EP2009184B1 - Method for calculating the radial enlargement and/or concentration of hydraulically binding material of DSV bodies - Google Patents

Method for calculating the radial enlargement and/or concentration of hydraulically binding material of DSV bodies Download PDF

Info

Publication number
EP2009184B1
EP2009184B1 EP08450089A EP08450089A EP2009184B1 EP 2009184 B1 EP2009184 B1 EP 2009184B1 EP 08450089 A EP08450089 A EP 08450089A EP 08450089 A EP08450089 A EP 08450089A EP 2009184 B1 EP2009184 B1 EP 2009184B1
Authority
EP
European Patent Office
Prior art keywords
dsv
predeterminable
temperature
temperature comparison
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08450089A
Other languages
German (de)
French (fr)
Other versions
EP2009184A2 (en
EP2009184A3 (en
Inventor
Roman Prof. Dipl.-Ing. Lackner
Klaus Dipl.-Ing. Meinhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Porr Technobau und Umwelt AG
Original Assignee
Porr Technobau und Umwelt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Porr Technobau und Umwelt AG filed Critical Porr Technobau und Umwelt AG
Publication of EP2009184A2 publication Critical patent/EP2009184A2/en
Publication of EP2009184A3 publication Critical patent/EP2009184A3/en
Application granted granted Critical
Publication of EP2009184B1 publication Critical patent/EP2009184B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/46Concrete or concrete-like piles cast in position ; Apparatus for making same making in situ by forcing bonding agents into gravel fillings or the soil

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • So-called DSV bodies are produced by means of the jet-blasting method, a proven method in special civil engineering for solidification of the substrate in which a water / binder suspension is introduced into the underground from a subterranean rotating or pivoted drill pipe at high pressure.
  • the drill pipe is thereby moved starting from a maximum longitudinal extent, in particular a maximum depth, of the DSV column in the direction of the wellbore, whereby a column is formed.
  • a maximum longitudinal extent in particular a maximum depth
  • DSV columns can be produced down to depths of 20 meters and more. It is therefore provided for quality control at least a so-called.
  • Probe Textle dig after their preparation in areas to determine their dimensions.
  • the object of the invention is therefore to provide a method of the type mentioned, with which the mentioned disadvantages can be avoided, with which fast, simple, accurate and cost-saving properties, in particular dimensions and quality of the mortar used, can be determined by DSV bodies.
  • the Fig. 1 and 4 show flowcharts of preferred embodiments of a method for determining the radial extent and / or the content of hydraulically binding materials of DSV bodies 8, which are formed by introducing hydraulically binding materials in a bottom region 9, wherein at least a first temperature measurement curve 14 in a predeterminable time range in At least a first region of the DSV body 8 is measured 1, that the first temperature measurement curve is compared with at least one predetermined first part 2 of a predetermined first plurality of temperature comparison curves 3 in a comparison device 4, that upon satisfaction of a predetermined first convergence criterion 5 by one of the temperature comparison curves this is selected as the first temperature comparison curve 6, or that the temperature comparison curve with the smallest error deviation from the first temperature measurement curve is selected as the second temperature comparison curve 7.
  • From the proportion or content of hydraulically binding materials or hydraulic binder in DSV bodies 8 can be at least indirectly closed on the strength of the DSV body 8.
  • DSV bodies 8 can be determined quickly, simply, precisely and cost-effectively. This can not only on the excavation of a specimen, in particular a Probe Textle, are largely dispensed with, whereby a considerable time savings and cost reduction can be achieved on the site, but also a much more accurate statement about the quality, therefore the dimensions and / or strength of the DSV column or DSV body created. 8 be determined.
  • the safety in civil engineering can be significantly improved, the structural engineer much more realistic data with respect to the carrying capacity of the DSV columns formed are available as determined by the prior art test columns. This can prevent structures, such as bridges, buildings and / or tunnels, from collapsing, tilting and / or sinking due to incorrectly assumed load capacities of DSV bodies 8.
  • the hydraulically binding materials comprise at least one hydraulic binder, wherein it is preferably provided that the hydraulic binder comprises cement, and the first predetermined content of hydraulic binder is a first cement content.
  • other hydraulic binders may also be provided, such as lime in its different configurations, as well as mixtures comprising lime and / or cement.
  • the terms hydraulically binding materials, hydraulic binder, cement-bound mortar and / or cement are alternatively used. The description of one or more process steps and / or technological principles with reference to cement preferably does not represent a limitation of the process according to the invention to cement or cement-bound mortar.
  • the nozzle jet method is a soil improvement method in which the existing soil structure is destroyed by a high-energy beam and the soil or the bottom area 9 is mixed with the introduced suspension (cement and water).
  • DSV body 8 By simultaneously pulling up and rotating the drill string 10, a columnar structure of solidified soil is formed, hereinafter referred to as DSV body 8.
  • a first step as in Fig. 2.1 shown, a hole is drilled in the bottom region 9 to be solidified.
  • a nozzle in the drill pipe 10 is, as in Fig. 2.2 shown, placed under high pressure mortar in the soil.
  • the existing soil conditions are partially destroyed, and rebuilt by the mortar.
  • the drill string 10 is continuously pulled up during the output of mortar, whereby a pillar is formed. It is also possible to form DSV bodies 8 deviating from the columnar shape.
  • the main areas of application of the DSV include, in addition to ground improvement (e.g., underpinning, foundation reinforcements and foundation redevelopment), the production of horizontal sealing soles, vertical sealing walls, sealing pans and sealing measures in tunneling. Due to these diverse fields of application and due to the enormous flexibility of the process (application to different soil types, as well as different spatial conditions, such as lack of space), this technique of special foundation engineering has become increasingly important in recent years. Due to the process, the production of the DSV body 8 takes place in the background of the floor area 9 without visual inspection. Any deviations due to fluctuations in the influencing parameters can not be detected during or immediately after production.
  • Such deviations relate to the dimensions and composition of the DSV bodies 8, which are defined on the one hand by the pending floor and on the other hand by manufacturing parameters such as, e.g. Flow rate and water / cement value of the introduced suspension and pulling and rotating speed of the drill string 10 depend. For this reason, methods for detecting the properties of the DSV bodies 8 (dimensions and quality of the DSV mortar) are of considerable technical but also economic importance.
  • the inventive method represents a novel method for determining the diameter of DSV bodies 8 and the material properties of DSV mortar, wherein a measured locally on a DSV body 8 first temperature measurement curve 14 with is compared at least a predetermined first part of a predetermined first plurality of temperature comparison curves. It may be provided that this plurality of temperature comparison curves is determined, for example, by a multiplicity of tests.
  • the predefinable plurality of temperature comparison curves is determined by calculation, whereby - with high accuracy - can be dispensed with costly experiments. It has been shown that a determination of the temperature comparison curves of the predeterminable first plurality of temperature comparison curves from the exothermic setting reactions of the at least one hydraulic binder leads to surprisingly exact results.
  • the searched parameters of the DSV body 8 are determined by recalculation using the temperature measurement curve 14 measured at the construction site. It is therefore preferably provided that the temperature comparison curves of the predefinable first plurality of temperature comparison curves are respectively determined for a combination of a predeterminable first radius of the DSV body 8 and a predeterminable first content of hydraulic binder. Therefore, depending on the first radius of the DSV body 8, as well as its first content of hydraulic binder, a predeterminable plurality of temperature comparison curves are determined, preferably calculated, whereby fast accurate simulation results are available.
  • thermochemical material model for describing the progress of hydration in cementitious building materials is described below.
  • the required for the recalculation of the sought parameters of the DSV body 8 temperature measurement on the site is described in detail elsewhere.
  • the hydration of cementitious materials is an exothermic process.
  • the resulting chemothermal coupling leads to an increase in the temperature in the DSV body 8.
  • the temperature influences the rate of the chemical reaction (thermochemical coupling).
  • the solution to this two-way coupling problem is described below.
  • the progress of hydration is described by a scalar variable m, the mass of water bound in hydrates (hydrate mass).
  • Equation (2) The normalized chemical affinity ⁇ ( ⁇ ) reflects the dependence of the reaction rate on the already formed hydrates.
  • the exponential term takes into account the influence of temperature on the reaction rate.
  • E a corresponds to the activation energy of the reaction. It is 33500 J / mol for Portland cements.
  • the intrinsic material function ⁇ ( ⁇ ) can be determined by means of various experiments, by exploiting the chemo-mechanical coupling (compression tests) or the chemothermal coupling (adiabatic experiments).
  • the development of the degree of hydration ⁇ and the temperature development in a DSV body 8 can preferably be calculated by means of the finite element method. By comparing the numerically obtained temperature development with one carried out on the construction site Measurement can be concluded both on the cement content in the DSV body 8 and on its radius.
  • Fig. 1 shows a first flow diagram of a preferred particularly simple embodiment of a method according to the invention.
  • Fig. 1 shows a first flow diagram of a preferred particularly simple embodiment of a method according to the invention.
  • it can also be provided to determine these from a large number of experiments with different parameters and store them in databases or data sheets.
  • Fig. 4 shows a flowchart of such a particularly preferred iterative method, wherein in this particularly preferred embodiment, further additional advantageous method steps are provided.
  • a first radius range of the DSV body 8 is specified, that a predeterminable number of first partial radii is selected from the first radius range, that a first range of the content of hydraulic binder is specified, that from the first range of the content a predeterminable number of first subregions is selected on the hydraulic binder, and that the temperature comparison curves are determined for predefinable, in particular for all, combinations between the first subradii and the first subregions. Therefore, an area for the first radius and the first cement content or the first content of hydraulic binder is specified for the iterative calculation. For example: radius R 1 of 10cm to 150cm; Content of hydraulic binder Z 1 of 100kg / m 3 to 1000kg / m3
  • a particularly large first radius range and a particularly large first range of the content of hydraulic binder are preferably specified. Furthermore, it may be provided to specify a number of intermediate steps, for example those of four. However, the number of intermediate steps can also be predefined. The first radius region and the first region of the content of hydraulic binder are then divided according to the number of intermediate steps. The type of this division can be specified by the user. It is preferably provided that the division of the corresponding areas linear or logarithmically.
  • first radius range R 10 centimeters 50cm 100cm 150cm first range of content of hydraulic binder Z: 100kg / m 3 300kg / m 3 600kg / m 3 1000kg / m 3
  • all possible value combinations are preferably formed from these four parameters in each case, and the temperature comparison curves are determined with each of these value combinations between the first partial radii and the first partial regions.
  • the first convergence criterion can be defined as a predefinable area around the first temperature measurement curve. Particularly preferably, it is provided that the first convergence criterion is specified as a predefinable change of the first radius of the DSV body 8 and of the first content of hydraulic binder between two successive iteration steps, as will be described below.
  • each calculated temperature comparison curve is compared with the temperature measurement curve 14.
  • the quadratic error is preferably determined and added up. It should be noted that for each calculated temperature profile, the comparison with the measured temperature measurement curve 14 takes place at the same points in time. The ascertained quadratic errors are summed for each temperature comparison curve to a characteristic of this temperature comparison curve error value.
  • the temperature comparison curve with the lowest error value is selected for a further iteration step as the second temperature comparison curve, wherein it is preferably provided that a second radius range is specified, that the second radius range is predetermined as a predefinable interval around the second radius on which the second temperature comparison curve is determined from the second radius range, a predeterminable number of second partial radii is selected such that a second range of the content of hydraulic binder is specified, that the second range is predetermined as a specifiable interval around the second content of hydraulic binder on which the second temperature comparison curve is based from the second area of the content of hydraulic binder a predeterminable number of second sub-areas is selected, and that for predetermined, in particular for all, combinations between second sub-radii and second sub-areas, the temperature comparison curves are determined.
  • the second radius associated with the second temperature comparison curve and the second content of hydraulic binder are reduced and increased by a predefinable value, and thus a second radius range and a second range of the content of hydraulic binder are specified.
  • Z Area 2 below Z Second ⁇ Temperature comparison curve - 15 %
  • the new range of values is again subdivided into intermediate steps, whereby again preferably all combinations of values are formed. If a temperature comparison curve satisfies the first convergence criterion, this is output together with the first radius of the DSV body 8 underlying the determination thereof and the first content of hydraulic binder.
  • the first convergence criterion is specified as a specifiable change of the first radius of the DSV body 8 and of the first content of hydraulic binder between two successive iteration steps, as is also the case Fig. 4 evident.
  • the first convergence criterion is fulfilled if the change in the determined radius between two subsequent iteration steps is less than 2.5 cm and the change in the determined content of hydraulic binder is less than 50 kg / m 3 .
  • the influence of the individual parameters can be partly derived physically / chemically, but otherwise has to be determined by tests. It has been shown by the consideration of individual, preferably all, of the aforementioned parameters in the determination of the temperature comparison curves determined according to a method according to the invention values for the radius of a DSV body 8 and / or the content of hydraulic binder match much more accurately with the actual values as in all previously known methods.
  • the corresponding parameters must be known when using the method, and are determined approximately by means of soil samples, and measurements of the aforementioned temperatures. Thermal conductivities and storage capacities can be determined by means of a laboratory test and stored in databases in order to be available for the method according to the invention.
  • Fig. 7 Illustrates for example in a diagram the dependence of the thermal conductivity on the degree of saturation and the bulk density of the hydraulically binding materials.
  • the accuracy of the measured temperature measurement curve inside the DSV body 8 is of particular importance.
  • a novel method for introducing a first temperature sensor 11 into a DSV body 8 has been developed. It is provided that after formation of the DSV body 8, a drill string 10 with a Rammspitze 17, in the area at least a first temperature sensor 11 is arranged, inserted into the wellbore and pushed substantially free of rotation in the still deformable DSV body 8 before its solidification, and that the Rammspitze 17 together with the first temperature sensor 11 when reaching a greatest depth is decoupled, and remains in the DSV body 8.
  • the first temperature sensor 11 in contrast to conventional methods, in which a first temperature sensor 11 is introduced by means of a rod, which has only insufficient rigidity, at an undefined point manually in the still deformable DSV body 8, in the method according to the invention, the first temperature sensor 11 by means of the stiff and well-guided drill string 10 introduced into the center of the DSV body 8, whereby there is a particularly high agreement between the actual location of the recording of the temperature measurement curve 14 and the assumed assumption of the temperature measurement curve in the determination of the temperature comparison curves.
  • the at least one first temperature sensor 11 in the interior of the drill string 10 in or on a pipe 19, in particular a metal pipe is guided, and that the electrical leads are guided to the first temperature sensor 11 in the interior of the metal tube.
  • the drill string 10 is pulled out of the DSV body 8 and the ram tip 17 remains together with the first temperature sensor 11 and the tube 19 in the DSV body 8, as in Fig. 10 is shown.
  • the first temperature sensor 11 further temperature sensors can be arranged at predetermined intervals, so that for different sections of the DSV body 8 in each case the inventive method for determining the radial extent and / or strength of DSV bodies 8 can be applied, whereby the accuracy of Results and safety in civil engineering can be further increased.
  • Fig. 3 shows an arrangement with finished DSV body 8 and a first temperature sensor 11 in the interior of the DSV body 8. Further, a second temperature sensor 12 appears outside the ground to record the ambient temperature.
  • the recording of the measured data can be done either manually or automatically by means of data logger 13, as in Fig. 3 shown. Automatic recording defines the reading period and sets the interval between recording times.
  • An additional display on the display of the data logger 13 allows a continuous observation of the temperature development during the hydration of the DSV body 8.
  • the use of data logger 13 allows an extremely simple transfer of the temperature measurement data of the DSV bodies 8 to a PC. Subsequently, the measurement data can be converted into various data formats (eg ASCII). The processing is very easy and also on the construction site itself.
  • the temperature is continuously measured during the setting process, and thus determines the temperature measurement curve 14.
  • the FIGS. 5 and 6 It can be clearly seen that the maximum value of the measured temperature and the time when this temperature is reached in the center of the DSV body 8, strongly with the radius of the DSV body 8 and the content of hydraulic binder in the introduced suspension or the introduced mortar, wherein the in Fig. 5 Cement content refers to the content of hydraulic binder, and the in Fig. 6 cited column diameter is equivalent to the radius of the DSV body 8. From these measurements, in turn, a relationship between the radius of the DSV body 8 and measured temperature measurement curves 14 can be seen. For measurements on the smaller DSV bodies 8 or DSV columns, the maximum temperature occurs earlier in comparison to larger DSV bodies 8.
  • a novel drilling arrangement 15 for ground drilling work comprising a drill pipe 10, wherein - viewed in the use position - lower end of the drill string 10 is a substantially immobile Rammspitze 17th is arranged, and that in the region of the ram tip 17 at least a first temperature sensor 11 is arranged.
  • Such a drilling assembly is approximately in the 8 and 9 shown, in Fig. 9 good the decoupled Rammspitze 17 can be seen, which as - viewed in the use position - downwardly arranged obtuse flat metal assembly 18 is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method according to the preamble of claim 1.

Sogenannte DSV-Körper werden mittel dem Düsenstrahlverfahren hergestellt, ein bewährtes Verfahren im Spezialtiefbau zur Verfestigung des Untergrundes bei welchem aus einem unterirdisch rotierenden bzw. verschwenkten Bohrgestänge mit hohem Druck eine Wasser/Bindemittel-Suspension in den Untergrund eingebracht wird. Das Bohrgestänge wird dabei ausgehend von einer größten Längserstreckung, insbesondere einer größten Tiefe, der DSV-Säule in Richtung des Bohrlochmundes bewegt, wodurch eine Säule gebildet wird. Systembedingt ist es bei einer derart gebildeten DSV-Säule nur bedingt möglich deren tatsächliche Festigkeit sowie deren Ausdehnung zu ermitteln, da DSV-Säulen bis in Tiefen von 20 Metern und mehr herstellbar sind. Es ist daher vorgesehen zur Qualitätskontrolle wenigstens eine sog. Probesäule nach deren Herstellung bereichsweise auszugraben, um deren Abmessungen zu eruieren. Dies weist jedoch eine Fülle an Nachteilen auf. So ist ein Freilegen einer Probesäule nur bis zu einer Tiefe von etwa vier Metren wirtschaftlich sinnvoll bzw. möglich. Da die Bodenverhältnisse in anderen Tiefen jedoch von den Bodenverhältnissen im unmittelbaren Oberflächenbereich abweichen können, liefert dieses Verfahren nur eingeschränkte Hinweise auf die Ausdehnung und die Festigkeit der DSV-Säule. Zudem ist das Ausgraben einer Probesäule ein sehr zeitraubendes Unterfangen, welches den weiteren Baubetrieb um wenigstes drei bis fünf Tage bremst.So-called DSV bodies are produced by means of the jet-blasting method, a proven method in special civil engineering for solidification of the substrate in which a water / binder suspension is introduced into the underground from a subterranean rotating or pivoted drill pipe at high pressure. The drill pipe is thereby moved starting from a maximum longitudinal extent, in particular a maximum depth, of the DSV column in the direction of the wellbore, whereby a column is formed. Depending on the system, it is only possible to a limited extent to determine the actual strength and extent of such a DSV column, since DSV columns can be produced down to depths of 20 meters and more. It is therefore provided for quality control at least a so-called. Probesäule dig after their preparation in areas to determine their dimensions. However, this has a wealth of disadvantages. Thus, exposing a sample column only makes economic sense or possible to a depth of about four meters. However, since the soil conditions at other depths may differ from the soil conditions in the immediate surface area, this method provides only limited evidence of the extent and strength of the DSV column. In addition, the excavation of a sample column is a very time-consuming endeavor, which slows down the further construction for at least three to five days.

Aus der EP 1 930 506 A1 ist ein Verfahren zur Prüfung eines Bohrpfahls bekannt.From the EP 1 930 506 A1 a method for testing a bored pile is known.

Aufgabe der Erfindung ist es daher ein Verfahren der eingangs genannten Art anzugeben, mit welchem die genannten Nachteile vermieden werden können, mit welchem schnell, einfach, genau und kostenschonend Eigenschaften, insbesondere Abmessungen und Qualität des verwendeten Mörtels, von DSV-Körpern ermittelt werden können.The object of the invention is therefore to provide a method of the type mentioned, with which the mentioned disadvantages can be avoided, with which fast, simple, accurate and cost-saving properties, in particular dimensions and quality of the mortar used, can be determined by DSV bodies.

Erfindungsgemäß wird dies durch die Merkmale des Patentanspruches 1 erreicht.This is achieved by the features of claim 1 according to the invention.

Dadurch können schnell, einfach, genau und kostenschonend Eigenschaften, insbesondere Abmessungen und Qualität des verwendeten Mörtels, von DSV-Körpern ermittelt werden. Dadurch kann nicht nur auf das Ausgraben eines Probekörpers, insbesondere einer Probesäule, weitestgehend verzichtet werden, wodurch eine erhebliche Zeitersparnis sowie Kostensenkung auf der Baustelle erreicht werden kann, sondern auch eine wesentlich genauere Aussage über die Qualität, daher die Abmessungen und/oder die Festigkeit, der erstellten DSV-Säule ermittelt werden. Dadurch kann die Sicherheit im Tiefbau wesentlich verbessert werden, dem Statiker wesentlich realistischere Daten bezüglich der Trägfähigkeit der gebildeten DSV-Säulen zur Verfügung stehen als nach den gemäß bisheriger Verfahren ermittelten Probesäulen. Dadurch kann verhindert werden, dass Bauwerke, wie etwa Bücken, Gebäude und/oder Tunnel, aufgrund falsch angenommener Tragfähigkeiten von DSV-Säulen einstürzen, kippen und/oder anderweitige Schäden auftreten.As a result, properties, in particular dimensions and quality of the mortar used, of DSV bodies can be determined quickly, simply, precisely and cost-effectively. As a result, not only the excavation of a test specimen, in particular a sample column, are largely dispensed with, whereby a considerable saving of time and cost reduction can be achieved on the site, but also a much more accurate statement about the quality, therefore the dimensions and / or strength, the generated DSV column. As a result, the safety in civil engineering can be significantly improved, the structural engineer much more realistic data on the ability to support The formed DSV columns are available as determined by the prior art test columns. This can prevent buildings, such as stooping, buildings and / or tunnels, from collapsing, tilting and / or otherwise damaging due to misconfirmed load capacities of DSV columns.

Die Unteranspruch, welche ebenso wie der Patentanspruch 1 gleichzeitig einen Teil der Beschreibung bilden, betreffen weitere vorteilhafte Ausgestaltungen der Erfindung.The dependent claims, which as well as the patent claim 1 simultaneously form part of the description, relate to further advantageous embodiments of the invention.

Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen, in welchen lediglich bevorzugte Ausführungsformen beispielhaft dargestellt sind, näher beschrieben. Dabei zeigt:

  • Fig. 1 ein Ablaufdiagramm einer ersten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens;
  • Fig. 2 eine schematische Darstellung der Herstellung eines DSV-Körpers;
  • Fig. 3 die Anordnung eines Temperatursensors in einem DSV-Körper;
  • Fig. 4 ein Ablaufdiagramm einer zweiten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens;
  • Fig. 5 eine erste Mehrzahl an Temperaturvergleichskurven über der Zeit;
  • Fig. 6 eine zweite Mehrzahl an Temperaturvergleichskurven über der Zeit;
  • Fig. 7 die Wärmeleitfähigkeit eines Bodens mit durchschnittlicher Korngröße von 2 mm;
  • Fig. 8 eine erfindungsgemäße Bohranordnung für Bodenbohrarbeiten;
  • Fig. 9 eine Bohranordnung gemäß Fig. 8 mit einer erfindungsgemäße Rammspitze; und
  • Fig. 10 ein DSV-Körper mit einer darin angeordneten Rammspitze.
The invention will be described in more detail with reference to the accompanying drawings, in which only preferred embodiments are shown by way of example. Showing:
  • Fig. 1 a flow diagram of a first preferred embodiment of the method according to the invention;
  • Fig. 2 a schematic representation of the production of a DSV body;
  • Fig. 3 the arrangement of a temperature sensor in a DSV body;
  • Fig. 4 a flow diagram of a second preferred embodiment of the method according to the invention;
  • Fig. 5 a first plurality of temperature comparison curves over time;
  • Fig. 6 a second plurality of temperature comparison curves over time;
  • Fig. 7 the thermal conductivity of a soil with average grain size of 2 mm;
  • Fig. 8 a drilling assembly according to the invention for soil drilling;
  • Fig. 9 a drilling assembly according to Fig. 8 with a ram tip according to the invention; and
  • Fig. 10 a DSV body having a ram tip disposed therein.

Die Fig. 1 und 4 zeigen Ablaufdiagramme bevorzugter Ausführungsformen eines Verfahren zur Bestimmung der radialen Ausdehnung und/oder des Gehalts an hydraulisch bindenden Materialien von DSV-Körpern 8, welche durch Einbringen hydraulisch bindender Materialien in einem Bodenbereich 9 gebildet werden, wobei wenigstens eine erste Temperaturmesskurve 14 in einem vorgebbaren Zeitbereich in wenigstens einem ersten Bereich des DSV-Körpers 8 gemessen wird 1, dass die erste Temperaturmesskurve mit wenigstens einem vorgebbaren ersten Teil 2 einer vorgebbaren ersten Mehrzahl an Temperaturvergleichskurven 3 in einer Vergleichsvorrichtung verglichen wird 4, dass bei Erfüllen eines vorgebbaren ersten Konvergenzkriteriums 5 durch eine der Temperaturvergleichskurven diese als erste Temperaturvergleichskurve ausgewählt wird 6, oder dass die Temperaturvergleichskurve mit der kleinsten Fehlerabweichung zur ersten Temperaturmesskurve als zweite Temperaturvergleichskurve ausgewählt wird 7.The Fig. 1 and 4 show flowcharts of preferred embodiments of a method for determining the radial extent and / or the content of hydraulically binding materials of DSV bodies 8, which are formed by introducing hydraulically binding materials in a bottom region 9, wherein at least a first temperature measurement curve 14 in a predeterminable time range in At least a first region of the DSV body 8 is measured 1, that the first temperature measurement curve is compared with at least one predetermined first part 2 of a predetermined first plurality of temperature comparison curves 3 in a comparison device 4, that upon satisfaction of a predetermined first convergence criterion 5 by one of the temperature comparison curves this is selected as the first temperature comparison curve 6, or that the temperature comparison curve with the smallest error deviation from the first temperature measurement curve is selected as the second temperature comparison curve 7.

Aus dem Anteil bzw. Gehalt an hydraulisch bindenden Materialien bzw. an hydraulischem Bindemittel in DSV-Körpern 8 kann wenigstens mittelbar auf deren Festigkeit des DSV-Körpers 8 geschlossen werden.From the proportion or content of hydraulically binding materials or hydraulic binder in DSV bodies 8 can be at least indirectly closed on the strength of the DSV body 8.

Dadurch können schnell, einfach, genau und kostenschonend Eigenschaften, insbesondere Abmessungen und Qualität des verwendeten Mörtels, von DSV-Körpern 8 ermittelt werden. Dadurch kann nicht nur auf das Ausgraben eines Probekörpers, insbesondere einer Probesäule, weitestgehend verzichtet werden, wodurch eine erhebliche Zeitersparnis sowie Kostensenkung auf der Baustelle erreicht werden kann, sondern auch eine wesentlich genauere Aussage über die Qualität, daher die Abmessungen und/oder die Festigkeit, der erstellten DSV-Säule bzw. des DSV-Körpers 8 ermittelt werden. Dadurch kann die Sicherheit im Tiefbau wesentlich verbessert werden, dem Statiker wesentlich realistischere Daten bezüglich der Tragfähigkeit der gebildeten DSV-Säulen zur Verfügung stehen als nach den gemäß bisheriger Verfahren ermittelten Probesäulen. Dadurch kann verhindert werden, dass Bauwerke, wie etwa Brücken, Gebäude und/oder Tunnel, aufgrund falsch angenommener Tragfähigkeiten von DSV-Körpern 8 einstürzen, kippen und/oder im Untergrund versinken.As a result, properties, in particular dimensions and quality of the mortar used, of DSV bodies 8 can be determined quickly, simply, precisely and cost-effectively. This can not only on the excavation of a specimen, in particular a Probesäule, are largely dispensed with, whereby a considerable time savings and cost reduction can be achieved on the site, but also a much more accurate statement about the quality, therefore the dimensions and / or strength of the DSV column or DSV body created. 8 be determined. As a result, the safety in civil engineering can be significantly improved, the structural engineer much more realistic data with respect to the carrying capacity of the DSV columns formed are available as determined by the prior art test columns. This can prevent structures, such as bridges, buildings and / or tunnels, from collapsing, tilting and / or sinking due to incorrectly assumed load capacities of DSV bodies 8.

Bei der Herstellung von DSV-Körpern 8 ist bevorzugt vorgesehen, dass die hydraulisch bindenden Materialien wenigstens ein hydraulisches Bindemittel umfassen, wobei bevorzugt vorgesehen ist, dass das hydraulische Bindemittel Zement umfasst, und der erste vorgebbare Gehalt an hydraulischem Bindemittel ein erster Zementgehalt ist. Es können jedoch auch andere hydraulische Bindemittel vorgesehen sein, etwa Kalk in dessen unterschiedlichen Ausbildungen, sowie Stoffgemenge umfassend Kalk und/oder Zement. Bei der weiteren Beschreibung des erfindungsgemäßen Verfahrens und der diesem zugrunde liegenden Thematik werden die Begriffe hydraulisch bindenden Materialien, hydraulisches Bindemittel, zementgebundene Mörtel und/oder Zement alternativ verwendet. Die Beschreibung eines oder mehrerer Verfahrensschritte und/oder technologischer Grundlagen mit Bezug auf Zement stellt bevorzugt keine Einschränkung des erfindungsgemäßen Verfahrens auf Zement bzw. zementgebundene Mörtel dar.In the production of DSV bodies 8 it is preferably provided that the hydraulically binding materials comprise at least one hydraulic binder, wherein it is preferably provided that the hydraulic binder comprises cement, and the first predetermined content of hydraulic binder is a first cement content. However, other hydraulic binders may also be provided, such as lime in its different configurations, as well as mixtures comprising lime and / or cement. In the further description of the method according to the invention and the subject underlying this, the terms hydraulically binding materials, hydraulic binder, cement-bound mortar and / or cement are alternatively used. The description of one or more process steps and / or technological principles with reference to cement preferably does not represent a limitation of the process according to the invention to cement or cement-bound mortar.

Das Düsenstrahlverfahren (DSV) ist ein Bodenverbesserungsverfahren, bei dem die bestehende Bodenstruktur durch einen energiereichen Strahl zerstört und der Boden bzw. der Bodenbereich 9 mit der eingebrachten Suspension (Zement und Wasser) vermischt wird. Durch das gleichzeitige Hochziehen und Rotieren des Bohrgestänges 10 entsteht eine säulenförmige Struktur aus verfestigtem Boden, die im Folgenden als DSV-Körper 8 bezeichnet wird. In den Fig. 2.1, 2.2 und 2.3 werden die unterschiedlichen Schritte zur Bildung eines DSV-Körpers 8 dargestellt. In einem ersten Schritt, wie in Fig. 2.1 dargestellt, wird ein Loch in den zu verfestigenden Bodenbereich 9 gebohrt. Durch eine Düse im Bohrgestänge 10 wird, wie in Fig. 2.2 dargestellt, unter hohem Druck Mörtel in den Boden eingebracht. Dadurch werden die bestehenden Bodenverhältnisse bereichsweise zerstört, und durch den Mörtel neu aufgebaut. Wie am Vergleich der Fig. 2.2 und 2.3 veranschaulicht, wird das Bohrgestänge 10 während des Ausstoßes an Mörtel stetig nach oben gezogen, wodurch eine Säule gebildet wird. Es können auch von der Säulenform abweichende DSV-Körper 8 gebildet werden.The nozzle jet method (DSV) is a soil improvement method in which the existing soil structure is destroyed by a high-energy beam and the soil or the bottom area 9 is mixed with the introduced suspension (cement and water). By simultaneously pulling up and rotating the drill string 10, a columnar structure of solidified soil is formed, hereinafter referred to as DSV body 8. In the Fig. 2.1, 2.2 and 2.3 the different steps for forming a DSV body 8 are shown. In a first step, as in Fig. 2.1 shown, a hole is drilled in the bottom region 9 to be solidified. Through a nozzle in the drill pipe 10 is, as in Fig. 2.2 shown, placed under high pressure mortar in the soil. As a result, the existing soil conditions are partially destroyed, and rebuilt by the mortar. How to compare the Figs. 2.2 and 2.3 illustrated, the drill string 10 is continuously pulled up during the output of mortar, whereby a pillar is formed. It is also possible to form DSV bodies 8 deviating from the columnar shape.

Die Hauptanwendungsgebiete des DSV sind neben der Baugrundverfestigung (z.B. Unterfangungen, Gründungsverstärkungen und Gründungssanierungen) die Herstellung von horizontalen Dichtsohlen, vertikalen Dichtwänden, Dichtwannen und Abdichtungsmaßnahmen im Tunnelbau. Durch diese vielfältigen Anwendungsgebiete und auf Grund der enormen Flexibilität des Verfahrens (Anwendung auf verschiedene Bodenarten, sowie unterschiedliche räumliche Gegebenheiten, etwa bedingt Platzmangel) hat diese Technik des Spezialtiefbaues in den letzten Jahren zunehmend an Bedeutung gewonnen. Verfahrensbedingt erfolgt die Herstellung der DSV-Körper 8 im Untergrund des Bodenbereichs 9 ohne visuelle Kontrolle. Eventuelle Abweichungen durch Schwankungen der Einflussparameter können während bzw. unmittelbar nach der Herstellung nicht erkannt werden. Derartige Abweichungen betreffen die Abmessungen und die Zusammensetzung der DSV-Körper 8, die einerseits vom anstehenden Boden und andererseits von Herstellungsparametern wie z.B. Durchflussmenge und Wasser/Zement-Wert der eingebrachten Suspension und Zieh- und Rotationsgeschwindigkeit des Bohrgestänges 10 abhängen. Aus diesem Grund sind Methoden zur Erfassung der Eigenschaften der DSV-Körper 8 (Abmessungen und Qualität des DSV-Mörtels) von erheblicher technischer aber auch wirtschaftlicher Bedeutung.The main areas of application of the DSV include, in addition to ground improvement (e.g., underpinning, foundation reinforcements and foundation redevelopment), the production of horizontal sealing soles, vertical sealing walls, sealing pans and sealing measures in tunneling. Due to these diverse fields of application and due to the enormous flexibility of the process (application to different soil types, as well as different spatial conditions, such as lack of space), this technique of special foundation engineering has become increasingly important in recent years. Due to the process, the production of the DSV body 8 takes place in the background of the floor area 9 without visual inspection. Any deviations due to fluctuations in the influencing parameters can not be detected during or immediately after production. Such deviations relate to the dimensions and composition of the DSV bodies 8, which are defined on the one hand by the pending floor and on the other hand by manufacturing parameters such as, e.g. Flow rate and water / cement value of the introduced suspension and pulling and rotating speed of the drill string 10 depend. For this reason, methods for detecting the properties of the DSV bodies 8 (dimensions and quality of the DSV mortar) are of considerable technical but also economic importance.

Um Schadensfälle frühzeitig erkennen/vermeiden zu können, ist eine Qualitätssicherung der hergestellten DSV-Körper 8 in Bezug auf deren Abmessungen und Materialeigenschaften von zentraler Bedeutung. Üblicherweise erfolgt die Bestimmung der erreichbaren Abmessungen mittels Probesäulen, welche nach ihrer Herstellung im oberen Bereich freigegraben werden. Dies ist mit einem Zeitverzug von mindestens 4-5 Tagen auf der Baustelle verbunden und ermöglicht nur eine Beurteilung der Bodenverbesserungsarbeiten in den oberen Bodenschichten (bis ca. max. 4 Meter Tiefe). Neben dem Verzug im Bauablauf erhält man durch Probesäulen nur einen punktuellen Aufschluss über die erreichbaren DSV-Körper-Eigenschaften. Im Fall von DSV-Arbeiten in tieferen Bodenschichten ist die Herstellung von Probesäulen nicht möglich, da ein Freilegen bis in größere Tiefen weder technisch realisierbar noch wirtschaftlich vertretbar wäre.In order to be able to detect / avoid damage cases at an early stage, quality assurance of the manufactured DSV body 8 is of key importance in terms of its dimensions and material properties. Usually, the determination of the achievable dimensions by means of sample columns, which are excavated after their production in the upper area. This is associated with a time delay of at least 4-5 days on the construction site and allows only an assessment of the soil improvement work in the upper soil layers (up to about 4 meters depth). In addition to the delay in the construction process is obtained by sample columns only a selective digestion on the achievable DSV body properties. In the case of DSV work in deeper soil layers, the preparation of trial columns is not possible, since exposing to greater depths would neither be technically feasible nor economically justifiable.

Die erfindungsgemäße Methode stellt ein neuartiges Verfahren zur Bestimmung des Durchmessers von DSV-Körpern 8 sowie der Materialeigenschaften von DSV-Mörtel dar, wobei eine vor Ort an einem DSV-Körper 8 gemessene erste Temperaturmesskurve 14 mit wenigstens einem vorgebbaren ersten Teil einer vorgebbaren ersten Mehrzahl an Temperaturvergleichskurven verglichen wird. Es kann dabei vorgesehen sein, dass diese Mehrzahl an Temperaturvergleichskurven etwa durch eine Vielzahl an Versuchen ermittelt wird.The inventive method represents a novel method for determining the diameter of DSV bodies 8 and the material properties of DSV mortar, wherein a measured locally on a DSV body 8 first temperature measurement curve 14 with is compared at least a predetermined first part of a predetermined first plurality of temperature comparison curves. It may be provided that this plurality of temperature comparison curves is determined, for example, by a multiplicity of tests.

Bevorzugt ist vorgesehen, dass die vorgebbare Mehrzahl an Temperaturvergleichskurven rechnerisch ermittelt wird, wodurch - bei hoher Genauigkeit - auf aufwändige Versuche verzichtet werden kann. Es hat sich gezeigt, dass eine Ermittlung der Temperaturvergleichskurven der vorgebbaren ersten Mehrzahl an Temperaturvergleichskurven aus den exothermen Abbindereaktionen des wenigstens einen hydraulischen Bindemittels zu überraschend exakten Ergebnissen führt. Die gesuchten Parameter des DSV-Körpers 8 werden durch Rückrechnung unter Verwendung der auf der Baustelle gemessenen Temperaturmesskurve 14 bestimmt. Bevorzugt ist daher vorgesehen, dass die Temperaturvergleichskurven der vorgebbaren ersten Mehrzahl an Temperaturvergleichskurven jeweils für eine Kombination eines vorgebbaren ersten Radius des DSV-Körpers 8 und eines vorgebbaren ersten Gehalts an hydraulischem Bindemittel ermittelt werden. Daher werden abhängig vom ersten Radius des DSV-Körpers 8, sowie dessen ersten Gehalt an hydraulischem Bindemittel eine vorgebbare Mehrzahl an Temperaturvergleichskurven ermittelt, vorzugsweise errechnet, wodurch schnell genaue Simulationsergebnisse zur Verfügung stehen.It is preferably provided that the predefinable plurality of temperature comparison curves is determined by calculation, whereby - with high accuracy - can be dispensed with costly experiments. It has been shown that a determination of the temperature comparison curves of the predeterminable first plurality of temperature comparison curves from the exothermic setting reactions of the at least one hydraulic binder leads to surprisingly exact results. The searched parameters of the DSV body 8 are determined by recalculation using the temperature measurement curve 14 measured at the construction site. It is therefore preferably provided that the temperature comparison curves of the predefinable first plurality of temperature comparison curves are respectively determined for a combination of a predeterminable first radius of the DSV body 8 and a predeterminable first content of hydraulic binder. Therefore, depending on the first radius of the DSV body 8, as well as its first content of hydraulic binder, a predeterminable plurality of temperature comparison curves are determined, preferably calculated, whereby fast accurate simulation results are available.

Das zugrunde gelegte thermochemische Materialmodell zur Beschreibung des Hydratationsfortschrittes in zementhaltigen Baustoffen wird im Folgenden beschrieben. Die für die Rückrechnung der gesuchten Parameter des DSV-Körpers 8 erforderliche Temperaturmessung auf der Baustelle ist an anderer Stelle näher beschrieben.The underlying thermochemical material model for describing the progress of hydration in cementitious building materials is described below. The required for the recalculation of the sought parameters of the DSV body 8 temperature measurement on the site is described in detail elsewhere.

Die Hydratation zementgebundener Materialien ist ein exothermer Prozess. Die sich daraus ableitende chemothermische Kopplung führt im Zuge der Hydratation zu einer Erhöhung der Temperatur im DSV-Körper 8. Auf der anderen Seite beeinflusst die Temperatur die Geschwindigkeit der chemischen Reaktion (thermochemische Kopplung). Die Lösung dieses Two-Way-Coupling Problems wird im Folgenden beschrieben. Der Fortgang der Hydratation wird durch eine skalare Variable m, die Masse des in Hydraten gebundenen Wassers (Hydratmasse), beschrieben. Der Hydratationsgrad ξ stellt das Verhältnis zwischen der aktuellen Hydratmasse und der Hydratmasse bei vollständiger Hydratation, m , dar: ξ = m / m

Figure imgb0001
The hydration of cementitious materials is an exothermic process. In the course of hydration, the resulting chemothermal coupling leads to an increase in the temperature in the DSV body 8. On the other hand, the temperature influences the rate of the chemical reaction (thermochemical coupling). The solution to this two-way coupling problem is described below. The progress of hydration is described by a scalar variable m, the mass of water bound in hydrates (hydrate mass). The degree of hydration ξ represents the ratio between the actual hydrate mass and the hydrate mass at full hydration, m : ξ = m / m
Figure imgb0001

Die Geschwindigkeit der chemischen Reaktion, ξ̇ =dξ/dt, wird mit Hilfe eines Arrhenius-Gesetzes beschrieben (thermochemische Kopplung): ξ = A exp - E a / RT .

Figure imgb0002
The rate of the chemical reaction, ξ̇ = dξ / dt, is described by means of an Arrhenius law ( thermochemical coupling): ξ = A exp - e a / RT ,
Figure imgb0002

Die normierte chemische Affinität Ã(ξ) spiegelt die Abhängigkeit der Reaktionsgeschwindigkeit von den bereits gebildeten Hydraten wieder. Der Exponentialterm berücksichtigt den Einfluss der Temperatur auf die Reaktionsgeschwindigkeit. In Gleichung (2), entspricht Ea der Aktivierungsenergie der Reaktion. Sie beträgt für Portlandzemente 33500 J/mol. R ist die universelle Gaskonstante mit R = 8,315 J/(mol K) und T ist die absolute Temperatur in Kelvin.The normalized chemical affinity à (ξ) reflects the dependence of the reaction rate on the already formed hydrates. The exponential term takes into account the influence of temperature on the reaction rate. In equation (2), E a corresponds to the activation energy of the reaction. It is 33500 J / mol for Portland cements. R is the universal gas constant with R = 8.315 J / (mol K) and T is the absolute temperature in Kelvin.

In Folge der Hydratation wird die Hydratationswärme freigesetzt. Diese chemothermische Kopplung wird in der Feldgleichung zur Beschreibung des thermischen Problems berücksichtigt. Diese Feldgleichung folgt aus dem ersten Hauptsatz der Wärmelehre zu. ρ c T + l ξ ξ = - div q ,

Figure imgb0003
wobei ρ [kg/m3] der Dichte und c [kJ/(kg K)] der spezifischen Wärmekapazität entspricht. l ξ ist die gesamte Wärmemenge, die während der Hydratation freigesetzt wird. Dem Abfluss von Wärme wird durch den Wärmestromvektor q Rechnung getragen, der wiederum mit der Temperatur über das Fouriersche Wärmeleitgesetz verknüpft ist, q = - λ grad T .
Figure imgb0004
λ [kJ/(m h K)] ist die Wärmeleitzahl.As a result of the hydration, the heat of hydration is released. This chemothermal coupling is considered in the field equation to describe the thermal problem. This field equation follows from the first law of thermodynamics. ρ c T + l ξ ξ = - div q .
Figure imgb0003
where ρ [kg / m 3 ] corresponds to the density and c [kJ / (kg K)] to the specific heat capacity. l ξ is the total amount of heat released during hydration. The outflow of heat is taken into account by the heat flow vector q, which in turn is linked to the temperature via the Fourier heat conduction law, q = - λ Degree T ,
Figure imgb0004
λ [kJ / (mh K)] is the thermal conductivity.

Die intrinsische Materialfunktion Ã(ξ) kann anhand verschiedener Experimente, durch Ausnützung der chemomechanischen Kopplung (Druckversuche) oder der chemothermischen Kopplung (adiabatische Versuche), bestimmt werden. Derzeit werden die Funktionen Ã(ξ) für unterschiedliche Bindemittel mittels einem Differentialkalorimeter oder durch ein mehrphasiges Hydrationsmodell ermittelt. Hierbei wird während der Hydratation die Temperatur der Probe (bestehend aus Wasser und Zement) konstant gehalten und die hierfür erforderliche Temperaturabfuhr gemessen. Aus den Gleichungen (2) und (3) ergibt sich somit A = - div q exp E a / RT / l ξ ,

Figure imgb0005
wobei div q während des Versuchs gemessen wird.The intrinsic material function à (ξ) can be determined by means of various experiments, by exploiting the chemo-mechanical coupling (compression tests) or the chemothermal coupling (adiabatic experiments). Currently, the functions à (ξ) for different binders are determined by means of a differential calorimeter or by a multiphase hydration model. During hydration, the temperature of the sample (consisting of water and cement) is kept constant and the temperature removal required for this purpose is measured. The equations (2) and (3) thus result A = - div q exp e a / RT / l ξ .
Figure imgb0005
where div q is measured during the experiment.

Auf der Basis des thermochemischen Materialmodells kann die Entwicklung des Hydratationsgrades ξ sowie die Temperaturentwicklung in einem DSV-Körper 8 bevorzugt mit Hilfe der Methode der Finiten Elemente berechnet werden. Durch Vergleich der numerisch erhaltenen Temperaturentwicklung mit einer auf der Baustelle durchgeführten Messung kann sowohl auf den Zementgehalt im DSV-Körper 8 als auch auf dessen Radius geschlossen werden.On the basis of the thermochemical material model, the development of the degree of hydration ξ and the temperature development in a DSV body 8 can preferably be calculated by means of the finite element method. By comparing the numerically obtained temperature development with one carried out on the construction site Measurement can be concluded both on the cement content in the DSV body 8 and on its radius.

Fig. 1 zeigt ein erstes Ablaufdiagramm einer bevorzugten besonders einfachen Ausbildung eines erfindungsgemäßen Verfahrens. Alternativ zur vorstehend beschriebenen Berechnung der Temperaturvergleichskurven kann auch vorgesehen sein, diese aus einer Vielzahl an Versuchen mit unterschiedlichen Parametern zu ermitteln und in Datenbanken bzw. Datenblättern abzulegen. Fig. 1 shows a first flow diagram of a preferred particularly simple embodiment of a method according to the invention. As an alternative to the above-described calculation of the temperature comparison curves, it can also be provided to determine these from a large number of experiments with different parameters and store them in databases or data sheets.

Bevorzugt ist allerdings vorgesehen die Temperaturvergleichskurven rechnerisch zu ermitteln, wobei die vorgebbare erste Mehrzahl an Temperaturvergleichskurven mittels eines iterativen Verfahrens ermittelt bzw. berechnet werden. Fig. 4 zeigt ein Ablaufdiagramm eines derartigen besonders bevorzugten iterativen Verfahrens, wobei bei dieser besonders bevorzugten Ausführung noch weitere zusätzliche vorteilhafte Verfahrenschritte vorgesehen sind. Bevorzugt ist dabei vorgesehen, dass ein erster Radiusbereich des DSV-Körpers 8 vorgegeben wird, dass aus dem ersten Radiusbereich eine vorgebbare Anzahl an ersten Teilradien ausgewählt wird, dass ein erster Bereich des Gehalts an hydraulischem Bindemittel vorgegeben wird, dass aus dem ersten Bereich des Gehalts an hydraulischem Bindemittel eine vorgebbare Anzahl an ersten Teilbereichen ausgewählt wird, und dass für vorgebbare, insbesondere für sämtliche, Kombinationen zwischen ersten Teilradien und ersten Teilbereichen die Temperaturvergleichskurven ermittelt werden. Daher wird für die iterative Berechnung ein Bereich für den ersten Radius sowie den ersten Zementgehalt bzw. den ersten Gehalt an hydraulischem Bindemittel vorgegeben. Beispielsweise: Radius R1 von 10cm bis 150cm; Gehalt an hydraulischem Bindemittel Z1 von 100kg/m3 bis 1000kg/m3 However, it is preferably provided to determine the temperature comparison curves by calculation, wherein the predefinable first plurality of temperature comparison curves are determined or calculated by means of an iterative method. Fig. 4 shows a flowchart of such a particularly preferred iterative method, wherein in this particularly preferred embodiment, further additional advantageous method steps are provided. It is preferably provided that a first radius range of the DSV body 8 is specified, that a predeterminable number of first partial radii is selected from the first radius range, that a first range of the content of hydraulic binder is specified, that from the first range of the content a predeterminable number of first subregions is selected on the hydraulic binder, and that the temperature comparison curves are determined for predefinable, in particular for all, combinations between the first subradii and the first subregions. Therefore, an area for the first radius and the first cement content or the first content of hydraulic binder is specified for the iterative calculation. For example: radius R 1 of 10cm to 150cm; Content of hydraulic binder Z 1 of 100kg / m 3 to 1000kg / m3

Die Werte werden dabei bevorzugt so gewählt, dass eine DSV-Säule bzw. ein DSV-Körper 8 innerhalb der entsprechenden Grenzen sein sollte. Daher werden im ersten Schritt bevorzugt ein besonders großer erster Radiusbereich und ein besonders großer erster Bereich des Gehalts an hydraulischem Bindemittel vorgegeben. Weiters kann vorgesehen sein eine Anzahl an Zwischenschritten anzugeben, beispielsweise derer vier. Die Anzahl an Zwischenschritten kann jedoch auch bereits fix vorgegeben werden. Der erste Radiusbereich und der erste Bereich des Gehalts an hydraulischem Bindemittel werd dann entsprechend der Anzahl an Zwischenschritten aufgeteilt. Die Art dieser Aufteilung kann durch den Benutzer vorgegeben werden. Bevorzugt ist vorgesehen, dass die Aufteilung der entsprechenden Bereiche linear oder logarithmisch erfolgt. Beispielsweise etwa bei dem vorstehenden Beispiel die folgende Aufteilung vorgesehen sein:
erster Radiusbereich R: 10cm 50cm 100cm 150cm erster Bereich des Gehalts an hydraulischem Bindemittel Z: 100kg/m3 300kg/m3 600kg/m3 1000kg/m3
The values are preferably chosen such that a DSV column or a DSV body 8 should be within the corresponding limits. Therefore, in the first step, a particularly large first radius range and a particularly large first range of the content of hydraulic binder are preferably specified. Furthermore, it may be provided to specify a number of intermediate steps, for example those of four. However, the number of intermediate steps can also be predefined. The first radius region and the first region of the content of hydraulic binder are then divided according to the number of intermediate steps. The type of this division can be specified by the user. It is preferably provided that the division of the corresponding areas linear or logarithmically. For example, be provided in the above example, the following division:
first radius range R: 10 centimeters 50cm 100cm 150cm first range of content of hydraulic binder Z: 100kg / m 3 300kg / m 3 600kg / m 3 1000kg / m 3

Weiters werden bevorzugt sämtliche möglichen Wertekombinationen aus diesen jeweils vier Parametern gebildet, und mit jeder dieser Wertekombinationen zwischen ersten Teilradien und ersten Teilbereichen die Temperaturvergleichskurven ermittelt.Furthermore, all possible value combinations are preferably formed from these four parameters in each case, and the temperature comparison curves are determined with each of these value combinations between the first partial radii and the first partial regions.

Es kann vorgesehen sein, die einzelnen ermittelten Temperaturvergleichskurven auf das Erfüllen des ersten Konvergenzkriteriums hin zu überprüfen. Das erste Konvergenzkriterium kann dabei als vorgebbarer Bereich um die erste Temperaturmesskurve festgelegt sein. Besonders bevorzugt ist vorgesehen, dass das erste Konvergenzkriterium als vorgebbare Änderung des ersten Radius des DSV-Körpers 8 und des ersten Gehalts an hydraulischem Bindemittel zwischen zwei in aufeinander folgenden Iterationsschritten vorgegeben wird, wie dies im folgenden beschrieben wird.It can be provided to check the individual temperature comparison curves determined for meeting the first convergence criterion. The first convergence criterion can be defined as a predefinable area around the first temperature measurement curve. Particularly preferably, it is provided that the first convergence criterion is specified as a predefinable change of the first radius of the DSV body 8 and of the first content of hydraulic binder between two successive iteration steps, as will be described below.

In vorgebbaren zeitlichen Intervallen bzw. zu vorgebbaren Zeitpunkten, etwa jede fortlaufende Stunde, wird die Differenz jeder gerechneten Temperaturvergleichskurve mit der Temperaturmesskurve 14 verglichen. Für jede Temperaturmesskurve 14 wird dabei bevorzugt der quadratische Fehler ermittelt und aufsummiert. Dabei ist zu beachten, dass bei jedem gerechneten Temperaturverlauf der Vergleich mit der gemessenen Temperaturmesskurve 14 an den selben Zeitpunkten erfolgt. Die ermittelten quadratischen Fehler werden für jede Temperaturvergleichskurve zu einem für diese Temperaturvergleichskurve charakteristischen Fehlerwert aufsummiert. Die Temperaturvergleichskurve mit dem geringsten Fehlerwert wird für einen weiteren Iterationsschritt als zweite Temperaturvergleichskurve ausgewählt, wobei bevorzugt vorgesehen ist, dass ein zweiter Radiusbereich vorgegeben wird, dass der zweite Radiusbereich als vorgebbares Intervall um den der Ermittlung der zweiten Temperaturvergleichskurve zugrunde liegenden zweiten Radius vorgegeben wird, dass aus dem zweiten Radiusbereich eine vorgebbare Anzahl an zweiten Teilradien ausgewählt wird, dass ein zweiter Bereich des Gehalts an hydraulischem Bindemittel vorgegeben wird, dass der zweite Bereich als vorgebbares Intervall um den der Ermittlung der zweiten Temperaturvergleichskurve zugrunde liegenden zweiten Gehalt an hydraulischem Bindemittel vorgegeben wird, dass aus dem zweiten Bereich des Gehalts an hydraulischem Bindemittel eine vorgebbare Anzahl an zweiten Teilbereichen ausgewählt wird, und dass für vorgebbare, insbesondere für sämtliche, Kombinationen zwischen zweiten Teilradien und zweiten Teilbereichen die Temperaturvergleichskurven ermittelt werden. Bevorzugt wird der der zweiten Temperaturvergleichskurve zugeordnete zweite Radius und der zweite Gehalt an hydraulischem Bindemittel um einen vorgebbaren Wert verringert und vergrößert und derart ein zweiten Radiusbereich und ein zweiter Bereich des Gehalts an hydraulischem Bindemittel vorgegeben. Bevorzugt kann etwa vorgesehen sein, dass der zweite Radiusbereich durch die Grenzen: R bereich 2 unten = R 2. Temperaturvergleichskurve - 15 %

Figure imgb0006
R bereich 2 oben = R 2. Temperaturvergleichskurve + 15 %
Figure imgb0007
ausgewählt wird, und dass der zweite Bereich des Gehalts an hydraulischem Bindemittel durch die Grenzen: Z bereich 2 unten = Z 2. Temperaturvergleichskurve - 15 %
Figure imgb0008
Z bereich 2 oben = Z 2. Temperaturvergleichskurve + 15 %
Figure imgb0009
ausgewählt wird. Der neue Wertebereich wird wieder in Zwischenschritte unterteilt, wobei wiederum bevorzugt sämtliche Kombinationen an Werten gebildet werden. Sofern eine Temperaturvergleichskurve dem ersten Konvergenzkriterium genügt, wird diese zusammen mit dem deren Ermittlung zugrunde liegenden ersten Radius des DSV-Körpers 8 und dem erste Gehalt an hydraulischem Bindemittel ausgegeben. Wie vorstehend bereits dargelegt ist bevorzugt vorgesehen, dass das erste Konvergenzkriterium als vorgebbare Änderung des ersten Radius des DSV-Körpers 8 und des ersten Gehalts an hydraulischem Bindemittel zwischen zwei in aufeinander folgenden Iterationsschritten vorgegeben wird, wie dies auch aus Fig. 4 hervorgeht. Bei dem in Fig. 4 beschriebenen bevorzugten Verfahren ist beispielsweise vorgesehen, dass das erste Konvergenzkriterium erfüllt ist, wenn die Änderung des ermittelten Radius zwischen zwei nachfolgenden Iterationsschritten geringer als 2,5 cm und die Änderung des ermittelten Gehalts an hydraulischem Bindemittel geringer als 50 Kg/m3 beträgt.At predeterminable time intervals or at predeterminable times, for example every consecutive hour, the difference of each calculated temperature comparison curve is compared with the temperature measurement curve 14. For each temperature measurement curve 14, the quadratic error is preferably determined and added up. It should be noted that for each calculated temperature profile, the comparison with the measured temperature measurement curve 14 takes place at the same points in time. The ascertained quadratic errors are summed for each temperature comparison curve to a characteristic of this temperature comparison curve error value. The temperature comparison curve with the lowest error value is selected for a further iteration step as the second temperature comparison curve, wherein it is preferably provided that a second radius range is specified, that the second radius range is predetermined as a predefinable interval around the second radius on which the second temperature comparison curve is determined from the second radius range, a predeterminable number of second partial radii is selected such that a second range of the content of hydraulic binder is specified, that the second range is predetermined as a specifiable interval around the second content of hydraulic binder on which the second temperature comparison curve is based from the second area of the content of hydraulic binder a predeterminable number of second sub-areas is selected, and that for predetermined, in particular for all, combinations between second sub-radii and second sub-areas, the temperature comparison curves are determined. Preferably, the second radius associated with the second temperature comparison curve and the second content of hydraulic binder are reduced and increased by a predefinable value, and thus a second radius range and a second range of the content of hydraulic binder are specified. It may preferably be provided, for example, that the second radius range is limited by the limits: R Area 2 below = R Second Temperature comparison curve - 15 %
Figure imgb0006
R Area 2 above = R Second Temperature comparison curve + 15 %
Figure imgb0007
is selected, and that the second range of the content of hydraulic binder through the limits: Z Area 2 below = Z Second Temperature comparison curve - 15 %
Figure imgb0008
Z Area 2 above = Z Second Temperature comparison curve + 15 %
Figure imgb0009
is selected. The new range of values is again subdivided into intermediate steps, whereby again preferably all combinations of values are formed. If a temperature comparison curve satisfies the first convergence criterion, this is output together with the first radius of the DSV body 8 underlying the determination thereof and the first content of hydraulic binder. As already explained above, it is preferably provided that the first convergence criterion is specified as a specifiable change of the first radius of the DSV body 8 and of the first content of hydraulic binder between two successive iteration steps, as is also the case Fig. 4 evident. At the in Fig. 4 For example, it is provided that the first convergence criterion is fulfilled if the change in the determined radius between two subsequent iteration steps is less than 2.5 cm and the change in the determined content of hydraulic binder is less than 50 kg / m 3 .

Bei einem erfindungsgemäßen Verfahren ist weiters bevorzugt vorgesehen, zusätzliche Parameter in deren Auswirkung auf die ermittelten Temperaturvergleichskurve zu berücksichtigen. Als solche Parameter, welche einen direkten und/oder indirekten Einfluss auf den Verlauf der ermittelten Temperaturvergleichskurven haben, haben sich vor allem die folgenden Parameter als von teilweise besonderer Bedeutung herausgestellt:

  • die thermische Leitfähigkeit des Bodens,
  • die thermische Leitfähigkeit des DSV-Körpers,
  • die thermische Speicherkapazität des Bodens,
  • die thermische Speicherkapazität des DSV-Körpers,
  • die Rohdichte der in den Bodenbereich eingebrachten hydraulisch bindende Materialien,
  • die Bodentemperatur,
  • die Temperatur der in den Bodenbereich eingebrachten hydraulisch bindende Materialien,
  • Bodenparameter, insbesondere Bodentyp, Lagerungsdichte und/oder Konsistenz,
  • die Art und der Einfluss weitere chemischer Bindemittel.
In a method according to the invention, it is further preferred to take account of additional parameters in their effect on the determined temperature comparison curve. As such parameters, which have a direct and / or indirect influence on the course of the determined temperature comparison curves, the following parameters in particular have turned out to be of particular importance:
  • the thermal conductivity of the soil,
  • the thermal conductivity of the DSV body,
  • the thermal storage capacity of the soil,
  • the thermal storage capacity of the DSV body,
  • the density of the hydraulically binding materials introduced into the soil area,
  • the soil temperature,
  • the temperature of the hydraulically binding materials introduced into the soil area,
  • Soil parameters, in particular soil type, storage density and / or consistency,
  • the nature and influence of other chemical binders.

Der Einfluss der einzelnen Parameter kann teilweise physikalisch/chemisch hergeleitet werden, muss jedoch ansonsten durch Versuche ermittelt werden. Es hat sich gezeigt durch die Berücksichtigung einzelner, vorzugsweise sämtlicher, der vorgenannten Parameter bei der Ermittlung der Temperaturvergleichskurven die gemäß einem erfindungsgemäßen Verfahren ermittelten Werte für den Radius eines DSV-Körpers 8 und/oder den Gehalt an hydraulischem Bindemittel wesentlich genauer mit den tatsächlichen Werten übereinstimmen als bei allen vorbekannten Verfahren. Die entsprechenden Parameter müssen bei Anwendung des Verfahrens bekannt sein, und werden etwa mittels Bodenproben, und Messungen der vorgenannten Temperaturen ermittelt. Thermische Leitfähigkeiten und Speicherkapazitäten können mittels Labortest bestimmt und in Datenbanken abgelegt werden, um für das erfindungsgemäße Verfahren zur Verfügung zu stehen. Alle der vorgenannten Parameter, bis auf Speicherkapazität des DSV-Körpers 8, welche stark vom Zementgehalt abhängig ist, und entsprechend bei der Ermittlung ständig mit an diesen angepasst wird, bleiben konstant. Fig. 7 veranschaulicht beispielsweise in einem Diagramm die Abhängigkeit der Wärmeleitfähigkeit vom Sättigungsgrad und der Rohdichte der hydraulisch bindenden Materialien.The influence of the individual parameters can be partly derived physically / chemically, but otherwise has to be determined by tests. It has been shown by the consideration of individual, preferably all, of the aforementioned parameters in the determination of the temperature comparison curves determined according to a method according to the invention values for the radius of a DSV body 8 and / or the content of hydraulic binder match much more accurately with the actual values as in all previously known methods. The corresponding parameters must be known when using the method, and are determined approximately by means of soil samples, and measurements of the aforementioned temperatures. Thermal conductivities and storage capacities can be determined by means of a laboratory test and stored in databases in order to be available for the method according to the invention. All of the aforementioned parameters, except for storage capacity of the DSV body 8, which is highly dependent on the cement content, and is correspondingly constantly adapted to these during the determination, remain constant. Fig. 7 Illustrates for example in a diagram the dependence of the thermal conductivity on the degree of saturation and the bulk density of the hydraulically binding materials.

Für die Genauigkeit des erfindungsgemäßen Verfahrens ist die Genauigkeit der gemessenen Temperaturmesskurve im Inneren des DSV-Körpers 8 von besonderer Bedeutung. Um eine möglichst exakte Temperaturmesskurve zu erhalten wurde daher ein neuartiges Verfahren zum Einbringen eines ersten Temperatursensors 11 in einen DSV-Körper 8 entwickelt. Dabei ist vorgesehen, dass nach Bildung des DSV-Körpers 8 ein Bohrgestänge 10 mit einer Rammspitze 17, in deren Bereich wenigstens ein erster Temperatursensor 11 angeordnet ist, in das Bohrloch eingeführt und im Wesentlichen rotationsfrei in den noch verformbaren DSV-Körper 8 vor dessen Erstarrung geschoben wird, und dass die Rammspitze 17 zusammen mit dem ersten Temperatursensor 11 bei erreichen einer größten Tiefe abgekoppelt wird, und im DSV-Körper 8 verbleibt. Im Gegensatz zu herkömmlichen Verfahren, bei welchen ein erster Temperatursensor 11 mittels eines Stabes, welcher nur eine ungenügende Steifigkeit aufweist, an undefinierter Stelle manuell in den noch verformbaren DSV-Körper 8 eingebracht wird, wird beim erfindungsgemäßen Verfahren der erste Temperatursensor 11 mittels des steifen und gut geführten Bohrgestänges 10 ins Zentrum des DSV-Körpers 8 eingeführt, wodurch eine besonders hohe Übereinstimmung zwischen dem tatsächlichen Ort der Aufnahme der Temperaturmesskurve 14 und dem bei der Ermittlung der Temperaturvergleichskurven angenommenen Ort der Aufnahme der Temperaturmesskurve besteht. Besonders bevorzugt ist weiters vorgesehen, dass der wenigstens ein erste Temperatursensor 11 im Inneren des Bohrgestänges 10 in bzw. an einem Rohr 19, insbesondere einem Metallrohr, geführt ist, und dass die elektrischen Zuleitungen zu dem ersten Temperatursensor 11 im Inneren des Metallrohres geführt sind. Nach Anordnung des ersten Temperatursensors 11 und Abtrennung der Rammspitze 17 wird das Bohrgestänge 10 aus dem DSV-Körper 8 gezogen und die Rammspitze 17 verbleibt zusammen mit dem ersten Temperatursensor 11 und dem Rohr 19 in dem DSV-Körper 8, wie dies etwa in Fig. 10 dargestellt ist. An dem ersten Temperatursensor 11 können in vorgebbaren Abständen weitere Temperatursensoren angeordnet sein, sodass für unterschiedliche Abschnitte des DSV-Körpers 8 jeweils das erfindungsgemäße Verfahren zur Bestimmung der radialen Ausdehnung und/oder der Festigkeit von DSV-Körpern 8 angewendet werden kann, wodurch die Genauigkeit der Ergebnisse und die Sicherheit im Tiefbau weiter gesteigert werden kann.For the accuracy of the method according to the invention, the accuracy of the measured temperature measurement curve inside the DSV body 8 is of particular importance. In order to obtain the most accurate temperature measurement curve, therefore, a novel method for introducing a first temperature sensor 11 into a DSV body 8 has been developed. It is provided that after formation of the DSV body 8, a drill string 10 with a Rammspitze 17, in the area at least a first temperature sensor 11 is arranged, inserted into the wellbore and pushed substantially free of rotation in the still deformable DSV body 8 before its solidification, and that the Rammspitze 17 together with the first temperature sensor 11 when reaching a greatest depth is decoupled, and remains in the DSV body 8. In contrast to conventional methods, in which a first temperature sensor 11 is introduced by means of a rod, which has only insufficient rigidity, at an undefined point manually in the still deformable DSV body 8, in the method according to the invention, the first temperature sensor 11 by means of the stiff and well-guided drill string 10 introduced into the center of the DSV body 8, whereby there is a particularly high agreement between the actual location of the recording of the temperature measurement curve 14 and the assumed assumption of the temperature measurement curve in the determination of the temperature comparison curves. Particularly preferably, it is further provided that the at least one first temperature sensor 11 in the interior of the drill string 10 in or on a pipe 19, in particular a metal pipe, is guided, and that the electrical leads are guided to the first temperature sensor 11 in the interior of the metal tube. After arrangement of the first temperature sensor 11 and separation of the ram tip 17, the drill string 10 is pulled out of the DSV body 8 and the ram tip 17 remains together with the first temperature sensor 11 and the tube 19 in the DSV body 8, as in Fig. 10 is shown. At the first temperature sensor 11 further temperature sensors can be arranged at predetermined intervals, so that for different sections of the DSV body 8 in each case the inventive method for determining the radial extent and / or strength of DSV bodies 8 can be applied, whereby the accuracy of Results and safety in civil engineering can be further increased.

Fig. 3 zeigt eine Anordnung mit fertigem DSV-Körper 8 und einem ersten Temperatursensor 11 in Inneren des DSV-Körpers 8. Weiters scheint ein zweiter Temperatursensor 12 außerhalb des Erdbodens auf, um die Umgebungstemperatur aufzunehmen. Die Aufzeichnung der Messdaten kann entweder händisch oder automatisch mittels Datenlogger 13 erfolgen, wie in Fig. 3 dargestellt. Bei der automatischen Aufzeichnung wird der Ablesezeitraum definiert und das Intervall zwischen den Aufzeichnungszeitpunkten festgelegt. Eine zusätzliche Anzeige am Display des Datenloggers 13 ermöglicht eine kontinuierliche Beobachtung der Temperaturentwicklung während der Hydration des DSV-Körpers 8. Die Verwendung von Datenlogger 13 ermöglicht einen äußerst einfachen Transfer der Temperaturmessdaten von den DSV-Körpern 8 zu einem PC. In weiterer Folge können die Messdaten in verschiedene Datenformate (z.B. ASCII) umgewandelt werden. Die Bearbeitung ist dadurch sehr einfach und auch auf der Baustelle selbst durchzuführen. Fig. 3 shows an arrangement with finished DSV body 8 and a first temperature sensor 11 in the interior of the DSV body 8. Further, a second temperature sensor 12 appears outside the ground to record the ambient temperature. The recording of the measured data can be done either manually or automatically by means of data logger 13, as in Fig. 3 shown. Automatic recording defines the reading period and sets the interval between recording times. An additional display on the display of the data logger 13 allows a continuous observation of the temperature development during the hydration of the DSV body 8. The use of data logger 13 allows an extremely simple transfer of the temperature measurement data of the DSV bodies 8 to a PC. Subsequently, the measurement data can be converted into various data formats (eg ASCII). The processing is very easy and also on the construction site itself.

Die Temperatur wird während des Abbindevorgangs kontinuierlich gemessen, und derart die Temperaturmesskurve 14 bestimmt. Die Fig. 5 und 6 zeigen Temperaturmesskurven 14. Deutlich erkennbar ist, dass der Maximalwert der gemessenen Temperatur und der Zeitpunkt, wann diese Temperatur im Zentrum des DSV-Körpers 8 erreicht wird, stark mit dem Radius des DSV-Körpers 8 und dem Gehalt an hydraulischem Bindemittel in der eingebrachten Suspension bzw. dem eingebrachten Mörtel variieren, wobei sich der in Fig. 5 angegeben Zementgehalt auf den Gehalt an hydraulischem Bindemittel bezieht, und der in Fig. 6 angeführte Säulendurchmesser äquivalent zum Radius des DSV-Körpers 8 ist. Aus diesen Messungen ist wiederum ein Zusammenhang zwischen Radius des DSV-Körpers 8 und gemessenen Temperaturmesskurven 14 erkennbar. Bei Messungen an den kleineren DSV-Körpern 8 bzw. DSV-Säulen tritt die maximale Temperatur im Vergleich zu größeren DSV-Körpern 8 zeitlich früher ein.The temperature is continuously measured during the setting process, and thus determines the temperature measurement curve 14. The FIGS. 5 and 6 It can be clearly seen that the maximum value of the measured temperature and the time when this temperature is reached in the center of the DSV body 8, strongly with the radius of the DSV body 8 and the content of hydraulic binder in the introduced suspension or the introduced mortar, wherein the in Fig. 5 Cement content refers to the content of hydraulic binder, and the in Fig. 6 cited column diameter is equivalent to the radius of the DSV body 8. From these measurements, in turn, a relationship between the radius of the DSV body 8 and measured temperature measurement curves 14 can be seen. For measurements on the smaller DSV bodies 8 or DSV columns, the maximum temperature occurs earlier in comparison to larger DSV bodies 8.

Zur Umsetzung des erfindungsgemäßen Verfahrens zum Einbringen eines ersten Temperatursensors 11 in einen DSV-Körper 8 wurde weiters eine neuartige Bohranordnung 15 für Bodenbohrarbeiten, mit einem Bohrgestänge 10, wobei an dem - in Gebrauchslage betrachtet - unteren Ende des Bohrgestänges 10 eine im Wesentlichen unbewegliche Rammspitze 17 angeordnet ist, und dass im Bereich der Rammspitze 17 wenigstens ein erster Temperatursensor 11 angeordnet ist. Eine derartige Bohranordnung ist etwa in den Fig. 8 und 9 dargestellt, wobei in Fig. 9 gut die abkoppelbare Rammspitze 17 zu erkennen ist, welche als - in Gebrauchslage betrachtet - nach unten weisen angeordnete stumpfwinkelige Flachmetallanordnung 18 ausgebildet ist.To implement the method according to the invention for introducing a first temperature sensor 11 into a DSV body 8, a novel drilling arrangement 15 for ground drilling work, comprising a drill pipe 10, wherein - viewed in the use position - lower end of the drill string 10 is a substantially immobile Rammspitze 17th is arranged, and that in the region of the ram tip 17 at least a first temperature sensor 11 is arranged. Such a drilling assembly is approximately in the 8 and 9 shown, in Fig. 9 good the decoupled Rammspitze 17 can be seen, which as - viewed in the use position - downwardly arranged obtuse flat metal assembly 18 is formed.

Weitere erfindungsgemäße Ausführungsformen weisen lediglich einen Teil der beschriebenen Merkmale auf, wobei jede Merkmalskombination, insbesondere auch von verschiedenen beschriebenen Ausführungsformen, vorgesehen sein kann.Further embodiments according to the invention have only a part of the features described, wherein each feature combination, in particular also of various described embodiments, can be provided.

Claims (9)

  1. A method for calculating the radial expansion and/or content of hydraulically bonding materials of double stop valve (DSV) bodies (8), which are formed by the introduction of hydraulically bonding materials into a bottom region (9), characterized in that at least a first temperature gradient (14) is measured within a predetermined time range in at least one first area of the DSV body (8) (1), that the first temperature gradient is compared with at least one predeterminable first part (2) of a predeterminable first plurality of temperature gradients (3) in a comparison apparatus (4), that upon fulfilment of a predeterminable first convergence criterion (5) by one of the temperature comparison gradients it is chosen as the first temperature comparison gradient (6), or that the temperature comparison gradient with the smallest error deviation in relation to the first temperature gradient is chosen as the second temperature comparison gradient (7).
  2. A method according to claim 1, with the hydraulically bonding materials comprising at least one hydraulic bonding agent, characterized in that the temperature comparison curves of the predeterminable first plurality of temperature comparison gradients are respectively determined for a combination of a predeterminable first radius of the DSV body and a predeterminable first content of hydraulic bonding agent.
  3. A method according to claim 2, characterized in that the temperature comparison gradients of the predeterminable first plurality of temperature comparison gradients are determined from the exothermal setting reactions of the at least one hydraulic bonding agent.
  4. A method according to one of the claims 1 to 3, characterized in that the temperature comparison gradients of the predeterminable first plurality of temperature comparison gradients are determined by means of finite elements.
  5. A method according to one of the claims 1 to 4, characterized in that in the determination of the temperature comparison gradients the thermal conductivity of the bottom area (9), and/or the thermal conductivity of the DSV body (8), and/or the thermal storage capacity of the bottom area (9), and/or the thermal storage capacity of the DSV body (8), and/or the raw density of the hydraulically bonding materials introduced into the bottom area, and/or the temperature at the bottom, and/or the temperature of the hydraulically bonding materials introduced into the bottom area (9), and/or the bottom parameters, especially the type of bottom, storage density and/or consistency, are considered as parameters.
  6. A method according to one of the claims 2 to 5, characterized in that the hydraulic bonding agent comprises cement and the first predeterminable content of hydraulic bonding agent is a first cement content.
  7. A method according to one of the claims 1 to 6, characterized in that a first radius area of the DSV body (8) will be predetermined, that a predeterminable number of first partial radii will be chosen from the first radius area, that a first area of the content of hydraulic bonding agent will be predetermined, that a predeterminable number of first partial areas will be chosen from the first area of content of hydraulic bonding agent, and that the temperature comparison gradients will be determined for predeterminable, especially all, combinations between first partial radii and first partial areas.
  8. A method according to one of the claims 1 to 8, characterized in that the first radius of the DSV body (8) and the first content of hydraulic bonding agent used for the determination of said first temperature comparison gradient are output together with the first temperature comparison gradient.
  9. A method according to one of the claims 1 to 9, characterized in that a second radius area is predetermined in the determination of a second temperature comparison gradient, that the second radius area is predetermined as a predeterminable interval about the second radius on which the determination of the second temperature comparison gradient is based, that a predeterminable number of second partial radii is chosen from the second radius area, that a second area of the content of hydraulic bonding agent is predetermined, that the second area is predetermined as a predeterminable interval about the second content of hydraulic bonding agent on which the determination of the second temperature comparison gradient is based, that a predeterminable number of second partial areas is chosen from the second area of the content of hydraulic bonding agent, and that the temperature comparison gradients are determined for predeterminable, especially all, combinations between second partial radii and second partial areas.
EP08450089A 2007-06-27 2008-06-12 Method for calculating the radial enlargement and/or concentration of hydraulically binding material of DSV bodies Active EP2009184B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0099507A AT505438B1 (en) 2007-06-27 2007-06-27 METHOD FOR DETERMINING THE RADIAL EXPANSION AND / OR THE CONTENT OF HYDRAULICALLY BINDING MATERIALS OF DSV BODIES

Publications (3)

Publication Number Publication Date
EP2009184A2 EP2009184A2 (en) 2008-12-31
EP2009184A3 EP2009184A3 (en) 2009-02-18
EP2009184B1 true EP2009184B1 (en) 2012-04-18

Family

ID=39926440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08450089A Active EP2009184B1 (en) 2007-06-27 2008-06-12 Method for calculating the radial enlargement and/or concentration of hydraulically binding material of DSV bodies

Country Status (3)

Country Link
EP (1) EP2009184B1 (en)
AT (2) AT505438B1 (en)
ES (1) ES2386320T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2843137T3 (en) 2013-09-03 2017-07-31 Keller Holding Gmbh Method and apparatus for determining the radius of a floor element that can be produced by means of jet blasting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957341A (en) * 1956-01-16 1960-10-25 Menard Louis Francois Auguste Soil testing apparatus
JPS61274013A (en) * 1985-05-30 1986-12-04 Ohbayashigumi Ltd Measurement of improving range of ground in chemical grout injection work
US5576494A (en) * 1995-05-26 1996-11-19 Osterberg; Jorj O. Method and apparatus for subterranean load-cell testing
DE19807060A1 (en) * 1997-02-21 1998-08-27 Socon Sonar Control Kavernenve Fluid injection especially high pressure injection into soil
DE502006004534D1 (en) * 2006-12-06 2009-09-24 Bauer Spezialtiefbau Lastprüfelement

Also Published As

Publication number Publication date
AT505438B1 (en) 2009-06-15
AT505438A1 (en) 2009-01-15
EP2009184A2 (en) 2008-12-31
ATE554237T1 (en) 2012-05-15
ES2386320T3 (en) 2012-08-17
EP2009184A3 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
Xu et al. Experimental study on the bearing mechanisms of rock-socketed piles in soft rock based on micro X-ray CT analysis
Yang et al. State variables for silty sands: Global void ratio or skeleton void ratio?
D'Appolonia et al. Initial settlement of structures on clay
Levadoux et al. Consolidation after undrained piezocone penetration. I: Prediction
Gorman et al. Constant-rate-of-strain and controlled-gradient consolidation testing
DE60027603T2 (en) METHOD OF EVALUATING PETROPHYSICAL GESTURE PARAMETERS USING TEMPERATURE-MODIFIED NMR DATA
DE2349181A1 (en) METHOD AND DEVICE FOR ANALYZING VOLTAGE AND LOAD CONDITIONS
Habimana et al. Geomechanical characterisation of cataclastic rocks: experience from the Cleuson–Dixence project
DE102018123794B3 (en) Method for producing a tip-pressure-free component
Richardson Investigations of threshold effects in soil deformations
EP2009184B1 (en) Method for calculating the radial enlargement and/or concentration of hydraulically binding material of DSV bodies
DE102006042500B4 (en) Device for the investigation of material properties of a building material
Santamarina et al. Centrifuge modeling: A study of similarity
Alberti et al. Physical mechanical characterization of a rockslide shear zone by standard and unconventional tests
DE112013006618T5 (en) Determine the productivity of interfering with a perforation tunnel using computer-computed tomography
Lenz et al. Prediction of fault zones based on geological and geotechnical observations during tunnel construction: Prognose von Störungszonen auf Basis geologisch‐geotechnischer Beobachtungen im Vortrieb
Raynaud et al. Experimental study of the relation between the permeability of kaolinite and its deformation at micro and macro scale
Golser et al. NATM–Review and Outlook
Hellmich et al. 150 years reliable railway tunnels–Extending the hybrid method for the long‐term safety assessment
Mirjafari et al. Determination of shear strength parameters using Screw Driving Sounding (SDS)
Hanrahan et al. Road on peat: observations and design
Morris et al. Physical and numerical modelling of grouted nails in clay
Ausweger et al. Stiffness of Salzburger Seeton–Comparison of results from cone penetration tests and laboratory tests
DE68902817T2 (en) METHOD FOR PREDICTING THE IMPLEMENTATION QUALITY OF A HOLE HOLE CEMENTING AND EVALUATING THE EXECUTION.
DE19704176C2 (en) Method for determining the water permeability behavior of preferably non-cohesive loose rock

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090818

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: RS

Payment date: 20090818

Extension state: BA

Payment date: 20090818

Extension state: MK

Payment date: 20090818

Extension state: AL

Payment date: 20090818

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 554237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006971

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG

Ref country code: CH

Ref legal event code: PFA

Owner name: PORR BAU GMBH

Free format text: PORR TECHNOBAU UND UMWELT AG#ABSBERGGASSE 47#1103 WIEN (AT) -TRANSFER TO- PORR BAU GMBH#ABSBERGGASSE 47#1103 WIEN (AT)

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2386320

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120817

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120418

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20120401612

Country of ref document: GR

Effective date: 20120920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

BERE Be: lapsed

Owner name: PORR TECHNOBAU UND UMWELT AG

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006971

Country of ref document: DE

Effective date: 20130121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 16

Ref country code: DE

Payment date: 20230620

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20230616

Year of fee payment: 16

Ref country code: AT

Payment date: 20230414

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 16

Ref country code: GB

Payment date: 20230622

Year of fee payment: 16

Ref country code: ES

Payment date: 20230719

Year of fee payment: 16

Ref country code: CH

Payment date: 20230702

Year of fee payment: 16