EP1996889A1 - Plate heat exchanger, method for its production, and its use - Google Patents

Plate heat exchanger, method for its production, and its use

Info

Publication number
EP1996889A1
EP1996889A1 EP07723516A EP07723516A EP1996889A1 EP 1996889 A1 EP1996889 A1 EP 1996889A1 EP 07723516 A EP07723516 A EP 07723516A EP 07723516 A EP07723516 A EP 07723516A EP 1996889 A1 EP1996889 A1 EP 1996889A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
plates
plate heat
exchanger according
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07723516A
Other languages
German (de)
French (fr)
Other versions
EP1996889B1 (en
Inventor
Frank Meschke
Armin Kayser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESK Ceramics GmbH and Co KG
Original Assignee
ESK Ceramics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESK Ceramics GmbH and Co KG filed Critical ESK Ceramics GmbH and Co KG
Publication of EP1996889A1 publication Critical patent/EP1996889A1/en
Application granted granted Critical
Publication of EP1996889B1 publication Critical patent/EP1996889B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/04Communication passages between channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Definitions

  • the invention relates to a plate heat exchanger of a plurality of plates, preferably made of sintered ceramic material, a method for producing such a plate heat exchanger and the use of such a plate heat exchanger as a high temperature heat exchanger and / or for use with corrosive media, as well as a reactor.
  • Heat exchangers are particularly effective heat transfer between two separately flowing media, that is they should transfer as much heat as possible with as little exchange surface. At the same time they should oppose the material flows only a small resistance, so that the least possible energy has to be expended for the operation of the pumps used for promotion. If highly aggressive or corrosive media, possibly even at elevated temperatures of more than 200 ° C are passed through the heat exchanger, all materials in contact with the medium in the heat exchanger must be sufficiently resistant to corrosion. In addition to the replacement surfaces, this includes all seals and bushings. In addition, the design of heat exchangers should be designed so that, if necessary, a residue-free emptying of the heat exchanger is easily possible, for example, for maintenance.
  • Plate heat exchangers are a special design of heat exchangers. They are characterized by a particularly compact design.
  • the plates of a plate heat exchanger generally have an embossed or corrugated structure, often also called herringbone pattern or chevron pattern, in the region of the exchange surface.
  • the embossing causes the medium flowing in the gap between two adjacent plates to become highly entangled, thereby promoting heat transfer.
  • the medium is opposed by such a structure, a relatively low flow resistance.
  • An effective heat transfer with the lowest possible pressure loss is so largely met.
  • the plates are usually at the edges loosely on each other and are separated by seals. Since plastic seals can only be used up to temperatures of 300 ° C maximum, heat exchangers with plates made of metallic materials for higher operating temperatures or pressures solder or weld the plates together at the edges.
  • the gap between two adjacent plates each forms a sealed chamber.
  • a large chamber volume is both useful and therefore to strive for.
  • an operating risk is also accepted. If no support segments are used in the chambers, it can easily lead to a plate break in the construction of an unforeseen high differential pressure between adjacent chambers to a strong deformation of the metal plates or in the case of brittle materials.
  • Heat exchanger plates of this form are made of metallic materials, in particular corrosion-resistant steels, titanium or tantalum. Graphite is also used commercially.
  • Sintered SiC ceramic is a universally corrosion-resistant but brittle material that is free of metallic silicon, in contrast to silicon-infiltrated silicon carbide (SiSiC).
  • SiSiC silicon-infiltrated silicon carbide
  • SSiC is ideally suited as a material for the exchange surface of heat exchangers due to its very high thermal conductivity.
  • SSiC can also be used at high temperatures of well over 1,000 ° C.
  • SSiC is also corrosion-resistant in hot water or strongly basic media.
  • SSiC sintered SiC ceramics
  • DE 197 17 931 C1 describes a fiber-reinforced ceramic (C / SiC or SiC / SiC) for use in heat exchangers at high temperatures of 200-1600 0 C and / or corrosive media. Compared to SSiC, these materials are significantly more costly and expensive to manufacture. In addition, the ceramic fiber composites C / SiC and SiC / SiC generally have a continuous porosity, whereby a hermetic tightness is not given. Even with an additional, complex and very expensive surface impregnation these disadvantages can not be overcome.
  • EP 1 544 565 A2 describes the use of fiber-reinforced ceramic or of SiC especially for the plates of a high-temperature plate heat exchanger.
  • the channel structure of the platform described therein Th has fins or ribs and is designed specifically for the flow of hot gases, especially for gas turbines. When using this construction for liquid media, the efficiency would not be good and the pressure loss too high.
  • the plate heat exchanger continues to be produced by foil casting and joined by soldering. However, solder joints are always weak points when used with corrosive media, so that such a heat exchanger for use with highly corrosive media, such as alkalis, is not suitable.
  • EP 0 074 471 B1 describes a production process for a ceramic plate heat exchanger by means of film casting and lamination.
  • the laminating process is specially designed for SiSiC as a material and liquid siliconizing during production.
  • FIG. 2 of this patent shows an embodiment of a gas heating heat exchanger in which baffles are provided perpendicular to the direction of flow, which are intended to effect a uniform temperature distribution in the flow channels.
  • baffles are provided perpendicular to the direction of flow, which are intended to effect a uniform temperature distribution in the flow channels.
  • the heat transfer performance and the pressure loss in this heat exchanger are not yet satisfactory.
  • the invention is therefore based on the object to provide a plate heat exchanger with improved heat transfer performance and reduced pressure loss, which is also suitable for use at high temperatures and / or with corrosive media if necessary. Furthermore, a method for producing such a heat exchanger is to be specified.
  • the above object is achieved by a plate heat exchanger of a plurality of plates according to claim 1, a method for producing such a plate heat exchanger according to claims 19 and 20, and the use of the plate heat exchanger according to claims 22 and 23.
  • Advantageous or particularly expedient Ausgestaltun- conditions of the subject of the application are specified in the subclaims.
  • the invention is thus a plate heat exchanger of a
  • the invention further provides a method for producing such a plate heat exchanger, wherein the individual plates are stacked and each connected to each other by means of circumferential seals.
  • the invention also relates to a method for producing such a plate heat exchanger, wherein the individual plates are stacked and joined in a diffusion welding process in the presence of a protective gas atmosphere or in a vacuum at a temperature of at least 1,600 ° C and optionally with application of a load to form a seamless monolithic block ,
  • the plate heat exchanger according to the invention is suitable as a high-temperature heat exchanger and / or for use with corrosive media.
  • the plate heat exchanger according to the invention can also be used as a reactor with at least two separate fluid circuits.
  • the plate heat exchanger according to the invention is suitable as a reactor, wherein in addition one or more reactor plates are provided between the plates, wherein the reactor plates have a different channel system from the plates.
  • the fluid flow guide channels are formed as a channel system so that a substantially meandering course of the fluid flow over the surface of the plate results, the side walls of the guide channels having a plurality of interruptions or openings, leading to a Turbulence of the fluid flow lead.
  • brittle materials such as graphite or glass, preferably of sintered ceramic materials, in particular of SSiC.
  • a further advantage of the design of the plates according to the invention is that feed and discharge openings for the fluid streams, for example in the form of bores, can already be integrated into the plates.
  • the heat transfer in a plate heat exchanger according to the invention is compared to plate heat exchangers of the prior art by about 5 to 30% higher and the pressure loss is up to 30% lower.
  • the pressure loss is an important criterion in the design of heat exchangers, because thus the required pump power can be reduced accordingly.
  • the plate heat exchanger according to the invention has a structure in which a plurality of plates, preferably of sintered ceramic material, are stacked on each other.
  • Sintered silicon carbide (SSiC), fiber-reinforced silicon carbide, silicon nitride or combinations thereof are particularly suitable as sintered ceramic material, with SSiC being particularly preferred.
  • the sintered silicon carbide having a bimodal grain size distribution comprises 50 to 90% by volume of prismatic, platelet-shaped SiC crystallites having a length of 100 to 1,500 ⁇ m and 10 to 50% by volume of prismatic, platelet-shaped SiC crystallites of 5 to less than 5 100 ⁇ m.
  • the measurement of the grain size or the length of the SiC crystallites can be carried out on the basis of light microscope micrographs, For example, with the aid of a Schmauslusprogramms, which determines the maximum Feret's diameter of a grain determined.
  • the guide channels in the plates are connected to a first feed opening and a first discharge opening for a first fluid. Furthermore, a second supply opening and a second discharge opening for a second fluid for supplying an adjacent plate may be provided, these openings may be provided in a simple manner by drilling.
  • a plate of a first plate type comprises a channel system for a first fluid and an adjacent plate of a second plate type a channel system for a second fluid.
  • the first-disk-type disks and the second-disk-type disks may be sequenced in any order to allow for variable speed adjustment.
  • the plates connected in parallel or in series are doubled or tripled by one of the two circuits of the heat exchanger in order to allow the material flow to be passed through the plates at a defined speed. This results in stacking sequences of the heat exchanger plates, for example, according to A-BB-A-BB ... or A-BBB-A-BBB ...
  • the inventive design of the heat exchanger plates but also allows a so-called two or more common driving style.
  • the plates of a circuit instead of parallel connected in series. This is the medium flowing through a longer distance for heating or cooling available.
  • the channel system of the plates has a mirror symmetry.
  • This mirror-symmetric design allows plates to be alternately stacked 180 ° apart, so that the feed openings are alternately left and right.
  • By this arrangement can be constructed with a single design for all plates a heat exchanger, which offers advantages from a production point of view.
  • within a plate at least two separate channel systems may be provided for different fluids between which heat transfer is to take place. In this case, it is preferred that the different fluids are guided in counterflow in separate channel systems.
  • the plates used according to the invention preferably have a base thickness in the range of 0.2 to 20 mm, particularly preferably about 3 mm.
  • the fluid or material flow in an exchange surface of a plate is guided in a meandering manner according to the channel system according to the invention in order to allow the longest possible residence time.
  • the side walls or guide walls of the guide channels in the exchange surface have, measured from the plate base, preferably a height in the range of 0.2-30 mm, more preferably 0.2-10 mm, and particularly preferably 0.2-5 mm.
  • the side walls of the guide channels designed as webs can be produced by means of milling, but they can also be manufactured by means of near net shape pressing.
  • the side walls of the guide channels have at defined locations interruptions or openings, which preferably have a width of 0.2-20 mm, more preferably 2-5 mm.
  • These breakthroughs cause a high turbulence of the fluid flow and, with the substantially meander-shaped flow course, permit a high and improved heat transfer efficiency.
  • these breakthroughs allow a significant reduction in the conventional plate heat exchangers high pressure loss. Due to the number and width of the apertures, the pressure loss can be set in the desired manner. The breakthroughs also serve to ensure that the heat exchanger can be completely emptied when installed vertically.
  • the perforated side walls of the guide channels also act as support points and avoid pressure differences in an undesirable deformation of the plates and also prevent a plate breakage.
  • the individual plates are stacked and connected by means of peripheral seals.
  • peripheral seals For this purpose, customary plastic seals, which can be used up to temperatures of about 300 0 C are suitable.
  • the construction connected by seals is very cost-effective and then particularly advantageous. if the heat exchanger has to be disassembled and cleaned for inspection purposes.
  • the individual plates are stacked and joined together to form an seamless monolithic block.
  • This monolithic construction in which the panels are sealed without seams by seam-free joining, is particularly advantageous for applications at high temperatures and applications involving environmentally hazardous or corrosive media.
  • the plate heat exchanger according to the invention, at least two of the plates are stacked and joined together to form an seamless monolithic block and at least two such monolithic blocks are connected to each other by means of circumferential seals.
  • This so-called semi-sealed embodiment may be particularly useful when using corrosive media in a material cycle and from the tendency to deposit formation media in the other material cycle.
  • the plates for the corrosive medium according to the invention sintered together at least in pairs and stacked the monolithic plate blocks thus obtained by suitable plastic seals, for example made of elastomeric material, sealed.
  • This type of plate heat exchanger can always be disassembled, for example, to clean the sealed chambers of the deposit formation.
  • the individual plates are used for producing a monolithic block as described above are stacked and, in a diffusion welding process in the presence of a protective gas atmosphere or under vacuum at a temperature of at least 1,600 ° C, preferably above 1,800 0 C, more preferably about 2,000 0 C and optionally under application of a Load joined to a seamless monolithic block, wherein the components to be joined preferably undergo a plastic deformation in the direction of force application of less than 5%, more preferably less than 1%.
  • SSiC sintered SiC
  • SSiC sintered SiC
  • a bimodal as mentioned above Grain size distribution which may contain up to 35 vol .-% of other material components, such as graphite, boron carbide or other ceramic particles.
  • the resistance to plastic deformation in the high temperature range is referred to in material science with high temperature creep resistance.
  • the so-called creep rate is used.
  • the creep rate of the ceramic plates to be joined can be used as a central parameter in order to minimize the plastic deformation in a joining process for seamless joining of the sintered ceramic plates.
  • Most commercially available sintered SiC materials have structures with a monomodal particle size distribution and a particle size of about 5 ⁇ m. They thus have a sufficiently high sintering activity at joining temperatures of more than 1,700 ° C, but have low creep resistance for low-deformation joining. Therefore, hitherto, in the diffusion welding of such components, high plastic deformation has always been observed. Because the creep resistance of the SSiC materials is generally not very different, creep rate has not heretofore been considered as a useful variable parameter for SSiC joining.
  • the creep rate of SSiC can be varied over a wide range by varying the structure formation. Only through the use of certain grades, such as those with bimodal particle size distribution, therefore, the low-deformation joining for SSiC materials is reached.
  • the ceramic to be joined plates preferably consist of a SSiC material, the creep rate in the joining process is always less than 2 x 10 "4 l / s, is always preferably less than 8 x 10" 5 l / s, particularly preferably always lower than 2 x 10 "is 5 l / s.
  • a load of more than 10 kPa, particularly preferably more than 1 MPa, and more preferably more than 10 MPa, is preferably applied, the temperature-holding time at a temperature of at least 1,600 ° C. preferably having a duration of 10 minutes, particularly preferably Exceeds 30 minutes.
  • the plate heat exchanger thus produced from sintered SiC ceramic therefore have an extremely high temperature and corrosion resistance.
  • the plate heat exchanger with heat exchanger plates designed according to the invention is also suitable as a reactor, for example for evaporation and condensation, but also for other phase transformations, such as, for example, for targeted crystallization processes.
  • a reactor for example for evaporation and condensation, but also for other phase transformations, such as, for example, for targeted crystallization processes.
  • reactor plates For a particularly effective use as a reactor, it is expedient to see between the inventively designed heat exchanger plates install reactor plates, in which case the heat exchanger plates are used for temperature control of the reactor plates.
  • the reactor plates can have different geometries.
  • For a controlled residence time and defined precipitation reaction, such as for targeted crystallization processes it is for example advantageous to use reactor plates with continuous straight channels.
  • channel structures are used with which the material flows are supplied to one another in a defined region of the reactor plate and mixed intensively.
  • the reactor plates may also have suitable catalytic coatings that specifically accelerate a chemical reaction.
  • the plate heat exchanger further comprises a ceramic or metallic Anflanschsystem for the supply and discharge of fluids on the top and / or bottom (lid and / or bottom) of the plate heat exchanger.
  • a mica-based sealing material for the sealing of the Flange system is preferably used for high-temperature applications.
  • FIG. 1 shows the plan view of a sintered ceramic material heat exchanger plate used in accordance with the invention
  • Figure 2 shows the top view of a reactor plate used in the invention.
  • Figures 3a and 3b are photographs of plate heat exchangers according to the invention, including flanging systems.
  • a plate 1 which can be used according to the invention has a channel system formed by guide channels 2, which allows a substantially meandering course of the fluid flow over the surface of the plate.
  • the side walls 3 of the guide channels 2 consist in this figure of webs with a width of 3 mm, which have a plurality of apertures 4 with a width of 3.5 mm.
  • the plate further has a first feed opening 5 and a first discharge opening 6 for a fluid flow, each in the form of a bore with a radius of 30 mm.
  • a second feed opening 7 and a second discharge opening 8, which serve as a passage for supplying a neighboring chamber with another medium, are provided.
  • the second feed opening and second discharge opening each consist of holes with a radius of 32 mm.
  • the total length of the plate in this embodiment is 500 mm and its width is 200 mm.
  • the channel system in this embodiment has a mirror symmetry. This mirror symmetry makes it possible for the plates to be alternately stacked against each other rotated through 180 °, so that the feed openings are alternately once on the left and once on the right.
  • FIG. 2 shows a reactor plate 9 which can be used according to the invention with a first feed opening 10 for a first fluid flow and a second feed flow Feed opening 1 1 for a second fluid flow.
  • the two fluid streams are then supplied to each other through the baffles 12 so that an intensive mixing of the Fiuidströme takes place.
  • the mixed stream is then removed via the discharge opening 13.
  • Figures 3a and 3b show how metallic flanges are clamped to a ceramic monolith.
  • a ceramic heat exchanger is manufactured with heat exchanger plates in the manner of Figure 1.
  • the plates have a length of 500 mm, a bottom thickness of 3 mm and guide channels with a height of 3.5 mm.
  • the side walls have openings of a width of 3 mm.
  • For the production of the heat exchanger block four heat exchanger plates according to the invention and a cover plate are used, wherein all components consist of sintered silicon carbide with bimodal particle size distribution. All ceramic panels are stacked and bonded together to form a monolithic block.
  • the plates are arranged in the block so that two streams can exchange heat in countercurrent.
  • the hermetically sealed sintered silicon carbide heat exchanger block is provided with four 50mm internal diameter flanges.
  • the heat exchanger apparatus is operated with aqueous media. At a flow rate of 1000 l / h, a pressure drop of 100 mbar occurs and 6000 W / m 2 K are transferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

The invention relates to a plate heat exchanger composed of a plurality of plates (1), preferably made from sintered ceramic material, in which fluid-flow guide channels (2) are formed as a system of channels in such a way that a substantially meandering profile of the fluid flow is obtained over the surface area of the respective plate, the side walls (3) of the guide channels (2) having a plurality of apertures (4), which lead to turbulence of the fluid flow. The invention also relates to a method for the production of such a plate heat exchanger, in particular by a diffusion welding process in which the plates are joined to form a seamless monolithic block. The plate heat exchanger according to the invention is suitable in particular for applications at high temperatures and/or with corrosive media, and also as reactors.

Description

Plattenwärmetauscher, Verfahren zu dessen Herstellung und dessen Verwendung Plate heat exchanger, process for its preparation and its use
Gebiet der ErfindungField of the invention
Die Erfindung betrifft einen Plattenwärmetauscher aus einer Mehrzahl von Platten, vorzugsweise aus gesintertem Keramikmaterial, Verfahren zur Herstellung eines solchen Plattenwärmetauschers sowie die Verwendung eines solchen Plattenwärmetauschers als Hochtemperatur-Wärmetauscher und/ oder für den Einsatz mit korrosiven Medien, als auch als Reaktor.The invention relates to a plate heat exchanger of a plurality of plates, preferably made of sintered ceramic material, a method for producing such a plate heat exchanger and the use of such a plate heat exchanger as a high temperature heat exchanger and / or for use with corrosive media, as well as a reactor.
Hintergrund der ErfindungBackground of the invention
Wärmetauscher sollen besonders effektiv eine Wärmeübertragung zwischen zwei getrennt voneinander strömenden Medien ermöglichen, das heißt sie sollen mit möglichst wenig Austauschfläche möglichst viel Wärme übertragen. Zugleich sollen sie den Stoffströmen nur einen geringen Widerstand entgegensetzen, damit möglichst wenig Energie für den Betrieb der zur Förderung eingesetzten Pumpen aufgewendet werden muss. Werden stark aggressive bzw. korrosive Medien, eventuell sogar bei erhöhten Temperaturen von mehr als 200°C durch den Wärmetauscher geleitet, müssen alle im Wärmetauscher mit dem Medium in Kontakt stehenden Werkstoffe ausreichend korrosionsbeständig sein. Dazu zählen neben den Austauschflächen auch alle Dichtungen und Durchführungen. Außerdem sollte der Aufbau von Wärmetauschern so gestal- tet sein, dass, falls notwendig, ein rückstandsfreies Entleeren des Wärmetauschers leicht möglich ist, beispielsweise für Wartungsarbeiten.Heat exchangers are particularly effective heat transfer between two separately flowing media, that is they should transfer as much heat as possible with as little exchange surface. At the same time they should oppose the material flows only a small resistance, so that the least possible energy has to be expended for the operation of the pumps used for promotion. If highly aggressive or corrosive media, possibly even at elevated temperatures of more than 200 ° C are passed through the heat exchanger, all materials in contact with the medium in the heat exchanger must be sufficiently resistant to corrosion. In addition to the replacement surfaces, this includes all seals and bushings. In addition, the design of heat exchangers should be designed so that, if necessary, a residue-free emptying of the heat exchanger is easily possible, for example, for maintenance.
Plattenwärmetauscher sind eine besondere Bauform von Wärmetauschern. Sie zeichnen sich durch ein besonders kompaktes Design aus. Die Platten eines Plattenwärmetauschers weisen im Bereich der Austauschfläche in der Regel eine geprägte oder geriffelte Struktur, oft auch Fischgrätenmuster oder Chev- ronmuster genannt, auf. Die Prägung versetzt das im Spalt zwischen zwei benachbarten Platten strömende Medium in eine starke Verwirbelung, wodurch die Wärmeübertragung unterstützt wird. Zugleich wird dem Medium durch eine solche Struktur ein relativ geringer Strömungswiderstand entgegengesetzt. Einer effektiven Wärmeübertragung bei möglichst geringem Druckverlust wird so weitgehend entsprochen. Die Platten liegen meistens an den Rändern lose aufeinander auf und sind durch Dichtungen getrennt. Da Dichtungen aus Kunststoff sich nur bis Temperaturen von maximal 300°C einsetzen lassen, werden bei Wärmetauschern mit Platten aus metallischen Werkstoffen für höhere Einsatztemperaturen oder Drücke die Platten am Rand miteinander verlötet oder verschweißt.Plate heat exchangers are a special design of heat exchangers. They are characterized by a particularly compact design. The plates of a plate heat exchanger generally have an embossed or corrugated structure, often also called herringbone pattern or chevron pattern, in the region of the exchange surface. The embossing causes the medium flowing in the gap between two adjacent plates to become highly entangled, thereby promoting heat transfer. At the same time the medium is opposed by such a structure, a relatively low flow resistance. An effective heat transfer with the lowest possible pressure loss is so largely met. The plates are usually at the edges loosely on each other and are separated by seals. Since plastic seals can only be used up to temperatures of 300 ° C maximum, heat exchangers with plates made of metallic materials for higher operating temperatures or pressures solder or weld the plates together at the edges.
Der Spalt zwischen zwei benachbarten Platten bildet jeweils eine abgedichtete Kammer aus. Das Volumen der Kammern entscheidet zusammen mit der Plattenprägung maßgeblich über Druckverlust und Effizienz bei der Wärmeüber- tragung. Ein großes Kammervolumen ist beidem dienlich und daher anzustreben. Allerdings wird damit auch ein Betriebsrisiko in Kauf genommen. Sofern in den Kammern keine Stützsegmente verwendet werden, kann es beim Aufbau eines unvorhergesehenen hohen Differenzdrucks zwischen benachbarten Kammern zu einer starken Verformung der Metallplatten oder im Falle von spröden Werkstoffen leicht zu einem Plattenbruch kommen. Wärmetauscherplatten dieser Form werden aus metallischen Werkstoffen, insbesondere aus korrosionsfesten Stählen, Titan oder Tantal hergestellt. Auch Grafit findet kommerziell Anwendung.The gap between two adjacent plates each forms a sealed chamber. The volume of the chambers, together with the stamping, decisively determines the pressure loss and efficiency of the heat transfer. A large chamber volume is both useful and therefore to strive for. However, an operating risk is also accepted. If no support segments are used in the chambers, it can easily lead to a plate break in the construction of an unforeseen high differential pressure between adjacent chambers to a strong deformation of the metal plates or in the case of brittle materials. Heat exchanger plates of this form are made of metallic materials, in particular corrosion-resistant steels, titanium or tantalum. Graphite is also used commercially.
Gesinterte SiC-Keramik (SSiC) ist ein universell korrosionsbeständiger, jedoch spröder Werkstoff, der frei von metallischem Silicium ist, im Gegensatz zu Si- licium-infiltriertem Siliciumcarbid (SiSiC). SSiC ist aufgrund seiner sehr hohen Wärmeleitfähigkeit ideal als Material für die Austauschfläche von Wärmetauschern geeignet. Zudem ist SSiC auch bei hohen Temperaturen bis weit über 1.0000C einsetzbar. Im Gegensatz zu SiSiC ist SSiC auch in Heißwasser oder stark basischen Medien korrosionsbeständig.Sintered SiC ceramic (SSiC) is a universally corrosion-resistant but brittle material that is free of metallic silicon, in contrast to silicon-infiltrated silicon carbide (SiSiC). SSiC is ideally suited as a material for the exchange surface of heat exchangers due to its very high thermal conductivity. In addition, SSiC can also be used at high temperatures of well over 1,000 ° C. In contrast to SiSiC, SSiC is also corrosion-resistant in hot water or strongly basic media.
Trotz ihrer grundsätzlich guten Eignung für Wärmetauscher findet gesinterte SiC-Keramik (SSiC) derzeit kommerziell noch keine Anwendung in Plattenwär- metauschern, sondern allenfalls in Rohrbündelwärmetauschern. Der Grund hierfür liegt darin, dass bislang kein keramikgerechtes Design und Produktionsverfahren zur Verfügung stand, das die Herstellung von Plattenwärmetau- scherkomponenten aus SSiC für Apparate mit ausreichender Wärmeübertragungsleistung und dem erforderlichen geringen Druckverlust ermöglicht. Stand der TechnikDespite its generally good suitability for heat exchangers, sintered SiC ceramics (SSiC) are currently not being used commercially in plate heat exchangers, but at best in tube bundle heat exchangers. The reason for this is that so far no ceramic-compliant design and production process has been available that enables the production of SSiC plate heat exchanger components for apparatuses having sufficient heat transfer performance and the requisite low pressure drop. State of the art
Die DE 28 41 571 C2 beschreibt einen Wärmeübertrager aus keramischem Material mit L-förmiger Medienführung, wobei als Werkstoffe vorzugsweise Si- infiltrierte SiC-Keramik (SiSiC) oder Siliciumnitrid eingesetzt werden. Diese Werkstoffe sind darin nachteilig, dass sie nicht universell korrosionsbeständig sind. In Heißwasser oder stark basischen Medien löst sich das zur Infiltration und zur Abdichtung im SiSiC als Bindephase verwendete metallische Silicium heraus. Leckageströme und Festigkeitseinbußen sind die Folge. Beim Siliciumnitrid werden relativ schnell die Korngrenzen angelöst und die Oberfläche nach und nach zersetzt.DE 28 41 571 C2 describes a heat exchanger made of ceramic material with an L-shaped media guide, wherein preferably Si-infiltrated SiC ceramics (SiSiC) or silicon nitride are used as materials. These materials are disadvantageous in that they are not universally resistant to corrosion. In hot water or strongly basic media, the metallic silicon used for infiltration and sealing in the SiSiC as binder phase dissolves. Leakage currents and loss of strength are the result. With silicon nitride, the grain boundaries are dissolved relatively quickly and the surface is gradually decomposed.
Die in DE 28 41 571 C2 vorgeschlagene Konstruktion ist darin nachteilig, dass der Wärmetauscher aus einer Vielzahl von Elementen unterschiedlicher Geometrien aufgebaut ist und damit keine modulare, unkompliziert zu erweiternde Bauweise gegeben ist. Außerdem ist durch diese Bauweise eine hohe Anzahl von Fügenähten vorgegeben. Bedingt durch das drucklose Sinterver- fahren für die eingesetzten Werkstoffe steigt damit das Risiko, in dem Wärmetauscherblock Undichtigkeiten vorliegen zu haben. Bei dem gewählten Kanaldesign tritt ferner ein hoher Druckverlust auf und der Wärmetauscher verfügt über eine nur geringe Wärmeübertragungsleistung.The proposed in DE 28 41 571 C2 construction is disadvantageous in that the heat exchanger is constructed of a variety of elements of different geometries and thus no modular, straightforward to expand design is given. In addition, this design provides a high number of seams. Due to the non-pressurized sintering process for the materials used, this increases the risk of leaks in the heat exchanger block. Furthermore, with the chosen duct design, there is a high pressure drop and the heat exchanger has only a low heat transfer capacity.
Als Werkstoffalternative beschreibt DE 197 17 931 Cl eine faserverstärkte Keramik (C /SiC oder SiC /SiC) für den Einsatz in Wärmetauschern bei hohen Temperaturen von 200- 1.6000C und/oder korrosiven Medien. Diese Werkstoffe sind gegenüber SSiC deutlich aufwändiger und kostenintensiver in der Herstellung. Zudem weisen die keramischen Faserverbundwerkstoffe C /SiC und SiC /SiC in der Regel eine durchgängige Porosität auf, womit eine hermetische Dichtigkeit nicht gegeben ist. Auch durch eine zusätzliche, aufwändige und sehr teure Oberflächenimprägnierung können diese Nachteile nicht überwunden werden.As a material alternative, DE 197 17 931 C1 describes a fiber-reinforced ceramic (C / SiC or SiC / SiC) for use in heat exchangers at high temperatures of 200-1600 0 C and / or corrosive media. Compared to SSiC, these materials are significantly more costly and expensive to manufacture. In addition, the ceramic fiber composites C / SiC and SiC / SiC generally have a continuous porosity, whereby a hermetic tightness is not given. Even with an additional, complex and very expensive surface impregnation these disadvantages can not be overcome.
Als Variante hiervon beschreibt EP 1 544 565 A2 die Verwendung von faserverstärkter Keramik oder von SiC speziell für die Platten eines Hochtemperatur-Plattenwärmeübertragers. Die darin beschriebene Kanalstruktur der Plat- ten weist Flossen bzw. Rippen auf und ist speziell für die Durchströmung mit heißen Gasen ausgelegt, insbesondere für Gasturbinen. Beim Einsatz dieser Konstruktion für flüssige Medien wäre der Wirkungsgrad nicht gut und der Druckverlust zu hoch. Der Plattenwärmetauscher wird weiterhin über Folien- gießen hergestellt und über Löten gefügt. Lötstellen sind jedoch beim Einsatz mit korrosiven Medien stets Schwachstellen, so dass ein solcher Wärmetauscher für den Einsatz mit stark korrosiven Medien, wie beispielsweise Laugen, nicht geeignet ist.As a variant of this, EP 1 544 565 A2 describes the use of fiber-reinforced ceramic or of SiC especially for the plates of a high-temperature plate heat exchanger. The channel structure of the platform described therein Th has fins or ribs and is designed specifically for the flow of hot gases, especially for gas turbines. When using this construction for liquid media, the efficiency would not be good and the pressure loss too high. The plate heat exchanger continues to be produced by foil casting and joined by soldering. However, solder joints are always weak points when used with corrosive media, so that such a heat exchanger for use with highly corrosive media, such as alkalis, is not suitable.
Die EP O 074 471 B l beschreibt ein Herstellungsverfahren für einen keramischen Plattenwärmetauscher mittels Foliengießen und Laminieren. Das Lami- nierverfahren ist speziell auf SiSiC als Werkstoff und das Flüssigsilicieren bei der Herstellung ausgerichtet. Figur 2 dieser Patentschrift zeigt eine Ausführungsform eines Gasheizwärmetauschers, bei dem senkrecht zur Strömungs- richtung Schikanen vorgesehen sind, welche eine gleichmäßige Temperaturverteilung in den Strömungskanälen bewirken sollen. Die Wärmeübertragungsleistung und der Druckverlust bei diesem Wärmetauscher sind jedoch noch nicht zufriedenstellend.EP 0 074 471 B1 describes a production process for a ceramic plate heat exchanger by means of film casting and lamination. The laminating process is specially designed for SiSiC as a material and liquid siliconizing during production. FIG. 2 of this patent shows an embodiment of a gas heating heat exchanger in which baffles are provided perpendicular to the direction of flow, which are intended to effect a uniform temperature distribution in the flow channels. However, the heat transfer performance and the pressure loss in this heat exchanger are not yet satisfactory.
Aufgabe der ErfindungObject of the invention
Der Erfindung liegt daher die Aufgabe zugrunde, einen Plattenwärmetauscher mit verbesserter Wärmeübertragungsleistung und verringertem Druckverlust vorzusehen, der bei Bedarf auch für den Einsatz bei hohen Temperaturen und /oder mit korrosiven Medien geeignet ist. Ferner soll ein Verfahren zur Herstellung eines solchen Wärmetauschers angegeben werden.The invention is therefore based on the object to provide a plate heat exchanger with improved heat transfer performance and reduced pressure loss, which is also suitable for use at high temperatures and / or with corrosive media if necessary. Furthermore, a method for producing such a heat exchanger is to be specified.
Zusammenfassung der ErfindungSummary of the invention
Die vorstehende Aufgabe wird erfindungsgemäß gelöst durch einen Plattenwärmetauscher aus einer Mehrzahl von Platten gemäß Anspruch 1 , Verfahren zur Herstellung eines solchen Plattenwärmetauschers gemäß den Ansprüchen 19 und 20, sowie die Verwendung des Plattenwärmetauschers gemäß den Ansprüchen 22 und 23. Vorteilhafte bzw. besonders zweckmäßige Ausgestaltun- gen des Anmeldungsgegenstandes sind in den Unteransprüchen angegeben. Gegenstand der Erfindung ist somit ein Plattenwärmetauscher aus einerThe above object is achieved by a plate heat exchanger of a plurality of plates according to claim 1, a method for producing such a plate heat exchanger according to claims 19 and 20, and the use of the plate heat exchanger according to claims 22 and 23. Advantageous or particularly expedient Ausgestaltun- conditions of the subject of the application are specified in the subclaims. The invention is thus a plate heat exchanger of a
Mehrzahl von Platten, in welchen Fluidstrom-Führungskanäle als Kanalsystem so ausgebildet sind, dass sich ein im wesentlichen meanderförmiger Verlauf des Fluidstroms über die Fläche der jeweiligen Platte ergibt, wobei die Seitenwände der Führungskanäle eine Mehrzahl von Durchbrüchen aufweisen, die zu einer Verwirbelung des Fluidstroms führen.A plurality of plates in which fluid flow guide channels are formed as a channel system so that a substantially meandering course of the fluid flow over the surface of the respective plate results, wherein the side walls of the guide channels have a plurality of apertures, which lead to a turbulence of the fluid flow ,
Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung eines solchen Plattenwärmetauschers, wobei die einzelnen Platten gestapelt und je- weils mittels umlaufenden Dichtungen miteinander verbunden werden.The invention further provides a method for producing such a plate heat exchanger, wherein the individual plates are stacked and each connected to each other by means of circumferential seals.
Gegenstand der Erfindung ist ebenso ein Verfahren zur Herstellung eines solchen Plattenwärmetauschers, wobei die einzelnen Platten gestapelt und in einem Diffusionsschweißverfahren in Gegenwart einer Schutzgasatmosphäre oder im Vakuum bei einer Temperatur von mindestens 1.600°C und gegebenenfalls unter Aufbringung einer Last zu einem nahtfreien monolithischen Block gefügt werden.The invention also relates to a method for producing such a plate heat exchanger, wherein the individual plates are stacked and joined in a diffusion welding process in the presence of a protective gas atmosphere or in a vacuum at a temperature of at least 1,600 ° C and optionally with application of a load to form a seamless monolithic block ,
Der erfindungsgemäße Plattenwärmetauscher eignet sich als Hochtemperatur- Wärmetauscher und/oder für den Einsatz mit korrosiven Medien.The plate heat exchanger according to the invention is suitable as a high-temperature heat exchanger and / or for use with corrosive media.
Der erfindungsgemäße Plattenwärmetauscher kann ebenso als Reaktor mit mindestens zwei getrennten Fluidkreisläufen verwendet werden.The plate heat exchanger according to the invention can also be used as a reactor with at least two separate fluid circuits.
Weiterhin eignet sich der erfindungsgemäße Plattenwärmetauscher als Reaktor, wobei zusätzlich eine oder mehrere Reaktorplatten zwischen den Platten vorgesehen sind, wobei die Reaktorplatten ein von den Platten verschiedenes Kanalsystem aufweisen.Furthermore, the plate heat exchanger according to the invention is suitable as a reactor, wherein in addition one or more reactor plates are provided between the plates, wherein the reactor plates have a different channel system from the plates.
In den einzelnen Platten des erfindungsgemäßen Plattenwärmetauschers sind die Fluidstrom-Führungskanäle als Kanalsystem so ausgebildet, dass sich ein im wesentlichen meanderförmiger Verlauf des Fluidstroms über die Fläche der Platte ergibt, wobei die Seitenwände der Führungskanäle eine Mehrzahl von Unterbrechungen bzw. Durchbrüchen aufweisen, die zu einer Verwirbelung des Fluidstroms führen. Gemäß der Erfindung ist es somit gelungen, ein Design für Platten aus spröden Werkstoffen, wie etwa Grafit oder Glas, vorzugsweise aus gesinterten Keramikmaterialien, insbesondere aus SSiC, zur Verfü- gung zu stellen, welches die durchströmenden Medien in eine starke Verwir- belung versetzt und damit eine effiziente Wärmeübertragung ermöglicht, zugleich einen geringen Druckverlust bewirkt, genügend Stützstellen in der Austauschfläche aufweist, um eine Verformung oder einen Sprödbruch bei Druck- differenzen aufzufangen, ein restloses Entleeren für Wartungsarbeiten zu- lässt, Dichtungen aus Kunststoff leicht integrieren lässt und gleichzeitig in einem Diffussionsschweißverfahren die Herstellung eines nahtfreien monolithischen Blocks aus den Platten ermöglicht.In the individual plates of the plate heat exchanger according to the invention, the fluid flow guide channels are formed as a channel system so that a substantially meandering course of the fluid flow over the surface of the plate results, the side walls of the guide channels having a plurality of interruptions or openings, leading to a Turbulence of the fluid flow lead. According to the invention, it has thus been possible to provide a design for plates of brittle materials, such as graphite or glass, preferably of sintered ceramic materials, in particular of SSiC. To provide supply, which causes the flowing media in a strong swirling and thus allows efficient heat transfer, at the same time causes a low pressure drop, has enough support points in the exchange surface to absorb a deformation or a brittle fracture at pressure differences, a complete emptying For maintenance purposes, it is easy to integrate plastic seals and at the same time, in a diffusion welding process, it is possible to produce a seamless monolithic block from the plates.
Ein weiterer Vorteil des erfindungsgemäßen Designs der Platten ist, dass sich Zuführ- und Abführöffnungen für die Fluidströme, beispielsweise in Form von Bohrungen bereits in die Platten integrieren lassen.A further advantage of the design of the plates according to the invention is that feed and discharge openings for the fluid streams, for example in the form of bores, can already be integrated into the plates.
Die Wärmeübertragung bei einem erfindungsgemäßen Plattenwärmetauscher ist gegenüber Plattenwärmetauschern des Standes der Technik um etwa 5 bis 30% höher und der Druckverlust ist um bis zu 30% geringer. Insbesondere der Druckverlust ist ein wichtiges Kriterium bei der Auslegung von Wärmetauschern, weil damit die erforderliche Pumpleistung entsprechend reduziert werden kann.The heat transfer in a plate heat exchanger according to the invention is compared to plate heat exchangers of the prior art by about 5 to 30% higher and the pressure loss is up to 30% lower. In particular, the pressure loss is an important criterion in the design of heat exchangers, because thus the required pump power can be reduced accordingly.
Detaillierte Beschreibung der ErfindungDetailed description of the invention
Der erfindungsgemäße Plattenwärmetauscher besitzt einen Aufbau, bei dem mehrere Platten, vorzugsweise aus gesintertem Keramikmaterial, aufeinander gestapelt sind. Als gesintertes Keramikmaterial eignen sich insbesondere gesintertes Siliciumcarbid (SSiC), faserverstärktes Siliciumcarbid, Siliciumni- trid oder Kombinationen davon, wobei SSiC besonders bevorzugt ist. Vorzugsweise wird SSiC mit einer bimodalen Korngrößenverteilung, welches wahlweise bis zu 35 Vol.-% weiterer Stoffkomponenten, wie Grafit, Borcarbid oder an- dere keramische Partikel enthalten kann, eingesetzt, da sich dieses Material besonders gut zum Diffussionsbinden in einem Heißpressverfahren (Diffussionsschweißverfahren) eignet. Vorzugsweise umfasst das gesinterte Siliciumcarbid mit einer bimodalen Korngrößenverteilung 50 bis 90 Vol.-% prismatische, plättchenförmige SiC-Kristallite einer Länge von 100 bis 1.500 μm und 10 bis 50 Vol.-% prismatische, plättchenförmige SiC-Kristallite einer Länge von 5 bis weniger als 100 μm. Die Messung der Korngröße bzw. der Länge der SiC-Kristallite kann anhand von lichtmikroskopischen Gefügeaufnahmen, bei- spielsweise unter Zuhilfenahme eines Bildauswerteprogramms, das den maximalen Feretschen Durchmesser eines Korns bestimmt, ermittelt werden.The plate heat exchanger according to the invention has a structure in which a plurality of plates, preferably of sintered ceramic material, are stacked on each other. Sintered silicon carbide (SSiC), fiber-reinforced silicon carbide, silicon nitride or combinations thereof are particularly suitable as sintered ceramic material, with SSiC being particularly preferred. SSiC is preferably used with a bimodal particle size distribution, which may optionally contain up to 35% by volume of other substance components, such as graphite, boron carbide or other ceramic particles, since this material is particularly well suited for diffusion bonding in a hot-pressing process (diffusion-welding process) , Preferably, the sintered silicon carbide having a bimodal grain size distribution comprises 50 to 90% by volume of prismatic, platelet-shaped SiC crystallites having a length of 100 to 1,500 μm and 10 to 50% by volume of prismatic, platelet-shaped SiC crystallites of 5 to less than 5 100 μm. The measurement of the grain size or the length of the SiC crystallites can be carried out on the basis of light microscope micrographs, For example, with the aid of a Bildauswerteprogramms, which determines the maximum Feret's diameter of a grain determined.
Bei den erfindungsgemäß verwendeten Platten sind die Führungskanäle in den Platten mit einer ersten Zuführöffnung und einer ersten Abführöffnung für ein erstes Fluid verbunden. Ferner können eine zweite Zuführöffnung und eine zweite Abführöffnung für ein zweites Fluid zur Versorgung einer benachbarten Platte vorgesehen sein, wobei diese Öffnungen in einfacher Weise durch Bohrungen vorgesehen werden können.In the plates used in the invention, the guide channels in the plates are connected to a first feed opening and a first discharge opening for a first fluid. Furthermore, a second supply opening and a second discharge opening for a second fluid for supplying an adjacent plate may be provided, these openings may be provided in a simple manner by drilling.
Gemäß einer bevorzugten Ausführungsform umfasst eine Platte eines ersten Plattentyps ein Kanalsystem für ein erstes Fluid und eine benachbarte Platte eines zweiten Plattentyps ein Kanalsystem für ein zweites Fluid. Bei dieser Ausführungsform können die Platten vom ersten Plattentyp und die Platten vom zweiten Plattentyp in beliebiger Reihenfolge aufeinanderfolgen, um eine variable Geschwindigkeitsanpassung zu ermöglichen. Hierfür werden die parallel oder hintereinander geschalteten Platten von einem der beiden Kreisläufe des Wärmetauschers verdoppelt oder verdreifacht, um den zu bewältigenden Stoffstrom mit einer definierten Geschwindigkeit durch die Platten durch- strömen zu lassen. Daraus resultieren Stapelfolgen der Wärmetauscherplatten beispielsweise gemäß A-BB-A-BB... oder A-BBB-A-BBB...According to a preferred embodiment, a plate of a first plate type comprises a channel system for a first fluid and an adjacent plate of a second plate type a channel system for a second fluid. In this embodiment, the first-disk-type disks and the second-disk-type disks may be sequenced in any order to allow for variable speed adjustment. For this purpose, the plates connected in parallel or in series are doubled or tripled by one of the two circuits of the heat exchanger in order to allow the material flow to be passed through the plates at a defined speed. This results in stacking sequences of the heat exchanger plates, for example, according to A-BB-A-BB ... or A-BBB-A-BBB ...
Das erfindungsgemäße Design der Wärmetauscherplatten ermöglicht aber auch eine so genannte zwei- oder mehrgängige Fahrweise. Hierfür werden die Platten eines Kreislaufs anstatt parallel hintereinander geschaltet. Damit steht dem durchströmenden Medium eine längere Strecke für die Aufheizung oder Abkühlung zur Verfügung.The inventive design of the heat exchanger plates but also allows a so-called two or more common driving style. For this purpose, the plates of a circuit instead of parallel connected in series. This is the medium flowing through a longer distance for heating or cooling available.
Bei einer weiteren bevorzugten Ausführungsform weist das Kanalsystem der Platten eine Spiegelsymmetrie auf. Durch dieses spiegelsymmetrische Design wird es ermöglicht, dass die Platten abwechselnd um jeweils 180° verdreht aufeinander gestapelt werden können, so dass die Zuführöffnungen sich abwechselnd einmal links und einmal rechts befinden. Durch diese Anordnung kann mit einem einzigen Design für alle Platten ein Wärmetauscher aufgebaut werden, was aus fertigungstechnischer Sicht Vorteile bietet. Gemäß einer Ausführungsform können innerhalb einer Platte mindestens zwei getrennte Kanalsysteme für verschiedene Fluide vorgesehen sein, zwischen welchen Wärmeübertragung stattfinden soll. Hierbei ist es bevorzugt, dass die verschiedenen Fluide in getrennten Kanalsystemen in Gegenströmung geführt sind.In a further preferred embodiment, the channel system of the plates has a mirror symmetry. This mirror-symmetric design allows plates to be alternately stacked 180 ° apart, so that the feed openings are alternately left and right. By this arrangement can be constructed with a single design for all plates a heat exchanger, which offers advantages from a production point of view. According to one embodiment, within a plate at least two separate channel systems may be provided for different fluids between which heat transfer is to take place. In this case, it is preferred that the different fluids are guided in counterflow in separate channel systems.
Die erfindungsgemäß eingesetzten Platten haben vorzugsweise eine Bodenstärke im Bereich von 0,2 bis 20 mm, insbesondere bevorzugt etwa 3 mm. Der Fluid- bzw. Stoffstrom in einer Austauschfläche einer Platte wird nach dem erfindungsgemäßen Kanalsystem meanderförmig geleitet, um eine möglichst lange Verweilzeit zu ermöglichen. Die Seitenwände bzw. Leitwandungen der Führungskanäle in der Austauschfläche haben vom Plattengrund aus gemessen vorzugsweise eine Höhe im Bereich von 0,2-30 mm, weiter vorzugsweise 0,2- 10 mm, und insbesondere bevorzugt 0,2-5 mm. Die als Stege ausgebilde- ten Seitenwände der Führungskanäle sind über Fräsen herstellbar, können jedoch auch über endkonturnahes Pressen gefertigt werden. Die Seitenwände der Führungskanäle weisen an definierten Stellen Unterbrechungen bzw. Durchbrüche auf, die vorzugsweise eine Breite von 0,2-20 mm, weiter vorzugsweise 2-5 mm aufweisen. Diese Durchbrüche bewirken eine hohe Verwir- belung des Fluidstroms und ermöglichen bei dem im wesentlichen meander- förmigen Strömungsverlauf eine hohe und verbesserte Wärmeübertragungseffizienz. Zudem ermöglichen diese Durchbrüche eine erhebliche Reduzierung des bei herkömmlichen Plattenwärmetauschern hohen Druckverlustes. Durch die Anzahl und Breite der Durchbrüche kann der Druckverlust in gewünsch- ter Weise eingestellt werden. Die Durchbrüche dienen außerdem dazu, dass ein restloses Entleeren des Wärmetauschers bei vertikaler Aufstellung möglich ist.The plates used according to the invention preferably have a base thickness in the range of 0.2 to 20 mm, particularly preferably about 3 mm. The fluid or material flow in an exchange surface of a plate is guided in a meandering manner according to the channel system according to the invention in order to allow the longest possible residence time. The side walls or guide walls of the guide channels in the exchange surface have, measured from the plate base, preferably a height in the range of 0.2-30 mm, more preferably 0.2-10 mm, and particularly preferably 0.2-5 mm. The side walls of the guide channels designed as webs can be produced by means of milling, but they can also be manufactured by means of near net shape pressing. The side walls of the guide channels have at defined locations interruptions or openings, which preferably have a width of 0.2-20 mm, more preferably 2-5 mm. These breakthroughs cause a high turbulence of the fluid flow and, with the substantially meander-shaped flow course, permit a high and improved heat transfer efficiency. In addition, these breakthroughs allow a significant reduction in the conventional plate heat exchangers high pressure loss. Due to the number and width of the apertures, the pressure loss can be set in the desired manner. The breakthroughs also serve to ensure that the heat exchanger can be completely emptied when installed vertically.
Ferner fungieren die durchbrochenen Seitenwände der Führungskanäle auch als Stützstellen und vermeiden bei Druckdifferenzen eine unerwünschte Verformung der Platten und beugen ebenfalls einem Plattenbruch vor.Furthermore, the perforated side walls of the guide channels also act as support points and avoid pressure differences in an undesirable deformation of the plates and also prevent a plate breakage.
Gemäß einer Ausführungsform eines erfindungsgemäßen Plattenwärmetauschers sind die einzelnen Platten gestapelt und mittels umlaufenden Dichtun- gen verbunden. Hierfür eignen sich übliche Kunststoffdichtungen, welche bis Temperaturen von etwa 3000C eingesetzt werden können. Die über Dichtungen verbundene Bauweise ist sehr kostengünstig und dann besonders vorteil- haft, wenn der Wärmetauscher zu Revisionszwecken auseinandergebaut und gereinigt werden muss.According to one embodiment of a plate heat exchanger according to the invention, the individual plates are stacked and connected by means of peripheral seals. For this purpose, customary plastic seals, which can be used up to temperatures of about 300 0 C are suitable. The construction connected by seals is very cost-effective and then particularly advantageous. if the heat exchanger has to be disassembled and cleaned for inspection purposes.
Gemäß einer anderen Ausführungsform des erfindungsgemäßen Plattenwär- metauschers sind die einzelnen Platten gestapelt und stoffschlüssig zu einem nahtfreien monolithischen Block gefügt. Diese monolithische Bauweise, bei der die Platten ohne Dichtungen über nahtfreies Fügen hermetisch dicht verbunden werden, ist insbesondere für Anwendungen bei hohen Temperaturen und Anwendungen mit umweltgefährdenden oder korrosiven Medien beson- der s vorteilhaft.According to another embodiment of the plate heat exchanger according to the invention, the individual plates are stacked and joined together to form an seamless monolithic block. This monolithic construction, in which the panels are sealed without seams by seam-free joining, is particularly advantageous for applications at high temperatures and applications involving environmentally hazardous or corrosive media.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Plattenwärmetauschers sind mindestens zwei der Platten gestapelt und stoffschlüssig zu einem nahtfreien monolithischen Block gefügt und mindestens zwei solcher monolithischen Blöcke mittels umlaufenden Dichtungen miteinander verbunden. Diese so genannte semi-gedichtete Ausführungsform kann insbesondere zweckmäßig sein bei Verwendung von korrosiven Medien in einem Stoffkreislauf und von zur Belagsbildung neigenden Medien in dem anderen Stoffkreislauf. Hierfür werden die Platten für das korrosive Medium erfindungsgemäß miteinander mindestens paarweise versintert und die dabei erhaltenen monolithischen Plattenblöcke durch geeignete Kunststoffdichtungen, beispielsweise aus Elastomermaterial, abgedichtet gestapelt. Diese Art von Plattenwärmetauscher lässt sich stets zerlegen, beispielsweise um die abgedichteten Kammern von der Belagsbildung zu reinigen.According to a further embodiment of the plate heat exchanger according to the invention, at least two of the plates are stacked and joined together to form an seamless monolithic block and at least two such monolithic blocks are connected to each other by means of circumferential seals. This so-called semi-sealed embodiment may be particularly useful when using corrosive media in a material cycle and from the tendency to deposit formation media in the other material cycle. For this purpose, the plates for the corrosive medium according to the invention sintered together at least in pairs and stacked the monolithic plate blocks thus obtained by suitable plastic seals, for example made of elastomeric material, sealed. This type of plate heat exchanger can always be disassembled, for example, to clean the sealed chambers of the deposit formation.
Zur Herstellung eines wie oben beschriebenen monolithischen Blocks werden die einzelnen Platten gestapelt und in einem Diffussionsschweißverfahren in Gegenwart einer Schutzgasatmosphäre oder unter Vakuum bei einer Temperatur von mindestens 1.600°C, bevorzugt über 1.8000C, insbesondere bevorzugt über 2.0000C und gegebenenfalls unter Aufbringung einer Last zu einem nahtfreien monolithischen Block gefügt, wobei die zu fügenden Komponenten vorzugsweise eine plastische Verformung in Richtung der Krafteinleitung von weniger als 5%, weiter vorzugsweise weniger als 1% erfahren. Als Diffussionsschweißverfahren eignet sich insbesondere ein Heißpressverfahren unter Ver- wendung keramischer Platten aus gesintertem SiC (SSiC), insbesondere bevorzugt aus grobkörnigem SSiC mit einer wie oben erwähnten bimodalen Korngrößenverteilung, welches bis zu 35 Vol.-% weiterer Stoffkomponenten, wie Grafit, Borcarbid oder andere keramische Partikel enthalten kann.The individual plates are used for producing a monolithic block as described above are stacked and, in a diffusion welding process in the presence of a protective gas atmosphere or under vacuum at a temperature of at least 1,600 ° C, preferably above 1,800 0 C, more preferably about 2,000 0 C and optionally under application of a Load joined to a seamless monolithic block, wherein the components to be joined preferably undergo a plastic deformation in the direction of force application of less than 5%, more preferably less than 1%. Particularly suitable as a diffusion welding method is a hot pressing method using ceramic plates made of sintered SiC (SSiC), particularly preferably of coarse-grained SSiC with a bimodal as mentioned above Grain size distribution, which may contain up to 35 vol .-% of other material components, such as graphite, boron carbide or other ceramic particles.
Der Widerstand gegen plastische Verformung im Hochtemperaturbereich wird in der Materialkunde mit Hochtemperatur-Kriechbeständigkeit bezeichnet. Als Maß für die Kriechbeständigkeit wird die so genannte Kriechrate herangezogen. Überraschend zeigte sich, dass die Kriechrate der zu fügenden keramischen Platten als ein zentraler Parameter verwendet werden kann, um die plastische Verformung in einem Fügeprozess zum nahtfreien Fügen der gesinter- ten keramischen Platten auf ein Mindestmaß einzustellen. Die meisten kommerziell verfügbaren gesinterten SiC-Werkstoffe besitzen Gefüge mit monomodaler Korngrößenverteilung und einer Korngröße von ca. 5 μm. Sie weisen damit eine bei Fügetemperaturen von über 1.700°C ausreichend hohe Sinteraktivität auf, besitzen aber einen für ein verformungsarmes Fügen zu niedri- gen Kriechwiderstand. Daher wurde bisher beim Diffussionsschweißen solcher Komponenten immer eine hohe plastische Verformung beobachtet. Weil sich der Kriechwiderstand der SSiC-Werkstoffe im allgemeinen nicht sonderlich unterscheidet, wurde bisher für das Fügen von SSiC nicht die Kriechrate als verwendungsfähiger variabler Parameter in Betracht gezogen.The resistance to plastic deformation in the high temperature range is referred to in material science with high temperature creep resistance. As a measure of the creep resistance, the so-called creep rate is used. Surprisingly, it has been found that the creep rate of the ceramic plates to be joined can be used as a central parameter in order to minimize the plastic deformation in a joining process for seamless joining of the sintered ceramic plates. Most commercially available sintered SiC materials have structures with a monomodal particle size distribution and a particle size of about 5 μm. They thus have a sufficiently high sintering activity at joining temperatures of more than 1,700 ° C, but have low creep resistance for low-deformation joining. Therefore, hitherto, in the diffusion welding of such components, high plastic deformation has always been observed. Because the creep resistance of the SSiC materials is generally not very different, creep rate has not heretofore been considered as a useful variable parameter for SSiC joining.
Es zeigte sich nun, dass sich die Kriechrate von SSiC über einen weiten Bereich durch Variation der Gefügeausbildung variieren lässt. Erst durch die Verwendung bestimmter Sorten, wie solcher mit bimodaler Korngrößenverteilung, wird daher das verformungsarme Fügen für SSiC-Werkstoffe erreichbar. Gemäß der Erfindung bestehen die zu fügenden keramischen Platten vorzugsweise aus einem SSiC-Werkstoff, dessen Kriechrate im Fügeprozess stets kleiner als 2 x 10"4 l /s, bevorzugt stets kleiner als 8 x 10"5 l /s, besonders bevorzugt stets kleiner als 2 x 10"5 l /s ist.It now turned out that the creep rate of SSiC can be varied over a wide range by varying the structure formation. Only through the use of certain grades, such as those with bimodal particle size distribution, therefore, the low-deformation joining for SSiC materials is reached. According to the invention, the ceramic to be joined plates preferably consist of a SSiC material, the creep rate in the joining process is always less than 2 x 10 "4 l / s, is always preferably less than 8 x 10" 5 l / s, particularly preferably always lower than 2 x 10 "is 5 l / s.
Bei dem erfindungsgemäß angewandten Diffussionsschweißen wird vorzugsweise eine Last von über 10 kPa, besonders bevorzugt von über 1 MPa, und weiter bevorzugt von über 10 MPa aufgebracht, wobei die Temperaturhaltezeit bei einer Temperatur von mindestens 1.6000C bevorzugt eine Dauer von 10 Minuten, insbesondere bevorzugt 30 Minuten übersteigt.In the case of diffusion welding used according to the invention, a load of more than 10 kPa, particularly preferably more than 1 MPa, and more preferably more than 10 MPa, is preferably applied, the temperature-holding time at a temperature of at least 1,600 ° C. preferably having a duration of 10 minutes, particularly preferably Exceeds 30 minutes.
Mit dem erfindungsgemäßen Herstellungsverfahren können somit Plattenwärmetauscher, bei denen bisher die Dichtungen oder Lotnähte die Schwachstel- len gebildet haben, nun als nahtfreier Monolith hergestellt werden, Die so hergestellten Plattenwärmetauscher aus gesinterter SiC-Keramik besitzen daher eine extrem hohe Temperatur- und Korrosionsbeständigkeit.With the production method according to the invention can thus plate heat exchanger, in which previously the seals or solder joints the weak point len now be produced as seam-free monolith, The plate heat exchanger thus produced from sintered SiC ceramic therefore have an extremely high temperature and corrosion resistance.
Wie bereits oben erwähnt, eignet sich der Plattenwärmetauscher mit erfindungsgemäß ausgeführten Wärmetauscherplatten auch als Reaktor, beispielsweise für die Verdampfung und Kondensation, aber auch für andere Phasenumwandlungen, wie beispielsweise für gezielte Kristallisationsvorgänge. Beim Einsatz für die Verdampfung und Kondensation ist es zur Erzielung eines ver- ringerten Druckverlusts bevorzugt, wenn der Abstand der Seitenwände der Führungskanäle zueinander vom Fluideinlass zum Fluidauslass hin größer bzw. kleiner wird.As already mentioned above, the plate heat exchanger with heat exchanger plates designed according to the invention is also suitable as a reactor, for example for evaporation and condensation, but also for other phase transformations, such as, for example, for targeted crystallization processes. When used for evaporation and condensation, it is preferable for achieving a reduced pressure loss when the distance of the side walls of the guide channels from each other increases from the fluid inlet to the fluid outlet or smaller.
Für eine besonders effektive Nutzung als Reaktor ist es zweckdienlich, zwi- sehen den erfindungsgemäß ausgeführten Wärmetauscherplatten Reaktorplatten einzubauen, wobei dann die Wärmetauscherplatten zur Temperierung der Reaktorplatten dienen. Die Reaktorplatten können verschiedene Geometrien aufweisen. Für eine kontrollierte Verweilzeit und definierte Ausscheidungsreaktion, wie etwa für gezielte Kristallisationsvorgänge, ist es beispielsweise vorteilhaft, Reaktorplatten mit durchgezogenen geraden Kanälen zu verwenden. Es lassen sich aber auch in der Reaktorplatte mindestens zwei zunächst getrennte Fluidströme bei einer definierten Temperatur miteinander vermischen. Hierzu werden Kanalstrukturen verwendet, mit denen die Stoffströme in einem definierten Bereich der Reaktorplatte einander zugeführt und inten- siv vermischt werden. Die Reaktorplatten können auch geeignete katalytische Beschichtungen aufweisen, die eine chemische Reaktion gezielt beschleunigen.For a particularly effective use as a reactor, it is expedient to see between the inventively designed heat exchanger plates install reactor plates, in which case the heat exchanger plates are used for temperature control of the reactor plates. The reactor plates can have different geometries. For a controlled residence time and defined precipitation reaction, such as for targeted crystallization processes, it is for example advantageous to use reactor plates with continuous straight channels. However, it is also possible to mix at least two initially separate fluid streams at a defined temperature in the reactor plate. For this purpose, channel structures are used with which the material flows are supplied to one another in a defined region of the reactor plate and mixed intensively. The reactor plates may also have suitable catalytic coatings that specifically accelerate a chemical reaction.
Die erfindungsgemäßen, hermetisch dichten Wärmetauscherblöcke benötigen zur Einspannung und Anbindung von Flanschen nicht mehr die herkömmlichen schweren Gestelle, sondern brauchen nur an den Versorgungsbohrungen mit einem entsprechenden Flanschsystem kontaktiert werden. Bei einer Ausführungsform der Erfindung umfasst daher der Plattenwärmetauscher weiterhin ein keramisches oder metallisches Anflanschsystem für die Zufüh- rung und Abführung von Fluiden auf der Oberseite und/oder Unterseite (Deckel und/oder Boden) des Plattenwärmetauschers. Für die Abdichtung des Anflanschsystems wird für Hochtemperatur-Anwendungen bevorzugt ein Dichtungsmaterial auf Glimmerbasis verwendet.The hermetically sealed heat exchanger blocks according to the invention no longer require the conventional heavy racks for clamping and connecting flanges, but need only be contacted at the supply bores with a corresponding flange system. In one embodiment of the invention, therefore, the plate heat exchanger further comprises a ceramic or metallic Anflanschsystem for the supply and discharge of fluids on the top and / or bottom (lid and / or bottom) of the plate heat exchanger. For the sealing of the Flange system is preferably used for high-temperature applications, a mica-based sealing material.
Kurze Beschreibung der beigefügten ZeichnungenBrief description of the attached drawings
Abbildung 1 zeigt die Draufsicht einer erfindungsgemäß eingesetzten Wärmetauscherplatte aus gesintertem Keramikmaterial;FIG. 1 shows the plan view of a sintered ceramic material heat exchanger plate used in accordance with the invention;
Abbildung 2 zeigt die Draufsicht einer erfindungsgemäß eingesetzten Reaktorplatte; undFigure 2 shows the top view of a reactor plate used in the invention; and
Abbildungen 3a und 3b sind Fotografien von erfindungsgemäßen Plattenwär- metauschern einschließlich Anflanschsystemen.Figures 3a and 3b are photographs of plate heat exchangers according to the invention, including flanging systems.
Wie in Abbildung 1 gezeigt, weist eine erfindungsgemäß einsetzbare Platte 1 ein aus Führungskanälen 2 gebildetes Kanalsystem auf, das einen im wesentlichen meanderförmigen Verlauf des Fluidstroms über die Fläche der Platte ermöglicht. Die Seitenwände 3 der Führungskanäle 2 bestehen bei dieser Abbildung aus Stegen mit einer Breite von 3 mm, welche eine Vielzahl von Durchbrüchen 4 mit einer Breite von 3,5 mm aufweisen. Die Platte weist weiterhin eine erste Zuführöffnung 5 sowie eine erste Abführöffnung 6 für einen Fluidstrom, jeweils in Form einer Bohrung mit einem Radius von 30 mm auf. Ferner sind in der Platte eine zweite Zuführöffnung 7 und eine zweite Abführöffnung 8, die als Durchführung zur Versorgung einer Nachbarkammer mit einem anderen Medium dienen, vorgesehen. Die zweite Zuführöffnung und zweite Abführöffnung bestehen jeweils aus Bohrungen mit einem Radius von 32 mm. Die Gesamtlänge der Platte beträgt bei dieser Ausführungsform 500 mm und deren Breite 200 mm. Wie ersichtlich, weist das Kanalsystem bei dieser Ausführungsform eine Spiegelsymmetrie auf. Durch diese Spiegelsymmetrie wird ermöglicht, dass die Platten abwechselnd um jeweils 180° verdreht gegeneinander aufeinander gestapelt werden können, so dass die Zuführöffnungen sich abwechselnd einmal links und einmal rechts befinden.As shown in FIG. 1, a plate 1 which can be used according to the invention has a channel system formed by guide channels 2, which allows a substantially meandering course of the fluid flow over the surface of the plate. The side walls 3 of the guide channels 2 consist in this figure of webs with a width of 3 mm, which have a plurality of apertures 4 with a width of 3.5 mm. The plate further has a first feed opening 5 and a first discharge opening 6 for a fluid flow, each in the form of a bore with a radius of 30 mm. Further, in the plate, a second feed opening 7 and a second discharge opening 8, which serve as a passage for supplying a neighboring chamber with another medium, are provided. The second feed opening and second discharge opening each consist of holes with a radius of 32 mm. The total length of the plate in this embodiment is 500 mm and its width is 200 mm. As can be seen, the channel system in this embodiment has a mirror symmetry. This mirror symmetry makes it possible for the plates to be alternately stacked against each other rotated through 180 °, so that the feed openings are alternately once on the left and once on the right.
Die Abbildung 2 zeigt eine erfindungsgemäß einsetzbare Reaktorplatte 9 mit einer ersten Zuführöffnung 10 für einen ersten Fluidstrom und einer zweiten Zuführöffnung 1 1 für einen zweiten Fluidstrom. Die beiden Fluidströme werden dann durch die Schikanen 12 so einander zugeführt, dass eine intensive Vermischung der Fiuidströme stattfindet. Der gemischte Stoffstrom wird dann über die Abführöffnung 13 abgeführt.FIG. 2 shows a reactor plate 9 which can be used according to the invention with a first feed opening 10 for a first fluid flow and a second feed flow Feed opening 1 1 for a second fluid flow. The two fluid streams are then supplied to each other through the baffles 12 so that an intensive mixing of the Fiuidströme takes place. The mixed stream is then removed via the discharge opening 13.
Die Abbildungen 3a und 3b zeigen, wie metallische Flansche an einem keramischen Monolith verspannt werden.Figures 3a and 3b show how metallic flanges are clamped to a ceramic monolith.
BeispieleExamples
Das nachfolgende Beispiel dient zur weiteren Erläuterung der Erfindung.The following example serves to further explain the invention.
Anwendungsbeispiel WärmetauscherApplication example heat exchanger
Ein keramischer Wärmetauscher wird mit Wärmetauscherplatten nach Art der Abbildung 1 hergestellt. Die Platten haben eine Länge von 500 mm, eine Bodenstärke von 3 mm und Führungskanäle mit einer Höhe von 3,5 mm. Die Seitenwände weisen Durchbrüche einer Breite von 3 mm auf. Für die Herstellung des Wärmetauscherblocks werden vier erfindungsgemäße Wärmetauscherplatten und eine Deckelplatte verwendet, wobei alle Komponenten aus gesintertem Siliciumcarbid mit bimodaler Korngrößenverteilung bestehen. Alle keramischen Platten werden gestapelt und stoffschlüssig und nahtlos zu einem monolithischen Block gefügt. Die Platten sind in dem Block so angeordnet, dass zwei Stoffströme im Gegenstrom Wärme austauschen können. Der hermetisch dichte Wärmetauscherblock aus gesintertem Siliciumcarbid wird mit vier metallischen Flanschen mit Innendurchmesser 50 mm versehen. Der Wärmetauscherapparat wird mit wässrigen Medien betrieben. Bei einem Durchsatz von 1000 l/h stellt sich ein Druckverlust von 100 mbar ein und es werden 6000 W/m2K übertragen. A ceramic heat exchanger is manufactured with heat exchanger plates in the manner of Figure 1. The plates have a length of 500 mm, a bottom thickness of 3 mm and guide channels with a height of 3.5 mm. The side walls have openings of a width of 3 mm. For the production of the heat exchanger block four heat exchanger plates according to the invention and a cover plate are used, wherein all components consist of sintered silicon carbide with bimodal particle size distribution. All ceramic panels are stacked and bonded together to form a monolithic block. The plates are arranged in the block so that two streams can exchange heat in countercurrent. The hermetically sealed sintered silicon carbide heat exchanger block is provided with four 50mm internal diameter flanges. The heat exchanger apparatus is operated with aqueous media. At a flow rate of 1000 l / h, a pressure drop of 100 mbar occurs and 6000 W / m 2 K are transferred.

Claims

Patentansprüche claims
1. Plattenwärmetauscher aus einer Mehrzahl von Platten ( I )1 in welchen Fluidstrom-Führungskanäle (2) als Kanalsystem so ausgebildet sind, dass sich ein im wesentlichen meanderförmiger Verlauf des Fluidstroms über die Fläche der jeweiligen Platte ergibt, wobei die Seitenwände (3) der Führungskanäle (2) eine Mehrzahl von Durchbrüchen (4) aufweisen, die zu einer Verwir- belung des Fluidstroms führen.1. Plate heat exchanger of a plurality of plates (I) 1 in which fluid flow guide channels (2) are designed as a channel system so that there is a substantially meandering course of the fluid flow over the surface of the respective plate, wherein the side walls (3) of Guide channels (2) have a plurality of openings (4), which lead to a swirling fluid flow.
2. Plattenwärmetauscher nach Anspruch 1 , wobei die Platten ( 1 ) aus Keramikmaterial, vorzugsweise aus gesintertem Siliciumcarbid (SSiC), faserverstärktem Siliciumcarbid, Siliciumnitrid oder Kombinationen davon, bestehen.A plate heat exchanger according to claim 1, wherein the plates (1) are made of ceramic material, preferably sintered silicon carbide (SSiC), fiber reinforced silicon carbide, silicon nitride or combinations thereof.
3. Plattenwärmetauscher nach Anspruch 2, wobei das gesinterte Keramik- material aus gesintertem Siliciumcarbid mit einer bimodalen Korngrößenverteilung, welches wahlweise bis zu 35 Vol.-% weiterer Stoffkomponenten, wie Grafit, Borcarbid oder andere keramische Partikel enthalten kann, gewählt ist.3. The plate heat exchanger according to claim 2, wherein the sintered ceramic material is selected from sintered silicon carbide having a bimodal grain size distribution which may optionally contain up to 35% by volume of further material components, such as graphite, boron carbide or other ceramic particles.
4. Plattenwärmetauscher nach Anspruch 3, wobei das gesinterte Siliciumcarbid mit einer bimodalen Korngrößenverteilung 50 bis 90 Vol.-% prismatische, plättchenförmige SiC-Kristallite einer Länge von 100 bis 1.500 μm und 10 bis 50 Vol.-% prismatische, plättchenförmige SiC-Kristallite einer Länge von 5 bis weniger als 100 μm umfasst.4. The plate heat exchanger according to claim 3, wherein the sintered silicon carbide having a bimodal grain size distribution contains 50 to 90% by volume of prismatic, platelet-shaped SiC crystallites of 100 to 1,500 μm in length and 10 to 50% by volume of prismatic, platelet-shaped SiC crystallites Length of 5 to less than 100 microns includes.
5. Plattenwärmetauscher nach mindestens einem der Ansprüche 1-4, wobei die Führungskanäle (2) in den Platten mit einer ersten Zuführöffnung (5) und einer ersten Abführöffnung (6) für ein erstes Fluid verbunden sind.5. Plate heat exchanger according to at least one of claims 1-4, wherein the guide channels (2) are connected in the plates with a first feed opening (5) and a first discharge opening (6) for a first fluid.
6. Plattenwärmetauscher nach Anspruch 5, wobei die Platte mit einer zweiten Zuführöffnung (7) und einer zweiten Abführöffnung (8) für ein zweites Fluid zur Versorgung einer benachbarten Platte versehen ist.6. The plate heat exchanger according to claim 5, wherein the plate is provided with a second feed opening (7) and a second discharge opening (8) for a second fluid for supplying an adjacent plate.
7. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 -6, wobei eine Platte eines ersten Plattentyps ein Kanalsystem für ein erstes Fluid und eine benachbarte Platte eines zweiten Plattentyps ein Kanalsystem für ein zweites Fluid umfasst. 7. The plate heat exchanger according to claim 1, wherein a plate of a first plate type comprises a channel system for a first fluid and an adjacent plate of a second plate type comprises a channel system for a second fluid.
8. Plattenwärmetauscher nach Anspruch 7, wobei Platten vom ersten Plattentyp und Platten vom zweiten Plattentyp in beliebiger Reihenfolge aufeinander gestapelt sind.A plate heat exchanger according to claim 7, wherein first-plate-type plates and second-plate-type plates are stacked on each other in any order.
9. Plattenwärmetauscher nach mindestens einem der Ansprüche 1-8, wobei das Kanalsystem eine Spiegelsymmetrie aufweist.9. The plate heat exchanger according to at least one of claims 1-8, wherein the channel system has a mirror symmetry.
10. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 -9, wobei innerhalb einer Platte mindestens zwei getrennte Kanalsysteme für verschie- dene Fluide vorgesehen sind, zwischen welchen Wärmeübertragung stattfinden soll.10. Plate heat exchanger according to at least one of claims 1-9, wherein within a plate at least two separate channel systems are provided for different fluids between which heat transfer is to take place.
1 1. Plattenwärmetauscher nach Anspruch 10, wobei die verschiedenen Fluide in getrennten Kanalsystemen in Gegenströmung geführt sind.1 1. A plate heat exchanger according to claim 10, wherein the different fluids are guided in separate channel systems in countercurrent.
12. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 - 1 1 , wobei die Platten ( 1 ) eine Bodenstärke im Bereich von 0,2-20 mm, vorzugsweise etwa 3 mm aufweisen.12. The plate heat exchanger according to at least one of claims 1 - 1 1, wherein the plates (1) have a bottom thickness in the range of 0.2-20 mm, preferably about 3 mm.
13. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 - 12, wobei die Seitenwände (3) der Führungskanäle (2) eine Höhe im Bereich von 0,2- 30 mm, vorzugsweise 0,2- 10 mm, weiter vorzugsweise 0,2-5 mm, aufweisen.13. Plate heat exchanger according to at least one of claims 1-12, wherein the side walls (3) of the guide channels (2) has a height in the range of 0.2-30 mm, preferably 0.2-10 mm, more preferably 0.2-5 mm, have.
14. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 - 13, wo- bei die Durchbrüche (4) in den Seitenwänden (3) der Führungskanäle (2) eine14. Plate heat exchanger according to at least one of claims 1-13, wherein the openings (4) in the side walls (3) of the guide channels (2) a
Breite im Bereich von 0,2-20 mm, vorzugsweise 2-5 mm, aufweisen.Width in the range of 0.2-20 mm, preferably 2-5 mm.
15. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 - 14, wobei die Platten ( 1 ) gestapelt und mittels umlaufenden Dichtungen miteinander verbunden sind.15. Plate heat exchanger according to at least one of claims 1-14, wherein the plates (1) are stacked and connected to each other by means of circumferential seals.
16. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 - 14, wobei die Platten ( 1 ) gestapelt und stoffschlüssig zu einem nahtfreien monolithischen Block gefügt sind.16. Plate heat exchanger according to at least one of claims 1-14, wherein the plates (1) are stacked and joined together to form a seamless monolithic block.
17. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 - 16, wobei mindestens jeweils zwei der Platten ( 1 ) gestapelt und stoffschlüssig zu ei- nem nahtfreien monolithischen Block gefügt sind und mindestens zwei solcher monolithischen Blöcke mittels umlaufenden Dichtungen miteinander verbunden sind.17. The plate heat exchanger according to claim 1, wherein at least two of the plates each are stacked and bonded to one another. nem seamless monolithic block are joined and at least two such monolithic blocks are interconnected by means of circumferential seals.
18. Plattenwärmetauscher nach mindestens einem der Ansprüche 1- 17, umfassend weiterhin ein keramisches oder metallisches Anflanschsystem für die Zuführung und Abführung von Fluiden auf der Oberseite und /oder Unterseite des Plattenwärmetauschers.18. Plate heat exchanger according to at least one of claims 1-17, further comprising a ceramic or metallic Anflanschsystem for the supply and discharge of fluids on the top and / or bottom of the plate heat exchanger.
19. Verfahren zur Herstellung eines Plattenwärmetauschers nach mindestens einem der Ansprüche 1 - 15 und 17, wobei die einzelnen Platten bzw. monolithischen Blöcke gestapelt und jeweils mittels umlaufenden Dichtungen miteinander verbunden werden.19. A method for producing a plate heat exchanger according to any one of claims 1-15 and 17, wherein the individual plates or monolithic blocks are stacked and connected to each other by means of circumferential seals.
20. Verfahren zur Herstellung eines Plattenwärmetauschers nach mindestens einem der Ansprüche 1 - 14 und 16, wobei die einzelnen Platten gestapelt und in einem Diffusionsschweiß verfahren in Gegenwart einer Schutzgasatmosphäre oder unter Vakuum bei einer Temperatur von mindestens 1.6000C und gegebenenfalls unter Aufbringung einer Last zu einem nahtfreien monolithi- sehen Block gefügt werden.20. A method for producing a plate heat exchanger according to any one of claims 1-14 and 16, wherein the individual plates stacked and in a diffusion welding process in the presence of a protective gas atmosphere or under vacuum at a temperature of at least 1,600 0 C and optionally with the application of a load to be joined to a seamless monolithic block.
21. Verwendung eines Plattenwärmetauschers nach mindestens einem der Ansprüche 1 - 18 als Hochtemperatur- Wärmetauscher und /oder für den Einsatz mit korrosiven Medien.21. Use of a plate heat exchanger according to at least one of claims 1 - 18 as a high-temperature heat exchanger and / or for use with corrosive media.
22. Verwendung eines Plattenwärmetauschers nach mindestens einem der Ansprüche 1 - 18 als Reaktor mit mindestens zwei getrennten Fluidkreisläufen.22. Use of a plate heat exchanger according to at least one of claims 1 - 18 as a reactor with at least two separate fluid circuits.
23. Verwendung eines Plattenwärmetauschers nach mindestens einem der Ansprüche 1 - 18 als Reaktor, wobei zusätzlich eine oder mehrere Reaktorplatten (9) zwischen den Platten ( 1 ) vorgesehen sind, wobei die Reaktorplatten (9) ein von den Platten ( 1 ) verschiedenes Kanalsystem aufweisen.23. Use of a plate heat exchanger according to at least one of claims 1 - 18 as a reactor, wherein additionally one or more reactor plates (9) between the plates (1) are provided, wherein the reactor plates (9) one of the plates (1) have different channel system ,
24. Verwendung nach Anspruch 23, wobei die Reaktorplatten (9) parallel verlaufende Fluidstrom-Führungskanäle enthalten, deren Seitenwände keine24. Use according to claim 23, wherein the reactor plates (9) contain parallel fluid flow guide channels whose side walls no
Durchbrüche aufweisen. Have breakthroughs.
25. Verwendung nach Anspruch 23, wobei das in den Reaktorplatten (9) ausgebildete Kanalsystem die Vermischung von mindestens zwei zunächst getrennten Fluidströmen ermöglicht.25. Use according to claim 23, wherein the channel plates formed in the reactor plates (9) allows the mixing of at least two initially separate fluid streams.
26. Verwendung nach mindestens einem der Ansprüche 23-25, wobei die Reaktorplatten (9) katalytisch beschichtet sind. 26. Use according to any one of claims 23-25, wherein the reactor plates (9) are catalytically coated.
EP07723516A 2006-03-23 2007-03-22 Plate heat exchanger, method for its production, and its use Not-in-force EP1996889B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013503A DE102006013503A1 (en) 2006-03-23 2006-03-23 Plate heat exchanger, process for its preparation and its use
PCT/EP2007/002565 WO2007110196A1 (en) 2006-03-23 2007-03-22 Plate heat exchanger, method for its production, and its use

Publications (2)

Publication Number Publication Date
EP1996889A1 true EP1996889A1 (en) 2008-12-03
EP1996889B1 EP1996889B1 (en) 2011-11-30

Family

ID=38267705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723516A Not-in-force EP1996889B1 (en) 2006-03-23 2007-03-22 Plate heat exchanger, method for its production, and its use

Country Status (9)

Country Link
US (1) US8967238B2 (en)
EP (1) EP1996889B1 (en)
JP (1) JP2009530582A (en)
CN (1) CN101405554B (en)
AT (1) ATE535769T1 (en)
CA (1) CA2643757C (en)
DE (1) DE102006013503A1 (en)
ES (1) ES2373992T3 (en)
WO (1) WO2007110196A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044942A1 (en) * 2004-09-16 2006-03-30 Esk Ceramics Gmbh & Co. Kg Method for low-deformation diffusion welding of ceramic components
DE102008019556A1 (en) 2008-04-18 2009-10-22 Esk Ceramics Gmbh & Co. Kg Component useful as plate shaped heat exchanger or a reactor with two separate fluid circuits, comprises sequentially stacked plates having a channel system formed from fluid stream guiding channel
DE102009024976A1 (en) 2008-06-18 2009-12-24 Josch Strahlschweißtechnik GmbH Heat exchanger element for heat and cooling energy transmission system, has multiple ribs formed as heat-guiding plate connected to tube, where ribs are arranged in horizontal construction to pipe
DE102008048014A1 (en) 2008-09-12 2010-04-15 Esk Ceramics Gmbh & Co. Kg Component of a stack of ceramic plates
EP2228615B1 (en) 2009-03-12 2018-04-25 MAHLE Behr GmbH & Co. KG Plate heat exchanger, in particular for heat recovery from exhaust gases of a motor vehicle
DE102009012493A1 (en) * 2009-03-12 2010-09-16 Behr Gmbh & Co. Kg Device for exchanging heat between two mediums in vehicle, has disk pairs stacked on each other in stacking direction, where flowing chamber and another flowing chamber are formed between two disks of disk pair or multiple disk pairs
US9567876B2 (en) * 2009-06-05 2017-02-14 Gas Technology Institute Reactor system and solid fuel composite therefor
EP2278251A3 (en) 2009-06-16 2013-03-06 Josch Strahlschweisstechnik Gmbh Heat exchanger element
DE102009032370A1 (en) 2009-07-08 2011-01-13 Sartorius Stedim Biotech Gmbh Plate heat exchanger
FR2949699B1 (en) * 2009-09-07 2011-09-30 Commissariat Energie Atomique METHOD FOR MANUFACTURING A HOLLOW ZONE MODULE, PREFERABLY FOR FLUID CIRCULATION
DE102009050482B4 (en) * 2009-10-23 2011-09-01 Voith Patent Gmbh Heat exchanger plate and evaporator with such
DE102009050500B4 (en) 2009-10-23 2011-06-30 Voith Patent GmbH, 89522 Heat exchanger plate and evaporator with such
DE102010010207A1 (en) * 2010-03-04 2011-09-08 Karlsruher Institut für Technologie Thermally activated diffusion welding of two surfaces pressed together with welding temperature of two components from a sinterable material under formation of a cavity, comprises inserting an insertion part into the cavity
DE102010051996A1 (en) 2010-06-02 2011-12-22 Gab Neumann Gmbh Producing components by joining ceramic and metallic components, useful e.g. as plate heat exchanger, comprises assembling joining components with component assembly using, and subjecting them to thermal treatment
DE202010015615U1 (en) 2010-06-02 2011-03-03 Gab Neumann Gmbh heat exchangers
DE102010030781A1 (en) * 2010-06-30 2012-01-05 Sgl Carbon Se Heat exchanger plate, thus provided plate heat exchanger and method for producing a plate heat exchanger
CN102538546A (en) * 2010-12-29 2012-07-04 中国科学院上海硅酸盐研究所 Silicon carbide ceramic heat-exchanging board and manufacturing method thereof
KR101218314B1 (en) * 2011-01-27 2013-01-04 한국과학기술원 Micro Channel Plate for Heat Exchanger
US9151539B2 (en) * 2011-04-07 2015-10-06 Hamilton Sundstrand Corporation Heat exchanger having a core angled between two headers
EP2785666B1 (en) 2011-11-29 2019-09-18 Corning Incorporated Method of treating joint in ceramic assembly
ES2706986T3 (en) * 2012-03-28 2019-04-02 Alfa Laval Corp Ab New brazing concept
US20150122467A1 (en) * 2012-05-29 2015-05-07 Hangzhou Shenshi Energy Conservation Technology Co., Ltd. Micro-channel structure for heat exchanger and integrated type micro-channel heat exchanger
JP6018196B2 (en) 2012-05-30 2016-11-02 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
SE537148C2 (en) * 2012-10-22 2015-02-17 Alfa Laval Corp Ab Plate heat exchanger plate and plate heat exchanger
CN103063078A (en) * 2012-11-08 2013-04-24 江苏巴威工程技术股份有限公司 Heat exchanger capable of recycling waste heat
DE102012222019A1 (en) * 2012-11-30 2014-06-05 Sgl Carbon Se Plate heat exchanger in sealed construction
JP6216118B2 (en) * 2013-01-11 2017-10-18 フタバ産業株式会社 Heat exchanger
DE102013215241A1 (en) 2013-06-27 2014-12-31 Robert Bosch Gmbh Heat exchanger
CN103453680A (en) * 2013-08-27 2013-12-18 山东汉霖太阳能有限公司 Crack type solar heat absorbing plate core and solar heat collector adopting plate core
US10371454B2 (en) 2013-10-14 2019-08-06 Alfa Laval Corporate Ab Plate for heat exchanger and heat exchanger
JP5932757B2 (en) 2013-11-15 2016-06-08 株式会社フィルテック Fluid heat exchange device
DE102014001499A1 (en) * 2014-02-06 2015-08-06 Api Schmidt-Bretten Gmbh & Co. Kg For heat and / or mass transfer suitable plate apparatus
JP6192564B2 (en) * 2014-02-18 2017-09-06 日新製鋼株式会社 Plate heat exchanger and manufacturing method thereof
TWI529365B (en) * 2015-01-19 2016-04-11 國立中央大學 Heat exchanger module
US10023317B2 (en) * 2015-06-23 2018-07-17 The Boeing Company Flight deck takeoff duct and trim air mix muff
FR3050519B1 (en) * 2016-04-25 2019-09-06 Novares France HEAT EXCHANGER OF PLASTIC MATERIAL AND VEHICLE COMPRISING THIS HEAT EXCHANGER
CN106099242B (en) * 2016-07-04 2019-06-14 上海蔚来汽车有限公司 Battery cooling heat exchanger
CN106503390B (en) * 2016-11-09 2017-08-25 中国石油大学(华东) A kind of creep fatigue strength design of plate-fin heat exchanger
US10184728B2 (en) * 2017-02-28 2019-01-22 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
SE542079C2 (en) * 2017-05-11 2020-02-18 Alfa Laval Corp Ab Plate for heat exchange arrangement and heat exchange arrangement
ES2787017T3 (en) * 2017-08-22 2020-10-14 Innoheat Sweden Ab Heat exchanger
EP3447428A1 (en) * 2017-08-22 2019-02-27 Airec AB Heat exchanger plate and heat exchanger
EP3447429B1 (en) 2017-08-22 2023-06-07 InnoHeat Sweden AB Heat exchanger plate and heat exchanger
US20190345070A1 (en) * 2017-12-06 2019-11-14 Melior Innovations, Inc. Pneumatic Cooling and Transport Apparatus for Extrusion Reaction Manufacturing of Polymer Derived Ceramics
CN109990630A (en) * 2017-12-29 2019-07-09 核工业西南物理研究院 A kind of suitable high temperature and pressure heat exchange runner structure
DE102018117738A1 (en) 2018-07-23 2020-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactive ceramic components and processes for their manufacture
CN109099410A (en) * 2018-09-06 2018-12-28 黑龙江赫尔特生物质能源发展有限公司 Combined type heat-exchanger rig without combustion system
DE102018217652A1 (en) * 2018-10-15 2020-04-16 Danfoss Silicon Power Gmbh Flow distributor for cooling an electrical assembly, a semiconductor module with such a flow distributor and a method for its production
JP7256951B2 (en) * 2018-10-29 2023-04-13 株式会社ノーリツ Plate heat exchanger and water heater equipped with same
GB2582653B (en) * 2019-03-29 2021-05-26 Yasa Ltd Cooling arrangement
CN111928705B (en) * 2019-05-13 2022-03-25 亚浩电子五金塑胶(惠州)有限公司 Heat radiator with gravity type loop heat pipe
EP4022241A1 (en) 2019-08-31 2022-07-06 Corning Incorporated Improved heat exchange flow reactor
DE102020203223A1 (en) 2020-03-12 2021-09-16 Sgl Carbon Se Plate heat exchanger
MY197284A (en) * 2020-10-08 2023-06-09 Petroliam Nasional Berhad Method and system for production of alkyl polyglucoside
CN117320804A (en) * 2021-03-29 2023-12-29 康宁股份有限公司 Method for manufacturing metal flow reactor module with integrated temperature control and module manufactured thereby
CN115070366B (en) * 2022-06-14 2023-08-15 西安热工研究院有限公司 PCHE heat exchanger processing method capable of avoiding chemical etching
DE102022125342A1 (en) * 2022-09-30 2024-04-04 Ineratec Gmbh Microstructured reactors

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1770254A (en) * 1928-03-07 1930-07-08 Seligman Richard Heat-exchange apparatus
US2705617A (en) * 1950-08-11 1955-04-05 Ekwall Nils Richard Gosta Pasteurizing apparatus of the plate type
NL215577A (en) * 1956-03-21
SE7508256L (en) * 1975-07-18 1977-01-19 Munters Ab Carl WAY TO PRODUCE A HEAT EXCHANGER BODY FOR RECOVERY EXCHANGERS
FR2314461A1 (en) * 1976-05-07 1977-01-07 Dieu Andre Composite-type heat exchanger - comprises identical plates with chambes formed between adjacent ones constituting two circuits
DE2953392C2 (en) * 1979-08-23 1984-12-13 Hisaka Works Ltd., Osaka Plate-shaped heat exchanger
US4574876A (en) * 1981-05-11 1986-03-11 Extracorporeal Medical Specialties, Inc. Container with tapered walls for heating or cooling fluids
FR2526930A1 (en) * 1982-05-14 1983-11-18 Bertin & Cie HEAT RECOVERY EXCHANGER WITH CONVECTO-RADIATION EFFECT IN CERAMIC MATERIAL
US4551436A (en) * 1984-04-11 1985-11-05 General Electric Company Fabrication of small dense silicon carbide spheres
DE3883161T2 (en) * 1987-11-17 1994-04-07 Shinwa Sangyo Kk Heat exchanger for a cooling tower.
US5658537A (en) * 1995-07-18 1997-08-19 Basf Corporation Plate-type chemical reactor
JP3858484B2 (en) * 1998-11-24 2006-12-13 松下電器産業株式会社 Laminate heat exchanger
US7241423B2 (en) * 2000-02-03 2007-07-10 Cellular Process Chemistry, Inc. Enhancing fluid flow in a stacked plate microreactor
US7125540B1 (en) * 2000-06-06 2006-10-24 Battelle Memorial Institute Microsystem process networks
US6357396B1 (en) * 2000-06-15 2002-03-19 Aqua-Chem, Inc. Plate type heat exchanger for exhaust gas heat recovery
US7032654B2 (en) * 2003-08-19 2006-04-25 Flatplate, Inc. Plate heat exchanger with enhanced surface features
DE10361346A1 (en) 2003-12-16 2005-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Plate heat exchanger, method for producing a plate heat exchanger and ceramic fiber composite material, in particular for a plate heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007110196A1 *

Also Published As

Publication number Publication date
DE102006013503A1 (en) 2008-01-24
US20090151917A1 (en) 2009-06-18
US8967238B2 (en) 2015-03-03
CN101405554A (en) 2009-04-08
CA2643757A1 (en) 2007-10-04
ATE535769T1 (en) 2011-12-15
CN101405554B (en) 2011-05-11
WO2007110196A1 (en) 2007-10-04
EP1996889B1 (en) 2011-11-30
JP2009530582A (en) 2009-08-27
ES2373992T3 (en) 2012-02-10
CA2643757C (en) 2011-09-27

Similar Documents

Publication Publication Date Title
EP1996889B1 (en) Plate heat exchanger, method for its production, and its use
EP3265739B1 (en) 3d printed heating surface element for a plate heat exchanger
EP1879674B1 (en) Micro-evaporator
EP1506054B1 (en) Micro-reactor and micro-channel heat exchanger
DE102008048014A1 (en) Component of a stack of ceramic plates
DE10326381B4 (en) turbulence generator
EP2843348B1 (en) Plate heat exchanger with heat exchanger blocks connected by metal foam
WO2011006613A2 (en) Heat exchange module and compact heat exchangers
EP1091185A2 (en) Plate-like heat exchanger
DE102005015433A1 (en) Mixer system, reactor and reactor system
EP2456531A1 (en) Separation apparatus for tubular flow-through apparatuses
DE102008019556A1 (en) Component useful as plate shaped heat exchanger or a reactor with two separate fluid circuits, comprises sequentially stacked plates having a channel system formed from fluid stream guiding channel
WO2007131475A1 (en) Heat exchange device for a heat exchange between media and a woven structure
EP1305561A1 (en) Heat transfer device
EP1856734A1 (en) Micro-heat exchanger
EP2647942B1 (en) Microfluidic component and procedure for its manufacture
DE2007033B2 (en) Plate heat exchanger made of polytetrafluoroethylene
EP1413844A2 (en) Temperature control channels
DE102004032609B4 (en) Filter and cooling element
DE102011113045A1 (en) Cross flow heat exchanger i.e. cross flow-micro heat exchanger, for rapid temperature-control of fluid stream in channel groups, has heat transfer regions arranged at intersections of channels of channel group
DE102017108079B4 (en) Carbon fiber reinforced plastic plate, method for its production and plate heat exchanger
WO2018210455A1 (en) Device for cooling, heating or transferring heat
DE2753189A1 (en) Plate type heat exchanger with flat channels - has turbulence generating woven wire sheets in flat channels
DE19730389C2 (en) heat exchangers
WO2017125490A1 (en) New type of heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008763

Country of ref document: DE

Effective date: 20120126

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2373992

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120210

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008763

Country of ref document: DE

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20140311

Year of fee payment: 8

Ref country code: CZ

Payment date: 20140310

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140211

Year of fee payment: 8

Ref country code: AT

Payment date: 20140226

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140312

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: PUE

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, US

Free format text: FORMER OWNER: ESK CERAMICS GMBH AND CO.KG, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150212 AND 20150219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007008763

Country of ref document: DE

Representative=s name: TER MEER STEINMEISTER & PARTNER PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008763

Country of ref document: DE

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, ST. PAUL, US

Free format text: FORMER OWNER: ESK CERAMICS GMBH & CO. KG, 87437 KEMPTEN, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20150629

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, US

Effective date: 20150810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 535769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170314

Year of fee payment: 11

Ref country code: FR

Payment date: 20170213

Year of fee payment: 11

Ref country code: CH

Payment date: 20170314

Year of fee payment: 11

Ref country code: NL

Payment date: 20170320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170320

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008763

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180322

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331