EP2004236A2 - Arzneiabgabesysteme auf lipidbasis mit phospholipase-a2-abbaubaren lipiden, die unter hydrolyse eine intramolekulare cyclisierungsreaktion durchführen - Google Patents

Arzneiabgabesysteme auf lipidbasis mit phospholipase-a2-abbaubaren lipiden, die unter hydrolyse eine intramolekulare cyclisierungsreaktion durchführen

Info

Publication number
EP2004236A2
EP2004236A2 EP07711285A EP07711285A EP2004236A2 EP 2004236 A2 EP2004236 A2 EP 2004236A2 EP 07711285 A EP07711285 A EP 07711285A EP 07711285 A EP07711285 A EP 07711285A EP 2004236 A2 EP2004236 A2 EP 2004236A2
Authority
EP
European Patent Office
Prior art keywords
lipid
drug delivery
delivery system
based drug
lipid based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07711285A
Other languages
English (en)
French (fr)
Inventor
Kent JØRGENSEN
Thomas L. Andresen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liplasome Pharma ApS
Original Assignee
Liplasome Pharma ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liplasome Pharma ApS filed Critical Liplasome Pharma ApS
Publication of EP2004236A2 publication Critical patent/EP2004236A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • A61K47/544Phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/555Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound pre-targeting systems involving an organic compound, other than a peptide, protein or antibody, for targeting specific cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • TITLE LIPID BASED DRUG DELIVERY SYSTEMS COMPRISING PHOSPHOLl- PASE A2 DEGRADABLE LIPIDS THAT PERFORM AN INTRAMOLECULAR CY- CLIZATION REACTION UPON HYDROLYSIS.
  • the invention relates to lipid-based pharmaceutical compositions used in the treatment of various disorders, e.g. cancer, infectious, and inflammatory conditions, etc., i.e. disorders and diseases associated with or resulting from increased levels of extracellular PLA 2 activity in the diseased tissue.
  • Mono-ether lyso-phospholipids and alkyl phosphocholines are known to be effective anticancer agents (see e.g. US 3,752,886 and later references).
  • One specific example of a well-studied mono-ether alkyl phosphocholine is i-O-octadecyl-2-O-methyl-sn- glycero-3-phosphocholine (ET 18-OCH 3 ).
  • ether-lipids Several mechanisms of the toxic action of ether-lipids towards cancer cells have been proposed involving lack of alkyl-cleavage enzymes in cancer cells. This leads to an accumulation of the ether-lipids in the cell membranes which induce membrane defects and possibly subsequent lysis. Other potential mechanisms of action include effects on intracellular protein phosphorylation and disruption of the lipid metabolism. Normal cells typically possess alkyl-cleavage enzymes, which enable them to avoid the toxic effect of ether-lipids. However, some normal cells e.g., red blood cells, have like cancer cells no means of avoiding the disruptive effect of the etherlipids. Accordingly, therapeutic use of ether-lipids requires an effective drug-delivery system that protects the normal cells from the toxic effects and is able to bring the etherlipid to the diseased tissue.
  • prodrugs with enhanced penetration into cells, which are particular useful for treating a condition or disease in a human related to supranormal intracellular enzyme activity.
  • the prodrugs may be C-2 esters of lysophospholipids.
  • Such drugs are designed so as to be cleaved by intracelluar phospholipase A 2 .
  • drug delivery systems for targeted delivery of drug substances which are able to treat or alleviate conditions such as cancer and inflammation. Due to the fact that drugs for the treatment of cancer may be particularly harmful to tissue in general, it is of particular importance to suppress liberation of the drug substance or substances at locations other than the diseased tissue.
  • the present invention is directed to drug delivery systems which are particularly useful in the treatment or alleviation of diseases which are characterised by localised activity of extracelluar PLA 2 activity.
  • lipid-based prodrugs that performs an intramolecular cyclization upon PLA 2 hydrolysis.
  • a specific lipid-analogue compound may be incorporated into the polymer or polysaccharide chains "grafted" carrier liposome and act as a prodrug which is turned into an active drug by hydrolysis via the extracellular phospholipase.
  • Possible examples, but not limited to this, could be certain ester containing lipids that cyclize to form 5 or 6 membered rings after PLA 2 hydrolysis resulting in lipid analogues of lipids which have been found to exhibit anticancer activity as illustrated in Fig 2.
  • Fig. 1 The principle of drug targeting, release and absorption by extracellular phospholipase A2 (PLA 2 ) which is illustrated in Fig. 1 , can be applied to a case also involving lipid- based prodrugs, where a drug is attached to the lipid and liberated after a intramolecular cyclization, as a consequence of hydrolysis by extracellular PLA 2 that is present in elevated concentrations in the diseased target tissue.
  • Possible examples, but not limited to these examples, are shown in Fig. 3 and Fig 4.
  • therapeutically active substances e.g. prostaglandins, peptides, anti-cancer ether lipids or retinol derivatives will be liberated at the desired target site.
  • Drugs of particular interest are drugs with free alcohol groups or bioisosters thereof. Furthermore, some of the hydrolysis products can act as local permeability enhancers facilitating the transport of the generated anti-cancer drug into the cell.
  • Pharmaceutical compositions containing the lipid-based system can be used therapeutically, for example, in the treatment of cancer, infectious and inflammatory conditions. This invention provides such a delivery system in the form of lipid-based carriers, e.g.
  • liposomes or micelles composed of novel lipid-bilayer forming lipids such as glyc- erophospholipids containing an alkyl-linkage or acyl-linkage and/or another organic moiety in the 1 -position and an acyl-linkage or another PLA 2 degradable bond, e.g. a bioisoster of a PLA 2 hydrolysable ester, in a position with the right distance and stereochemistry from a phospolipid headgroup or a bioisoster hereof.
  • novel lipid-bilayer forming lipids such as glyc- erophospholipids containing an alkyl-linkage or acyl-linkage and/or another organic moiety in the 1 -position and an acyl-linkage or another PLA 2 degradable bond, e.g. a bioisoster of a PLA 2 hydrolysable ester, in a position with the right distance and stereochemistry from a phospolipid headgroup or a biois
  • the carrier system may contain lipid-bilayer stabilising components, e.g. lipopolymers, glycolipids and sterols which lead to an increased vascular circulation time and as a consequence an accumulation in the diseased target tissue.
  • lipid-bilayer stabilising components e.g. lipopolymers, glycolipids and sterols which lead to an increased vascular circulation time and as a consequence an accumulation in the diseased target tissue.
  • PLA 2 - catalyzed hydrolysis of the acyl-linkage releases the therapeutically active components, typically lyso-etherlipids and ester-linked derivatives that cyclize upon hydrolysis.
  • extracellular PLA 2 activity is elevated in cancer tissue.
  • extracellular PLA 2 activity is elevated in diseased regions such as inflammatory tissue.
  • the present invention thus provides a lipid-based drug delivery system for administration of an active drug substances selected from either lysolipid derivatives, or from any drug substance that can be attached to a lipid that can release the drug substance upon an intramolecular cyclization reaction as a consequence of PLA 2 hydrolysis.
  • the active drug substance is thus present in the lipid-based system in the form of a prod- rug.
  • the corresponding prodrugs are lipid derivatives having (a) an aliphatic group of a length of at least 2 carbon atoms and an organic radical having at least 2 carbon atoms, and (b) a hydrophilic moiety, said prodrug furthermore being a substrate for extracellular phospholipase A2 to the extent that the organic radical can be hydrolytically cleaved off, whereas the aliphatic group remains substantially un- affected, whereby the active drug substance is liberated in the form of a lysolipid derivative that performs a intramolecular cyclization, said system comprising lipopolymers and/or glycolipids so as to present hydrophilic chains on the surface of the system.
  • the present invention also provides a lipid based drug delivery system for administra- tion of at least one second drug substance, wherein the at least one second drug substance is incorporated in the system, said system including lipid derivatives which has (a) an organic radical having at least 2 carbon atoms, and (b) a hydrophilic moiety, placed in the right distance and with the right stereochemistry relative to each other, where the lipid derivative furthermore is a substrate for extracellular phospholipase A2 to the extent that the organic radical can be hydrolytically cleaved off, so as to result in an organic acid fragment or an organic alcohol fragment and a lysolipid fragment that performs a intramolecular cyclization, said system comprising lipopolymers and/or gly- colipids so as to present hydrophilic chains on the surface of the system.
  • lipid derivatives which has (a) an organic radical having at least 2 carbon atoms, and (b) a hydrophilic moiety, placed in the right distance and with the right stereochemistry
  • the present invention takes advantage of the surprising finding that liposomes (and micelles) including lipid derivatives which can be specifically and only partially cleaved by extracellular phospholipases, and which at the same time comprises lipopolymers and/or glycolipids, have the properties of circulating in the blood stream sufficiently long so as to reach target tissue where the extracellular PLA 2 activity is elevated without being recognised by the mammalian reticuloendothelial systems and without penetrating cell walls, whereby the lipid derivatives of the liposomes are specifically cleaved by extracellular PLA 2 so as to liberate therapeutically active ingredients at the desired location.
  • the present invention also provides a class of novel lipid derivatives which are particu- larly useful as constituents of the drug delivery systems described herein.
  • Fig. 1 Schematic illustration of the lipid-based drug-targeting and drug-trigering princi- pie involving accumulation of the liposomal drug carriers in porous diseased tissue and subsequent release of drug and transport across the target membrane via extracellular PLA 2 activity.
  • V Drugs (lysolipid and fatty acid derivatives), enhancers (lysolipid + fatty acid), PLA 2 activators (lysolipid + fatty acid).
  • the lysolipids will subsequently conduct an intramolecular cyclization.
  • Fig. 2 An example of one particular prodrug where the generated lysolipid, which is generated by PLA 2 hydrolysis, performs an intramolecular cyclization resulting in a cyclic anticancer lipid.
  • Fig. 3 An example of one particular prodrug where PLA 2 hydrolysis results in a lysolipid that cyclize to form a cyclic anticancer lipid. In addition a drug auxiliary is released as a result of the intramolecular cyclization.
  • Fig. 4 An example of one particular prodrug where PLA 2 hydrolysis results in the re- lease of a drug auxiliary as a consequence of an intramolecular cyclization.
  • extracellular PLA 2 is capable of cleaving monoether/monoester lipid derivatives as well as lipids with sub- tituents at the glycerol backbone which produce lipid derivatives which as such, or in combination with other active compounds, will exhibit a therapeutic effect.
  • the drug delivery systems (liposomes or micelles) of the present invention relies in one instance on lipid derivatives having (a) an aliphatic group of a length of at least 2 carbon atoms and an organic radical having at least 2 carbon atoms, and (b) a hydro- philic moiety, said prodrug furthermore being a substrate for extracellular phospholi- pase A2 to the extent that the organic radical can be hydrolytically cleaved off resulting in an intramolecular cyclization, whereas the aliphatic group remains substantially unaffected, whereby the active drug substance is liberated in the form of a cyclized lysolipid derivative, said system comprising lipopolymers and/or glycolipids so as to present hy- drophilic chains on the surface of the system.
  • lipid and “lysolipid” (in the context of phospholipids) will be well- known terms for the person skilled in the art, it should be emphasised that, within the present description and claims, the term “lipid” is intended to mean substituted glycerol of the following formula: R D R D
  • R A and R 6 are linked to the glycerol backbone via ester bonds.
  • R D is an ester moiety ((CH 2 ) n C(O)D 1 ) ), which will facilitate an intramolecular cyclization upon PLA2 hydrolysis, where n is an integer from 0 - 5, preferably 0 - 2, and D 1 is an organic moiety, possibly MeOH or EtOH, preferably an organic moiety with biological activity.
  • the hydrogens in the CH 2 groups in R D can be substituted with intramolecular cyclization facilitating groups, e.g. fluoride alpha to the carbonyl.
  • the CH 2 groups in R D can be substituted, e.g. with O, S, NH, or bioisosters thereof, in particular at the alpha position to the carbonyl group.
  • Al- tematively R D is an organic moiety that contains a leaving group, e.g. iodide, i.e. an organic moiety that can facilitate an intramolecular cyclization upon PLA 2 hydrolysis.
  • lysolipid is intended to mean a lipid where the R 6 fatty acid group is absent (e.g. hydrolytically cleaved off), i.e. a glycerol derivative of the formula above where R 6 is hydrogen, but where the other substituents are substantially unaffected. Conversion of a lipid to a lysolipid can take place under the action of an enzyme, specifically under the action of cellular as well as extracellular PLA 2 .
  • lipid derivative and “lysolipid derivative” are intended to cover possible de- rivatives of the above possible compounds within the groups “lipid” and “lysolipid”, respectively.
  • Examples of biologically active lipid derivatives and lysolipid derivatives are given in Houlihan, et al., Med. Res. Rev., 15, 3, 157-223.
  • the extension “derivative” should be understood in the broadest sense.
  • lipid derivatives and lysolipids will in the above described case fulfil certain functional criteria (see above) and/or structural requirements. It is particularly relevant to note that one example of suitable lipid derivatives are those which have (a) an aliphatic group of a length of at least 2, 3, 4, 5, 6, 7, 8, preferably at least 9, carbon atoms and an organic radical having at least 2, 3, 4, 5, 6, 7, 8, preferably at least 9 carbon atoms, and (b) a hydrophilic moiety. It will be evident that the ali- phatic group and the organic radical will correspond to the two fatty acid moieties in a normal lipid and that the hydrophilic moiety will correspond to the phosphate part of a (phospho)lipid or a bioisoster thereof.
  • the lipid derivatives which can be utilised within the present invention should be substrates for extracellular PLA 2 , i.e. the lipid derivatives should be able to undergo hydrolytic, enzymatic cleavage of the organic radical corresponding to a fatty acid.
  • the organic radical and the phospholipid head group, or bioisosters of a phosphor head group should be placed in the right distance and with the right stereochemistry relative to each other, e.g. with the organic radical in the 2 or and a head group in the 3-position in a phospholipid.
  • Extracellular PLA 2 is known to belong to the enzyme class (EC) 3.1.1.4. Thus by reference to (extracellular) PLA 2 should be understood all extracellular enzymes of this class, e.g. Ii- pases, which can induce hydrolytic cleavage of the organic radical corresponding to the fatty acid in the 2-position in a lipid.
  • extracellular PLA 2 activity is significantly increased towards organised substrates as compared to monomeric substrates.
  • the organic radical e.g. aliphatic group
  • the organic radical is preferably linked via an ester functionality which can be cleaved by extracellular PLA 2 , preferably so that the group which is cleaved off is a carboxylic acid.
  • the aliphatic group (the group corresponding to the fatty acid in the 1 -position in a lipid) of the lipid derivative i.e. the lysolipid derivative after cleavage by extracellular PLA 2
  • substantially unaffected is meant that the integrity of the aliphatic group is preserved and that less than 1 mol%, preferably less than 0.1 mol%, of the aliphatic group (the aliphatic group in the 1 -position) is cleaved under the action of extracellular PLA 2 .
  • the drug delivery systems (liposomes or micelles) of the present invention relies in another instance on lipid derivatives having (a) an organic radical having at least 2 carbon atoms, and (b) a hydrophilic moiety, said prodrug furthermore being a substrate for ex- tracellular phospholipase A2 to the extent that the organic radical can be hydrolytically cleaved off resulting in an intramolecular cyclization, said system comprising lipopoly- mers and/or glycolipids so as to present hydrophiiic chains on the surface of the system.
  • lipid is intended to mean tri-esters of the following formula:
  • R B is linked to the glycerol backbone via ester bonds.
  • D 2 is an organic moiety with biological activity, i.e. a drug substance in its broadest sense, n is an integer from 0-5, preferably 0 - 2.
  • the hydrogens in the CH 2 groups can be substituted with intramolecular cyclization facilitating groups, e.g. fluoride alpha to the carbonyl.
  • the CH 2 group alpha to the carbonyl can also be substituted with O, S, NH or bioisosters thereof.
  • (CH 2 ) n -C(O)-D 2 may in some embodiments be equal to R D .
  • lipid derivatives for incorporation in the drug delivery systems of the invention can be represented by the following formula:
  • lipid derivatives for incorporation in the drug delivery systems of the invention can be represented by the following formula:
  • R D is an ester moiety ((CH 2 ) n C(O)D 1 ), which will facilitate an intramolecular cyclization upon PLA2 hydrolysis, where n is an integer from 0 - 5, preferably 0 - 2, and D 1 is an organic moiety, possibly MeOH or EtOH, preferably an organic moiety with biological activity.
  • the hydrogen's in the CH 2 groups in R D can be substituted with intramolecular cyclization facilitating groups, e.g. fluoride alpha to the carbonyl.
  • the CH 2 groups in R D can be substituted, e.g. with O, S, NH, or bioisosters thereof, in particular at the alpha position to the carbonyl group.
  • R D is an organic moiety that contains a leaving group, e.g. iodide, i.e. an organic moiety that can facilitate an intramolecular cyclization upon PLA 2 hydrolysis.
  • D 2 is an organic moiety with biological activity, i.e. a drug substance in its broadest sense, n is an integer from 0-5, preferably 0 - 2.
  • the hydrogen's in the CH 2 groups can be substituted with intramolecular cyclization facilitating groups, e.g. fluoride alpha to the carbonyl.
  • the CH 2 groups can furthermore be substituted, e.g. with O, S, NH, or bioisosters thereof, in particular at the alpha position to the carbonyl group.
  • X and Z independently are selected from OC(O), O, CH 2 , NH, NMe, S, S(O), OS(O), S(O) 2 , OS(O) 2 , OP(O) 2 , OP(O) 2 O, OAs(O) 2 and OAs(O) 2 O; preferably from O, NH, NMe and CH 2 , in particular O and CH 2 ;
  • Y is selected from OC(O), OC(O)O, OC(O)N, OC(S), SC(O), SC(S), CH 2 C(O)O, NC(O)O, Y then being connected to R 2 via either the oxygen, sulphur, nitrogen or car- bonyl carbon atom, preferably via the carbonyl carbon atom;
  • R 1 is an aliphatic group of the formula Y 1 Y 2 ;
  • R 2 is an organic radical having at least 2 carbon atoms, such as an aliphatic group having a length of at least 2, preferably at least 9, carbon atoms, preferably a group of the formula Y 1 Y 2 ;
  • R 3 is selected from phosphatide acid (PO 2 -OH), derivatives of phosphatidic acid and bioisosters to phosphatic acid, e.g. P(O)O, P(O) 2 CH 2 , S(O)O, S(O)CH 2 , C(O)O, C(O)N, C(S)O, P(S)O 2 , S(O) 2 CH 2 and derivatives thereof (among others phosphatidic acid derivatives to which a hydrophilic polymer or polysaccharide is covalently attached).
  • P(O)O, P(O) 2 CH 2 S(O)O, S(O)CH 2 , C(O)O, C(O)N, C(S)O, P(S)O 2 , S(O) 2 CH 2 and derivatives thereof (among others phosphatidic acid derivatives to which a hydrophilic polymer or polysaccharide is covalently attached).
  • Y is -OC(O)- where Y is connected to R 2 via the carboxyl atom.
  • X and Z are O and that Y is -OC(O)- where Y is connected to R 2 via the carboxyl atom.
  • the lipid derivative is a 1-monoether-2-monoester-phospholipid type compound.
  • Another preferred group of lipid derivatives is the one where the group X is S.
  • R 1 and R 2 are aliphatic groups of the formula Y 1 Y 2 where Y 2 is
  • n1 is equal to zero or is an integer of from 1 to 23; n3 is equal to zero or is an integer of from 1 to 20; n5 is equal to zero or is an integer of from 1 to 17; n7 is equal to zero or is an integer of from 1 to 14; n9 is equal to zero or is an integer of from 1 to 11; and each of n2, n4, n6 and 8 is independently equal to zero or 1.
  • the aliphatic groups may be unsaturated and even substituted with halogens (flouro, chloro, bromo, iodo) and C ⁇ io-groups (i.e. yielding branched aliphatic groups)
  • the aliphatic groups as R 1 and R 2 are in one embodiment preferably saturated as well as un-branched, that is, they preferably have no double bonds between adjacent carbon atoms, each of n2, n4, n6 and n8 then being equal to zero.
  • Y 1 is preferably (CH 2 ) ⁇ i.
  • R 1 and R 2 are each independently (CH 2 ) ⁇ iCH 3 , and most preferably, (CH 2 )i 7 CH 3 or (CH 2 ) I sCH 3 .
  • the groups can have one or more double bonds, that is, they can be un- saturated, and one or more of n2, n4, n6 and n8 can be equal to 1.
  • n2 is equal to 1
  • n1 is equal to zero or is an integer of from 1 to 21
  • n3 is also zero or is an integer of from 1 to 20, at least one of n1 or n3 not being equal to zero.
  • the lipid derivatives are those which are mono-ether lipids where X and Z are O, R 1 and R 2 are independently selected from alkyl groups, (CH 2 ) n CH 3 , where n is 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29, preferably 14, 15 or 16, in particular 14; Y is -OC(O)-, Y then being con- nected to R 2 via the carbonyl carbon atom.
  • hydrophilic moiety which corresponds to R 3
  • R 3 hydrophilic moiety
  • Bioisosters to phosphatidic acid and derivatives thereof indeed implies that such groups - as phosphatidic acid - should allow for enzymatic cleavage by extracellular PLA 2 .
  • R 3 is typically selected from phosphatidic acid (PO 2 -OH), phosphatidylcholine (PO 2 -O- CH 2 CH 2 N(CHs) 3 ), phosphatidylethanolamine (PO 2 -O-CH 2 CH 2 NH 2 ), N-methyl- phosphatidylethanolamine (PO 2 -O-CH 2 CH 2 NHCH 3 ), phosphatidylserine, phosphatidy- linositol, and phosphatidylglycerol (PO 2 -O-CH 2 CHOHCH 2 OH).
  • phosphatidic acid Other possible deriva- tives of phosphatidic acid are those where dicarboxylic acids, such as glutaric, sebacic, succinic and tartaric acids, are coupled to the terminal nitrogen of phosphatidyl- ethanolamines, phosphatidylserine, phosphatidylinositol, etc.
  • dicarboxylic acids such as glutaric, sebacic, succinic and tartaric acids
  • a hydrophilic polymer or polysaccharide is typically covalently attached to the phosphatidyl part of the lipid derivative.
  • Another particular lipid derivative comprises an acyl chain attached to the head group of the lipids,
  • Hydrophilic polymers which suitable can be incorporated in the lipid derivatives of the invention so as to form lipopolymers are those which are readily water-soluble, can be covalently attached to a vesicle-forming lipid, and which are tolerated in vivo without toxic effects (i.e. are biocompatible).
  • Suitable polymers include polyethylene glycol
  • PEG polylactic
  • polyglycolic acid also termed polygly- colide
  • a polylactic-polyglycolic acid copolymer polyvinyl alcohol, polyvinylpyrrolidone, polymethoxazoline, polyethyloxazoline, polyhydroxypropyl methacrylamide, polyme- thacrylamide, polydimethylacrylamide, and derivatised celluloses such as hydroxy- methylcellulose or hydroxyethylcellulose.
  • Preferred polymers are those having a molecular weight of from about 100 Daltons up to about 10,000 Daltons, and more preferably from about 300 Daltons to about 5,000 Daltons.
  • the polymer is polyethyleneglycol having a molecular weight of from about 100 to about 5,000 Daltons, and more preferably having a molecular weight of from about 300 to about 5,000 Daltons.
  • the polymer is polyethyleneglycol of 750 Daltons (PEG(750)).
  • Polymers may also be defined by the number of monomers therein; a preferred embodiment of the present invention utilises polymers of at least about three monomers, such PEG polymers consisting of three monomers (approximately 150 Daltons).
  • the glycolipid or lipopolymer is represented by a fraction of the lipid derivative
  • a lipid derivative lipid derivative with a polymer or polysaccharide chain
  • the fraction may be even higher, such as from 1-100 mol%, such as 10-100 mol%, of the total dehydrated lipid-based system.
  • Preferred polymers to be covalently linked to the phosphatidyl part are polyethylene glycol (PEG), polyactide, poly- glycolic acid, polyactide-polyglycolic acid copolymer, and polyvinyl alcohol.
  • R 2 should be an organic radical having at least 2 carbon atoms) (such as an aliphatic group having a certain length (at least 2, preferably 9, carbon atoms)), a high degree of variability is possible, e.g. R 2 need not necessarily to be a long chain residue, but may represent more complex structures.
  • R 2 may either be rather inert for the environment in which it can be liberated by extracellular PLA 2 or that R 2 may play an active pharmaceutical role, typically as an auxiliary drug substance or as an efficiency modifier for the lysol- ipid derivative and/or any other (second) drug substances present in the environment.
  • the R 1 and R 2 groups will be long chain residues, e.g. a fatty acid residue (the fatty acid will include a carbonyl from the group Y).
  • auxiliary drug substances as R 2 within this subgroups are polyunsaturated acids, e.g. oleate, linoleic, linonleic, as well as de- rivatives of arachidonoyl (including the carbonyl from Y), e.g. prostaglandins such as prostaglandin E 1 , as arachidonic acid derivatives are know regulators of hormone action including the action of prostaglandins, thromboxanes, and leukotrines.
  • efficiency modifiers as R 2 are those, which enhance the permeability of the target cell membrane as well as enhances the activity of extracellular PLA 2 or the active drug substance or any second drug substances. Examples hereof are short chain (C 8-I2 ) fatty acids.
  • R 2 e.g. vitamin D derivatives, steroid derivatives, retinoic acid (including all-trans- retinoic acid, all-cis-retinoic acid, 9-cis-retinoic acid, 13-cis-retinoic acid), cholecalciferol and tocopherol analogues, pharmacologically active carboxylic acids such as branched-chain aliphatic carboxylic acids (e.g. valproic acid and those described in WO 99/02485), salicylic acids (e.g. acetylsalicylic acid), steroidal carboxylic acids (e.g. lysergic and isolysergic acids), monoheterocyclic carboxylic acids (e.g.
  • carboxylic acids such as branched-chain aliphatic carboxylic acids (e.g. valproic acid and those described in WO 99/02485), salicylic acids (e.g. acetylsalicylic acid),
  • nicotinic acid and polyheterocyclic carboxylic acids (e.g. penicillins and cephalosporins), diclofenac, indomethacin, ibuprofen, naproxen, 6-methoxy-2 ⁇ naphthylacetic acid.
  • polyheterocyclic carboxylic acids e.g. penicillins and cephalosporins
  • diclofenac indomethacin
  • ibuprofen ibuprofen
  • naproxen 6-methoxy-2 ⁇ naphthylacetic acid.
  • R 2 groups are referred to by the name of a discrete species, rather than the name of the radical.
  • possible examples may include the carbonyl group or oxy group of the bond via which the organic radical is linked to the lipid skeleton (corresponding to "Y" in the formula above). This will of course be appreciated by the person skilled in the art.
  • lipid derivatives may be substituted, e.g. in order to modify the cleavage rate by extracellular PLA 2 or simply in order to modify the properties of the liposomes comprising the lipid derivatives.
  • the present invention relates to such lipid derivatives for use as a medicament, preferably present in a pharmaceutical composition, and to the use of a lipid derivative as defined above for the preparation of a medicament for the treatment of diseases or conditions associated with a localised increase in extracellular phospholipase A2 activity in mammalian tissue.
  • diseases or conditions are typically selected from can- cer, e.g. a brain, breast, lung, colon or ovarian cancer, or leukaemia, lymphoma, sarcoma, carcinoma, and inflammatory conditions.
  • the present compositions and uses are especially applicable in the instances where the increase in extracellular PLA 2 activity is at least 25% compared to the normal level of activity in the tissue in question, the tissue being that of a mammal, in particular a human.
  • the present invention provides a lipid-based drug delivery system for administration of an active drug substance selected from lysolipid derivatives and/or drug substances that can be covalently attached to a lipid, wherein the active drug sub- stance is present in the lipid-based system in the form of a prodrug, said prodrug being being a lipid derivative having (a) an organic radical having at least 2 carbon atoms, and (b) a hydrophilic moiety, said prodrug furthermore being a substrate for extracellular phospholipase A2 to the extent that the organic radical can be hydrolytically cleaved off, leading to an intramolecular cyclization reaction, whereby the active drug sub- stance is liberated in the form of a lysolipid derivative, said system comprising lipopoly- mers and/or glycolipids so as to present hydrophilic chains on the surface of the system.
  • active drug substance any chemical entity which will provide a prophylactic or therapeutic effect in the body of a mammal, in particular a human.
  • the present invention mainly relates to the therapeutic field.
  • prodrug should be understood in the normal sense, namely as a drug which is masked or protected with the purpose of being converted (typically by cleavage, but also by in vivo chemical conversion) to the intended drug substance.
  • prodrug typically by cleavage, but also by in vivo chemical conversion
  • the active drug substance is selected from lysolipid derivatives and/or drugs with a therapeutic effect with a chemical structure that makes it possible to attach it to a lipid that can be set up for an intramolecular cyclization upon PLA 2 hydrolysis, and as it will be understood from the present description with claims.
  • the lipid derivative will often constitute the prodrug referred to above and the lysolipid derivative will thereby constitute the active drug substance often a mono-ether lysolipid derivative. It should however be understood that this does not exclude the possibility of including other drug substances, referred to as second drug substances, in the drug delivery systems of the invention, neither does it exclude that the organic radical which can be hydrolytically cleaved by the action of extracellular PLA 2 can have a certain pharmaceutical effect (e.g. as an auxiliary drug substance or an efficiency modifier as described elsewhere herein). Furthermore, the pharmaceutical effect of the "active drug substance", i.e.
  • the lysolipid derivative need not be the most predominant when a second drug substance is included, actually the effect of the second drug substance might very well be the most predominant as will become apparent in the other main embodiment (see “Lipid derivative liposomes as drug delivery systems", below).
  • the active drug substance (lysolipid derivative) release from the prodrug (lipid derivative) is believed to take place as illustrated in the following example:
  • both the substituent R 2 and/or the substituent D may constitute an auxiliary drug substance or an efficiency modifier for the active drug substance and will simultaneously be released under the action of extracellular PLA 2 :
  • R 2 It has been described above under the definition of R 2 how the group R 2 can have vari- ous independent or synergistic effects in association with the active drug substance, e.g. as an auxiliary drug substance or an efficiency modifier, e.g. permeability or cell lysis modifier. It should be borne in mind that the groups corresponding to R 2 (e.g. R 2 -
  • OH or R 2 -COOH might have a pharmaceutical effect which is. predominant in relation the effect of the lysolipid derivative (active drug substance).
  • the above is also applica- ble for D.
  • lipid-based drug delivery system should encompass macromolecular structures which as the main constituent comprise lipid or lipid derivatives. Suitable exam- pies hereof are liposomes and micelles. It is presently believed that liposomes offer the broadest scope of applications and those have been described most detailed in the following. Although liposomes currently are believed to be the preferred lipid-based system, micelle systems are also believed to offer interesting embodiments within the pre- sent invention.
  • the lipid derivative (e.g. the prodrug) is comprised in liposomes either as the only constituent or - which is more common - in combination with other constitu- ents (other lipids, sterols, etc.).
  • the lipid-based systems described herein are preferably in the form of liposomes, wherein the liposomes are building up of layers comprising the lipid derivative (e.g. a prodrug).
  • “Liposomes” are known as self-assembling structures comprising one or more lipid bi- layers, each of which surrounds an aqueous compartment and comprises two opposing mono-layers of amphipathic lipid molecules.
  • Amphipathic lipids i.e. lipid derivatives
  • lipid derivatives comprise a polar (hydrophilic) head group region (corresponding to the substituent R 3 in the lipid derivatives) covalently linked to one or two non-polar (hydrophobic) aliphatic groups (corresponding to R 1 and R 2 in the lipid derivatives).
  • Energetically unfavourable contacts between the hydrophobic groups and the aqueous medium are generally believed to induce lipid molecules to rearrange such that the polar head groups are oriented towards the aqueous medium while the hydrophobic groups reorient towards the interior of the bilayer.
  • An energetically stable structure is formed in which the hydrophobic groups are effectively shielded from coming into contact with the aqueous me- dium.
  • Liposomes can have a single lipid bilayer (unilamellar liposomes, "ULVs”), or multiple lipid bi-layers (multilamellar liposomes, "MLVs”), and can be made by a variety of methods (for a review, see, for example, Deamer and Uster, Liposomes, Marcel Dek- ker, N.Y., 1983, 27-52).
  • UUVs unilamellar liposomes
  • MLVs multilamellar liposomes
  • MLVs multilamellar liposomes
  • Lenk's, Fountain's and Cullis' methods for making MLVs with substantially equal interlamellar solute distribution
  • US 4,235,871 Papahadjopoulos et al.'s reverse-phase evaporation method
  • ULVs can be produced from MLVs by such methods as sonication (see Papahadjopoulos et al., Biochem. Biophys. Acta, 135, 624 (1968)) or extrusion (US 5,008,050 and US 5,059,421).
  • the liposome of this invention can be produced by the methods of any of these disclosures, the contents of which are incorporated herein by reference.
  • Liposome sizes can also be determined by a number of techniques, such as quasi-electric light scattering, and with equipment, e.g., Nicomp ® particle sizers, well within the possession of ordinarily skilled artisans.
  • the lipid derivatives of the present invention can constitute the major part of a lipid-based system even if this system is a liposome system. This fact resides in the structural (but not functional) similarity between the lipid deriva- tives of the present invention and lipids.
  • the lipid derivatives for the present invention can be the sole constituent of liposomes, i.e. up to 100 mol% of the total dehydrated liposomes can be constituted by the lipid derivatives. This is in contrast to the known mono-ether lysolipids like ET-18-OCH3, which can only constitute a minor part of the liposomes.
  • liposomes advantageously comprise other constituents which may or may not have a pharmaceutical effect, but which will render the liposome structure more stable (or alternatively more unstable) or will protect the liposomes against clearance and will thereby increase the circulation time thereby improving the overall efficiency of a pharmaceutical including the liposome.
  • the particular lipid derivatives will typically constitute from 5-100 mol%, such as 50-100 mol%, preferably from 75 : 100 mol%, in particular 90-100 mol%, based on the total dehydrated liposome.
  • the liposomes can be unilamellar or multilamellar. Some preferred liposomes are unilamellar and have diameters of less than about 400 nm, more preferably, from greater than about 40 nm to less than about 400 nm.
  • the liposomes are typically - as known in the art - prepared by a method comprising the steps of: (a) dissolving the lipid derivative in an organic solvent; (b) removing the organic solvent from the lipid derivative solution of step (a); and (c) hydrating the product of step (b) with an aqueous solvent so as to form liposomes.
  • the method may further comprise a step of adding at least one second drug substance (see below) to the organic solvent of step (a) or the aqueous phase of step (c).
  • the method may comprise a step of extruding the liposomes produced in step (c) through a filter to produce liposomes of a certain size, e.g. 100 nm.
  • Lipid based particulate systems i.e. liposomes as well as micelles; of sizes covering a broad range may be prepared according to the above-mentioned techniques.
  • suitable sizes for pharmaceutical applications will normally be in the range of 20-10,000 nm, in particular in the range of 30-1000 nm. Sizes in the range of 50-200 nm are normally preferred because liposomes in this size range are generally believed to circulate longer in the vascular system of mammals than do larger liposomes which are more quickly recognised by the mammals' reticuloendothelial systems ("RES"), and hence, more quickly cleared from the circulation.
  • RES reticuloendothelial systems
  • Longer vascular circulation can enhance therapeutic efficacy by allowing more lipo- somes to reach their intended site of actions, e.g., tumours or inflammations.
  • the liposomes should preferably have a mean particle size of about 100 nm.
  • the parti- cle size should generally be in the range of 40-400 nm.
  • the liposomes should preferably have a mean particle size from 100 to 5000 nm, and the liposomes can then be uni- or multilayered.
  • One of the advantages by including the lipid derivatives in liposomes is that the liposome structure, in particular when stabilised as described in the following, will have a much longer vascular circulation time that the lipid derivatives as discrete compounds.
  • the lipid derivatives will become more or less inert or even "invisible” when "packed” in liposomes in which lipopolymers and/or glycolipids are comprised. This means than any potential disadvantageous effect, e.g. haemolytic effect, can be suppressed.
  • the liposomes should preferably act as inert constituents until they reach the area of interest, e.g. cancerous, infected or inflammatorily diseased areas or tissue.
  • liposomes may comprise a number of other constituents.
  • a drug delivery system according to the invention may further contain a component which controls the release of any second drug substance, extracellular
  • PLA 2 activity controlling agents or permeability enhancer e.g. short chain lipids and lipopolymers/glycolipids.
  • lipopolymers Two very important groups of compounds to be comprised in liposomes as modifiers are the stabilising compound lipopolymers and glycolipids, such as lipopolymers (e.g. polyethyleneoxide-dipalmitoylphosphatidyl ethanolamine, DPPE-PEG, polyethyleneox- ide-distearoylphosphatidylethanolamine, DSPE-PEG) with PEG molecular weight from 100 to 10000 Daltons.
  • lipopolymers function as stabilisers for the liposome, i.e. lipopolymer increases the circulation time, and - which is highly interesting in the present context, as activators for extracellular PLA 2 .
  • the stabilising effect will be described in the following.
  • Liposome outer surfaces are believed to become coated with serum proteins, such as opsonins, in mammals' circulatory systems. Without intending in any way to be limited by any particular theory, it is believed that liposome clearance can be inhibited by modifying the outer surface of liposomes such that binding of serum proteins thereto is generally inhibited.
  • Effective surface modification that is, alterations to the outer surfaces of liposomes which result in inhibition of opsonisation and RES uptake, is believed to be accomplished by incorporating into liposomal bi-layers lipids whose polar head groups have been derivatised by attachment thereto of a chemical moiety which can inhibit the binding of serum proteins to liposomes such that the pharmacokinetic behaviour of the liposomes in the circulatory systems of mammals is altered and the activity of extracellular PLA 2 is enhanced as described for the lipopolymers above.
  • Liposome preparations have been devised which avoid rapid RES uptake and which thus have an increased half-life in the bloodstream.
  • STEALTH ® liposomes (Liposome Technology Inc., Menlo Park, Calif.) include polyethyleneglycol (PEG)-grafted lipids at about 5 mol% of the total dehydrated liposome.
  • PEG polyethyleneglycol
  • the presence of polymers on the exterior liposome surface decreases the uptake of liposomes by the organs of the RES.
  • the liposome membranes can be constructed so as to resist the disruptive effects of the surfactant contained therein.
  • a liposome membrane which contains as constituents lipids derivatised with a hydrophilic (i.e., water-soluble) polymer nor- mally has increased stability.
  • the polymer component of the lipid bilayer protects the liposome from uptake by the RES, and thus the circulation time of the liposomes in the bloodstream is extended.
  • Hydrophilic polymers suitable for use in lipopolymers are those which are readily water- soluble, can be covalently attached to a vesicle-forming lipid, and which are tolerated in vivo without toxic effects (i.e., are biocompatible).
  • Suitable polymers include polyethylene glycol (PEG), polylactic (also termed polylactide), polyglycolic acid (also termed polyglycolide), a polylactic-polyglycolic acid copolymer, and polyvinyl alcohol.
  • PEG polyethylene glycol
  • polylactic also termed polylactide
  • polyglycolic acid also termed polyglycolide
  • a polylactic-polyglycolic acid copolymer and polyvinyl alcohol.
  • Preferred polymers are those having a molecular weight of from about 100 or 120 Daltons up to about 5,000 or 10,000 Daltons, and more preferably from about 300 Daltons to about 5,000 Daltons.
  • the polymer is polyethyleneglycol having a molecular weight of from about 100 to about 5,000 Daltons, and more preferably having a molecular weight of from about 300 to about 5,000 Daltons.
  • the polymer is polyethyleneglycol of 750 Daltons (PEG(750)).
  • Polymers may also be defined by the number of monomers therein; a preferred embodiment of the present invention utilises polymers of at least about three monomers, such PEG polymers consisting of three monomers (approximately 150 Daltons).
  • hydrophilic polymers which may be suitable for use in the present invention include polyvinylpyrrolidone, polymethoxazoline, polyethyloxazoline, polyhy- droxypropyl methacrylamide, polymethacrylamide, polydimethylacrylamide, and derivatised celluloses such as hydroxymethylcellulose or hydroxyethylcellulose.
  • Glycolipids are lipids to which a hydrophilic polysaccharide chain is covalently attached. It will be appreciated that glycolipids can be utilised like lipopolymers although the lipopolymers currently presents the most promising results. It is generally believed that the content of lipopolymer advantageously will be in the range of 1-50 mol%, such as 2-25%, in particular 2-15 mol%, based on the total dehydrated liposome.
  • the liposomes' bi- or multilayers may also contain other constituents such as other Hp- ids, sterolic compounds, polymer-ceramides as stabilisers and targeting compounds, etc.
  • the liposomes comprising lipid derivatives may (in principle) exclusively consist of the lipid derivatives. However, in order to modify the liposomes, "other lipids" may be com- prised as well. Other lipids are selected for their ability to adapt compatible packing conformations with the lipid derivative components of the bilayer such that the all the lipid constituents are tightly packed, and release of the lipid derivatives from the bilayer is inhibited. Lipid-based factors contributing to compatible packing conformations are well known to ordinarily skilled artisans and include, without limitation, acyl chain length and degree of unsaturation, as well as the head group size and charge.
  • suitable other lipids including various phosphatidylethanolamines (“PE's”) such as egg phosphatidylethanolamine (“EPE”) or dioleoyl phosphatidylethanolamine (“DOPE”), can be selected by ordinarily skilled artisans without undue experimentation.
  • PE's phosphatidylethanolamines
  • EPE egg phosphatidylethanolamine
  • DOPE dioleoyl phosphatidylethanolamine
  • Lipids may be modified in various way, e.g. by head group derivatisation with dicarboxylic ac- ids, such as glutaric, sebacic, succinic and tartaric acids, preferably the dicarboxylic acid is glutaric acid (“GA").
  • G glutaric acid
  • suitable head group-derivatised lipids include phosphatidylethanolamine-dicarboxylic acids such as dipalmitoyl phosphatidyl- ethanolamine-glutaric acid (“DPPE-GA”), palmitoyloleoyl phosphatidylethanolamine- glutaric acid (“POPE-GA”) and dioleoyl phosphatidylethanolamine-glutaric acid (“DOPE-GA”).
  • DPPE-GA dipalmitoyl phosphatidyl- ethanolamine-glutaric acid
  • POPE-GA palmitoyloleoyl phosphatidylethanolamine- glutaric acid
  • DOPE-GA dioleoyl phosphatidylethanolamine-glutaric acid
  • the derivatised lipid is DOPE-GA.
  • the total content of "other lipids” will typically be in the range of 0-30 mol%, in particular 1-10 mol%, based on the total dehydrated liposome.
  • Sterolic compounds comprised in the liposome may generally affect the fluidity of lipid bi-layers. Accordingly, sterol interactions with surrounding hydrocarbon groups generally inhibit emigration of these groups from the bilayer.
  • An example of a sterolic compound (sterol) to be comprised in the liposome is cholesterol, but a variety of other sterolic compounds are possible. It is generally believed that the content of sterolic compound, if present, will be in the range of 0-25 mol%, in particular 0-10 mol%, such as 0-5 mol%, based on the total dehydrated liposome.
  • Polymer-ceramides are stabilisers improving the vascular circulation time.
  • Examples are polyethylene glycol derivatives of ceramides (PEG-ceramides), in particular those where the molecular weight of the polyethylene glycol is from 100 to 5000. It is gener- ally believed that the content of polymer-ceramides, will be in the range of 0-30 mol%, in particular 0-10 mol%, based on the total dehydrated liposome.
  • PEG-ceramides polyethylene glycol derivatives of ceramides
  • Still other ingredients may constitute 0-2 mol%, in particular 0-1 mol%, based on the total dehydrated liposome.
  • the lipid bilayer of a liposome contains lipids derivatised with polyethylene glycol (PEG), such that the PEG chains extend from the inner surface of the lipid bilayer into the interior space encapsulated by the liposome, and extend from the exterior of the lipid bilayer into the surrounding envi- ronment (see e.g. US 5,882,679 and Fig. 1).
  • PEG polyethylene glycol
  • the derivatised lipid components of liposomes according to the present invention may additionally comprise a labile lipid-polymer linkage, such as a peptide, ester, or disulfide linkage, which can be cleaved under selective patophysiological conditions, such as in the presence of over expressed peptidase or esterase enzymes at diseased sites or reducing agents.
  • a labile lipid-polymer linkage such as a peptide, ester, or disulfide linkage
  • a labile lipid-polymer linkage such as a peptide, ester, or disulfide linkage
  • liposomes according to the present invention may contain non-polymer molecules bound to the exterior of the liposome, such as haptens, enzymes, antibodies or antibody fragments, cytokines and hormones (see, e.g., US 5,527,528), and other small proteins, polypeptides, single sugar polysaccharide moieties, or non-protein molecules which confer a particular enzymatic or surface recognition feature to the liposome. See published PCT application WO 94/21235.
  • Surface molecules which preferentially target the liposome to specific organs or cell types are referred to herein as "targeting molecules" and include, for example, antibodies and sugar moieties, e.g.
  • gangliosides or those based on mannose and galactose, which target the liposome to specific cells bearing specific antigens (receptors for sugar moieties).
  • Techniques for coupling surface molecules to liposomes are known in the art (see, e.g., US 4,762,915).
  • the liposome can be dehydrated, stored and then reconstituted such that a substantial portion of its internal contents is retained.
  • Liposomal dehydration generally requires use of a hydrophilic drying protectant such as a disaccharide sugar at both the inside and outside surfaces of the liposome bi-layers (see US 4,880,635).
  • This hydrophilic compound is generally believed to prevent the rearrangement of the lipids in the liposome, so that the size and contents are maintained during the drying procedure and through subsequent rehydration.
  • Appropriate qualities for such drying protectants are that they are strong hydrogen bond acceptors, and possess stereochemical features that preserve the intramolecular spacing of the liposome bilayer components.
  • the drying protectant can be omitted if the liposome preparation is not frozen prior to dehydration, and sufficient water remains in the preparation subsequent to dehydration.
  • Lipid derivative liposomes as drug carrier systems Lipid derivative liposomes as drug carrier systems
  • the liposomes including the lipid derivatives of the present invention may also comprise at least one second drug substance.
  • the lipid-based drug delivery system described above is in the form of liposomes wherein the at least one second drug substance is incorporated.
  • second drug substances may comprise pharmaceutically active ingredients which may have an individual or synergistic pharmaceutical effect in combination with the lipid derivative and lysolipid derivatives.
  • the term "second" does not necessarily imply that the pharmaceutical effect of the at least one second drug substance is infe- rior in relation to that of, e.g., the active drug substance derived from the prodrug, but is merely used to differentiate between the two groups of substances.
  • the present invention also provides a drug delivery system which is in the form of liposomes, and wherein a second drug substance is incorporated.
  • a possible "second drug substance” is any compound or composition of matter that can be administered to mammals, preferably humans. Such agents can have biological activity in mammals.
  • Second drug substances which may be associated with liposomes include, but are not limited to: antiviral agents such as acyclovir, zidovudine and the in- terferons; antibacterial agents such as aminoglycosides, cephalosporins and tetracyclines; antifungal agents such as polyene antibiotics, imidazoles and triazoles; antime- tabolic agents such as folic acid, and purine and pyrimidine analogs; antineoplastic agents such as the anthracycline antibiotics and plant alkaloids; sterols such as cholesterol; carbohydrates, e.g., sugars and starches; amino acids, peptides, proteins such as cell receptor proteins, immunoglobulins, enzymes, hormones, neurotransmitters and glycoproteins; dyes; radiolabels such as radioisotopes and radioisotope-labeled compounds; radiopaque compounds; fluorescent compounds; mydriatic compounds; bron- chodilators; local ane
  • Liposomal second drug substance formulations enhance the therapeutic index of the second drug substances by reducing the toxicity of the drug. Liposomes can also reduce the rate at which a second drug substance is cleared from the vascular circulation of mammals. Accordingly, liposomal formulation of second drug substance can mean that less of the drug need be administered to achieve the desired effect.
  • Liposomes can be loaded with at least one second drug substance by solubilising the drug in the lipid or aqueous phase used to prepare the liposomes.
  • ionis- able second drug substances can be loaded into liposomes by first forming the liposomes, establishing an electrochemical potential, e.g., by way of a pH gradient, across the outermost liposome bilayer, and then adding the ionisable second drug substance to the aqueous medium external to the liposome (see, e.g., US 5,077,056 and WO 86/01102).
  • the at least one second drug substance may be any of a wide variety of known and possible pharmaceutically active ingredients, but is preferably a therapeuti- cally and/or prophylactically active substance. Due to the mechanism involved in the degradation of the liposomes of the present invention, it is preferred that the at least one second drug substance is one relating to diseases and/or conditions associated with a localised increase in extracellular PLA 2 activity.
  • Particularly interesting second drug substances are selected from (i) antitumour agents such as anthracyline derivatives, cisplatin, paclitaxel, 5-fluoruracil, exisulind, cis-retinoic acid, suldinac sulfide, vincristine, interleukins, oligonucleotides, peptides, proteins and cytokines (ii) antibiotics and antifungals, and (iii) antiinflammatory agents such as ster- oids and non-steroids.
  • the steroids can also have a stabilising effect on the liposomes.
  • active agents like peptides and protein derivatives like interferons, interleukins and oligonucleotides can be incorporated into the PLA2 degradable lipid-based carrier.
  • hydrolysis products i.e. monoether lysolipids and/or ester-linked lysolipid derivatives
  • the hydrolysis products act in turn with the released fatty acid derivatives as absorption enhancers for drug per- meation across the target membranes when the carriers locally are broken down in the diseased tissue.
  • the at least one second drug substance will be distributed in the liposomes according to their hydrophilicity, i.e. hydrophilic second drug substances will tend to be present in the cavity of the liposomes and hydrophobic second drug substances will tend to be present in the hydrophobic bilayer.
  • hydrophilic second drug substances will tend to be present in the cavity of the liposomes and hydrophobic second drug substances will tend to be present in the hydrophobic bilayer.
  • the lipid derivatives may - as prodrugs or discrete constituents - posses a pharmaceutical activity.
  • the present invention furthermore relates to a lipid based drug delivery system for administration of at least one second drug substance, wherein the at least one second drug substance is incorporated in the system (e.g.
  • said system including lipid derivatives which has (a) an aliphatic group of a length of at least 2 carbon atoms and an organic radical having at least 2 carbon atoms, and (b) a hydrophilic moiety, where the lipid derivative furthermore is a substrate for extracellular phospholipase A2 to the extent that the organic radical can be hydrolytically cleaved off, whereas the aliphatic group remains substantially unaffected, so as to result in an organic acid fragment or an organic alco- hoi fragment and a lysolipid fragment, said system comprising lipopolymers and/or gly- colipids so as to present hydrophilic chains on the surface of the system.
  • the organic radical which can be hydrolytically cleaved off may be an auxiliary drug substance or an efficiency modifier for the second drug substance.
  • the lipid derivative is a lipid derivative as defined further above. Typically, the lipid derivative constitutes 5-100 mol%, such as 50-100 mol%, of the total dehydrated (liposome) system.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the lipid-based drug delivery systems described above.
  • the composition will be described in detail below.
  • the present invention also relates to the use of any of the lipid-based drug delivery systems described herein as a medicament, and to the use of any of the lipid-based drug delivery systems described herein for the preparation of a medicament for the treatment of diseases or conditions associated with a localised increase in extracellular phospholipase A2 activity in mammalian tissue.
  • diseases or conditions are typi- cally selected from cancer, e.g. a brain, breast, lung, colon or ovarian cancer, or leukemia, lymphoma, sarcoma, carcinoma and inflammatory conditions.
  • the prophylactic use are especially applicable in the instances the increase in extracellular PLA 2 activity is at least 25% compared to the normal level of activity in the tissue in question, the tissue being that of a mammal, in particular a human.
  • novel and unnatural lipid analogs can be administered in a non-particulate form as free agents leading to an increased intracellular cell uptake rendering them favourable substrates for over expressed intracellular PLA2 in the dis- eased target cells.
  • composition comprising optionally a pharmaceutically acceptable carrier and the lipid derivative, e.g. as a liposome, of this invention.
  • “Pharmaceutically acceptable carriers” as used herein are those media generally acceptable for use in connection with the administration of lipids and liposomes, including liposome drug formulations, to mammals, including humans.
  • Pharmaceutically acceptable carriers are generally formulated according to a number of factors well within the purview of the ordinarily skilled artisan to determine and account for, including without limitation: the particular active drug substance and/or at least one second drug substance used, the liposome preparation, its concentration, stability and intended bioavailability; the disease, disorder or condition being treated with the liposome composition; the subject, its age, size and general condition; and the composition's in- tended route of administration, e.g., nasal, oral, ophthalmic, subcutaneous, intramam- mary, intraperitoneal, intravenous, or intramuscular.
  • Typical pharmaceutically acceptable carriers used in parenteral drug administration include, for example, D5W, an aqueous solution containing 5% weight by volume of dextrose, and physiological saline.
  • Pharmaceutically acceptable carriers can contain additional ingredients, for exam- pie those which enhance the stability of the active ingredients comprised, such as preservatives and anti-oxidants.
  • the liposome or lipid derivative is typically formulated in a dispersion medium, e.g. a pharmaceutically acceptable aqueous medium.
  • an amount of the composition comprising an anticancer effective amount of the lipid derivative is administered, preferably intravenously.
  • anticancer effective amounts are amounts effec- tive to inhibit, ameliorate, lessen or prevent establishment, growth, metastasis or invasion of one or more cancers in mammals to which the lipid derivatives have been administered.
  • Anticancer effective amounts are generally chosen in accordance with a number of factors, e.g., the age, size and general condition of the subject, the cancer being treated and the intended route of administration, and determined by a variety of means, for example, dose ranging trials, well known to, and readily practised by, ordinarily skilled artisans given the teachings of this invention.
  • Antineoplastic effective amounts of the liposome drugs/prodrugs of this invention are about the same as such amounts of free, nonliposomal, drugs/prodrugs, e.g., from about 0.1 mg of the lipid derivative per kg of body weight of the mammal being treated to about 1000 mg per kg.
  • the liposome administered is a unilamellar liposome having an average diameter of from about 50 nm to about 200 nm.
  • the anti-cancer treatment method can include administration of at least one second drug substance in addition to the liposomal drug, these additional agents being comprised in the same liposome as the lipid derivative.
  • the second drug substances which can be entrapped in liposomes' internal compartments or sequestered in their lipid bi-layers, are preferably, but not necessarily, anticancer agents.
  • the pharmaceutical composition is preferably administered parenterally by injection, infusion or implantation (intravenous, intramuscular, intraarticular, and subcutaneous or the like) in dosage forms, formulations or e.g. suitable delivery devices or implants containing conventional, non-toxic pharmaceutically acceptable carriers and adjuvants.
  • the pharmaceutical compositions according to the invention may comprise the active drug substances in the form of a sterile injection.
  • the suitable active drug substances are dispersed in a parenterally acceptable liquid vehicle which conveniently may comprise suspending, solubilising, stabilising, pH- adjusting agents and/or dispersing agents.
  • acceptable vehicles that may be employed are water, water adjusted to a suitable pH by addition of an appropriate amount of hydrochloric acid, sodium hydroxide or a suitable buffer, 1 ,3-butanediol, Ringer's solution and isotonic sodium chloride solution.
  • the aqueous formulation may also contain one or more preservatives, for example, methyl, ethyl or n-propyl p- hydroxybenzoate.
  • a liposome-encapsulated drug via the bloodstream requires that the liposome be able to penetrate the continuous (but "leaky”) endothelial layer and underlying basement membrane surrounding the vessels supplying blood to a tumour.
  • Liposomes of smaller sizes have been found to be more effective at extravasation into tumours through the endothelial cell barrier and underlying basement membrane which separates a capillary from tumour cells.
  • solid tumours are those growing in an anatomical site other than the bloodstream (in contrast to blood-borne tumours such as leukaemia's). Solid tumours require the formation of small blood vessels and capillaries to nourish the growing tumour tissue.
  • the anti-tumour or anti-neoplastic agent of choice is entrapped within a liposome according to the present invention; the liposomes are formulated to be of a size known to penetrate the endothelial and basement membrane barriers.
  • the resulting liposome formulation can be administered parenterally to a subject in need of such treatment, preferably by intravenous administration.
  • Tumours characterised by an acute increase in permeability of the vasculature in the region of tumour growth are particularly suited for treatment by the present methods.
  • the liposomes will eventually degrade due to lipase action at the tumour site, or can be made permeable by, for example, thermal or ultrasonic radiation.
  • the drug is then released in a bio available, transportable solubilised form.
  • a small elevation in tem- perature as often seen in diseased tissue may further increase the stimulation of extracellular PLA 2 .
  • liposome delivery of an drug requires that the liposome have a long blood half-life, and be capable of pene- trating the continuous endothelial cell layer and underlying basement membrane surrounding blood vessels adjacent to the site of inflammation.
  • Liposomes of smaller sizes have been found to be more effective at extravasation through the endothelial cell barrier and into associated inflamed regions.
  • the limited drug-carrying capacity of conventional small liposome preparations has limited their effectiveness for such purposes.
  • the anti-inflammatory agent of choice is entrapped within a liposome according to the present invention; the liposomes are formulated to be of a size known to penetrate the endothelial and basement membrane bar- riers.
  • the resulting liposomal formulation can be administered parenterally to a subject in need of such treatment, preferably by intravenous administration. Inflamed regions characterised by an acute increase in permeability of the vasculature in the region of inflammation are particularly suited for treatment by the present methods.
  • extracellular PLA 2 activity of extracellular PLA 2 is abnormally high in areas of the mammalian body diseased by cancer, inflammation, etc.
  • the present invention have provided a way of exploiting this fact, and it is believed that the extracellular PLA 2 activity should be at least 25% higher in the diseases area of the body (determined in the extracellular environment) compared with a comparative normal area. It is however envisaged that the level of extracellular PLA 2 activity often is much higher, e.g. at least 100%, e.g. at least 200% such as at least 400%.
  • treatment of a mammal in need of a treatment with the purpose of cure or relief can be conducted with only minimal influence on tissue having a "normal" level of extracellular PLA 2 activity. This is extremely relevant in particular with the treatment of cancer where rather harsh drug (second drug substances) is often needed.
  • the invention thus provides to a method for selectively drug targeting to diseased areas, such as areas comprising neoplastic cells, e.g., areas within the mammalian body, preferably a human, having a extracellular phospholipase A2 (extracellular PLA 2 ) activity which is at least 25% higher compared to the normal activity in said areas, by administering to the mammal in need thereof an efficient amount of a drug delivery system defined herein.
  • diseased areas such as areas comprising neoplastic cells, e.g., areas within the mammalian body, preferably a human, having a extracellular phospholipase A2 (extracellular PLA 2 ) activity which is at least 25% higher compared to the normal activity in said areas, by administering to the mammal in need thereof an efficient amount of a drug delivery system defined herein.
  • a mammal afflicted with a cancer e.g., a brain, breast, lung, colon or ovarian cancer, or a leukaemia, lymphoma, sarcoma, carcinoma
  • a pharmaceutical composition of this invention comprises administering a pharmaceutical composition of this invention to the mammal. It is believed that the lipid derivatives and/or the at least one second drug substance in liposome form is selectively cytotoxic to tumour cells.
  • lipid-based carriers composed of the novel and unnatural lipids
  • novel targeted liposome prodrug and drug delivery systems are useful in the treatment or alleviation of disorders in the skin that are associated with or resulting from increased levels of extracellular PLA 2 .
  • the lipid-based prodrug and drug delivery systems are useful for the administration of an active drug substance selected lected from ether-lysolipid and/or fatty acid derivatives of a lipid prodrug being a substrate for extracellular PLA 2 .
  • the flexible liposome carrier by PLA 2 leads to the release of lysolipid and/or fatty acid derivatives, which are designed to be effective in the treatment of various types of skin diseases such as cancer and inflammation.
  • the novel prodrug liposome carriers can be used for targeted delivery of conventional drugs to diseased regions of the skin that is associated with an elevated level of PLA 2 .
  • Liposome formulations have been the focus of extensive investigation as the mode of skin delivery for many drugs. There is growing evidence that for topical administration, a new generation of flexible liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.
  • the major physico-chemical barrier of the skin is localized in the outermost cornified layer of the skin, the stratum corneum.
  • the pores in the stratum corneum and the un- derlaying structures are normally so narrow, that the skin only allows passage of entities smaller than 400 Dalton.
  • ultraflexible liposomes are able to pass pores in the skin smaller than 30 nm (Cevc et al. (Biochem Biophys Acta (1998) 1368, p 201-215, US Patent 6.180.353).
  • the novel targeted prodrug system addresses both the important issue of ensuring that predominantly the relevant cells are exposed to the drugs, and the fact that only very flexible liposomes that contains "edge active substances" are able to pass through the stratum corneum and penetrate deep into diseased regions of the skin with elevated levels of PLA 2 . It is important to realize that the prodrug liposomes are not intended for application of drugs into the blood via the skin.
  • extracellular phospholipase A 2 (PLA 2 ) is increased in a number of inflammatory diseases of the skin most notably psoreasis and eczema (Forster et al. (1985) Br J Dermatol 112:135-47; Forster et al. (1983) Br J Dermatol 108:103-5). It has furthermore been found that extracellular PLA 2 is capable of cleaving the prodrug lipid derivatives so as to produce ether-lysolipid derivatives, which alone or in combination with other active compounds, will exhibit an effect.
  • the new prodrug liposomes ensure that the pharmaceutical active ether-lysolipids can be delivered specifically at the target cells in the skin using elevated activity of PLA 2 as a site- specific trigger mechanism.
  • specific fatty acid derivatives which are turned into active drugs by PLA 2 hydrolysis, may be linked to the C-3 position of the lipid- based carrier composed of the novel unnatural lipids.
  • Possible examples include polysaturated fatty acids and other lipophilic groups such as vitamin D derivatives, steroid derivatives, retinoyl derivatives, and tocopherol analogues that can be ester bound to the C-3 position and therefore render the double prodrug lipid a substrate for PLA 2 .
  • conventional drug substances can be incorporated and transported specifically to the diseased site by the novel lipid-based carriers.
  • the new carriers liposomes offer a solution to both the issue of penetration of intact skin and the issue of specific targeting of cells, tissues or part of tissues in the skin that are characterized by an increased level of PLA 2 .
  • novel lipid-based carrier systems are useful in the targeted diagnosis of diseases such as cancer, infection, and inflammation, which are characterized by localized and elevated activity of extracellular PLA 2 .
  • the increased PLA 2 activity combined with the observation that microparticulates accumulate in the diseased tissue via extravasation through leaky capillaries provide the basis for using contrast agent microcarriers for enhanced imaging.
  • the novel diagnostic system takes advantage of the fact that liposomes (and mi- Scheme), which can be specifically degraded by extracellular PLA 2 also can be designed to circulate in the blood stream sufficiently long to reach the target tissue where the PLA 2 activity is elevated. At the diseased site the lipid derivatives of the liposomes are cleaved by PLA 2 so as to liberate the image enhancing agents.
  • Imaging is widely used in medicine. It requires that an appropriate intensity of signal from an area of interest is achieved in order to differentiate diseased tissue from normal surrounding tissue. Imaging involves the relationship between the three spatial dimensions of the region of interest and a fourth dimension, time, which relates to both the pharmacokinetics of the diagnostic agent and the period necessary to ac- quire the image.
  • the physical properties that can be used to create an image signal include, e.g. emission or absorption of radiation, nuclear magnetic moments and relaxation, and transmission or reflection of ultrasound.
  • emission or absorption of radiation e.g. emission or absorption of radiation
  • nuclear magnetic moments and relaxation e.g., nuclear magnetic moments and relaxation, and transmission or reflection of ultrasound.
  • Imaging contrast agents relate to substances, which are able to absorb certain types of signal much stronger than surrounding tissues.
  • the contrast agents are specific for each imaging technique, and as a result of their accumulation in certain diseased sites of interest, those sites may be visualized when an appropriate imaging technique is applied.
  • the tissue concentration that must be achieved for successful imaging varies between diagnostic techniques.
  • liposomes draw special attention because of their easily controlled properties.
  • liposomes have been recognized as promising carriers for drugs and diagnostic agents for the following reasons: (1) Liposomes are completely biocompatible; (2) they can entrap practically any drug or diagnostic agent into either the internal water compartment or into the membrane itself depending on the physico- chemical properties of the compound; (3) liposome-incorporated compounds are pro- tected from the inactivating effect in the body, yet at the same time do not cause undesirable side-reactions; (4) liposomes also provide a unique opportunity to deliver pharmaceuticals or diagostic agents into cells or even inside individual cellular compartments. Pursuing different in vivo delivery purposes, the size, charge and surface properties of liposomes can easily be changed simply by incorporation of different lipids and/or by variation of the preparation methods.
  • PLA 2 is secreted by malignant cells and immu- nohistochemical staining of various cancers, including cancer of pancreas, breast and stomach has shown increased levels of PLA 2 .
  • An increased expression and secretion of PLA 2 is also found in several cancer cell lines stimulated by interleukines such as IL- 6.
  • interleukines such as IL- 6.
  • elevated extracellular PLA 2 activity has also been described in inflammatory and infected tissues.
  • the main mechanism of liposome accumulation in tumours is via extravasation through leaky tumour capillaries into the interstitial space.
  • the tumour accumulation can be significantly increased by using long-circulating polymer coated liposomes.
  • the lipid-based microcarriers may also be used for visualization of inflammation and infection sites. Similar to what is known with respect to cancer tissue, the use of mi- croparticulate imaging agents for the visualization of infection and inflammation sites characterized by elevated PLA 2 activity is based on the ability of microparticulates to accumulate via extravasation through leaky capillaries.
  • lipid derivatives will be cleaved by extracellular PLA 2 in a well-defined manner in specific extracellular locations of diseased mammalian tissue characterized by an elevated activity of PLA 2 . It has been found that extracellular PLA 2 is capable of cleaving mono- ether/monoester lipid derivatives so as to target the diagnostic label in the relevant diseased tissue. Degradation of the lipid derivatives and the liposomes by PLA 2 leads to a site-specific release of the diagnostic contrast agents in the diseased tissue. Targeting of infected tissues with lipid-based carriers composed of the novel and unnatural lipids
  • the MPS comprises the macrophages, one of the most important components of the immune system involved in the clearance of foreign particles, including liposomes.
  • the macrophages reside in various organs and tissues, e.g. in the spleen and liver (Kupffer cells) and as free and fixed macrophages in the bone marrow and lymph nodes.
  • the novel lipid-based system composed of prodrug lipids is able to deliver various lipid prodrugs and encapsulated drugs directly to the diseased liver or spleen harbouring parasites due to an accumulation of the liposomes and an increased level of the prodrug cleaving PLA 2 enzyme in the infected tissues.
  • One particular advantage of the lipid based drug delivery system is furthermore that extracellular PLA 2 activity is significantly increased towards organized lipid substrates such as the prodrug liposomes as compared to monomeric lipid substrates.
  • Leishmania and Trypanosoma are therefore toxic to the parasites if administered in sufficient amount.
  • parasitic infections which are characterized by elevated levels of PLA 2 , such as the malaria causing parasites, are also targets for treatment with the novel prodrug liposomes.
  • ether-cleavage enzymes typically possess ether-cleavage enzymes, which enable them to avoid the toxic effect of ether-lipids.
  • red blood cells have like cancer cells no means of avoiding the disruptive effect of the ether-lipids.
  • therapeutic use of ether-lipids requires an effective drug delivery system that protects the normal cells from the toxic effects and is able to bring the ether-lipids directly to the diseased tissue.
  • the novel targeted prodrug delivery systems can be used for the treatment of parasitic infections, which is characterized by an increased level of PLA 2 in the infected tissue. This is achieved by administering an efficient amount (up to about 1000 mg per kg) of the liposomes wherein the active drug substance is present in the form of a lipid prodrug being a substrate for extracellular PLA 2 .
  • the prodrug liposomes are candidates for targeted transport of encapsulated conventional anti-parasitic drug(s), where a potentiation of the effectiveness of the conventional drug(s) in combination with the PLA 2 generated lysolipids and/or fatty acid derivatives might be obtainable.
  • Toxicity of the liposomes comprising the lipid derivatives can be assessed by determin- ing the therapeutic window "TW", which is a numerical value derived from the relationship between the compound's induction of haemolysis and its ability to inhibit the growth of tumour cells.
  • TW values are defined as HI 5 /GI 50 (wherein “Hl 5 " equals the concentration of compound inducing the haemolysis of 5% of the red blood cells in a culture, and wherein "Gl 50 " equals the dose of compound inducing fifty percent growth inhibition in a population of cells exposed to the agent).
  • the higher its Hl 5 the more therapeutically beneficial is a compound, because more of it can be given before inducing the same amount of haemolysis as an agent with a lower Hl 5 .
  • lower Gl 50 's indicate better therapeutic agents - a lower Gl 50 value indicates that a lesser concentration of an agent is required for 50% growth inhibition. Accordingly, the higher is its Hl 5 value and the lower is its Gl 50 value, the better are a compound's agent's therapeutic properties.
  • lipid derivative liposomes take advantage of the lower extracellular PLA 2 activity in the bloodstream compared to the activity in the diseased tissue, it is be- lieved that the TW will be much higher that for normal monoether lysolipids.
  • the TW of the liposomes of the invention will be greater than about 3, more preferably greater than about 5, and still more preferably greater than about 8.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
EP07711285A 2006-03-23 2007-03-23 Arzneiabgabesysteme auf lipidbasis mit phospholipase-a2-abbaubaren lipiden, die unter hydrolyse eine intramolekulare cyclisierungsreaktion durchführen Withdrawn EP2004236A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200600411 2006-03-23
PCT/DK2007/000143 WO2007107161A2 (en) 2006-03-23 2007-03-23 Lipid based drug delivery systems comprising phospholipase a2 degradable lipids that perform an intramolecular cyclization reaction upon hydrolysis

Publications (1)

Publication Number Publication Date
EP2004236A2 true EP2004236A2 (de) 2008-12-24

Family

ID=38121721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07711285A Withdrawn EP2004236A2 (de) 2006-03-23 2007-03-23 Arzneiabgabesysteme auf lipidbasis mit phospholipase-a2-abbaubaren lipiden, die unter hydrolyse eine intramolekulare cyclisierungsreaktion durchführen

Country Status (5)

Country Link
EP (1) EP2004236A2 (de)
JP (1) JP2009530318A (de)
AU (1) AU2007229160A1 (de)
CA (1) CA2647779A1 (de)
WO (1) WO2007107161A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK177532B1 (en) 2009-09-17 2013-09-08 Bio Bedst Aps Medical use of sPLA2 hydrolysable liposomes
DK177529B1 (en) 2009-10-23 2013-09-08 Bio Bedst Aps Liposomes with improved storage stability
WO2011098578A2 (en) 2010-02-12 2011-08-18 Bioneer A/S Liposome system for ocular administration
JP2014503582A (ja) * 2011-01-28 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ 親水性プロドラッグの局所放出用担体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517858B1 (en) * 1995-06-07 2009-04-14 The Regents Of The University Of California Prodrugs of pharmaceuticals with improved bioavailability
WO2001058910A2 (en) * 2000-02-10 2001-08-16 Liplasome Pharma A/S Lipid-based drug delivery systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007107161A2 *

Also Published As

Publication number Publication date
CA2647779A1 (en) 2007-09-27
JP2009530318A (ja) 2009-08-27
AU2007229160A1 (en) 2007-09-27
WO2007107161A8 (en) 2007-11-22
WO2007107161A3 (en) 2008-04-10
WO2007107161A2 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
EP1838283B1 (de) Arzneimittelabgabesysteme auf lipidbasis mit unnatürlichen phospholipase-a2-abbaubaren lipid-derivaten und ihre therapeutische verwendung
Apolinário et al. Lipid nanovesicles for biomedical applications:‘What is in a name’?
EP1272225B1 (de) Auf lipiden basierendes system zur zielgerichteten verabreichung diagnostischer wirkstoffe
KR100889139B1 (ko) 이리노테칸 제제
US20090232900A1 (en) Nano-micellar preparation of anthracylcline antitumor antibiotics encapsulated by the phosphatide derivatized with polyethylene glycol
EP1254143B1 (de) Auf lipiden basierende systeme zur arzneistoffabgabe
US20040166151A1 (en) Lipid-based drug delivery systems containing phospholipase A2 degradable lipid derivatives and the therapeutic uses thereof
EP1759699B1 (de) Liposomzubereitung mit leicht wasserlöslichem camptothecin
WO2006086992A2 (en) Drug delivery systems containing phqspholipase a2 degradable lipid prodrug derivatives and the therapeutic uses thereof as. e.g. wound healing agents and peroxisome proliferator activated receptor ligands
EP2004236A2 (de) Arzneiabgabesysteme auf lipidbasis mit phospholipase-a2-abbaubaren lipiden, die unter hydrolyse eine intramolekulare cyclisierungsreaktion durchführen
US6180137B1 (en) Etherlipid-containing multiple lipid liposomes
USRE39042E1 (en) Etherlipid-containing multiple lipid liposomes
KR100768265B1 (ko) 혈액내 순환시간을 향상시키기 위한 헤파린이 수식된리포솜 및 이의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081023

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100302