EP2027754B2 - High frequency induction heating device, and induction oven equipped with such device - Google Patents

High frequency induction heating device, and induction oven equipped with such device Download PDF

Info

Publication number
EP2027754B2
EP2027754B2 EP07788840.2A EP07788840A EP2027754B2 EP 2027754 B2 EP2027754 B2 EP 2027754B2 EP 07788840 A EP07788840 A EP 07788840A EP 2027754 B2 EP2027754 B2 EP 2027754B2
Authority
EP
European Patent Office
Prior art keywords
capacitors
capacitor
inductor
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07788840.2A
Other languages
German (de)
French (fr)
Other versions
EP2027754A1 (en
EP2027754B1 (en
Inventor
Philippe Roehr
Ivan Novikoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Celes
Original Assignee
Fives Celes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37487530&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2027754(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fives Celes filed Critical Fives Celes
Publication of EP2027754A1 publication Critical patent/EP2027754A1/en
Application granted granted Critical
Publication of EP2027754B1 publication Critical patent/EP2027754B1/en
Publication of EP2027754B2 publication Critical patent/EP2027754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • H05B6/104Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands

Definitions

  • high frequency used for the alternating current is meant a frequency equal to or greater than 10 kilohertz (kHz).
  • the current I is important, of the order of a few thousand amperes to several tens of thousands of amperes.
  • the inductance L because of the geometrical size of the inductor 3, often connected to that of the armature 4 that it surrounds, can not fall below a minimum value of the order of a few tenths of a microhenry for band heating inductors, even by constructing inductors called "monospires", that is to say, a single turn.
  • reaches high values to allow heating of thin strips 4 and avoid a drop in system efficiency.
  • the voltage across the inductor L ⁇ I is therefore equal to 3 I / C ⁇ , while the voltage across the compensation capacitor 2, which corresponds to the supply voltage, is equal to I / C ⁇ .
  • the voltage across the inductor is multiplied by three.
  • connection connections must be "compensated", that is to say have a minimum connection inductance. This reduction in the inductance of the connections can only be obtained by bringing the supply conductors of the inductor and the internal conductors of the capacitor bank as close as possible. As illustrated schematically on Fig.2 , the distance e between the connection connections must be minimal to limit the parasitic inductance of the connection.
  • capacitor bank often consisting of elementary capacitors with low resistance in unit voltage, connected in series-parallel.
  • the object of the invention is, above all, to provide an induction heating device which makes it possible to transfer high power through the inductor while reducing the construction difficulties created by the voltages, in particular at the level of the inductor connections. and capacitors.
  • an inductive heating device of the kind defined above is characterized in that the inductor consists of at least two distinct inductive elements connected together in series by at least one capacitor, the voltage which appears between the connection points of the elementary inductive parts being reduced with respect to the voltage necessary for the operation of the inductor, for a desired heating power.
  • the device may comprise a capacitor connected between the terminals of the power supply and three distinct inductive elements, having or not even elementary inductance, interconnected in series by two connecting capacitors.
  • the device may comprise a capacitor connected between the terminals of the power supply and two distinct inductive elements, interconnected in series by a connecting capacitor.
  • the device comprises a capacitor connected between the terminals of the power supply and N distinct inductive elements, interconnected in series by N-1 connecting capacitors.
  • connection capacitor or capacitors have capacitance values equal to each other, and equal to the capacitance of the capacitor connected to the terminals of the supply.
  • the capacitors, or capacitor banks have capacitance values different from those of the capacitor, or of the capacitor bank, connected to the terminals of the high frequency power supply, to obtain elevation ratios. non-integer voltage.
  • connection capacitor (s) are located in a zone opposite to the supply with respect to the armature.
  • the or each connecting capacitor may consist of a capacitor bank.
  • the invention also relates to an induction heating furnace.
  • a heating furnace for metal strips is characterized in that it comprises an induction heating device, with one or more turns, as defined above.
  • the capacitors, or capacitor banks, of connection can be placed inside the furnace envelope, in the atmosphere of the furnace.
  • induction heating is the melting of glass or oxide in a direct coil.
  • an inductive heating device H which comprises a frequency converter 1 constituting the high frequency power supply equal to or greater than 10 kHz.
  • a capacitor, or a capacitor bank, of compensation 2 is connected between the terminals of the power supply 1.
  • the inductor connected to the terminals of the capacitor 2 and the power supply, consists of at least two distinct inductive elements.
  • the inductor consists of three elementary inductive parts 3a, 3b, 3c interconnected in series by at least one capacitor, or capacitor bank, 2a, 2b.
  • the inductance equivalent to that of the elementary inductive parts 3a, 3b, 3c, in series is equal to the determined value L of the inductor 3 of a conventional assembly according to Fig.1 to 3 .
  • the voltage U1 develops between the terminals 6a and 7c of the respective elementary inductive parts 3a and 3c; the voltage U2 between the terminals 7a and 6b of the elementary inductive parts 3a and 3b and the voltage U3 between the terminals 7b and 6c of the elementary inductive parts 3b, 3c.
  • the capacitor 2 is connected to the terminals 6a, 7c whereas the capacitors 2a, 2b are respectively connected to the terminals 7a, 6b and to the terminals 7b, 6c.
  • the inductor formed by all of the elementary inductive parts 3a, 3b, 3c can be installed inside an enclosure 8 of a heating furnace, for example under a protective atmosphere, in particular H2 + N2, to keep separate from the presence of air or oxygen to avoid the risk of explosion.
  • the envelope 8 is waterproof, and made for example of sheet steel.
  • the capacitors 2a, 2b can be housed inside the envelope 8 because induction heating does not cause excessive temperatures in the interior volume of the envelope 8.
  • a single watertight passage 9 is to make, through the wall of the casing 8, for the passage of end branches 10a, 10c of the inductors 3a, 3c in order to make the connection terminals 6a, 7c accessible from the outside of the casing 8.
  • the realization of a tight passage 9 being relatively expensive, it is particularly interesting to be able to avoid such a sealed crossing at the terminals 7a, 6b and / or 7b, 6c.
  • Fig.5 is a circuit diagram equivalent to the installation of Fig.4 .
  • the same numerical references have been taken from the diagram of Fig.5 showing that inductor, of inductance L, is divided into several parts, three in the example in question, connected by capacitors 2a, 2b, 2.
  • Fig.6 is a diagram of another embodiment for a series oscillating circuit in which the inductor is divided into two parts 3a, 3b connected by a capacitor 2a.
  • the other end terminals of the elementary inductive parts 3a, 3b are respectively connected to a plate of a capacitor 2 or 2b, itself connected by its other plate to a terminal of the power supply.
  • This assembly can be provided with or without a transformer 11.
  • This concept can easily be generalized to a number of connection points different from those illustrated by the examples of Fig.4 to 6 and / or with inductors with two turns or more than two turns.
  • Fig.7 is a simplified diagram in perspective illustrating the case of a monospiral inductor 3 for metal strip 4 which scrolls vertically according to the representation of Fig.7 .
  • Fig.8 illustrates another example of application of induction heating in the case of a glass melting furnace or oxides, in direct turn.
  • a high-frequency power supply constituted by a frequency converter 21, with a capacitor, or a capacitor bank, 22 of compensation connected between the terminals of the converter.
  • An inductor 23, for example single-core, connected to the terminals of capacitor 22 surrounds a mass of molten glass G, which is electrically conductive.
  • the currents induced in the mass G of glass are schematically represented by a dotted line 25.
  • the inductor is divided into two elementary inductive parts 23a, 23b, represented here symmetrically and the equivalent inductance of the two inductors 23a, 23b is equal to that of the inductor 23 of Fig.8 .
  • the ends of the elementary inductors 23a, 23b opposite to the power supply are connected to a capacitor 22a connected to the respective terminals 27a, 27b of the elementary inductors.
  • the voltage at the terminals of each elementary inductive part is U2 ⁇ I (apart from the ohmic resistance).
  • the transferred power equal to the sum of the powers transferred by each elementary inductive part, is the same as for Fig.8 .
  • the voltage across the capacitor 22 and between the points 26a, 26b is equal to 1 / 2C ⁇ , which is half of what it is on Fig.8 for the same power transferred in the armature to be heated.
  • Fig.9 The example of Fig.9 is not limiting, and the inductor could be decomposed into more than two elementary inductive parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Furnace Details (AREA)

Abstract

The induction heating device includes: a high frequency electric supply; an suitable inductor (3) for encircling, at least partially, an induced element (4) for heating, this inductor having an inductance of determined value (L) for the desired heating power; and a capacitive mounting used to connect the supply and the inductor, designed to increase the voltage in the inductor terminals in comparison with the voltage supplied. The inductor consists of at least two distinct elementary inductive sections (3a, 3b, 3c) inter-connected in series by at least one condenser (2, 2a, 2b), the voltage which appears between the connection points of the elementary inductive parts being reduced in comparison with the voltage required for the inductor to function for the desired heating power.

Description

L'invention est relative à un dispositif de chauffage par induction du genre de ceux qui comportent :

  • une seule alimentation électrique à haute fréquence,
  • un inducteur propre à entourer, au moins partiellement, un élément induit à chauffer, l'inducteur ayant une inductance de valeur déterminée pour une puissance de chauffage souhaitée,
  • et un montage capacitif de liaison entre l'alimentation et l'inducteur prévu pour augmenter la tension aux bornes de l'inducteur par rapport à la tension fournie par l'alimentation.
The invention relates to an induction heating device of the kind comprising:
  • a single high frequency power supply,
  • an inductor adapted to surround, at least partially, an inductive element to be heated, the inductor having a value inductance determined for a desired heating power,
  • and a capacitive connection between the power supply and the inductor provided to increase the voltage across the inductor with respect to the voltage supplied by the power supply.

Par l'expression « haute fréquence » utilisée pour le courant alternatif on désigne une fréquence égale ou supérieure à 10 kilohertz (kHz).By the term "high frequency" used for the alternating current is meant a frequency equal to or greater than 10 kilohertz (kHz).

Une application du chauffage par induction concerne les bandes métalliques. Le chauffage par induction de bandes métalliques est de plus en plus utilisé par l'industrie sidérurgique pour des applications diverses telles que:

  • amélioration de la productivité de four conventionnel ;
  • séchage de produits de revêtement divers (peinture, galvanisation, etc...);
  • traitement thermique (recuit, survieillissement...),
et d'autres encore.An application of induction heating concerns metal strips. Induction heating of metal strips is increasingly used by the iron and steel industry for various applications such as:
  • improvement of conventional oven productivity;
  • drying of various coating products (painting, galvanizing, etc.);
  • heat treatment (annealing, over-aging ...),
and even more.

La progression des performances des semi-conducteurs permet maintenant de fabriquer des convertisseurs de fréquence de puissance unitaire de plusieurs mégawatts et de fréquence de sortie de plusieurs centaines de kilohertz.Progress in semiconductor performance is now making it possible to manufacture frequency converters with a unit power of several megawatts and an output frequency of several hundred kilohertz.

Le principe d'une installation classique, selon l'état de la technique, est illustré sur les Figures 1 à 3 des dessins annexés dans le cas d'un circuit oscillant parallèle et d'un inducteur à flux longitudinal. Un autre example de chauffage par induction est connu de US 5 837 976 . Une alimentation électrique 1 à courant alternatif à haute fréquence est constituée d'un convertisseur de fréquence. Un ou plusieurs condensateurs de compensation 2 sont branchés aux bornes du convertisseur. L'inducteur 3 entoure une bande métallique 4 à chauffer ; la longueur de la bande 4 est perpendiculaire au plan de Fig.1. Des courants inducteurs d'intensité I entourent la bande 4 de manière à créer des courants induits dont la circulation est schématiquement représentée par une courbe 5 en pointillés. Le convertisseur de fréquence 1 fournit la puissance active nécessaire au chauffage de la bande métallique 4. Le condensateur, ou la batterie de condensateurs, 2 fournit la puissance réactive nécessaire à la magnétisation de l'espace dans lequel le champ magnétique créé par l'inducteur 3 se développe. Selon Fig.3 deux condensateurs de liaison 2' en série, combinés avec le condensateur 2, sont prévus pour augmenter la tension aux bornes de l'inducteur. Le circuit formé par l'inducteur 3 et les condensateurs 2, 2' est un circuit oscillant, et la tension électrique U (exprimée en volts) qui se développe aux bornes de l'inducteur 3 (abstraction faite de la résistance ohmique) s'écrit: U=LωI, formule dans laquelle :

  • L est égal à l'inductance de l'inducteur 3 (exprimée en henry),
  • ω est la pulsation du courant alternatif du courant d'alimentation (en radians par seconde)
  • I est l'intensité du courant dans l'inducteur 3 (en ampères).
  • ω = 2πF, avec F égal à la fréquence du courant alternatif.
The principle of a conventional installation, according to the state of the art, is illustrated on the Figures 1 to 3 appended drawings in the case of a parallel oscillating circuit and a longitudinal flux inductor. Another example of induction heating is known from US 5,837,976 . A high frequency AC power supply 1 consists of a frequency converter. One or more compensation capacitors 2 are connected to the terminals of the converter. The inductor 3 surrounds a metal strip 4 to be heated; the length of the strip 4 is perpendicular to the plane of Fig.1 . Intensity currents of intensity I surround the band 4 so as to create induced currents whose circulation is schematically represented by a dotted line. The frequency converter 1 provides the active power required for heating the metal strip 4. The capacitor, or the capacitor bank, 2 provides the reactive power necessary for the magnetization of the space in which the magnetic field created by the inductor 3 develops. according to Fig.3 two link capacitors 2 'in series, combined with the capacitor 2, are provided to increase the voltage across the inductor. The circuit formed by the inductor 3 and the capacitors 2, 2 'is an oscillating circuit, and the voltage U (expressed in volts) which develops at the terminals of the inductor 3 (apart from the ohmic resistance). writes: U = LωI, formula in which:
  • L is equal to the inductor inductor 3 (expressed in henry),
  • ω is the alternating current pulsation of the supply current (in radians per second)
  • I is the intensity of the current in the inductor 3 (in amperes).
  • ω = 2πF, with F equal to the frequency of the alternating current.

La puissance Pt transférée par induction à la bande 4 est proportionnelle :

  • au carré du champ magnétique, lui-même proportionnel au nombre d'ampères tours n.l , où n est le nombre de spires de l'inducteur 3 ou circuit primaire,
  • à la racine carrée de la pulsation ω du courant.
The power Pt transferred by induction to the band 4 is proportional:
  • the square of the magnetic field, itself proportional to the number of ampere turns nl, where n is the number of turns of the inductor 3 or primary circuit,
  • at the square root of the pulsation ω of the current.

Pour transmettre une puissance élevée, il faut, toutes choses égales par ailleurs, que le courant I soit important, de l'ordre de quelques milliers d'ampères à plusieurs dizaines de milliers d'ampères.To transmit a high power, it is necessary, all things being equal, that the current I is important, of the order of a few thousand amperes to several tens of thousands of amperes.

L'inductance L en raison de la taille géométrique de l'inducteur 3, souvent reliée à celle de l'induit 4 qu'il entoure, ne peut descendre au-dessous d'une valeur minimale de l'ordre de quelques dixièmes de microhenry pour des inducteurs de chauffage de bande, même en construisant des inducteurs dits « monospires », c'est-à-dire à une seule spire.The inductance L because of the geometrical size of the inductor 3, often connected to that of the armature 4 that it surrounds, can not fall below a minimum value of the order of a few tenths of a microhenry for band heating inductors, even by constructing inductors called "monospires", that is to say, a single turn.

Enfin, ω atteint des valeurs élevées pour permettre de chauffer des bandes minces 4 et éviter une chute de rendement du système.Finally, ω reaches high values to allow heating of thin strips 4 and avoid a drop in system efficiency.

L'équation U= LωI montre directement que le courant I important, nécessaire pour que la puissance transmise soit élevée, ne peut être obtenu qu'en appliquant une tension U de plusieurs milliers de volts. Cette tension est le plus souvent atteinte par un montage capacitif « multiplicateur de tension ou élévateur capacitif ». Selon Fig.3 cet élévateur capacitif fait intervenir deux condensateurs 2' en série avec l'inductance.The equation U = LωI directly shows that the large current I, necessary for the transmitted power to be high, can only be obtained by applying a voltage U of several thousand volts. This voltage is most often reached by a capacitive assembly "voltage multiplier or capacitive elevator". according to Fig.3 this capacitive elevator involves two capacitors 2 'in series with the inductor.

Pour assurer de bonnes conditions d'oscillation du circuit formé par l'inducteur 3 et les condensateurs 2, 2' du circuit de l'inducteur, on s'efforce généralement de satisfaire la condition de résonance entre les valeurs de l'inductance L et la capacité Ceq équivalente à celles des condensateurs du circuit, selon la formule: L Ceq ω2 = 1To ensure good oscillation conditions of the circuit formed by the inductor 3 and capacitors 2, 2 'of the inductor circuit, it is generally endeavored to satisfy the resonance condition between the values of inductance L and the capacitance C eq equivalent to those of the capacitors of the circuit, according to the formula: LC eq ω 2 = 1

Dans l'exemple de Fig.3; en considérant le cas où les trois condensateurs 2, 2' ont chacun même valeur C de capacité , la capacité équivalente Ceq de ces trois condensateurs en série dans la boucle fermée comportant l'inducteur est Ceq = C/3.In the example of Fig.3 ; considering the case where the three capacitors 2, 2 'each have the same capacity value C, the equivalent capacity C eq of these three capacitors in series in the closed loop comprising the inductor is C eq = C / 3.

La relation : L Ceq ω2 = 1 devient, en remplaçant Ceq, par C/3 : L C / 3 ω 2 = 1

Figure imgb0001

  • d'où : L ω = 3/ Cω
The relation: LC eq ω 2 = 1 becomes, by replacing C eq , by C / 3: LC / 3 ω 2 = 1
Figure imgb0001
  • hence: L ω = 3 / Cω

La tension aux bornes de l'inducteur LωI est donc égale à 3 I / Cω, tandis que la tension aux bornes de la capacité de compensation 2, qui correspond à la tension d'alimentation, est égale à I/ Cω. La tension aux bornes de l'inducteur est donc multipliée par trois.The voltage across the inductor LωI is therefore equal to 3 I / Cω, while the voltage across the compensation capacitor 2, which corresponds to the supply voltage, is equal to I / Cω. The voltage across the inductor is multiplied by three.

La tension très élevée appliquée à l'inducteur pose de nombreux problèmes de réalisation des équipements, qui doivent éviter une chute de tension inopportune entre le condensateur, ou la batterie de condensateurs, et l'inducteur. Les connexions de raccordement doivent être « compensées », c'est-à-dire présenter une inductance de liaison minimale. Cette diminution de l'inductance des connexions ne peut être obtenue qu'en rapprochant le mieux possible les conducteurs d'alimentation de l'inducteur et les conducteurs internes de la batterie de condensateurs. Comme illustré schématiquement sur Fig.2, la distance e entre les connexions de raccordement doit être minimale pour limiter l'inductance parasite de la connexion.The very high voltage applied to the inductor poses many equipment realization problems, which must avoid an undesirable voltage drop between the capacitor, or the capacitor bank, and the inductor. The connection connections must be "compensated", that is to say have a minimum connection inductance. This reduction in the inductance of the connections can only be obtained by bringing the supply conductors of the inductor and the internal conductors of the capacitor bank as close as possible. As illustrated schematically on Fig.2 , the distance e between the connection connections must be minimal to limit the parasitic inductance of the connection.

Mais on se heurte à la présence d'une tension très élevée. La faible distance e entre les connexions rend particulièrement difficile la réalisation d'une isolation électrique fiable permettant d'éviter un claquage de l'isolant (flash).But we come up against the presence of a very high voltage. The short distance e between the connections makes it particularly difficult to achieve reliable electrical insulation to avoid a breakdown of the insulation (flash).

La même contrainte s'applique à la batterie de condensateurs, souvent constituée de condensateurs élémentaires de faible tenue en tension unitaire, connectés en série- parallèle.The same constraint applies to the capacitor bank, often consisting of elementary capacitors with low resistance in unit voltage, connected in series-parallel.

L'invention a pour but, surtout, de fournir un dispositif de chauffage par induction qui permet de transférer une puissance élevée par l'inducteur tout en réduisant les difficultés de construction créées par les tensions, en particulier au niveau des connexions de l'inducteur et des condensateurs.The object of the invention is, above all, to provide an induction heating device which makes it possible to transfer high power through the inductor while reducing the construction difficulties created by the voltages, in particular at the level of the inductor connections. and capacitors.

Selon l'invention, un dispositif de chauffage par induction du genre défini précédemment est caractérisé en ce que l'inducteur est constitué d'au moins deux parties inductives élémentaires distinctes reliées entre elles en série par au moins un condensateur, la tension qui apparaît entre les points de raccordement des parties inductives élémentaires étant réduite par rapport à la tension nécessaire au fonctionnement de l'inducteur, pour une puissance de chauffage souhaitée.According to the invention, an inductive heating device of the kind defined above is characterized in that the inductor consists of at least two distinct inductive elements connected together in series by at least one capacitor, the voltage which appears between the connection points of the elementary inductive parts being reduced with respect to the voltage necessary for the operation of the inductor, for a desired heating power.

Le dispositif peut comporter un condensateur branché entre les bornes de l'alimentation et trois parties inductives élémentaires distinctes, ayant ou non même inductance élémentaire, reliées entre elles en série par deux condensateurs de liaison .The device may comprise a capacitor connected between the terminals of the power supply and three distinct inductive elements, having or not even elementary inductance, interconnected in series by two connecting capacitors.

Selon une variante, le dispositif peut comporter un condensateur branché entre les bornes de l'alimentation et deux parties inductives élémentaires distinctes, reliées entre elles en série par un condensateur de liaison.According to one variant, the device may comprise a capacitor connected between the terminals of the power supply and two distinct inductive elements, interconnected in series by a connecting capacitor.

D'une manière plus générale, le dispositif comporte un condensateur branché entre les bornes de l'alimentation et N parties inductives élémentaires distinctes, reliées entre elles en série par N-1 condensateurs de liaison.In a more general manner, the device comprises a capacitor connected between the terminals of the power supply and N distinct inductive elements, interconnected in series by N-1 connecting capacitors.

Avantageusement, le ou les condensateurs de liaison ont des valeurs de capacité égales entre elles, et égales à la capacité du condensateur branché aux bornes de l'alimentation.Advantageously, the connection capacitor or capacitors have capacitance values equal to each other, and equal to the capacitance of the capacitor connected to the terminals of the supply.

Néanmoins il est possible d'obtenir des facteurs d'élévation de la tension particuliers et non entiers en utilisant une ou des batteries de condensateurs de liaison de valeur équivalente différente de celle de la batterie de condensateurs branchée aux bornes de l'alimentation. Dans ce cas, les condensateurs, ou batteries de condensateurs, de liaison, ont des valeurs de capacité différentes de celle du condensateur, ou de la batterie de condensateurs, branché aux bornes de l'alimentation haute fréquence, pour obtenir des rapports d'élévation de la tension non entiers.Nevertheless, it is possible to obtain particular and non-integer voltage rise factors by using one or more capacitor banks of equivalent value different from that of the capacitor bank connected across the power supply. In this case, the capacitors, or capacitor banks, have capacitance values different from those of the capacitor, or of the capacitor bank, connected to the terminals of the high frequency power supply, to obtain elevation ratios. non-integer voltage.

De préférence, le ou les condensateurs de liaison sont situés dans une zone opposée à l'alimentation par rapport à l'induit.Preferably, the connection capacitor (s) are located in a zone opposite to the supply with respect to the armature.

Les condensateurs ou batteries de condensateurs peuvent être répartis sur le périmètre de l'induit afin d'optimiser l'occupation de l'espace au voisinage de l'induit.The capacitors or capacitor banks can be distributed over the perimeter of the armature in order to optimize the occupation of the space in the vicinity of the armature.

Le ou chaque condensateur de liaison peut être constitué par une batterie de condensateurs.The or each connecting capacitor may consist of a capacitor bank.

De préférence, la capacité Ceq équivalente à celles des condensateurs du circuit dans lequel se trouvent les inducteurs élémentaires est liée à l'inductance L équivalente à celles des parties inductives par la relation L Ceq ω2 = 1.Preferably, the capacity C eq equivalent to those of the capacitors of the circuit in which the elementary inductors are located is related to the inductance L equivalent to that of the inductive parts by the LC relation eq ω 2 = 1.

L'invention est également relative à un four de chauffage par induction.The invention also relates to an induction heating furnace.

Un four de chauffage pour bandes métalliques, selon l'invention, est caractérisé en ce qu'il comporte un dispositif de chauffage à induction, à une ou plusieurs spires, tel que défini précédemment. Avantageusement, les condensateurs, ou batteries de condensateurs, de liaison peuvent être disposés à l'intérieur de l'enveloppe du four, dans l'atmosphère du four.A heating furnace for metal strips, according to the invention, is characterized in that it comprises an induction heating device, with one or more turns, as defined above. Advantageously, the capacitors, or capacitor banks, of connection can be placed inside the furnace envelope, in the atmosphere of the furnace.

Une autre application du chauffage par induction suivant l'invention est la fusion de verre ou d'oxyde en spire directe.Another application of induction heating according to the invention is the melting of glass or oxide in a direct coil.

L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrits avec référence aux dessins annexés, mais qui ne sont nullement limitatifs.The invention consists, apart from the arrangements described above, in a certain number of other arrangements which will be more explicitly discussed hereinafter with regard to exemplary embodiments described with reference to the appended drawings, but which are not in no way limiting.

Sur ces dessins :

  • Fig.1 est un schéma d'un dispositif de chauffage par induction selon l'état de la technique.
  • Fig.2 est un schéma semblable à Fig.1, avec un inducteur monospire représenté en perspective, selon l'état de la technique.
  • Fig.3 est un schéma d'un circuit avec batterie de condensateurs multiplicateurs de tension, selon l'état de la technique.
  • Fig.4 est un schéma d'un dispositif de chauffage selon l'invention.
  • Fig.5 est un schéma équivalent du dispositif de Fig.4.
  • Fig.6 est une variante du schéma de Fig.5.
  • Fig.7 est un schéma en perspective illustrant le déplacement d'une bande à chauffer dans un inducteur monospire.équipé d'un condensateur de liaison
  • Fig.8 est un schéma d'un four de fusion de verre, à une seule spire, selon l'état de la technique, et enfin
  • Fig.9 est un schéma d'un four de fusion de verre monospire selon l'invention.
On these drawings:
  • Fig.1 is a diagram of an induction heating device according to the state of the art.
  • Fig.2 is a diagram similar to Fig.1 , with a monosphere inductor shown in perspective, according to the state of the art.
  • Fig.3 is a diagram of a circuit with capacitor voltage multiplier battery, according to the state of the art.
  • Fig.4 is a diagram of a heating device according to the invention.
  • Fig.5 is an equivalent diagram of the device of Fig.4 .
  • Fig.6 is a variant of the schema of Fig.5 .
  • Fig.7 is a perspective diagram illustrating the displacement of a strip to be heated in a monospire inductor.equipped with a connection capacitor
  • Fig.8 is a diagram of a glass melting furnace, with a single turn, according to the state of the art, and finally
  • Fig.9 is a diagram of a monospire glass melting furnace according to the invention.

En se reportant à Fig.4 on peut voir un dispositif H de chauffage par induction, selon l'invention, qui comporte un convertisseur de fréquence 1 constituant l'alimentation électrique à haute fréquence, égale ou supérieure à 10 kHz. Un condensateur, ou une batterie de condensateurs, de compensation 2 est branché entre les bornes de l'alimentation 1.Referring to Fig.4 an inductive heating device H according to the invention can be seen which comprises a frequency converter 1 constituting the high frequency power supply equal to or greater than 10 kHz. A capacitor, or a capacitor bank, of compensation 2 is connected between the terminals of the power supply 1.

L'inducteur, branché aux bornes du condensateur 2 et de l'alimentation, est constitué d'au moins deux parties inductives élémentaires distinctes. Selon l'exemple de réalisation de Fig.4, l'inducteur est constitué de trois parties inductives élémentaires 3a, 3b, 3c reliées entre elles en série par au moins un condensateur, ou batterie de condensateurs, 2a, 2b. L'inductance équivalente à celles des parties inductives élémentaires 3a, 3b, 3c, en série est égale à la valeur déterminée L de l'inducteur 3 d'un montage classique selon Fig.1 à 3.The inductor, connected to the terminals of the capacitor 2 and the power supply, consists of at least two distinct inductive elements. According to the exemplary embodiment of Fig.4 , the inductor consists of three elementary inductive parts 3a, 3b, 3c interconnected in series by at least one capacitor, or capacitor bank, 2a, 2b. The inductance equivalent to that of the elementary inductive parts 3a, 3b, 3c, in series is equal to the determined value L of the inductor 3 of a conventional assembly according to Fig.1 to 3 .

Selon l'exemple de Fig.4, la tension U1 se développe entre les bornes 6a et 7c des parties inductives élémentaires respectives 3a et 3c ; la tension U2 entre les bornes 7a et 6b des parties inductives élémentaires 3a et 3b et la tension U3 entre les bornes 7b et 6c des parties inductives élémentaires 3b, 3c. Le condensateur 2 est relié aux bornes 6a, 7c tandis que les condensateurs 2a, 2b sont reliés respectivement aux bornes 7a, 6b et aux bornes 7b, 6c.According to the example of Fig.4 the voltage U1 develops between the terminals 6a and 7c of the respective elementary inductive parts 3a and 3c; the voltage U2 between the terminals 7a and 6b of the elementary inductive parts 3a and 3b and the voltage U3 between the terminals 7b and 6c of the elementary inductive parts 3b, 3c. The capacitor 2 is connected to the terminals 6a, 7c whereas the capacitors 2a, 2b are respectively connected to the terminals 7a, 6b and to the terminals 7b, 6c.

Les tensions U1, U2 et U3 étant réduites par rapport à la tension de fonctionnement de l'inducteur 3 selon Fig.1 à 3, les besoins en isolation électrique et les précautions à prendre pour la réalisation de l'équipement sont également réduites et les conducteurs peuvent être rapprochés l'un de l'autre avec une diminution du risque de claquage.The voltages U1, U2 and U3 being reduced relative to the operating voltage of the inductor 3 according to Fig.1 to 3 , the electrical insulation requirements and the precautions to be taken for the realization of the equipment are also reduced and the drivers can be brought closer to one another with a reduction of the risk of breakdown.

Selon l'exemple de réalisation de Fig.4, l'inducteur formé par l'ensemble des parties inductives élémentaires 3a, 3b, 3c, peut être installé à l'intérieur d'une enveloppe 8 d'un four de chauffage se trouvant par exemple sous atmosphère protectrice, notamment H2 + N2, à maintenir séparée de la présence d'air ou d'oxygène pour éviter les risques d'explosion. L'enveloppe 8 est étanche, et réalisée par exemple en tôle d'acier. Les condensateurs 2a, 2b peuvent être logés à l'intérieur de l'enveloppe 8 car le chauffage par induction n'entraîne pas des températures trop importantes dans le volume intérieur de l'enveloppe 8. Dans ces conditions, une seule traversée étanche 9 est à réaliser, à travers la paroi de l'enveloppe 8, pour le passage de branches d'extrémité 10a, 10c des inducteurs 3a, 3c afin de rendre les bornes de raccordement 6a, 7c accessibles de l'extérieur de l'enveloppe 8. La réalisation d'une traversée étanche 9 étant relativement coûteuse, il est particulièrement intéressant de pouvoir éviter une telle traversée étanche au niveau des bornes 7a, 6b et/ou 7b, 6c.According to the exemplary embodiment of Fig.4 the inductor formed by all of the elementary inductive parts 3a, 3b, 3c can be installed inside an enclosure 8 of a heating furnace, for example under a protective atmosphere, in particular H2 + N2, to keep separate from the presence of air or oxygen to avoid the risk of explosion. The envelope 8 is waterproof, and made for example of sheet steel. The capacitors 2a, 2b can be housed inside the envelope 8 because induction heating does not cause excessive temperatures in the interior volume of the envelope 8. Under these conditions, a single watertight passage 9 is to make, through the wall of the casing 8, for the passage of end branches 10a, 10c of the inductors 3a, 3c in order to make the connection terminals 6a, 7c accessible from the outside of the casing 8. The realization of a tight passage 9 being relatively expensive, it is particularly interesting to be able to avoid such a sealed crossing at the terminals 7a, 6b and / or 7b, 6c.

Fig.5 est un schéma électrique équivalent à l'installation de Fig.4. Les mêmes références numériques ont été reprises sur le schéma de Fig.5 faisant apparaître que inducteur, d'inductance L, est divisé en plusieurs parties, trois dans l'exemple considéré, reliées par des condensateurs 2a, 2b, 2. Fig.5 is a circuit diagram equivalent to the installation of Fig.4 . The same numerical references have been taken from the diagram of Fig.5 showing that inductor, of inductance L, is divided into several parts, three in the example in question, connected by capacitors 2a, 2b, 2.

Fig.6 est un schéma d'un autre exemple de réalisation pour un circuit oscillant série dans lequel l'inducteur est divisé en deux parties 3a, 3b reliées par un condensateur 2a. Les autres bornes d'extrémité des parties inductives élémentaires 3a, 3b sont reliées respectivement à une plaque d'un condensateur 2 ou 2b, lui-même relié par son autre plaque à une borne de l'alimentation. Ce montage peut être prévu avec ou sans transformateur 11. Fig.6 is a diagram of another embodiment for a series oscillating circuit in which the inductor is divided into two parts 3a, 3b connected by a capacitor 2a. The other end terminals of the elementary inductive parts 3a, 3b are respectively connected to a plate of a capacitor 2 or 2b, itself connected by its other plate to a terminal of the power supply. This assembly can be provided with or without a transformer 11.

Ce concept peut aisément être généralisé à un nombre de points de raccordement différent de ceux illustrés par les exemples de Fig.4 à 6, et/ou avec des inducteurs à deux spires ou plus de deux spires.This concept can easily be generalized to a number of connection points different from those illustrated by the examples of Fig.4 to 6 and / or with inductors with two turns or more than two turns.

Fig.7 est un schéma simplifié en perspective illustrant le cas d'un inducteur monospire 3 pour bande métallique 4 qui défile verticalement selon la représentation de Fig.7. Fig.7 is a simplified diagram in perspective illustrating the case of a monospiral inductor 3 for metal strip 4 which scrolls vertically according to the representation of Fig.7 .

Fig.8 illustre un autre exemple d'application du chauffage par induction dans le cas d'un four de fusion de verre ou d'oxydes, en spire directe. Dans un four de fusion de verre par induction on retrouve une alimentation électrique à haute fréquence constituée par un convertisseur de fréquence 21, avec un condensateur, ou une batterie de condensateurs, 22 de compensation branché entre les bornes du convertisseur. Un inducteur 23, par exemple monospire, branché aux bornes du condensateur 22 entoure une masse de verre G en fusion, qui est conductrice de l'électricité. Fig.8 illustrates another example of application of induction heating in the case of a glass melting furnace or oxides, in direct turn. In an induction glass melting furnace there is a high-frequency power supply constituted by a frequency converter 21, with a capacitor, or a capacitor bank, 22 of compensation connected between the terminals of the converter. An inductor 23, for example single-core, connected to the terminals of capacitor 22 surrounds a mass of molten glass G, which is electrically conductive.

II. est connu que le point faible des fours à induction de fusion de verre ou d'oxydes réfractaires (amiante, silicate...) se situe dans une zone A de fermeture de la spire et de raccordement à l'alimentation. Cette zone A est sujette à amorçage électrique entre les conducteurs en raison de la grande différence de potentiel entre les bornes d'alimentation 26a, 26b de l'inducteur.II. It is known that the weak point of induction furnaces melting glass or refractory oxides (asbestos, silicate ...) is located in a zone A closing the turn and connection to the power supply. This zone A is subject to electrical ignition between the conductors because of the large potential difference between the supply terminals 26a, 26b of the inductor.

Les courants induits dans la masse G de verre sont schématiquement représentés par un tracé en pointillés 25.The currents induced in the mass G of glass are schematically represented by a dotted line 25.

Selon l'invention, comme illustré sur Fig.9, l'inducteur est divisé en deux parties inductives élémentaires 23a, 23b, représentées ici de façon symétrique et l'inductance équivalente des deux inducteurs 23a, 23b est égale à celle de l'inducteur 23 de Fig.8.According to the invention, as illustrated in Fig.9 the inductor is divided into two elementary inductive parts 23a, 23b, represented here symmetrically and the equivalent inductance of the two inductors 23a, 23b is equal to that of the inductor 23 of Fig.8 .

Les extrémités des inducteurs élémentaires 23a, 23b opposées à l'alimentation sont reliées à un condensateur 22a branché aux bornes respectives 27a, 27b des inducteurs élémentaires.The ends of the elementary inductors 23a, 23b opposite to the power supply are connected to a capacitor 22a connected to the respective terminals 27a, 27b of the elementary inductors.

Avec ce montage, les tensions entre les points 26a, 26b d'une part et entre les points 27a, 27b d'autre part, des parties inductives élémentaires, sont égales à la moitié de la tension qui était appliquée entre les points 26a, 26b selon le montage de l'état de la technique de Fig.8, toutes choses égales par ailleurs.With this arrangement, the voltages between the points 26a, 26b on the one hand and between the points 27a, 27b on the other hand, elementary inductive parts, are equal to half the voltage which was applied between the points 26a, 26b according to the assembly of the state of the art of Fig.8 , all things equal otherwise.

Ainsi, la tension entre les points 26a, 26b, selon Fig.9, est divisée par deux, alors que la puissance de chauffage transférée est conservée.Thus, the voltage between the points 26a, 26b, according to Fig.9 , is halved, while the transferred heating power is retained.

Selon Fig.8, l'inducteur 23 ayant une inductance L, et le condensateur 2 ayant une capacité C, la pulsation du courant étant ω, la relation LCω2 = 1 est satisfaite pour la résonance. La tension aux bornes de l'inducteur est égale à LωI soit égale à I/Cω, avec I= intensité du courant dans le circuit.according to Fig.8 the inductor 23 having an inductance L, and the capacitor 2 having a capacitance C, the pulsation of the current being ω, the relation LCω 2 = 1 is satisfied for the resonance. The voltage across the inductor is equal to LωI equal to I / Cω, where I = intensity of the current in the circuit.

Selon Fig.9, chaque partie inductive élémentaire 23a, 23b a une inductance U2, tandis que chaque condensateur a une capacité double 2C de sorte que la capacité équivalente Ceq est égale à 2C/2 = C. La condition de résonance s'exprime par : L Ceqω2 = 1, soit LC ω2 = 1. Pour la même intensité I, la tension aux bornes de chaque partie inductive élémentaire est U2 ω I (abstraction faite de la résistance ohmique). La puissance transférée, égale à la somme des puissances transférées par chaque partie inductive élémentaire, est la même que pour Fig.8. Par contre, la tension aux bornes du condensateur 22 et entre les points 26a, 26b est égale à 1/2Cω, soit la moitié de ce qu'elle est sur Fig.8 pour une même puissance transférée dans l'induit à chauffer.according to Fig.9 each elementary inductive part 23a, 23b has an inductance U2, while each capacitor has a double capacitance 2C so that the equivalent capacitance C eq is equal to 2C / 2 = C. The resonance condition is expressed by: LC eq ω 2 = 1, ie LC ω 2 = 1. For the same intensity I, the voltage at the terminals of each elementary inductive part is U2 ω I (apart from the ohmic resistance). The transferred power, equal to the sum of the powers transferred by each elementary inductive part, is the same as for Fig.8 . On the other hand, the voltage across the capacitor 22 and between the points 26a, 26b is equal to 1 / 2Cω, which is half of what it is on Fig.8 for the same power transferred in the armature to be heated.

Les risques d'amorçage entre conducteurs isolés au niveau des points 26a, 26b se trouvent sensiblement réduits.The risks of initiation between insulated conductors at points 26a, 26b are substantially reduced.

L'exemple de Fig.9 n'est pas limitatif, et l'inducteur pourrait être décomposé en plus de deux parties inductives élémentaires.The example of Fig.9 is not limiting, and the inductor could be decomposed into more than two elementary inductive parts.

Il est à noter que la condition de résonance L Cω2 = 1 peut n'être satisfaite que de manière approchée.It should be noted that the resonance condition L Cω 2 = 1 can only be satisfied in an approximate manner.

Claims (12)

  1. Induction heating device consisting of
    - a single high frequency electricity supply,
    - an inductor (3, 23) suitable for encircling, at least partially, an armature element (4, G) to be heated, said inductor having a specific inductance value (L) for a desired heating power;
    - and a capacitive assembly for connecting the power supply and the inductor provided to increase the voltage at the inductor terminals in relation to the voltage supplied by the power supply,
    the inductor being constituted of at least two distinct elementary inductive parts (3a, 3b, 3c; 23a, 23b) connected in series by at least one capacitor, or a battery of capacitors (2, 2a, 2b; 22, 22a), the voltage which appears between the connection points of the elementary inductive parts being reduced in relation to the voltage required for the functioning of the inductor for the desired heating power.
  2. Device according to claim 1, comprising a capacitor or battery of capacitors (2) connected between the supply terminals and three distinct elementary inductive parts (3a, 3b, 3c) that are connected in series by two connecting capacitors or a battery of capacitors (2a, 2b).
  3. Device according to claim 1, comprising a capacitor or battery of capacitors (22) connected between the supply terminals and two distinct elementary inductive parts (23a, 23b) connected in series by a capacitor or battery of connection capacitors (22a).
  4. Device according to claim 1, comprising a capacitor or battery of capacitors connected between the supply terminals and N distinct elementary inductive parts, connected in series by N-1 capacitors or a battery of connection capacitors.
  5. Device according to one of claims 2 to 4, the connection capacitor or capacitors (2a, 2b; 22a) having capacity values that are equal, and also equal to the capacity of a capacitor (2, 22) connected to supply terminals.
  6. Device according to one of claims 2 to 4, the connecting capacitors or batteries of capacitors having different capacity values than the capacitor or the battery of capacitors connected to high frequency supply terminals to obtain non-integer ratios of voltage elevation.
  7. Device according to any one of the preceding claims, the connecting capacitor or capacitors (2a, 2b; 22) being located in a zone opposite to the supply in relation to the armature (4, G).
  8. Heating device according to any one of the preceding claims, the capacitors or batteries of capacitors being distributed around the perimeter of the armature (4, G) in order to optimise the occupation of space adjacent to the armature thus limiting parasitic inductances.
  9. Heating device according to any one of the preceding claims, the capacitor or each connecting capacitor being formed by a battery of capacitors.
  10. Heating furnace for metal strips (4) comprising an induction heating device with one or more coils according to any one of the preceding claims.
  11. Heating furnace according to claim 10, the connecting capacitors, or batteries of capacitors (2a, 2b) being arranged on the inside of the furnace shell (8), in the atmosphere of the furnace.
  12. Direct coil glass or oxide fusion furnace (G) comprising an induction heating device according to one of claims 1 to 9.
EP07788840.2A 2006-06-09 2007-06-06 High frequency induction heating device, and induction oven equipped with such device Active EP2027754B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0605134A FR2902274B1 (en) 2006-06-09 2006-06-09 HIGH FREQUENCY INDUCTION HEATING DEVICE, AND INDUCTION FURNACE EQUIPPED WITH SUCH A DEVICE
PCT/FR2007/000932 WO2007141422A1 (en) 2006-06-09 2007-06-06 High frequency induction heating device, and induction oven equipped with such device

Publications (3)

Publication Number Publication Date
EP2027754A1 EP2027754A1 (en) 2009-02-25
EP2027754B1 EP2027754B1 (en) 2009-12-09
EP2027754B2 true EP2027754B2 (en) 2014-06-25

Family

ID=37487530

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07788840.2A Active EP2027754B2 (en) 2006-06-09 2007-06-06 High frequency induction heating device, and induction oven equipped with such device

Country Status (6)

Country Link
EP (1) EP2027754B2 (en)
AT (1) ATE451816T1 (en)
DE (1) DE602007003719D1 (en)
ES (1) ES2338182T5 (en)
FR (1) FR2902274B1 (en)
WO (1) WO2007141422A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944942B1 (en) * 2009-04-23 2011-07-22 Fives Celes POWER INDUCER HEATING DEVICE, POWER INDUCER, AND OVEN EQUIPPED THEREFOR
WO2011083817A1 (en) * 2010-01-06 2011-07-14 住友金属工業株式会社 Induction heating coil, device for manufacturing of workpiece, and manufacturing method
FR3130109B1 (en) * 2021-12-07 2024-02-16 Fives Celes ELEMENT OF INDUCTION HEATING EQUIPMENT CAPABLE OF RECEIVING A COOLING FLUID

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495094A (en) 1994-04-08 1996-02-27 Inductotherm Corp. Continuous strip material induction heating coil
US5837976A (en) * 1997-09-11 1998-11-17 Inductotherm Corp. Strip heating coil apparatus with series power supplies
US6163019A (en) 1999-03-05 2000-12-19 Abb Metallurgy Resonant frequency induction furnace system using capacitive voltage division
FR2852187A1 (en) * 2003-03-07 2004-09-10 Celes Heating device for drying paint layer, has coil surrounding metallic band zone transversally to longitudinal direction of band, including single concave loops whose average plan is orthogonal to longitudinal direction of band
US6963056B1 (en) * 2003-05-09 2005-11-08 Inductotherm Corp. Induction heating of a workpiece

Also Published As

Publication number Publication date
FR2902274B1 (en) 2008-08-08
DE602007003719D1 (en) 2010-01-21
ES2338182T5 (en) 2014-09-22
EP2027754A1 (en) 2009-02-25
ES2338182T3 (en) 2010-05-04
ATE451816T1 (en) 2009-12-15
EP2027754B1 (en) 2009-12-09
WO2007141422A1 (en) 2007-12-13
FR2902274A1 (en) 2007-12-14

Similar Documents

Publication Publication Date Title
EP2027754B2 (en) High frequency induction heating device, and induction oven equipped with such device
FR2817444A1 (en) GENERATORS AND ELECTRICAL CIRCUITS FOR SUPPLYING UNSTABLE HIGH VOLTAGE DISCHARGES
FR2693072A1 (en) Improvements to the coils of the induction heating system.
US8987640B2 (en) Axial resistance sheathed heater
CN106416039A (en) Power supply and method of manufacturing
EP0610131B1 (en) Feed through connection for superconducting coil
CN101490774B (en) Method of producing electrical connections for an electricalenergy storage unit
FR2631486A1 (en) HIGH INTENSITY DISCHARGE LAMP SABS ELECTRODES
FR2740645A1 (en) LITZ-TYPE MULTI-STRANDED INDUCING COIL FOR INDUCTION COOKING
EP1925187A1 (en) Melting furnace with single-turn inductive device consisting of a plurality of conductors
FR2630612A1 (en) INDUCTOR POLES PROTECTION DEVICE AND INDUCTOR PROVIDED WITH SAID DEVICE
EP2422580B1 (en) Heating device with a power inductor, power inductor and oven with such an equipment
WO2012127152A1 (en) Induction furnace crucible
FR2674781A1 (en) Compact inductive device for supplying heat in order to produce small welds on metal workpieces
EP0527982A1 (en) Bank assembly system for power capacitors
FR3038488A1 (en) COOLING A COAXIAL LINE TRUNK AND A PLASMA PRODUCTION DEVICE
FR3065330A1 (en) TOOL FOR WELDING AN ELECTRICAL CONDUCTOR WITH A CONNECTING DEVICE
FR3070097A1 (en) INDUCTION LOADING DEVICE WITH INTERNAL HEAT EXCHANGE
FR2910728A1 (en) METHOD FOR CONNECTING ELECTRICAL CONDUCTORS BY MAGNETOSTRICTION AND MAGNETOSTRICTION GENERATING DEVICE.
EP0732866A1 (en) Process and equipment for heating an electrically conductive liquid
EP0660645A1 (en) Induction heating apparatus for a fluid
WO2016128520A1 (en) Electromagnetic induction device configured as a multiple magnetic circuit
WO2020116122A1 (en) Portable power supply
CH327042A (en) Method for electrically heating a metallic material and device for carrying out this method
US5396513A (en) Metal vapor laser including hot electrodes and integral wick

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FIVES CELES

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007003719

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338182

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: INDUCTOTHERM COATING EQUIPMENT S.A.

Effective date: 20100907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20140625

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602007003719

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602007003719

Country of ref document: DE

Effective date: 20140625

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2338182

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20140922

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230523

Year of fee payment: 17

Ref country code: FR

Payment date: 20230523

Year of fee payment: 17

Ref country code: DE

Payment date: 20230523

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230523

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230523

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 17

Ref country code: ES

Payment date: 20230703

Year of fee payment: 17