutic interest; (e) endothelial cells plated on Matrigel showing formation of typical capillary tube-like structures, (f) Ac-LDL uptake by endothelial cells, (g) and (h) retinal pigment epithelium (RPE) showing pigmented phenotype and typical "cobblestone" morphology (g) and bestrophin staining (h). Figure 4(i) shows results of RT-PCR confirming the presence of PEDF (lanes 1 and 2) and RPE65 (lanes 3 and 4) in the human ES cell that was differentiated into RPE cells (Lanes 1 and 3: hES-derived RPE cells; lanes 2 and 4: fetal RPE controls).
Figure 5 shows microsatellite and PCR analysis of single blastomere-derived human ES cell lines (MAOl and MA09) and the cell line (WAOl) used for co-culture. Figure 5(a), (b) and (c) show results of PCR to detect the presence of amelogenin, SRY and eGFP, respectively. Figure 5(d) shows the results of the microsatellite analysis.
Figure 6 (a-i) shows photographs of different morphologies of embryo-derived directly- differentiated cells originating from isolated blastomeres in the absence of such blastomeres leading to hES cell lines.
Figure 7 shows the results of RT-PCR analysis of the expression of markers of pluripotency in single blastomere-derived hES cells lines. Top panel, Oct-4; center panel, nanog; bottom panel, GAPDH. Lane 1, no template; lane 2, negative control (MEFs); lane 3, MAOl; lane 4, MA09; lane 5, WAOl .
Figure 8 shows the results of RT-PCR analysis for markers of RPE in single-blastomere- derived RPE. For each gel: lane 1, negative control (undifferentiated hES cells, line WA09); lane 2, RPE from hES cells.
Detailed Description of the Invention
Previous attempts to induce isolated human blastomeres to proliferate into pluripotent embryonic stem cells have failed (Geber S. et al., Hum. Reprod. 10:1492-1496 (1995)). The present invention is based, in part, on the discovery that stem cells can be generated from embryos without affecting viability of the embryo using novel methods disclosed herein. In one embodiment, these methods utilize in vitro techniques related to those currently used in pre- implantation genetic diagnosis (PGD) to isolate single blastomeres from embryos without destroying the embryos or otherwise significantly altering their viability. As demonstrated herein, pluripotent human embryonic stem (hES) cells and cell lines can be generated from a single blastomere removed from an embryo without interfering with the embryo's normal development to birth.
The methods described herein have numerous important uses that will advance the field of stem cell research and developmental biology. ES ceils, ES cell lines, TS cells and cell lines, and cells differentiated therefrom can be used to study basic developmental biology, and can be used therapeutically in the treatment of numerous diseases and conditions. Additionally, these cells can be used in screening assays to identify factors and conditions that can be used to modulate the growth, differentiation, survival, or migration of these cells. Identified agents can be used to regulate cell behavior in vitro and in vivo, and may form the basis of cellular or cell- free therapies.
In order that the invention herein described may be fully understood, the following detailed description is set forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as those commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the invention or testing of the present invention, suitable methods and materials are described below. The materials, methods and examples are illustrative only, and are not intended to be limiting.
All publications, patents, patent publications and applications and other documents mentioned herein are incorporated by reference in their entirety.
Throughout this specification, the word "comprise" or variations such as "comprises" or "comprising" will be understood to imply the inclusion of a stated integer or groups of integers but not the exclusion of any other integer or group of integers. The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.
The term "blastomere" is used throughout to refer to at least one blastomere (e.g., 1, 2, 3, 4, etc) obtained from an embryo. The term "cluster of two or more blastomeres" is used interchangeably with "blastomere-derived outgrowths" to refer to the cells generated during the in vitro culture of a blastomere. For example, after a blastomere is obtained from an embryo and initially cultured, it generally divides at least once to produce a cluster of two or more blastomeres (also known as a blastomere-derived outgrowth). The cluster can be further cultured with embryonic or fetal cells. Ultimately, the blastomere-derived outgrowths will continue to divide. From these structures, ES cells, TS cells, and partially differentiated cell types will develop over the course of the culture method.
As summarized above, the present invention provides methods for deriving ES cells, ES cell lines, and differentiated cell types from single blastomeres of an early stage embryo without necessarily destroying the embryo. Various features of the method a described in detail below. All of the combinations of the various aspects and embodiments of the invention detailed above and below are contemplated.
Removal of the Blastomere
The blastomere may be removed from an embryo at various developmental stages prior to implantation including but not limited to: before compaction of the morula, during compaction of the morula, right after compaction of the morula, before formation of the blastocoel or during the blastocyst stage. In certain embodiments, a blastomere (one blastomere, two blastomeres, or more than two blastomeres) is removed from an embryo at the 4-16 cell stage, or at the 4-10 cell stage, or at the 4-8 cell stage.
In one embodiment the invention provides methods for biopsy of a blastocyst which will produce embryonic stem cells, and the remainder of the blastocyst is implanted and results in a pregnancy and later in a live birth. In an example of this: the zona pellucida is removed from the blastocyst by any means known to those of ordinary skill in the art and then the blastocyst is biopsied.
In another embodiment the controversies associated with the derivation of human ES cells are circumvented by using a technique similar to that used in preimplantation genetic diagnosis (PGD) where a single blastomere is removed from the embryo. In one embodiment, the single blastomere is removed before the compaction of the morula. The biopsied blastomere could be allowed to undergo cell division and one progeny cell is used for genetic testing and the remaining cells are used to generate human stem cells. The biopsied embryo may also be implanted at the blastocyst stage or frozen for implantation at a later time.
In certain embodiments, biopsy (e.g., removal of a blastomere from an embryo) consists of two stages. The first is to make a hole in, or in some instances fully remove, the zone pellucida that surrounds the embryo. Once the hole is made, the cells (preferably one or two) may then be removed from the human embryo. In certain preferred embodiments, the method involves removing or generating an extraction hole in the zona pellucida, and can be carried out by one or more techniques such as physical manipulation, chemical treatment and enzymatic digestion. Exemplary techniques that could be used include:
• Partial zone dissection (PZD:): partial dissection of the zona pellucida, using a micro-pipette;
• Zona drilling: chemical opening of the zona pellucida zone through partial digestion with Tyrode acid;
• Zona drilling: enzymatic opening of the zona pellucida zone through partial digestion with pronase or other protease;
• zona pellucida thinning: thinning of the zona pellucida with Tyrode acid or laser;
• Point-like opening of the zona pellucida with laser;
• Point-like mechanical opening of the zona pellucida with Piezo micromanipulator.
To briefly illustrate one embodiment, the procedure is performed on 8-10 cell stage embryos. The embryo is placed in a drop of biopsy medium under mineral oil by holding it with a holding pipette. The zona pellucida is locally digested, by releasing acidified Tyrode's solution (Sigma, St. Louis, Mo. 63178) through an assistant hatching pipette. Once the hole is made, cells (blastomeres) could be aspirated through the hole.
To illustrate another embodiment, the zona pellucida of the blastocyst may be at least partially digested by treatment with one or more enzymes or mixture of enzymes such as pronase. A brief pronase (Sigma) treatment of blastocysts with an intact zona pellucida results in the removal of the zona. Other types of proteases with the same or similar protease activity as pronase may also be used.
Single blastomeres may also be obtained by disaggregating zona-denuded embryos in Ca^/Mg÷* free PBS.
This invention also provides a novel and more efficient method of isolating single blastomeres. The embryo is immobilized and the immobilized embryo is then tapped until a single blastomere is released from the blastocyst. This method is not limited to human embryos and can be performed on embryos of other species including, without limitation, non-human embryos such as non-human mammals, mice, rabbits, pigs, cows, sheep, dogs and primates.
The embryo can be immobilized by any means known to those of skill in the art. In one embodiment, the embryo is immobilized using a micropipette and the micropipette holder is tapped to isolate the blastomere. In another embodiment, the embryo is cultured in medium that is calcium and magnesium free. The embryo may be from the 2-cell stage to the 16 cell stage. In one embodiment, the embryo is from the 4 cell stage to the 10 cell stage. In another embodiment the embryo is a 6-8 cell stage embryo. In yet another embodiment, the embryo is an 8-10 cell stage embryo. In certain embodiments, tapping involves generating an amount of force sufficient to remove at least one blastomere without substantially decreasing the viability of the remainder of the embryo. Maintenance of viability can be shown, for example, by culturing the remaining embryo for at least one day and confirming that the remaining embryo can continue to divide in culture.
Any of the foregoing methods can be used to obtain a blastomere (one blastomere or more than one blastomere) from an embryo. A particular method can be used alone or in combination with another method to facilitate removal of a blastomere.
In certain embodiments, the embryo is a mammalian embryo. In certain embodiments, the mammalian embryo is a human embryo. Exemplary mammals include, but are not limited to, mice, rats, rabbits, cows, dogs, cats, sheep, hamsters, pigs, non-human primates, and humans.
In certain embodiments of any of the foregoing, a blastomere is removed from an embryo without destroying the remainder of the embryo. The remaining embryo (the embryo minus the removed blastomere) can be cultured and/or cryopreserved. In certain embodiments, the remaining embryo is cultured for a time sufficient to confirm that the remaining embryo can continue to divide (e.g., is still viable), and then once viability is confirmed, the remaining embryo is cryopreserved. In certain other embodiments, the remaining embryo is immediately cryopreserved.
In certain other embodiments, multiple blastomeres are removed from a single embryo and the embryo is destroyed during or subsequent to the removal of multiple blastomeres. Multiple blastomeres can be used together in one experiment, for example, by aggregating multiple blastomeres during the initial blastomere culture. Alternatively, multiple blastomeres can be used in separate experiments in an effort to maximize the number of lines or cell types than can be generated from a single embryo.
Embryos from which a blastomere is obtained can be generated by sexual or asexual methods. In certain embodiments, the embryo is produced by fertilization of an egg with a sperm. In certain other embodiments, the embryo is produced by somatic cell nuclear transfer, parthenogenesis, androgenesis, or other asexual techniques. Note that embryos derived from asexual techniques may not look identical to embryos generated by fertilization. However, despite any differences in appearance, the term embryo is intended to encompass the products of asexual reproduction and the products of fertilization or other means of sexual reproduction.
Culturing the Blastomere and Production of ES cells
Once removed from the embryo, the isolated blastomere(s) can be initially cultured in any type of medium, e.g., embryo medium such as Quinn's cleavage medium (Cooper Surgical Inc. Cat #ART1529). Any medium that supports growth of an embryo can be used, including, without limitation, any commercial formulations. As used herein, the term "embryo medium" is used to refer to a medium that promotes survival of blastomeres (especially human blastomeres) in culture. In certain embodiments, the embryo medium is a medium containing less than 5 mM glucose. In certain embodiments, the embryo medium is a medium that has an osmolarity of less that 310 mosm. In certain other embodiments, the embryo medium is a medium that contains less than 5 mM glucose and has an osmolarity of less than 310 mosm. In certain embodiments, the medium used to initially culture blastomeres has an osmolarity of less than 300 mosm, less than 280 mosm, or less than 260 mosm, and optionally contains less than 5 mM glucose. In certain embodiments, the medium used to initially culture blastomeres has an osmolarity about 260-280 mosm, and optionally contains less than 5 mM glucose. Note that regardless of the osmolarity and particular concentration of glucose in the medium used to initially culture the blastomeres, the medium may also be supplemented with antibiotics, minerals, amino acids, and other factors typically found in commercial media formulations.
The blastomeres may not initially grow well in standard ES cell medium. However, as described in detail herein, once the blastomeres have been cultured in the presence of certain embryonic or fetal cells and/or allowed to divide one or more times, the cluster of blastomeres can optionally be cultured in ES cell medium, or may be slowly transferred from embryo medium to ES cell medium by gradually replacing the medium. As used herein, the term "ES cell medium" is used to refer to a medium that promotes maintenance of ES cells in culture and can be used to culture clusters of blastomeres as they continue to divide and produce ES cells, ED cells, etc. Such a medium is at least somewhat optimized for ES cells. In certain embodiments, the ES cell medium contains at least 5 mM glucose (relatively high glucose). In certain other embodiments, the ES cell medium has an osmolarity of at least 310 mosm. In certain other embodiments, the medium contains at least 5 mM glucose and has an osmolarity of at least 310 mosm. In certain embodiments, this medium has an osmolarity of at least 320 mosm, or at least 330 mosm, and optionally contains at least 5 mM glucose. In certain embodiments, this medium has an osmolarity of about 310-340 mosm, and optionally contains at least 5 mM glucose. ES cell medium may also be supplemented with factors known in the art to promote the growth of ES cells, and the medium may contain antibiotics, minerals, amino acids, and other factors typically found in commercial media formulations. .
In certain embodiments, a blastomere is obtained from a human or other mammalian embryo and cultured in embryo medium. Preferably, a blastomere is cultured in embryo medium for at least one day or until the blastomere divides at least once. However, a blastomere may be cultured in embryo medium for more than 1 day (at least 2, 3, 4 days, etc.) and/or the blastomere may be cultured in contact with embryonic or fetal cells before dividing to produce a cluster of blastoemre. When cultured in embryo medium, the blastomere may divide one or more times or produce a cluster of two or more blastomeres. Further culturing of the cluster of blastomeres includes culturing the blastomere along with its progeny. In certain embodiments, the blastomere divides and the progeny are cultured as an aggregate.
In one embodiment, the blastomere can be cultured in a microdrop. Each microdrop can contain a single blastomere or multiple blastomeres. After about at least 1 day, at least 2-3 days, or at least 4 days, the cultured blastomeres may divide and form vesicles or aggregates. The benefit of culturing the blastomere prior to direct or indirect contact with the embryonic cells is to prevent the embryonic cells from overgrowing the blastomere.
After a blastomere is initially cultured to generate a cluster of two or more blastomeres, the cultured cluster of two or more blastomeres is contacted directly or indirectly with embryonic or fetal cells, or alternatively with a medium that promotes further maturation of the blastomeres in the absence of embryonic or fetal cells. Such medium includes medium conditioned with embryonic or fetal cells (conditioned medium) or medium supplemented with growth factors or cytokines that promote maturation of the blastomeres. In certain embodiments, the medium is supplemented with ACTH (adrenocorticotropic hormone).
For embodiments in which direct or indirect culture with embryonic or fetal cells is used, the embryonic or fetal cells may be derived from, for example, a mammal. In certain embodiments, the embryonic or fetal cells are mouse or human cells. Exemplary embryonic or fetal cells include, but are not limited to, embryonic stem (ES) cells (whether derived from blastocysts, blastomeres, or by other methods, and whether derived using somatic cell nuclear transfer or other asexual reproduction), embryonic germ cells, embryonic carcinoma cells, placental cells, trophoblasts/trophectoderm cells, trophoblast stem cells, primordial germ cells embryonic germ cells, amniotic fluid cells, amniotic stem cells, placental cells, placental stem cells, and umbilical cord cells. In certain embodiments in which blastomeres are directly or indirectly contacted with embryonic or fetal cells, the medium in which the blastomeres are cultured is further supplemented with ACTH or other growth factors or cytokines that promote maturation of the blastomeres.
When used, the embryonic or fetal cells, may be grown in the presence or absence of a feeder layer of cells. Feeder cells may be used to help maintain the embryonic or fetal cells and to prevent their differentiation. The specific feeder cell may be chosen based on the particular embryonic or fetal cell used. Exemplary feeder cells include, but are not limited to, fibroblast feeder cells. Such fibroblast feeder cells may be derived from the same species as the embryonic or fetal cells or they may be derived from a different species. Similarly, the feeder cells and the embryonic or fetal cells may be derived from the same species as the blastomere or from a different species. In certain embodiments, the feeder cells are irradiated or otherwise treated to prevent overgrowth relative to the embryonic or fetal cells. Exemplary feeder cells include, but are not limited to, mouse embryonic fibroblasts (MEF cells), human embryonic fibroblasts, human foreskin fibroblasts, human skin fibroblasts, human endometrial fibroblasts, human oviductal fibroblasts, and placental cells. Similar cell types derived from other animals (mammals, chickens, etc) are also contemplated.
In one embodiment, the feeder and/or embryonic cells are human cells that are autologous cells derived from the same embryo as the blastomere.
The embryonic or fetal cells are grown in ES cell medium or any medium that supports growth of the embryonic or fetal cells, e.g., Knockout DMEM (Invitrogen Cat # 10829-018). Exemplary embryonic or fetal cells include, but are not limited to, embryonic stem cells, such as from already established lines, embryo carcinoma cells, murine embryonic fibroblasts, other embryo-like cells, cells of embryonic origin or cells derived from embryos, many of which are known in the art and available from the American Type Culture Collection, Manassas, VA 20110-2209, USA, and other sources.
The embryonic or fetal cells may be added directly to the cultured blastomeres or may be grown in close proximity to, but not in direct contact with, the cultured blastomere(s). Various direct and indirect co-culture systems are possible to facilitate providing the cultured blastomeres with factors or signals from the embryonic or fetal cells. As used herein, "contacting the cultured cluster of two or more blastomeres" refers to any method of direct or indirect contact or co-culture.
In certain embodiments, contacting the cluster of two or more blastomere comprises aggregating blastomere clusters with embryonic or fetal cells. In certain other embodiments, contacting comprises co-culturing the cluster of two or mores blastomeres so that the cells are in direct contact with the embryonic or fetal cells but are not aggregated to them. In other embodiments, contacting comprises co-culturing the cluster of two or more blastomeres with the embryonic or fetal cells so that the cells are in indirect contact, for example, maintained in the same culture vessel but without direct contact of the cells or maintained as contiguous microdrops.
In certain embodiments, the method comprises the step of directly or indirectly contacting the cultured cluster of two or more blastomere(s) with embryonic or fetal cells, with the proviso that the contacting is not carried out by aggregating the cultured blastomere with embryonic cells as described in Chung et al., Nature (2006) 439:216-9. Alternatively, the culture of blastomere(s) and the culture of embryonic or fetal cells are indirectly connected or merged. This can be achieved by any method known in the art including, for example, dragging a manipulation pipette between two drops under light mineral oil such as Cooper Surgical ACT# ART4008, paraffin oil or Squibb's oil. The connections can be made by using a glass capillary or similar device. Such indirect connections between the cultured blastomere and the embryonic cells allows gradual mixing of the embryo medium (in which the blastomere is cultured) and the ES cell medium (in which the human embryonic cells are grown). In another embodiment, the blastomere(s) may be co-cultured with the remaining embryo. For example, the blastomere is co-cultured with the remaining embryo in a microdroplet culture system or other culture system known in the art, which does not permit cell-cell contact but could permit cell-secreted factor and/or cell-matrix contact. The volume of the microdrop may be reduced, e.g., from 50 microliters to about 5 microliters to intensify the signal. In another embodiment the embryonic cells may be from a species other than human, e.g., non-human primate or mouse.
In certain embodiments, the particular media formulations used to culture a blastomere, a cluster of two or more blastomeres, and embryonic or fetal cells may vary slightly depending on the species. Additionally, whether initial blastomere culture benefits from a media formulation different from that used to culture the clusters of blastomeres or the embryonic cells may also vary slightly depending on the species.
In certain embodiments, the medium used to separately culture a blastomere and the medium used to culture embryonic or fetal cells is not necessarily the same. In embodiments for which the media differ, there may be a period where the blastomere or cluster of blastomeres is being initially exposed to a medium that differs from the medium in which the blastomere was initially cultured (e.g., the cells will be slowly exposed to the medium in which the embryonic or fetal cells were cultured). In such embodiments, the cluster of two or more blastomeres, which has now divided multiple times to give rise to a cluster of cells and cell outgrowths, can gradually be transferred (for example by exchanging the medium) and cultured in medium having the properties of ES cell medium.
After about 3-4 days, the blastomere(s) exhibit properties of ES cells. Specifically, as the cells continue to divide and the blastomere progeny cluster, various cell types emerge and can be identified phenotypically. Amongst the emerging cell types are trophectoderm-like cells, ES cells, and partially or terminally differentiated ED cells. As such, these methods can be used to produce ES cells, TS or other trophectoderm cells, or ED cells. While not wishing to be bound by any particular theory, it is believed that over a period of days or weeks the cultured blastomeres exhibit ES cell growth perhaps as a result of factors secreted by the embryonic or fetal cells or by the extracellular matrix. Further, the dividing cluster of blastomere progeny resemble, in some respects, the changes observed during development of the preimplantation blastocyst. As such, the cell types emerging in these cultures recapitulate to some extent the cell types observed when whole blastocysts or ICMs are plated.
In certain embodiments, the blastomere culture conditions may include contacting the cells with factors that can inhibit or otherwise potentiate the differentiation of the cells, e.g., prevent the differentiation of the cells into non-ES cells, trophectoderm or other cell types. Such conditions can include contacting the cultured cells with heparin or introducing Oct-4 into the cells (such as by including Oct-4 in the media) or activating endogenous Oct-4 in the cells. In yet another embodiment, expression of cdx-2 is prevented by any means known in the art including, without limitation, introducing CDX-2 RNAi into blastomeres, thereby inhibiting differentiation of the blastomere into TS cells.
As detailed above, the invention provides methodologies for producing ES cells, ED cells, and TS cells from a blastomere obtained from an embryo. This approach can be used to generate ES cells, ED cell, and TS cells, as well as cell line without necessarily destroying the embryo from which the blastomere is obtained.
Culturing the Blastomere and Production of ED cells
In the past, long-term culture of inner cell mass cells was used to produce embryonic stem cell lines. Subsequently, the embryonic stem cells were cultured and conditionally genetically-modified, and induced to differentiate in order to produce cells for therapy. US Patent Application No. 11/025,893 (published as US 2005/0265976A1), incorporated herein in its entirety, describes a method of producing differentiated progenitor cells from inner cell mass cells or morula-derived cells by directly inducing the differentiation of those cells without producing an embryonic stem cell line and the use of said differentiated cells, tissues, and organs in transplantation therapy. Because these cells are derived from the cells of the embryo but not from an ES cell line, we designate such cells as embryo-derived (ED) cells. Blastomere-derived ED cells have broader differentiation potential than human ES cells produced using methods known in the art because the ED cells can be readily differentiated into germ-line cells using techniques known in the art, e.g. using methods to differentiate murine ES cell lines into germ- line cells. In contrast, human ES cell lines derived from inner mass cells are not expected to be capable of differentiation into germ-line cells. This phenomenon has been observed in ES cells derived from inner mass cells in animal such as pigs, cows, chickens and rats and is likely due to the fact that germ-line is one of the first cell lineages to branch out in differentiation.
In some of the methods of the present invention, blastomeres from embryos with at least two cells, and before the embryo enters the stage of development of a compacting morula are induced to directly differentiate into differentiated progenitor cells which are then used for cell therapy and for the generation of cells, tissues, and organs for transplantation. If desired, genetic modifications can be introduced, for example, into somatic cells prior to nuclear transfer to produce a morula or blastocyst or into somatic cells prior to the reprogramming of said somatic cell into undifferentiated cells through the juxtaposition of the DNA of said somatic cell with factors capable of reprogramming said somatic cells or into ES cell lines made using these methods. See US Patent Application No. 10/831,599 published as US 2004199935, PCT/US06/30632 filed August 3, 2006, and US Provisional Patent Application Nos. 60/705,625, 60/729,173 and 60/818,813, the disclosure of which are incorporated herein by reference in their entirety. Thus, the differentiated progenitor cells of the present invention do not possess the pluripotency of an embryonic stem cell, or an embryonic germ cell, and are, in essence, tissue- specific partially or fully differentiated cells. These differentiated progenitor cells may give rise to cells from any of three embryonic germ layers, i.e., endoderm, mesoderm, and ectoderm. For example, the differentiated progenitor cells may differentiate into bone, cartilage, smooth muscle, dermis with a prenatal pattern of gene expression and capable of promoting scarless wound repair, and hematopoietic or hemangioblast cells (mesoderm), definitive endoderm, liver, primitive gut, pancreatic beta cells, and respiratory epithelium (endoderm); or neurons, glial cells, hair follicles, or eye cells including retinal neurons and retinal pigment epithelium.
Furthermore, it is not necessary for the differentiated progenitor cells of the present invention to express the catalytic component of telomerase (TERT) and be immortal, or that the progenitor cells express cell surface markers found on embryonic stem cells such as the cell surface markers characteristic of primate embryonic stem cells: positive for SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, alkaline phosphatase activity, and negative for SSEA-I. Moreover, the differentiated progenitor cells of the present invention are distinct from embryoid bodies, i.e., embryoid bodies are derived from embryonic stem cells whereas the differentiated stem cells of the present invention are derived from blastomeres.
Preferably, the differentiated cells of the present invention are produced by culturing blastomere-derived cells in the absence of embryonic stem cells. Growth of undifferentiated embryonic stem cells can be prevented, for example, by culturing blastomeres in the presence of differentiation-inducing agents or by introducing genetic modifications into the cells such that the growth of embryonic stem cells is prevented.
Any vertebrate embryo may be used as a source of blastomeres or cells equivalent in development to a mammalian blastomere. Human blastomeres, in particular, have important utility in the generation of human cell-based therapies. The original embryo may have been produced by in vitro-fertilization, derived by fertilization within the reproductive tract by normal sexual reproduction, artificial insemination, or gamete intrafallopian transfer (GIFT), and subsequently retrieved, derived by somatic cell nuclear transfer.
Differentiation
Methods for isolating blastomeres have already been described herein. Isolated blastomeres can be induced directly or via ES cells or cell lines to differentiate in the presence of differentiation-inducing conditions including various combinations of growth factors, sera, hormones, extracellular matrices useful in making the particular desired differentiated cell type as known in the art (see Table 2 for list of exemplary molecules), or as disclosed in the pending applications PCT/US2006/013573 filed April 11, 2006, US Application No. 60/835,779, filed August 3, 2006, 60/792,224 filed April 14, 2006, 60/801,993 filed May 19, 2006, PCT/US2006/013519 filed April 11, 2006, US Application No. 1 1/025,893 (published as US 20050265976), WO2005/070011 published August 4, 2005, and WO 2006/080952 published August 3, 2006, the disclosure of which are incorporated herein by reference. For example, blastomeres or ES cells may be cultured on various inducer cell types such as those isolated as single cell-derived populations of cells, or on particular extracellular matrix components and other differentiation-inducing factors such as factors or combinations of factors shown in Table 2 below. Table 2 Culture Variables
EGF Ligands 23) FGF-4
1) Amphiregulin 24) FGF-5
2) Betacellulin 25) FGF-6
3) EGF 26) KGF/FGF-7
4) Epigen 27) FGF-8
5) Epiregulin 28) FGF-9
6) HB-EGF 29) FGF-10
7) Neuregulin-3 3O) FGF-I l 8) NRGl isoform GGF2 31) FGF-12
9) NRGl Isoform SMDF 32) FGF- 13
10) NRG 1-alpha/HRGl -alpha 33) FGF- 14 l l) TGF-alpha 34) FGF- 15
12) TMEFFl/Tomoregulin-1 35) FGF-16 13) TMEFF2 36) FGF- 17
14) EGF Ligands pooled (1-13 above) 37) FGF- 18
38) FGF-19
EGF R/ErbB Receptor Family 39) FGF-20
15) EGF Receptor 40) FGF-21
16) ErbB2 41) FGF-22
17) ErbB3 42) FGF-23 18) ErbB4 43) FGF Ligands pooled (20-38 above)
19) EGF/ErbB Receptors pooled (15- 18 above) FGF Receptors
40) FGF Rl
FGF Ligands 41) FGF R2
20) FGF acidic 42) FGF R3
21) FGF basic 43) FGF R4
22) FGF-3 44) FGF R5 45) FGF Receptors pooled (40-44 61) IGFBP-5 above) 62) Endocan
63) IGFBP-6
FGF Regulators 64) IGFBP-I
46) FGF-BP 65) IGFBP-rpl/IGFBP-7
66) IGFBP-2
Hedgehogs 67) NOV/CCN3
47) Desert Hedgehog 68) IGFBP-3
48) Sonic Hedgehog 69) GF Binding Protein Family pooled
49) Indian Hedgehog (58-68 above)
50) Hedgehogs pooled (47-49 above)
Receptor Tyrosine Kinases
Hedgehog Regulators 7O) AxI
51) Gasl 71) Clq Rl/CD93
52) Hip 72) DDRl
53) Hedgehog Regulators pooled (51- 73) Flt-3 52 above) 74) DDR2
75) HGF R
IGF Ligands 76) Dtk
54) IGF-I 77) IGF-II R
55) IGF-II 78) Eph
56) IGF Ligands pooled (54-55 above) 79) Insulin R/CD220
80) EphAl
IGF-I Receptor (CD221) 8I) M-CSF R
57) IGF-I R 82) EphA2
83) Mer
GF Binding Protein (IGFBP) Family 84) EphA3
58) ALS 85) MSP R/Ron
59 IGFBP-4 86) EphA4 60) CTGF/CCN2 87) MuSK 88) EphA5 115) Mimecan
89) PDGF R alpha 116) Decorin
90) EphA6 117) NG2/MCSP
91) PDGF R beta 118) Endocan
92) EphA7 119) Osteoadherin
93) Ret 120) Endorepellin
94) EphA8 121) Syndecan-1/CD138
95) RORl 122) Glypican 2 96) EphBl 123) Syndecan-3
97) ROR2 124) Glypican 3
98) EphB2 125) Testican 1/SPOCKl
99) SCF R/c-kit 126) Glypican 5
100) EphB3 127) Testican 2/SPOCK2 101) Tie-l 128) Glypican 6 102) EphB4 129) Testican 3/SPOCK3
103) Tie-2 130) Heparan sulfate proteoglycan
104) EphB6 131) Heparin 105) TrkA 132) Chondroitin sulfate proteoglycan 106) TrkB 133) Hyaluronic acid 107) TrkC 134) Dermatan sulfate proteoglycan
108) VEGF Rl /FIt-I
109) VEGF R2/Flk-1 Proteoglycan Regulators
110) VEGF R3/FU-4 135) Arylsulfatase A/ARSA
111) Receptor Tyrosine Kinases pooled 136) HAPLNl (70-110 above) 137) Exostosin-like 2
138) HS6ST2
Proteoglycans 139) Exostosin-like 3
112) Aggrecan 140) IDS
113) Lumican 141) Proteoglycan Regulators pooled 114) Biglycan (135-140 above) SCF, Flt-3 Ligand & M-CSF GDFs (Growth Differentiation
142) Flt-3 Factors)
143) M-CSF R 164) GDF-I
144) Flt-3 Ligand 165) GDF-2
145) SCF 166) GDF-3
146) M-CSF 167) GDF-4
147) SCF R/c-kit 168) GDF-5
148) Pooled factors (142-147 above) 169) GDF-6
170) GDF-7
Activins 171) GDF-8
149) Activin A 172) GDF-9
150) Activin B 173) GDF-10
151) Activin AB 174) GDF-I l
152) Activin C 175) GDF- 12
153) Pooled Activins (149-152 above) 176) GDF-13
177) GDF-14
BMPs (Bone Morphogenetic 178) GDF- 15 Proteins) 179) GDFs pooled (164-178 above)
154) BMP-2
155) BMP-3 GDNF Family Ligands
156) BMP-3b/GDF-10 180) Artemin
157) BMP-4 181) Neurturin
158) BMP-5 182) GDNF
159) BMP-6 183) Persephin
160) BMP-7 184) GDNF Ligands pooled (180-183
161) BMP-8 above)
162) Decapentaplegic
163) Pooled BMPs (154-162 above) TGF-beta
185) TGF-beta 186) TGF-beta 1 187) TGF-beta l.2 211) BMPR-IA/ALK-3
188) TGF-beta 2 212) TGF-beta RI/ALK-5
189) TGF-beta 3 213) BMPR-IB/ALK-6
190) TGF-beta 4 214) TGF-beta RII
191) TGF-beta 5 215) BMPR-II
192) LAP (TGF-beta l) 216) TGF-beta RIIb
193) Latent TGF-beta 1 217) Endoglin/CD105
194) TGF-beta pooled (185-193 above) 218) TGF-beta RIII
219) TGF-beta family receptors pooled
Other TGF-beta Superfamily (199-218 above) Ligands TGF-beta Superfamily Modulators
195) Lefty 220) Amnionless
196) Nodal 221) GASP-2/WFIKKN 197) MIS/AMH 222) BAMBI/NMA
198) Other TGF-beta Ligands pooled 223) Gremlin (195-197 above) 224) Caronte 225) NCAM-1/CD56
TGF-beta Superfamily Receptors 226) Cerberus 1
199) Activin RIA/ALK-2 227) Noggin
200) GFR alpha- 1 228) Chordin
201) Activin RIB/ALK-4 229) PRDC
202) GFR alpha-2 230) Chordin-Like 1
203) Activin RIIA 231) Chordin-Like 2
204) GFR alpha-3 232) Smadl
205) Activin RIIB 233) Smad4
206) GFR alpha-4 234) Smad5
207) ALK-I 235) Smad7
208) MIS RII 236) Smadδ
209) ALK-7 237) CRIMl
210) Ret 238) Cripto 239) Crossveinless-2 266) VEGF-B
240) Cryptic 267) PDGF-C 24I) SOST 268) VEGF-C
242) DAN 269) PDGF-D
243) Latent TGF-beta bpl 270) VEGF-D
244) TMEFF 1/Tomoregulin-l 271) PDGF-AB
245) FLRG 272) VEGF/PDGF Family pooled
246) TMEFF2 (253-271 above)
247) Follistatin
248) TSG Dickkopf Proteins & Wnt Inhibitors
249) Follistatin-like 1 273) Dkk-1
250) Vasorin 274) Dkk-2
251) GASP-1/WFIKKNRP 275) Dkk-3
252) TGF Modulators pooled (220-251 276) Dkk-4 above) 277) Soggy- 1
278) WIF-I
VEGF/PDGF Family 279) Pooled factors (273-278 above)
253) Neuropilin-l
254) PlGF Frizzled & Related Proteins
255) P1GF-2 280) Frizzled- 1
256) Neuropilin-2 281) Frizzled-2
257) PDGF 282) Frizzled-3
258) VEGF Rl/Flt-1 283) Frizzled-4
259) PDGF R alpha 284) Frizzled-5
260) VEGF R2/Flk-1 285) Frizzled-6
261) PDGF R beta 286) Frizzled-7
262) VEGF R3/FU-4 287) Frizzled-8
263) PDGF-A 288) Frizzled-9
264) VEGF 289) sFRP-l
265) PDGF-B 290) sFRP-2 291) sFRP-3 316) ROR2
292) sFRP-4 317) Kremen-2
293) MFRP 318) WISP- 1/CCN4
294) Factors pooled (280-293 above) 319) LRP-I
320) Pooled factors (311-319 above)
Wnt Ligands
295) WnM Other Growth Factors
296) Wnt-2 321) CTGF/CCN2
297) Wnt-3 322) NOV/CCN3
298) Wnt-3a 323) EG-VEGF/PK1
299) Wnt-4 324) Osteocrin
300) Wnt-5 325) Hepassocin
301) Wnt-5a 326) PD-ECGF
302) Wnt-6 327) HGF
303) Wnt-7 328) Progranulin
304) Wnt-8 329) beta-NGF
305) Wnt-8a 330) Thrombopoietin
306) Wnt-9 331) Pooled factors (321-330 above)
307) Wnt- 10a
308) Wnt- 10b Steroid Hormones
309) WnM l 332) 17beta-Estradiol
310 Wnt Ligands pooled (295-309 333) Testosterone above) 334) Cortisone
335) Dexamethasone
Other Wnt-related Molecules
311) beta-Catenin Extracellular/Mem rane Proteins 312) LRP-6 336) Plasma Fibronectin 313) GSK-3 337) Tissue Fibronectin 314) RORl 338) Fibronectin fragments 315) Kremen-l 339) Collagen Type I (gelatin) 340) Collagen Type II 370) ADAM- 15
341) Collagen Type III 371) ADAM-16
342) Tenascin 372) AD AM- 17
343) Matrix Metal loproteinase 1 373) ADAM-18
344) Matrix Metalloproteinase 2 374) ADAM-19
345) Matrix Metalloproteinase 3 375) ADAM-20
346) Matrix Metalloproteinase 4 376) ADAM-21
347) Matrix Metalloproteinase 5 377) ADAM-22
348) Matrix Metalloproteinase 6 378) ADAM-23
349) Matrix Metalloproteinase 7 379) ADAM-24
350) Matrix Metalloproteinase 8 380) ADAM-25
351) Matrix Metalloproteinase 9 381) ADAM-26
352) Matrix Metalloproteinase 10 382) ADAM-27
353) Matrix Metalloproteinase 11 383) ADAM-28
354) Matrix Metalloproteinase 12 384) ADAM-29
355) Matrix Metalloproteinase 13 385) ADAM-30
356) ADAM-I 386) ADAM-31 357) ADAM-2 387) ADAM-32 358) ADAM-3 388) ADAM-33
359) ADAM-4 389) ADAMTS-I
360) ADAM-5 390) ADAMTS-2 361) ADAM-6 391) ADAMTS-3
362) ADAM-7 392) ADAMTS-4
363) ADAM-8 393) ADAMTS-5
364) ADAM-9 394) ADAMTS-6
365) ADAM-10 395) ADAMTS-7
366) ADAM-I l 396) ADAMTS-8 367) ADAM-12 397) ADAMTS-9 368) ADAM-13 398) ADAMTS-10 369) ADAM- 14 399) ADAMTS-11 400) ADAMTS- 12 426) Thrombospondin
401) AD AMTS- 13 427) TIMP-I
402) ADAMTS- 14 428) TIMP-2
403) ADAMTS- 15 429) TIMP-3
404) AD AMTS- 16 430) TIMP-4
405) AD AMTS- 17 431) Fibromodulin
406) ADAMTS-18 432) Flavoridin
407) ADAMTS- 19 433) Collagen IV
408) ADAMTS-20 434) Collagen V
409) Arg-Gly-Asp 435) Collagen VI
410) Arg-Gly-Asp-Ser 436) Collagen VII
411) Arg-Gly-Asp-Ser-Pro-Ala-Ser- 437) Collagen VIII Ser-Lys-Pro 438) Collagen IX
412) Arg-Gly-Glu-Ser 439) Collagen X 413) Arg-Phe-Asp-Ser 440) Collagen XI
414) SPARC 441) Collagen XII
415) Cys-Asp-Pro-Gly-Tyr-Ile-Gly- 442) Entactin Ser-Arg 443) Fibrillin
416) Cys-Ser-Arg-Ala-Arg-Lys-Gln- 444) Syndecan-1 Ala-Ala-Ser-Ile-Lys-Val-Ser-Ala-Asp- 445) Keratan sulfate proteoglycan Arg
417) Elastin Ambient Oxygen
418) Tropelastin 446) 0.1-0.5% Oxygen
419)Gly- Arg-Gly- Asp-Ser-Pro-Lys 447) 0.5-1% Oxygen
420) Gly-Arg-Gly-Asp-Thr-Pro 448) 1-2% Oxygen
421) Laminin 449) 2-5% Oxygen
422) Leu-Gly-Thr-Ile-Pro-Gly 450) 5-10% Oxygen
423) Ser-Asp-Gly-Arg-Gly 451) 10-20% Oxygen
424) Vitronectin
425) Superfϊbronectin Animal Serum Proteases
452) 0.1% Bovine Serum 477) MMP-I
453) 0.5% Bovine Serum 478) MMP-2
454) 1.0% Bovine Serum 479) MMP-3
455) 5.0% Bovine Serum 480) MMP-4
456) 10% Bovine Serum 481) MMP-5
457) 20% Bovine Serum 482) MMP-6
458) 10% Horse Serum 483) MMP-7
484) MMP-8
Intcrlcukins 485) MMP-9
459) IL-I 486) MMP-10 460) IL-2 487) MMP-I l 461) IL-3 488) MMP- 12 462) IL-4 489) MMP- 13 463) IL-5 49O) MMP-H 464) IL-6 491) MMP-15 465) IL-7 492) MMP- 16 466) IL-8 493) MMP- 17 467) IL-9 494) MMP- 18 468) IL-10 495) MMP- 19 469) IL-I l 496) MMP-20 470) IL-12 497) MMP-21 471) IL-13 498) MMP-22 472) IL-14 499) MMP-23 473) IL- 15 500) MMP-24 474) IL-16 501) Cathepsin B 475) IL-I 7 501) Cathepsin C 476) IL- 18 503) Cathepsin D
504) Cathepsin G
505) Cathepsin H 506) Cathepsin L 533) Lysine
507) Trypsin 534) Methionine
508) Pepsin 535) Phenylalanine
509) Elastase 536) Proline
510) Carboxypeptidase A 537) Serine
51 1) Carboxypeptidase B 538) Threonine
512) Carboxypeptidase G 539) Tryptophan
513) Carboxypeptidase P 540) Tyrosine
514) Carboxypeptidase W 541) Valine
515) Carboxypeptidase Y
516) Chymotrypsin Prostaglandins
517) Plasminogen 542) Prostaglandin Al 518) Plasmin 543) Prostaglandin A2
519) u-type Plasminogen activator 544) Prostaglandin Bl
520) t-type Plasminogen activator 545) Prostaglandin B2
521) Plasminogen activator inhibitor- 1 546) Prostaglandin D2
522) Carboxypeptidase Z 547) Prostaglandin El
548) Prostaglandin E2
Amino Acids 549) Prostaglandin Fl alpha
522) Alanine 550) Prostaglandin F2alpha
523) Arginine 551) Prostaglandin H
524) Asparagine 552) Prostaglandin 12
525) Aspartic acid 553) Prostaglandin J2
526) Cysteine 554) 6-Keto-Prostaglandin FIa
527) Glutamine 555) 16, 16-Dimethyl-Prostaglandin E2
528) Glutamic acid 556) 15d-Prostaglandin J2
529) Glycine 557) Prostaglandins pooled (542-556
530) Histidine above)
531) Isoleucine
532) Leucine Retinoid receptor 577) Heregulin agonists/Antagonists 578) Glycogen
558) Methoprene Acid 579) Progesterone
559) All trans retinoic acid 58O) IL-I
560) 9-Cis Retinoic Acid 581) Serotonin
561) 13-Cis Retinoic Acid 582) Fibronectin - 45kDa Fragment
562) Retinoid agonsts pooled (558-561 583) Fibronectin - 7OkDa Fragment above) 584) glucose
563) Retinoid antagonists 585) beta mercaptoethanol
564) Retinoic acid receptor isotype 586) heparϊnase RARalpha 587) pituitary extract
565) Retinoic acid receptor isotype 588) chorionic gonadotropin RARbeta 589) adrenocorticotropic hormone
566) Retinoic acid receptor isotype 590) thyroxin RARgamma 591) Bombesin
567) Retinoic X receptor isotype 592) Neuromedin B RXRalpha 593) Gastrin-Releasing Peptide
568) Retinoic X receptor isotype 594) Epinephrine RXRbeta 595) Isoproterenol
569) Retinoic X receptor isotype 596) Ethanol RARgamma 597) DHEA
598) Nicotinic Acid
Miscellaneous Inducers 599) NADH
570) Plant lectins 600) Oxytocin
571) Bacterial lectins 601) Vasopressin
572) forskolin 602) Vasotocin
573) Phorbol myristate acetate 603) Angiotensin I
574) Poly-D-lysine 604) Angiotensin II
575) 1,25-dihydroxyvitamin D 605) Angiotensin I Converting Enzyme
576) Inhibin 606) Angiotensin I Converting Enzyme 630) 12(S)-HPETE Inhibitor 631) 12-METHOX YDODEC ANOIC
607) Chondroitinase AB ACID
608) Chondroitinase C 632) 13(S)-HODE
609) Brain natriuretic peptide 633) 13(S)-HPODE
610) Calcitonin 634) 13, 14-DIH YDRO-PGEl
611) Calcium ionophore I 635) 13-KETOOCT ADECADIENOIC
612) Calcium ionophore II ACID
613) Calcium ionophore III 636) 14,15-
614) Calcium ionophore IV EPOXYEICOSATRIENOIC ACID
615) Bradykinin 637) 1400W
616) Albumin 638) 15(S)-HETE
617) Plasmonate 639) 15(S)-HPETE 618) LIF 640) 15-
619) PARP inhibitors KETOEICOSATETRAENOIC ACID
620) Lysophosphatidic acid 641) 17-Allylamino-geldanamycin
621) (R)-METHANANDAMIDE 642) 17-OCTADEC YNOIC ACID
622) 1,25-DIHYDROXYVITAMIN 643) 17-PHENYL-TRINOR-PGE2 D3 644) 1 -ACYL-PAF
623) 1,2-DIDEC ANO YL-GL YCEROL 645) l-HEXADECYL-2- (10:0) ARACHIDONO YL-522) 646)
624) 1,2-DIOCTANO YL-SN- GLYCEROL GLYCEROL 647) 1 -HEXADEC YL-2-
625) 1,2-DIOLEO YL-GL YCEROL METHYLGL YCERO-3 PC (18: 1) 648) 1 -HEXADEC YL-2-O- ACETYL-
626) 10-hydroxycamptothecin GLYCEROL 627) 11,12- 649) 1 -HEXADEC YL-2-O-METHYL- EPOXYEICOSATRIENOIC ACID GLYCEROL
628) 12(R)-HETE 650) 1 -OCTADEC YL-2-
629) 12(S)-HETE METHYLGL YCER0-3 PC 651) 1 -OLEO YL-2- ACETYL- ACID GLYCEROL 672) 5-HYDROXYDECANOATE
652) 1 -STEAROYL- 2-LINOLEOYL- 673) 5-iodotubercidin GLYCEROL 674) 5-KETOEICOSATETRAENOIC
653) 1 -STEARO YL-2- ACID ARACHIDONOYL-GLYCEROL 675) 5'-N-Ethylcarboxamidoadenosine
654) 2,5-ditertbutylhydroquinone (NECA)
655) 24(S)-hydroxycholesterol 676) 6,7-ADTN HBr
656) 24,25-DIHYDROXYVITAMIN 677) 6-FORMYLINDOLO [3,2-B] D3 CARBAZOLE
657) 25-HYDROXYVITAMIN D3 678) 7,7-
658) 2- DIMETHYLEICOSADIENOIC ACID ARACHIDONOYLGLYCEROL 679) 8,9-EPOXYEICOSATRIENOIC
659) 2-FLUOROPALMITIC ACID ACID
660) 2-HYDROXYMYRISTIC ACID 680) 8-methoxymethyl-IBMX
661) 2-methoxyantimycin A3 681) 9(S)-HODE
662) 3,4-dichloroisocovimarin 682) 9(S)-HPODE
663) granzyme B inhibitor 683) 9, 10-OCT ADECENOAMIDE
664) 4- AMINOPYRIDINE 684) A-3
665) 4- 685) AA-861 HYDROXYPHENYLRETINAMIDE 686) acetyl (N)-s-farnesyl-l-cysteine
666) 4-OXATETRADECANOIC 687) ACETYL-F ARNESYL- ACID CYSTEINE
667) 5(S)-HETE 688) Ac-Leu-Leu-Nle-CHO
668) 5(S)-HPETE 689) ACONITINE
669) 5,6-EPOXYEICOSATRIENOIC 690) actinomycin D ACID 691) ADRENIC ACID (22:4, n-6)
670) 5,8,11,14- 692) ImM
EICOSATETRAYNOIC ACID 693) AG-1296 671) 5,8,11 -EICOSATRIYNOIC 694) AG1478 695) AG213 (Tyrphostin 47) 722) Arvanil
696) AG-370 723) ascomycin (FK-520)
697) AG-490 724) B581
698) AG-879 725) BADGE
699) AGC 726) bafilomycin Al
700) AGGC 727) BAPTA-AM
701) Ala-Ala-Phe-CMK 728) BAY 1 1 -7082
702) alamethicin 729) BAY K-8644
703) Alrestatin 730) BENZAMIL
704) AM 92016 73I) BEPRIDIL 704) AM-251 732) Bestatin
706) AM-580 733) beta-lapachone
707) AMANTIDINE 734) Betulinic acid
708) AMILORIDE 735) bezafibrate
709) Amino- 1,8-naphthalimide [4- 736) Blebbistatin Amino- 1,8-522) naphthalimide] 737) BML- 190
710) Aminobenzamide (3-ABA) [3- 738) Boc-GVV-CHO 522) aminobenzamide (3-ABA)] 739) bongkrekic acid 711) AM1ODARONE 740) brefeldin A
712) ANANDAMIDE (18:2,n-6) 741) Bromo-7-nitroindazole [3-Bromo-
713) ANANDAMIDE (20:3,n-6) 7-nitroindazole]
714) ANANDAMIDE (20:4, n-6) 742) Bromo-cAMP [8-Bromo-cAMP]
715) ANANDAMIDE (22:4,n-6) 743) Bromo-cGMP [8-Bromo-cGMP]
716) anisomycin 744) bumetanide
717) aphidicolin 745) BW-B 7OC
718) ARACHIDONAMIDE 746) Cl 6 CERAMIDE
719) ARACHIDONIC ACID (20:4, n- 747) C2 CERAMIDE
6) 748) C2 DIHYDROCERAMIDE
720) ARACHIDONOYL-PAF 749) C8 CERAMIDE
721) aristolochic acid 750) C8 CERAMINE 750) C8 DIHYDROCERAMIDE 781) cycloheximide-N-ethylethanoate 751) CA-074-Me 782) cyclopamine
753) calpeptin 783) CYCLOPIAZONIC ACID
754) calphostin C 784) cyclosporin A
755) calyculin A 785) cypermethrin
756) camptothecin 786) cytochalasin B
757) cantharidin 787) cytochalasin D
758) CAPE 788) D12-PROSTAGLANDIN J2
759) capsacin(E) 789) D609
760) capsazepine 790) damnacanthal
761) CARBACYCLIN 791) DANTROLENE
762) castanospermine 792) decoyinine
763) CDC 793) Decylubiquinone
764) Cerulenin 794) deoxymannojirimycin(l) 765) CGP-37157 795) deoxynorjrimycin(l)
766) chelerythrine 796) Deprenyl
767) CIGLITAZONE 797) DIAZOXIDE
768) CIMATEROL 798) dibutyrylcyclic AMP
769) CinnGEL 2Me 799) dibutyrylcyclic GMP
770) CIRAZOLINE 800) DICHLOROBENZAMIL
771) CITCO 801) DIHOMO-GAMMA-
772) CLOFIBRATE LINOLENIC ACID
773) clonidine 802) DIHYDROSPHINGOSINE
774) CLOPROSTENOL Na 803) DIINDOLYLMETHANE
775) clozapine 804) DILTIAZEM
776) C-PAF 805) diphenyleneiodonium Cl
777) Curcumin 806) dipyridamole
778) Cyclo [Arg-Gly-Asp-D-Phe-Val] 807) DL-DIHYDROSPHINGOSINE
779) cycloheximide 808) DL-PDMP
780) protein synthesis inhibitor 809) DL-PPMP 810) DOCOSAHEXAENOIC ACID 833) FLUNARIZINE (22:6 n-3) 834) FLUPROSTENOL
811) DOCOSAPENTAENOIC ACID 835) FLUSPIRILINE
812) DOCOSATRIENOIC ACID 836) FPL-64176 (22:3 n-3) 837) Fumonisin Bl
813) doxorubicin 838) Furoxan
814) DRB 839) GAMMA-LINOLENIC ACID 815) E-4031 (18:3 n-6)
816) E6 berbamine 840) geldanamycin
817) E-64-d 841) genistein
818) Ebselen 842) GF-109203X
819) EHNA HCl 843) GINGEROL
820) EICOSA-5,8-DIENOIC ACID 844) Gliotoxin (20:2 n-12) 845) GLIPIZIDE
821) EICOSADIENOIC ACID (20:2 846) GLYBURIDE n-6) 847) GM6001
822) EICOSAPENTAENOIC ACID 848) Go6976 (20:5 n-3) 849) GRAYANOTOXIN III
823) EICOSATRIENOIC ACID (20:3 850) GW-5074 n-3) 851) GW-9662
824) ENANTIO-PAF Cl 6 852) H7]
825) epibatidine (+/-) 853) H-89
826) etoposide 854) H9
827) FARNESYLTHIOACETIC 855) HA- 1004 ACID 856) HAl 077
828) FCCP 857) HA 14-1
829) FIPRONIL 858) HBDDE
830) FK-506 859) Helenalin 831) FLECAINIDE 860) Hinokitiol
832) FLUFENAMIC ACID 861) HISTAMINE 862) HNMPA-(AM)3 891) LINOLEAMIDE
863) Hoechst 33342 (cell permeable) 892) LINOLEIC ACID (BisBenzimide) 893) LINOLENIC ACID (18:3 n-3)
864) Huperzine A [(-)-Huperzine A] 894) LIPOXIN A4
865) IAA-94 895) L-NAME
866) IB-MECA 896) L-NASPA
867) IBMX 897) LOPERAMIDE
868) ICRF- 193 898) LY-171883
869) Ikarugamyin 899) LY-294002
870) Indirubin 900) LY-83583
871) Indirubin-3'-monoxime 901) Lycorine
872) indomethacin 902) LYSO-PAF C16
873) juglone 903) Manoalide
874) K252A 904) manumycin A
875) Kavain (+/-) 905) MAPP, D-erythro
876) KN-62 906) MAPP, L-erythro
877) KT-5720 907) mastoparan
878) L-744,832 908) MBCQ
879) Latrunculin B 909) MCI- 186
880) Lavendustin A 910) MDL-28170
881) L-cis-DILTIAZEM 911) MEAD ACID (20:3 n-9)
882) LEUKOTOXIN A (9,10-EODE) 912) MEAD ETHANOLAMIDE
883) LEUKOTOXIN B (12,13-EODE) 913) methotrexate
884) LEUKOTRIENE B4 914) METHOXY VERAPAMIL
885) LEUKOTRIENE C4 915) Mevinolin (lovastatin)
886) LEUKOTRIENE D4 916) MG-132
887) LEUKOTRIENE E4 917) Milrinone
888) Leupeptin 918) MINOXIDIL
889) LFM-A 13 919) MINOXIDIL SULFATE
890) LIDOCAINE 920) MISOPROSTOL, FREE ACID 921) mitomycin C 950) okadaic acid
922) ML7 951 ) oligomycin A
923) ML9 952) olomoucine
924) MnTBAP 953) ouabain
925) Monastrol 954) PAF Cl 6
926) monensin 955) PAF Cl 8
927) MY-5445 956) PAF C 18:1
928) Mycophenolic acid 957) PALMITYLETHANOLAMIDE
929) N,N-DIMETHYLSPHINGOSINE 958) Parthenolide
930) N9-Isopropylolomoucine 959) PAXILLINE
931) N-ACETYL-LEUKOTRIENE E4 960) PCA 4248
932) NapSul-Ile-Trp-CHO 961) PCO-400
933) N-ARACHIDONO YLGL YCrNE 962) PD 98059
934) NICARDIPINE 963) PENITREM A
935) NIFEDIPINE 964) pepstatin
936) NIFLUMIC ACID 965) PHENAMIL
937) Nigericin 966) Phenanthridinone [6(5H)-
938) NIGULDIPINE Phenanthridinone]
939) Nimesulide 967) Phenoxybenzamine
940) NIMODIPINE 968) PHENTOLAMINE 941) NITRENDIPINE 969) PHENYTOIN
942) N-LINOLEOYLGLYCINE 970) PHOSPHATIDIC ACID,
943) nocodazole DIPALMITOYL
944) N-PHENYLANTHRANILIC 971) Piceatannol (CL) 972) pifithrin
945) NPPB 973) PIMOZIDE
946) NS-1619 974) PINACIDIL
947) NS-398 975) piroxicam
948) NSC-95397 976) PPl
949) OBAA 977) PP2 978) prazocin 1008) SDZ-201106
979) Pregnenolone lόalpha carbonitrile 1009) S-FARNESYL-L-CYSTEINE
980) PRIMA-I ME
981) PROCAINAMIDE 1010) Shikonin
982) PROPAFENONE 1011) siguazodan
983) propidium iodide 1012) SKF-96365
984) propranolol (S-) 1013) SP-600125
985) puromycin 1014) SPHINGOSINE
986) quercetin 1015) Splitomycin
987) QUINIDINE 1016) SQ22536
988) QUININE 1017) SQ-29548 989) QX-314 1018) staurosporine
990) rapamycin 1019) SU-4312
991) resveratrol 1020) Suramin
992) RETINOIC ACID, ALL TRANS 1021) swainsonine
993) REV-5901 1022) tamoxifen
994) RG- 14620 1023) Tanshinone HA
995) RHC-80267 1024) taxol = paclitaxel
996) RK-682 1025)
997) Ro 20-1724 TETRAHYDROCANNABINOL-7-
998) Ro 31-8220 OIC ACID
999) Rolipram 1026) TETRANDRINE
1000) roscovitine 1027) thalidomide 1001) Rottlerin 1028) THAPSIGARGIN
1002) RWJ-60475-(AM)3 1029) Thiocitrulline [L-Thiocitrulline
1003) RYANODINE HCl]
1004) SB 202190 1030) Thiorphan 1005) SB 203580 1031) TMB-8
1006) SB-415286 1032) TOLAZAMIDE
1007) SB-431542 1033) TOLBUTAMIDE 1034) Tosyl-Phe-CMK (TPCK) 1064) Wiskostatin
1035) TPEN 1065) Wortmannin
1036) Trequinsin 1066) WY-14643
1037) trichostatin-A 1067) Xestospongin C
1038) trifluoperazine 1068) Y-27632
1039) TRIM 1069) YC-I
1040) Triptolide 1070) Yohimbine 104I) TTNPB 1071) Zaprinast
1042) Tunicamycin 1072) Zardaverine 1043) tyrphostin 1 1073) ZL3VS 1044) tyrphostin 9 1074) ZM226600
1045) tyrphostin AG- 126 1075) ZM336372
1046) tyrphostin AG-370 1076) Z-prolyl-prolinal
1047) tyrphostin AG-825 1077) zV AD-FMK 1048) Tyrphostin-8 1078) Ascorbate 1049) U-0126 1079) 5-azacytidine 1050) U-37883A 1080) 5-azadeoxycytidine 1051) U-46619 1081) Hexamethylene bisacetamide
1052) U-50488 (HMBA) 1053) U73122 1082) Sodium butyrate
1054) U-74389G 1083) Dimethyl sulfoxide.
1055) U-75302 1084) Goosecoid
1056) valϊnomycin 1085) Glycogen synthase kinase-3
1057) Valproic acid 1086) Galectin-l
1058) VERAPAMIL 1087) Galectin-3
1059) VERATRIDINE
1060) vinblastine Cell Adhesion Molecules
1061) vinpocetine 1086) Cadherin 1 (E-Cadherin)
1062) W7 1087) Cadherin 2 (N-Cadherin)
1063) WIN 55,212-2 1088) Cadherin 3 (P-Cadherin) 1089) Cadherin 4 (R-Cadherin)
1090) Cadherin 5 (VE-Cadherin)
1091) Cadherin 6 (K-Cadherin)
1092) Cadherin 7
1093) Cadherin 8 .
1094) Cadherin 9
1095) Cadherin 10
1096) Cadherin 11 (OB-Cadherin)
1097) Cadherin 12 (BR-Cadherin)
1098) Cadherin 13 (H-Cadherin)
1099) Cadherin 14 (same as Cadherin 18)
1100) Cadherin 15 (M-Cadherin)
1 101) Cadherin 16 (KSP-Cadherin)
1102) LI Cadherin
The foregoing is exemplary of the factors and conditions that can be used to promote differentiation of ES cells or ED cells along particular developmental lineages. Partially or terminally differentiated endodermal, mesodermal, or ectodermal cell types can be used in screening assays, to study developmental and stem cell biology, or to produce therapeutics. Partially or terminally differentiated cell types can optionally be substantially purified, formulated as pharmaceutical preparations, and/or cryopreserved.
Pluripotency of ES Cells
Pluripotency of the human ES cells or cell lines produced by the methods of this invention can be determined by detecting expression of human ES cell marker proteins. Examples of such proteins include but are not limited to octamer binding protein 4 (Oct-4), stage-specific embryonic antigen (SSEA)-3, SSEA-4, TRA-1-60, TRA-1-81 and alkaline phosphatase. In some embodiments, the putative ES cell lines maintain pluripotency after more than 13, 20, 30, 40, 50, 60, 70, 80, 90 or 100 passages. The ES cells may also be assayed for maintenance of normal karyotype. Pluripotency may also be confirmed by differentiating the ES cell produced by the methods of this invention into cells of ectoderm, endoderm and mesoderm lineage using methods known in the art. Pluripotency may also be tested by transplanting ES cells in vivo, for example into an immunodeficient mouse (such as a SCID mouse), and evaluating teratoma formation.
In certain embodiments, the ES cells or cell lines produced from a blastomere express one or more ES cell marker protein. Additionally or alternatively, in certain embodiments, the cells maintain a normal karyotype. Additionally or alternatively, in certain embodiments, the cells maintain pluripotency after more than 13, 20, 30, 40, 50, 60, 70, 80, 90 or 100 passages.
For any of the foregoing, the ES cell or cell line produced from a blastomere can be generated without destroying the embryo from which the blastomere used to generate the cell or line is obtained. This characteristic of the cells distinguishes these cells from currently available ES cells and lines which were generated using methods that necessarily destroyed the underlying embryo. Production of TS Cells
This invention also provides methods of directly differentiating cell types from isolated blastomeres before and without generating ES cell lines. In one example, human trophoblast stem ("TS") cells are produced by contacting blastomere outgrowths, which morphologically resemble trophoblast and/or extraembryonic endoderm, but which do not resemble ES cells, with FGF-4. For example, FGF-4 is added to the culture media of the outgrowths. TS cells can be detected by assaying expression of proteins such as cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG) using procedures standard in the art. TS cell identification can also be evidenced by absence of the expression of proteins such as, but not limited to, Oct-4 and α-feto protein.
Production of Purified Preparations and Cell Lines
In certain embodiments, cell lines can be produced. By way of example, once a particular cell type is identified in a culture comprising a cluster of two or more blastomeres (blastomere-derived outgrowths), that cell can be separated from the remainder of the culture for further use. Once separated, the desired cell can be propagated as a purified or substantially purified population, or it can be maintained as a cell line.
In certain embodiments, an ES cell produced from culturing a blastomere obtained from an embryo is separated from the culture of blastomere-derived outgrowths, and an ES cell line is established using standard techniques developed when establishing ES cell lines from blastocyst stage embryos. In other embodiments, a partially differentiated ED cell of interest can be select based on, for example, morphology and that cell can be separated from the culture and purified or otherwise further analyzed.
Exemplary cell lines include stable cell lines. ES cell lines established in this way may have the properties of existing ES cell lines, for example, differentiation potential, protein expression, karyotype, and the like. Alternatively, ES cell lines established in this way may differ from existing ES cell lines in one or more ways.
Therapeutic Uses of ES and ED Cells
The ES or ED cells of this invention are suitable for any use for which ES cells are useful. The present invention provides a method of treating a disorder amenable to cell therapy comprising administering to the affected subject a therapeutically effective amount of the ES cells of the invention.
In one embodiment the methods of the invention are used to remove a blastomere preceding implantation of a human embryo after which the blastomere would be cultured as described above in order to derive and store human ES cells for therapeutic uses using cell therapy should the child resulting from the human embryo require, for example, disease therapy, tissue repair, transplantation, treatment of a cellular debilitation, or treatment of cellular dysfunctions in the future.
In another embodiment of the invention, cells derived from a blastomere, precompaction morula, compacting morula, or sectioned blastocyst are directly differentiated in vitro or in vivo to generate differentiating or differentiated cells without generating an embryonic stem cell line. See U.S. patent publication no. 20050265976, published December 1, 2005, and international patent publication no. WOOl 29206, published April 26, 2001, the disclosures of which are hereby incorporated by reference herein for methods of direct differentiation. The cells of the invention are useful in medical, veterinary and biological research and in the treatment of disease by providing cells for use in cell therapy, e.g., allogeneic cell therapy.
In another embodiment, an ES cell or cell line is derived from a blastomere and the ES cell or cell line is induced to differentiate to produce one or more mesodermal, endodermal, or ectodermal cell types. Exemplary cell types include, but are not limited to, RPE cells, hematopoietic stem cells, hematopoietic cell types (e.g., RBCs, platelets, etc.), pancreatic beta cells, skin cells, cardiomyocytes, smooth muscle cells, endothelial cells, hepatocytes, neurons, glia, skeletal muscle cells, vascular cells, and the like. Although ES cells may themselves be used in the treatment of diseases or disorders, the invention also contemplates the productions of differentiated cell types that can be used therapeutically.
The methods of the present invention may be used to generate stem cells from blastomeres wherein the stem cells are hemizygous or homozygous for MHC antigens. These cells are useful for reduced immunogenicity during transplantation and cell therapy. The stem cells so produced may be assembled into a bank with reduced complexity in the MHC genes. The blastomeres of this invention could be derived from embryos that are hemizygous or homozygous for MHC antigens. These embryos may be either selected to be hemizygous or homozygous for MHC antigens or made, by any methods known in the art, to be hemizygous or homozygous for MHC antigens. Alternatively stem cells derived from blastomeres may be made hemizygous or homozygous for MHC antigens, e.g., by gene targeting. See, e.g., WO 03/018760 published March 6, 2003 and US provisional patent application no. 60/729, 173 the disclosures of which are incorporated herein in their entirety.
The ES cells and human embryo-derived cells generated by the above-mentioned novel techniques are utilized in research relating to cell biology, drug discovery, and in cell therapy, including but not limited to, production of hematopoietic and hemangioblastic cells for the treatment of blood disorders, vascular disorders, heart disease, cancer, and wound healing, pancreatic beta cells useful in the treatment of diabetes, retinal cells such as neural cells and retinal pigment epithelial cells useful in the treatment of retinal disease such as retinitis pigmentosa and macular degeneration, neurons useful in treating Parkinson's disease, Alzheimer's disease, chronic pain, stroke, psychiatric disorders, and spinal cord injury, heart muscle cells useful in treating heart disease such as heart failure, skin cells useful in treating wounds for scarless wound repair, burns, promoting wound repair, and in treating skin aging, liver cells for the treatment of liver disease such as cirrhotic liver disease, kidney cells for the treatment of kidney disease such as renal failure, cartilage for the treatment of arthritis, lung cells for the treatment of lung disease and bone cells useful in the treatment of bone disorders such as osteoporosis.
Such cell therapy methods may involve use of the ES cells of this invention in combination with proliferation factors, lineage-commitment factors, or gene or proteins of interest. Treatment methods may include providing stem or appropriate precursor cells directly for transplantation where the tissue is regenerated in vivo or recreating the desired tissue in vitro and then providing the tissue to the affected subject.
Pharmaceutical Preparations
The invention provides methods of generating ES cells, ES cell lines, TS cells, and various partially and terminally differentiated cells and cell lines. Cells and cell lines so produced can be studied in vitro and in vivo. In certain embodiments, the study of these cells provides information about basic developmental biology and stem cell biology. In certain other embodiments, the study of these cells and/or the factors that can be used to manipulate the proliferation, differentiation, and survival of these cells can be used to develop stem-cell based therapies to treat or ameliorate any of a variety of diseases or conditions. In other embodiments, cells and cell lines produced by these methods can be used in screening assays to identify agents and conditions that can be used therapeutically. Identified therapeutics may be used to develop cellular therapies or may themselves be useful when delivered to patients.
In certain embodiments, ES cells, ES cell lines, TS cells, TS cell lines, or partially or terminally differentiated cells may be formulated as pharmaceutical preparations by combining the cells with a pharmaceutically acceptable carrier or excipient. In certain embodiments, the pharmaceutical preparation contains a certain number of cells per unit volume of carrier so that cellular therapies can be administered to deliver a particular dosage of cells. For example, pharmaceutical preparations can be formulated to permit delivery of, for example, Ix 105, 1x106, 2x106, 3x106, 4x106, 5x106, 1x107, or greater than 1x107 cells in a volume of carrier appropriate for the condition being treated and the route of administration.
Methods of Conducting Research
As detailed above, embryonic stem cell research has been partially hindered by political and ethical opposition to the destruction of embryos. The present invention not only provides an alternative method for efficiently generating cells and cell lines, including ES cells and cell lines, the present invention also provides a method that does not require that new embryos be destroyed as part of the process of ES cell derivation. Remaining embryos can be cryopreserved and perpetually preserved or reserved for additional, future research use.
For some, the ability to derive ES cells and cell lines (or partially or terminally differentiated cell types differentiated from ES cells or directly differentiated from embryos) without necessarily destroying new embryos will provide substantial benefits beyond the significant technical advanced reflected in these methods. As such, the invention provides novel methods of conducting embryonic stem cell research without destroying a human embryo. The method entails obtaining a human ES cell or ES cell line derived from a human embryo but without destroying that human embryo. The ES cell or cell line can be generated from a blastomere obtained from a human embryo using any of the methodologies disclosed herein. Once an ES cell or cell line is derived, the method further entails conducting embryonic stem cell research using the human ES cell or ES cell line. The method provides an avenue for conducting ES cell research without the need to destroy new embryos. In certain embodiments, the embryonic stem cell research involves research examining the differentiation potential of ES cells or cell lines. For example, the research may involve contacting the human ES cell or ES cell line with one or more factors, and identifying factors that promote differentiation of the ES cell or ES cell line to one or more mesodermal, endodermal, or ectodermal cell types. In other embodiments, the embryonic stem cell research involves the study of possible therapeutic uses of ES cells or cell differentiated there from.
Regardless of the particular research use, this method may expand the opportunities for collaboration with researchers around the world, particularly researchers working in countries with laws regulating embryo destruction.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present specification, including definitions, will control. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics, developmental biology, cell biology described herein are those well-known and commonly used in the art.
Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention.
All publications and other references mentioned herein are incorporated by reference in their entirety. Although a number of documents are cited herein, this citation does not constitute an admission that any of these documents forms part of the common general knowledge in the art.
Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising" will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
In order for that this invention may be better understood, the following examples are set forth. These examples are for purposes of illustration only and are not be construed as limiting the scope of the invention in any matter. Example 1 : Generation of human ES cell lines
Unused embryos produced by in-vitro fertilization for clinical purposes were obtained. Six of these embryos were Grade I or II (symmetrical and even cell division with little or no cytoplasmic fragmentation), whereas the remaining ten embryos were Grade III (variable fragmentation) using standard scoring system (Veeck, L.L. et al., An Atlas of Human Gametes and Conceptuses, Parthenon, New York, NY, 1999). Embryos with blastomeres of unequal size and moderate-to-severe fragmentation (Grades IV and V) were excluded from this study. Pronuclear and multi-cell stage human embryos were thawed and cultured until the 8-10 cell stage at 37C in 20μl drops of Quinn's cleavage medium (Cooper Surgical Inc., Cat # ARTl 526) under paraffin oil (Cooper Surgical Inc. Cat # 4008) in a high humidified incubator with 5.5% CO2/5%O2/89.5%N2.
The zona pellucida was disrupted using either Acidic Tyroides solution or multiple Piezo- pulses and individual blastomeres were mechanically separated from the denuded embryos by holding the embryo with a micropipette and gently tapping the pipette holder. The separated blastomeres were cultured together in the same media (Quinn's cleavage medium (Cooper Surgical Inc., Cat # ART 1526)) and arranged so as to avoid contact with each other by using depressions created in the bottom of the plastic tissue culture plate as previously described (Nagy, A. et al., Manipulating the Mouse Embryos: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 2002).
The majority (58%) of the isolated blastomeres divided at least once and approximately half of these (28 out of 53) formed vesicles or clumps which produced cellular outgrowths within 2-3 days (Figure IB5C). During this process, sets of microdrops were prepared consisting of a 50 μl drop of blastomere medium (Quinn's blastocyst medium, Coopers Surgical Inc. Cat # ARTl 529) containing a blastomere-derived aggregate surrounded by several microdrops of hES culture medium (Knockout-DMEM (Invitrogen Cat # 10829-018 supplemented with 5% plasmanate, 5% serum replacement, 10% fetal bovine serum, 20 ng/ml leukemia inhibiting factor (LIF) and 8-16 ng/ml basic fibroblast growth factor (bFGF)) containing green fluorescent protein (GFP)-labeled hES cells growing on a mitomycin C-treated mouse embryonic fibroblasts (MEF) feeder layer. Previous experiments in mice (Chung et al., Nature (2006) 439:216-219) indicated that cell co-culture is important for ES cell derivation from single blastomeres. However, the aggregation system used in these previous studies could not be employed because, unlike in the mouse, human blastomeres do not form tight aggregates with ES cells. Thus, the microdrops containing the blastomere-derived vesicles/clumps were merged with one or two surrounding microdrops seeded with mitomycin-C treated mouse embryonic fibroblasts (MEFs) and GFP- positive human embryonic stem (hES) cells by scraping the bottom of the plate between the drops with a glass capillary.
After formation of initial outgrowths approximately half of the medium was changed every other day until the outgrowths reached approximately 50-100 cells. Although the initial outgrowths generally contained cells of different morphologies over a period of several days we observed several fates: (1) cells resembling trophectoderm took over, (2) cells that initially resembled ES-cells differentiated, or (3) ES-like cells continued undifferentiated proliferation. All of these outcomes are typical of derivation of ES cells from human embryos, especially when intact blastocysts are plated without removal of the trophectoderm using immunosurgery. The putative human ES cells were mechanically passaged onto fresh MEF feeder layers in hES culture medium which was changed every 1-2 days. The colonies were passaged by mechanical dispersion and transferred to fresh feeders every 2-3 days until enough cells were produced to initiate adaption to trypsin. The colony morphology, growth rate, procedures and culture media used were very similar to those of blastocyst-derived ES cells.
Karyotyping of the cells derived from the human blastomere were determined using the following procedure: Cells were passaged onto gelatin in ES culture medium which was replaced the day before harvest until the cells were approximately 50% confluent. Colcemid (Invitrogen) was added to the culture at a concentration of 0.12 μg/ml for 40 minutes. The cells were then rinsed twice with PBS and then trypsinized and centrifuged in DMEM (Invitrogen) with 10% FBS (Hyclone). 0.075 M KCl was added to the pellet and the cells were incubated for 10 minutes at 370C. The cells were then centrifuged and fixed with 3:1 methanol/acetic acid (Baker) for 10 minutes, centrifuged again and suspended in this fixative. Cytogenetic analysis was performed on metaphase cells using G-banding on 10 cells.
Results of these experiments are shown in Table 1. The results in row 10 of Table 1 were obtained using the method of isolating ES cells as described in Chung et ah, Nature (2006) 439:216-219. Nineteen ES cell like outgrowths and two stable human ES cell lines (MAOl and MA09) were obtained. The MAOl and MA09 cell lines maintained undifferentiated proliferation for more than seven months. Although the initial outgrowths generally contained cells of different morphologies, over a period of several days, fates typical of derivation of ES cells from human blastocysts were observed. For example, two of the six grade I/II embryos used generated stable hES cell lines that exhibited normal karyotpe (line MAOl 46,XX; line MA09 46,XX; Figure 3(h)) and maintained molecular markers of pluripotency up to more than 25 passages (Figure 3(a) to (g)). Both lines are also positive for alkaline phosphatase and express Oct-4, SSEA-3, SSEA-4, TRA- 1-60 and TRA-I -81 (Figure 7). Microsatellite analysis ruled out contamination of the lines with the ES cells used for co-culture with other hES cell lines in the laboratory. Karyotype and microsatellite analysis ruled out fusion (both new lines were female and the WAOl human ES cells used for co-culture were male) (Figure 5(d)).
Polymerase chain reaction (PCR) analysis further confirmed the absence of GFP and Y- chromosome gene sequences in both blastomere-derived human ES cell lines (Figure 5(a) to (c)). Conventional PCR reactions were performed with lOOng genomic DNA, Amplitaq Gold polymerase (ABI3 Foster City, CA), and primer pairs specific for FES/FPS, vWA31, D22S417, D10S526 and D5S592 genomic microsatellite sequences (Coriell, Camden, NJ). Single primers in each pair were end-labeled with a 6-Fam fluorescent label. After incubation for 10 min at 940C to activate the polymerase, amplification was performed with 30 cycles of 940C for 45 sec, 56°C for 60 sec, and 720C for 60 sec. Labeled amplicons were separated and sized using an ABI 3730 sequencer. For amplification of eGFP, amelogenin and SRY genes, genomic DNA was isolated using a QI Aamp DNA Mini Kit (Qiagen), and 200 ng DNA per reaction in 50μl was used for eGFP, amelogenin and SRY amplification. Primers used for eGFP were forward 5'- TTGAATTCGCCACCATGGTGAGC-3' (SEQ ID NO: 1) and reverse 5'-
TTGAATTCTTACTTGTACAGCTCGTCC-3' (SEQ ID NO: 2) and PCR reactions were performed as described previously. For sex determination, both amelogenin and SRY genes were amplified by PCR. Primers used for amelogenin gene were forward 5'- CTCATCCTGGGCACCCTGGTTATATC-3' (SEQ ID NO: 3), reverse, 5'- GGTACC ACTTC AAAGGGGTAAGC AC-3' (SEQ ID NO: 4), which generated a fragment of 1310 bp for Y-chromosome and a fragment of 1490 bp for X-chromosome. For Y-chromosome specific SRY gene, primers used were forward 5'-
GATC AGC AAGC AGCTGGGATACCAGTG-3' (SEQ ID NO: 5), and reverse 5'- CTGTAGCGGTCCCGTTGCTGCGGTG-3' (SEQ ID NO: 6), which amplified a DNA fragment of 330 bp. As a control for PCR reactions, myogenin primers, forward 5'- TCACGGTGGAGGATATGTCT-S' (SEQ ID NO: 7) and reverse 5'- GAGTC AGCTAAATTCCCTCG-3' (SEQ ID NO: 8) were included in SRY PCR reactions, which generated a fragment of 245 bp. PCR products were separated on an agarose gel and visualized by ethidium bromide staining.
Although only two of the six (33%) grade I/II embryos (or 2 out of the 35 blastomeres; 2 out of 91 blastomeres including grade HI-V embryos) generated hES cell lines, this success rate is similar to that produced using conventional methods. We believe the success rate can be further increased by optimizing conditions at the earliest stages of blastomere outgrowth.
Table 1. Embryonic stem-cells derived from single human blastomeres
Example 2: Differentiation of human ES cells
The ability of the human ES cells to differentiate into different germ layers was analyzed both in vitro and in teratomas using techniques known in the art.
Briefly, for the in vitro experiments, the human ES cells were separated by treating with either collagenase or trypsin and then cultured in cell culture dishes without feeder cells in embryoid body (EB) medium. Approximately one week later, the ES cells formed embryoid bodies (EB). The EBs were then fixed in 4% formaldehyde, washed in PBS, embedded in paraffin, sectioned and analyzed for the presence of derivatives from endoderm, mesoderm and ectoderm using tissue specific antibodies (α-feto protein for primitive endoderm, muscle actin for mesoderm, and β III tubulin for ectoderm) (Figure 4).
The single blastomere-derived human ES cell could also be differentiated in vitro into cells of specific therapeutic interest, including endothelial cells which after replating on Matrigel, formed typical capillary- vascular like structures (Figure 4(e)) that expressed high levels of von Willebrand Factor (vWF) and took up acetylated low-density-lipoprotein (Ac-LDL) (Figure 4(f)). Retinal pigment epithelium (RPE) clusters also appeared in adherent human ES cell cultures and in embryoid bodies and were used to establish passageable RPE lines using methods known in the art. These RPE lines displayed pigmented phenotype and typical "cobblestone" morphology (Figure 4(g)), bestrophin immunostaining (Figure 4(h)) and expressed bestrophin, RPE65, CRALBP and PEDF as shown by RT-PCR (Figure 4(i) and Figure 8).
To induce teratomas, small clumps of 50-100 hES cells were mechanically removed from the culture and transplanted under the kidney capsules of 6-8 week old NOD-SCID mice under anesthesia. After 2-3 weeks, the kidneys were removed, fixed with 4% paraformaldehyde overnight, washed for 24 hours in PBS, embedded in paraffin, sectioned and analyzed for the presence of the derivatives of three germ layers: endoderm, mesoderm and ectoderm. Alternatively, approximately 1 million hES cells were injected into the rear thigh of NOD-SCID mice. After approximately two months the mice were sacrificed and the teratomas excised, fixed in 4% paraformaldehyde, embedded in paraffin and sectioned.
The presence of different germ layers was assayed by determining the presence of molecular markers: β III tubulin for ectoderm, smooth muscle actin for mesoderm, and α-feto protein for endoderm (Figures IF-H). The teratomas contained tissues from all three germ layers including neural rosettes (ectoderm), liver and hematopoietic cells (mesoderm) and liver, respiratory and intestinal epithelia (endoderm) among others (Figure 4(a)). For immunohistochemical analysis, cells were fixed with 2% paraformaldehye, permeabilized with 0.1% NP-40 and blocked with 10% goat serum, 10% donkey serum (Jackson Immunoresearch Laboratories, West Grove, PA) in PBS (Invitrogen) for one hour. Incubation with primary antibodies was carried out overnight at 4C. After washing in PBS containing 0.1% Tween-20, fluorescently labeled or biotinylated secondary antibodies (Jackson Immunoresearch Laboratories, West Grove, PA) were added for one hour; some samples were subsequently incubated for 15 minutes with fluorescently labeled Steptavidin (Amersham, Piscataway, NJ). After additional washing in PBS/Tween, specimens were mounted using Vectashield with DAPI (Vector Laboratories, Burlingame, CA) and observed using a fluorescent microscope (Nikon). Alkaline phosphatase was detected using the Vector Red kit (vector Laboratories, Burlingame, CA) according to the manufacturer's instructions. Antibodies used were anti-Oct-4 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-SSEA-3, anti-SSEA-4 (Developmental Studies Hybridoma Bank, University of Iowa), anti-TRA-I-60, anti-TRA-I-81 (Chemicon), tubulin β III (BABCO, Berkeley, CA), anti- α-feto protein (DACO), and anti-smooth muscle actin (Sigma-Aldrich).
The blastomere-derived cell lines MAOl and MA09 appear to differentiate more readily into certain cell types, For example, neural progenitors were generated without the need for embryoid intermediates, stromal feeder layers or low-density passaging. When transferred to laminin-coated substrate and maintained in defined medium containing laminin and basic fibroblast growth factor, they began to express neuronal and neuronal progenitor markers such as Nestin, β III tubulin and Pax6. MAOl human ES cells also formed hematopoietic colony forming units (CFU) 3-5 times more efficiently than WAOl (Hl)-GFP cells and 5-10 times more efficiently than WA09 (H9) cells. MA09 human ES cells showed similar potential as WA 09 cells for hemaopoietic differentiation but demonstrated higher capability to differentiate toward endothelial lineage as compared to both WAOl-GFP and WA09 cells.
Example 3. Production of ED cells
As can be seen in Table 1 above, the production of embryo-derived cells from isolated blastomeres occurs more often than the production of ES cell lines. Of 53 isolated blastomeres that divided, 19 cultures yielded directly-differentiated cell types and only 2 yielded ES cell lines. Figure 6 shows the variety of differentiated cell morphologies observed by direct differentiation.
Example 4. Production of ED-derived endoderm and pancreatic beta cells. Isolated blastomeres as described herein or similar ED cells are added onto mitotically- inactivated feeder cells that express high levels of NODAL or cell lines that express members of the TGF beta family that activate the same receptor as NODAL such as CM02 cells that express relatively high levels of Activin-A, but low levels of Inhibins or follistatin. The cells are then incubated for a period of five days in DMEM medium with 0.5% human serum. After five days, the resulting cells which include definitive endodermal cells are purified by flow cytometry or other affinity-based cell separation techniques such as magnetic bead sorting using an antibody specific to the CXCR4 receptor and then permeabilized and exposed to cellular extracts from isolated bovine pancreatic beta cells as described in US Application No. 11/025,893 (published as US 20050265976), which is incorporated by reference. The resulting cells that have been induced toward beta cell differentiation are then cloned using techniques described in international patent application no. PCT/US2006/013573 filed April 11, 2006 and US Application No. 60/835,779, filed August 3, 2006, the disclosure of which are incorporated by reference. These cells are then directly differentiated into pancreatic beta cells or beta cell precursors using techniques known in the art for differentiating said cells from human embryonic stem cell lines or by culturing the cells on inducer cell mesodermal cell lines (see international patent application no. PCT/US2006/013573 filed April 11, 2006 and US Application No. 60/835,779, filed August 3, 2006, the disclosure of which are incorporated by reference).
Example 5. Derivation of embryonic stem cells without destruction of the embryo.
Embryos produced by in-vitro fertilization for clinical purposes are obtained. Pronuclear and multi-cell stage human embryos are thawed and cultured until the 8-10 cell stage at 370C in 20 μl drops of Quinn's cleavage medium (Cooper Surgical Inc., Cat # ARTl 526) under paraffin oil (Cooper Surgical Inc. Cat # 4008) in a high humidified incubator with 5.5% CO2/5%O2/89.5%N2.
The zona pellucida is disrupted using either Acidic Tyroides solution or multiple Piezo- pulses and an individual blastomere is mechanically separated from each denuded embryo by holding the embryo with a micropipette and gently tapping the pipette holder. The embryos are subsequently cryopreserved.
The separated blastomeres are cultured as in Example 1.
Example 6. Isolation of a single blastomere for derivation of embryonic stem cells and pre- implantation genetic diagnosis.
Embryos produced by in-vitro fertilization for clinical purposes are obtained. Pronuclear and multi-cell stage human embryos are thawed and cultured until the 8-10 cell stage at 370C in 20 μl drops of Quinn's cleavage medium (Cooper Surgical Inc., Cat # ARTl 526) under paraffin oil (Cooper Surgical Inc. Cat # 4008) in a high humidified incubator with 5.5% CO2/5%O2/89.5%N2.
The zona pellucida is disrupted using either Acidic Tyroides solution or multiple Piezo- pulses and an individual blastomere is mechanically separated from the denuded embryo by holding the embryo with a micropipette and gently tapping the pipette holder. The embryo is subsequently cryopreserved.
The separated blastomere undergoes cell division. One progeny cell is used for genetic testing and a different progeny cell is cultured as in Example 1 to produce a human ES cell.

Claims

We Claim:
1. A method of producing human embryonic stem (ES) cells, comprising:
(a) culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose to generate a cluster of two or more blastomeres;
(b) directly or indirectly contacting the cultured cluster of two or more blastomeres with embryonic or fetal cells; and
(c) culturing the cluster of two or more blastomeres of (b) to produce ES cells.
2. The method of claim 1, wherein (a) comprises culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and having an osmolality of less than 310 mosm to generate a cluster of two or more blastomeres.
3. The method of claim 1, wherein the blastomere divides one or more times and the cultured cluster of two or more blastomeres of (b) comprises an aggregate of two or more blastomeres, and wherein (b) comprises contacting an aggregate of two or more blastomeres with embryonic or fetal cells.
4. The method of claim 1 or 2, wherein (c) comprises culturing the cluster of two or more blastomeres of (b) in medium containing at least 5 mM glucose and having an osmolality of at least 310 mosm.
5. The method of claim 1, wherein (a) comprises culturing two or more blastomeres obtained from a human embryo.
6. The method of claim 5, wherein the two or more blastomeres are obtained from the same human embryo.
7. The method of claim 5, wherein the two or more blastomeres are obtained from different human embryos.
8. The method of any of claims 1 -7, wherein obtaining the blastomere from a human embryo yields a blastomere and a remaining human embryo, and the remaining human embryo is not destroyed following obtaining the blastomere.
9. The method of claim 8, wherein the remaining human embryo is viable.
10. The method of claim 8 or 9, wherein the remaining human embryo is cryopreserved.
11. The method of any of claims 1-10, wherein the blastomere is obtained from a human embryo after compaction of the morula.
12. The method of any of claims 1-10, wherein the blastomere is obtained from a human embryo before formation of the blastocoel.
13. The method of any of claims 1-10, wherein the blastomere is obtained from a 4-10 cell human embryo.
14. The method of any of claims 1-13, wherein the cluster of two or more blastomeres and the embryonic or fetal cells are not cultured as aggregates.
15. The method of any of claims 1-13, wherein the cluster of two or more blastomeres is indirectly contacted with the embryonic or fetal cells.
16. The method of any of claims 1-15, wherein (a) comprises culturing the blastomere in a microdrop culture comprising medium containing less than 5 mM glucose and having an osmolarity of less than 310 mosm.
17. The method of any of claims 1-16, wherein the embryonic or fetal cells are cultured in a microdrop culture.
18. The method of any of claims 1-17, wherein the human embryo was previously frozen, and wherein the human embryo is thawed prior to obtaining the blastomere.
19. The method of any of claims 1-18, wherein the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo.
20. The method of any of claims 1-19, wherein the blastomere is obtained by immobilizing the embryo and tapping the immobilized embryo until the blastomere is isolated.
21. The method of any of claims 1 -20, wherein the embryonic or fetal cells are human cells.
22. The method of claim 21, wherein the human embryonic or fetal cells are selected from human ES cells, human ED cells, human TS cells, human EG cells, placental stem cells, amniotic fluid stem cells, or human embryo carcinoma cells.
23. The method of claim 21, wherein the human embryonic or fetal cells are cultured on a fibroblast feeder layer.
24. The method of any of claims 1-23, wherein the blastomere or cluster of two or more blastomeres is cultured with a factor that inhibits differentiation of the ES cells.
25. The method of any of claims 1-23, wherein recombinant Oct-4 is introduced into the blastomere or endogenous Oct-4 is activated in the blastomere during the step of culturing the blastomere to produce the human ES cells.
26. The method of claim 1 or 8, wherein the human ES cells are pluripotent.
27. The method of claim 1 or 8, wherein the human ES cells express one or more ES cell marker proteins selected from any of Oct-4, alkaline phosphatase, SSEA-3, SSEA-4, TRA-I -60. and TRA-1-81.
28. The method of claim 1, wherein the blastomere undergoes cell division and one progeny cell is used for genetic testing and a different progeny cell is used to produce human ES cells.
29. The method of any of claims 1-28, further comprising the step of isolating the ES cells derived from the blastomere and culturing the ES cells to generate an ES cell line.
30. The method of claim 8, further comprising the step of isolating the ES cells derived from the blastomere and culturing the ES cells to generate an ES cell line.
31. A human ES cell derived from a human embryo but without destroying the human embryo, produced by the method of claim 8.
32. A human ES cell line derived from a human embryo but without destroying the human embryo, produced by the method of claim 30.
33. The human ES cell of claim 31, wherein the human ES cell is pluripotent and expresses one or more ES cell marker proteins selected from any of Oct-4, SSEA-I , nanog, alkaline phosphatase and Res-1.
34. The human ES cell line of claim 32, wherein the ES cell line comprises pluripotent human ES cells, and wherein the ES cells express one or more ES cell marker proteins selected from any of Oct-4, SSEA-I, nanog, alkaline phosphatase and Res-1.
35. A differentiated cell or tissue derived from the human ES cell of claim 31, wherein the differentiated cell or tissue is a mesodermal, endodermal or ectodermal cell or tissue.
36. A method of producing a desired differentiated cell or tissue, comprising inducing differentiation of the human ES cell of claim 31 into the desired cell or tissue.
37. A differentiated cell or tissue produced by the method of claim 36.
38. A method of treating a disorder amenable to cell therapy in a patient, comprising administering to the patient the human ES cell of claim 31.
39. A method of treating a disorder amenable to cell therapy in a patient, comprising administering to the patient the differentiated cell or tissue of claim 37.
40. A pharmaceutical composition comprising the human ES cell of claim 31 and a pharmaceutically acceptable carrier.
41. A pharmaceutical composition comprising the human ES cell line of claim 32 and a pharmaceutically acceptable carrier.
42. A method of producing a trophoblast stem (TS) cell, comprising:
(a) culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose to generate a cluster of two or more blastomeres;
(b) directly or indirectly contacting the cultured cluster of two or more blastomeres to embryonic or fetal cells; and
(c) culturing the cluster of two or more blastomeres of (b) until TS cells are produced.
43. The method of claim 42, wherein (a) comprises culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and having an osmolarity of less than 310 mosm to generate a cluster of two or more blastomeres.
44. The method of claim 42 or 43, wherein the blastomere divides one or more times and (b) comprises contacting an aggregate of two or more blastomeres with embryonic or fetal cells.
45. The method of any of claims 42-44, wherein (c) comprises culturing the cluster of two or more blastomeres of (b) in medium containing at least 5 mM glucose and having an osmolarity of at least 310 mosm.
46. The method of claim 42, wherein (a) comprises culturing two or more blastomeres obtained from a human embryo.
47. The method of claim 46, wherein the two or more blastomeres are obtained from the same human embryo.
48. The method of claim 46, wherein the two or more blastomeres are obtained from different human embryos.
49. The method of any of claims 42-48, wherein obtaining the blastomere from a human embryo yields a blastomere and a remaining human embryo, and the remaining human embryo is not destroyed following obtaining the blastomere.
50. The method of claim 49, wherein the remaining human embryo is viable.
51. The method of claim 49 or 50, wherein the remaining human embryo is cryopreserved.
52. The method of any of claims 42-51 , wherein the human embryo was previously frozen, and wherein the human embryo is thawed prior to obtaining the blastomere.
53. The method of any of claims 42-52, wherein the blastomere is obtained from a human embryo prior to compaction of the morula.
54. The method of any of claims 42-52, wherein the blastomere is obtained from a human embryo before formation of the blastocoel.
55. The method of any of claims 42-54, wherein the blastomere is obtained by partially or completely removing the zona pellucida surrounding the human embryo.
56. The method of any of claims 42-55, further comprising the step of isolating the TS cells derived from the blastomere.
57. The method of claim 56, further comprising establishing a TS cell line from the TS cells derived from the blastomere.
58. The method of any of claims 42-57, wherein the TS cells expresses at least one TS cell marker protein selected from the any of cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG).
59. The method of any of claims 42-58, wherein the TS cells do not express Oct-4 or α-feto protein.
60. The method of any of claims 42-59, wherein the embryonic or fetal cells are human cells.
61. The method of claim 60, wherein the human embryonic or fetal cells are human embryonic stem cells, ED cells, TS cells, human embryonic carcinoma cells, placental stem cells, amniotic fluid stem cells, or human embryonic germ cells.
62. A human TS cell derived from a human embryo but without destroying the human embryo, produced by the method of claim 49.
63. The human TS cell of claim 62, wherein the TS cell expresses at least one TS cell marker protein selected any of cdx-2, fgfr2, PL-I and human chorionic gonadotropin (hCG).
64. A differentiated cell or tissue derived from the TS cell of claim 62.
65. A method of producing a human TS cell line without human embryo destruction comprising the step of culturing the human TS cell of claim 62 to produce a TS cell line.
66. A human TS cell line produced by the method of claim 65.
67. A method of isolating a blastomere from an embryo comprising: (a) immobilizing the embryo; and Qo) tapping the immobilized embryo until a blastomere is isolated.
68. The method of claim 67, wherein the embryo is immobilized using a micropipette.
69. The method of claim 67 or 68, wherein the embryo is an 8-10 cell stage embryo.
70. The method of any of claims 67-69, wherein the embryo is cultured in medium that is calcium and magnesium free.
71. The method of any of claims 67-70, wherein the embryo is a human embryo.
72. Use of the ES cell of claim 31 for the manufacture of a medicament for treating a disorder amenable to cell therapy in a patient.
73. Use of the differentiated cell or tissue of claim 36 for the manufacture of a medicament for treating a disorder amenable to cell therapy in a patient.
74. Use of the TS cell of claim 62 for the manufacture of a medicament for treating a disorder amenable to cell therapy in a patient.
75. A method of conducting embryonic stem cell research without destroying a human embryo, comprising obtaining a human ES cell or ES cell line derived from a human embryo but without destroying the human embryo; and conducting embryonic stem cell research using the human ES cell or ES cell line.
76. The method of claim 75, wherein conducting embryonic stem cell research comprises contacting the human ES cell or ES cell line with one or more factors, and identifying factors that promote differentiation of the ES cell or ES cell line to one or more mesodermal, endodermal, or ectodermal cell types.
77. A method of producing a human embryonic stem (ES) cell or embryo-derived (ED) cell, comprising the step of culturing a blastomere obtained from an embryo, wherein the embryo remains viable.
78. A method of producing human embryonic stem (ES) cells, comprising:
(a) culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose to generate a cluster of two or more blastomeres;
(b) directly or indirectly contacting the cultured cluster of two or more blastomeres with medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres; and
(c) culturing the cluster of two or more blastomeres of (b) to produce ES cells.
79. The method of claim 78, wherein (a) comprises culturing a blastomere obtained from a human embryo in medium containing less than 5 mM glucose and having an osmolality of less than 310 mosm to generate a cluster of two or more blastomeres.
80. The method of claim 78 or 79, wherein the medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres is medium conditioned with embryonic or fetal cells.
81. The method of any of claims 78-80, wherein the medium sufficient to promote the growth and survival of the cultured cluster of two or more blastomeres is supplemented with ACTH.
EP07794602A 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells Withdrawn EP2029724A4 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16178734.6A EP3133150A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells
EP12197502.3A EP2612906A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US79744906P 2006-05-03 2006-05-03
US79806506P 2006-05-04 2006-05-04
US83169806P 2006-07-17 2006-07-17
US83962206P 2006-08-23 2006-08-23
PCT/US2007/010985 WO2007130664A2 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP16178734.6A Division EP3133150A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells

Publications (2)

Publication Number Publication Date
EP2029724A2 true EP2029724A2 (en) 2009-03-04
EP2029724A4 EP2029724A4 (en) 2010-03-24

Family

ID=38668383

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16178734.6A Ceased EP3133150A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells
EP07794602A Withdrawn EP2029724A4 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells
EP12197502.3A Ceased EP2612906A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16178734.6A Ceased EP3133150A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12197502.3A Ceased EP2612906A3 (en) 2006-05-03 2007-05-03 Derivation of embryonic stem cells and embryo-derived cells

Country Status (4)

Country Link
EP (3) EP3133150A3 (en)
KR (3) KR101569204B1 (en)
AU (1) AU2007248412A1 (en)
WO (1) WO2007130664A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893315B2 (en) 2004-11-04 2011-02-22 Advanced Cell Technology, Inc. Derivation of embryonic stem cells and embryo-derived cells
CA2588088C (en) 2004-11-04 2018-10-09 Advanced Cell Technology, Inc. Derivation of embryonic stem cells
JP2008099662A (en) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research Method for culturing stem cell
CN101679942A (en) 2007-02-23 2010-03-24 先进细胞技术公司 Highly efficient methods for reprogramming differentiated cells and for generating animals and embryonic stem cells from reprogrammed cells
US8987245B2 (en) 2008-04-02 2015-03-24 Jonathan R. Brestoff Parker Composition and method for affecting obesity and related conditions
HUE054946T2 (en) 2015-03-23 2021-10-28 Astellas Inst For Regenerative Medicine Improved assays for potency of human retinal pigment epithelium (rpe) cells and photoreceptor progenitors
WO2017109292A1 (en) 2015-12-23 2017-06-29 Teknologian Tutkimuskeskus Vtt Oy A method for obtaining indicator signals from a cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050848A2 (en) * 2000-01-07 2001-07-19 Oregon Health And Science University Clonal propagation of primate offspring by embryo splitting
WO2006052646A2 (en) * 2004-11-04 2006-05-18 Advanced Cell Technology, Inc. Derivation of embryonic stem cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2589304A (en) 1947-07-29 1952-03-18 William B Spangler Interlocking structural units
US20040199935A1 (en) 1999-06-30 2004-10-07 Chapman Karen B. Cytoplasmic transfer to de-differentiate recipient cells
AU782385B2 (en) 1999-10-15 2005-07-21 Advanced Cell Technology, Inc. Methods of producing differentiated progenitor cells and lineage-defective embryonic stem cells
CA2458575C (en) 2001-08-24 2014-07-08 Advanced Cell Technology, Inc. Screening assays for identifying differentiation-inducing agents and production of differentiated cells for cell therapy
WO2003046141A2 (en) * 2001-11-26 2003-06-05 Advanced Cell Technology, Inc. Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells
US20050118713A1 (en) * 2003-05-12 2005-06-02 Nikolai Strelchenko Morula derived embryonic stem cells
TW200521236A (en) * 2003-12-22 2005-07-01 Animal Technology Inst Taiwan Method for generating non-human mammalian chimeric embryo
CA2555370C (en) 2004-01-23 2024-02-06 Advanced Cell Technology, Inc. Improved modalities for the treatment of degenerative diseases of the retina
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050848A2 (en) * 2000-01-07 2001-07-19 Oregon Health And Science University Clonal propagation of primate offspring by embryo splitting
WO2006052646A2 (en) * 2004-11-04 2006-05-18 Advanced Cell Technology, Inc. Derivation of embryonic stem cells

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHESNE P ET AL: "NUCLEAR TRANSFER IN CATTLE: BIRTH OF CLONED CALVES AND ESTIMATION OF BLASTOMERE TOTIPOTENCY IN MORULAE USED AS A SOURCE OF NUCLEI" LIFE SCIENCES, PERGAMON PRESS, OXFORD, GB, vol. 316, 1 January 1993 (1993-01-01), pages 487-491, XP000197855 ISSN: 0024-3205 *
CHUNG YOUNG ET AL: "EMBRYONIC AND EXTRAEMBRYONIC STEM CELL LINES DERIVED FROM SINGLE MOUSE BLASTOMERES" NATURE, NATURE PUBLISHING GROUP, LONDON, UK, vol. 439, no. 7073, 12 January 2006 (2006-01-12), pages 216-219, XP007901044 ISSN: 0028-0836 *
GEBER S ET AL: "PROLIFERATION OF BLASTOMERES FROM BIOPSIED CLEAVAGE STAGE HUMAN EMBRYOS IN VITRO: AN ALTERNATIVE TO BLASTOCYST BIOPSY FOR PREIMPLANTATION DIAGNOSIS" HUMAN REPRODUCTION, OXFORD UNIVERSITY PRESS, GB, vol. 10, no. 6, 1 January 1995 (1995-01-01), pages 1492-1496, XP008061952 ISSN: 0268-1161 *
KLIMANSKAYA IRINA ET AL: "Human embryonic stem cell lines derived from single blastomeres" NATURE, NATURE PUBLISHING GROUP, LONDON, UK, vol. 444, no. 7118, 1 November 2006 (2006-11-01), pages 481-485, XP002490129 ISSN: 0028-0836 *
See also references of WO2007130664A2 *
THOMSON J A ET AL: "EMBRYONIC STEM CELL LINES DERIVED FROM HUMAN BLASTOCYSTS" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, WASHINGTON, DC; US, vol. 282, 6 November 1998 (1998-11-06), pages 1145-1147, XP002121340 ISSN: 0036-8075 *
WANG ET AL: "Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media" FERTILITY AND STERILITY, ELSEVIER SCIENCE INC, NEW YORK, NY, USA, vol. 83, no. 4, 1 April 2005 (2005-04-01), pages 1144-1154, XP005162772 ISSN: 0015-0282 *

Also Published As

Publication number Publication date
WO2007130664A3 (en) 2008-01-17
KR101569204B1 (en) 2015-11-17
KR20150142061A (en) 2015-12-21
KR20090038393A (en) 2009-04-20
KR20140142742A (en) 2014-12-12
WO2007130664A2 (en) 2007-11-15
EP3133150A2 (en) 2017-02-22
EP2029724A4 (en) 2010-03-24
AU2007248412A2 (en) 2009-03-05
KR101602951B1 (en) 2016-03-14
EP3133150A3 (en) 2017-04-19
AU2007248412A1 (en) 2007-11-15
EP2612906A3 (en) 2013-12-11
EP2612906A2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US10072243B2 (en) Derivation of embryonic stem cells and embryo-derived cells
JP6423386B2 (en) A highly efficient method for the reprogramming of differentiated cells and the generation of animal and embryonic stem cells from the reprogrammed cells
US20140057348A1 (en) Novel Culture System for Ex Vivo Development
EP3133150A2 (en) Derivation of embryonic stem cells and embryo-derived cells
US20140349396A1 (en) Compositions and Methods Relating to Clonal Progenitor Cells
AU2018220130A1 (en) Derivation of Embryonic Stem Cells and Embryo-Derived Cells
AU2014201421A1 (en) Derivation of Embryonic Stem Cells and Embryo-Derived Cells
AU2018220083A1 (en) Highly efficient methods for reprogramming differentiated cells and for generating animals and embryonic stem cells from reprogammed cells
AU2014203668A1 (en) Highly efficient methods for reprogramming differentiated cells and for generating animals and embryonic stem cells from reprogammed cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081203

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLIMANSKAYA, IRINA V.

Inventor name: LANZA, ROBERT

Inventor name: CHUNG, YOUNG

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20100218

17Q First examination report despatched

Effective date: 20101206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130408