EP1989716B1 - Semi-conducteur ferromagnetique, son procede de fabrication, composants l'incorporant et utilisations de ce semi-conducteur s'y rapportant - Google Patents

Semi-conducteur ferromagnetique, son procede de fabrication, composants l'incorporant et utilisations de ce semi-conducteur s'y rapportant Download PDF

Info

Publication number
EP1989716B1
EP1989716B1 EP07730902.9A EP07730902A EP1989716B1 EP 1989716 B1 EP1989716 B1 EP 1989716B1 EP 07730902 A EP07730902 A EP 07730902A EP 1989716 B1 EP1989716 B1 EP 1989716B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
ferromagnetic
magnetic
germanium
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07730902.9A
Other languages
German (de)
English (en)
Other versions
EP1989716A1 (fr
Inventor
Matthieu Jamet
Yves Samson
André BARSKI
Thibaut Devillers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP1989716A1 publication Critical patent/EP1989716A1/fr
Application granted granted Critical
Publication of EP1989716B1 publication Critical patent/EP1989716B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/063Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/405Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted of IV type, e.g. Ge1-xMnx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]

Definitions

  • the present invention relates to a ferromagnetic group IV semiconductor, its manufacturing method, an electronic component forming a diode for the injection or the collection of spins in or from another semiconductor, respectively, or of sensitive element type. to a magnetic field, and uses of this semiconductor relating to this component.
  • the invention applies in particular to the injection or the collection of a carrier current polarized in spin in or from a semiconductor and to the measurement of magnetic fields, via such a ferromagnetic semiconductor.
  • DMS diluted magnetic semiconductors
  • These “DMS” typically consist of a semiconductor matrix of groups III-V, IV or II-VI in which are diluted magnetic impurities such as manganese, iron, chromium, cobalt or nickel.
  • the charge carriers consist of holes.
  • DMS concentration of manganese and the density of holes (naturally created by the presence of manganese or voluntarily introduced by co-doping) are sufficiently high in the "DMS", the latter can become ferromagnetic and the exchange coupling between manganese ions is induced by the holes.
  • the patent document US-B-6,946,301 discloses a thermal evaporation manufacturing method of a ferromagnetic semiconductor GeMn type, which has a Curie temperature of up to 250 K, for a manganese level of about 35%.
  • the patent document US-B-6,307,241 teaches, in its unique embodiment, to manufacture a type III-V ferromagnetic semiconductor (GaAs) of Curie temperature Tc greater than 400 K, by the technique of ion implantation of manganese ions (Mn + ) followed of an annealing.
  • GaAs type III-V ferromagnetic semiconductor
  • Mn + manganese ions
  • An object of the present invention is to propose a ferromagnetic semiconductor which makes it possible to remedy the aforementioned drawbacks, and this object is achieved in that the Applicant has unexpectedly discovered that if one forms, in a thin layer, formed of a group IV semiconductor comprising at least one magnetic element selected from the group consisting of manganese, iron, cobalt, nickel and chromium, a matrix poor in this or these magnetic element (s) inside which is formed a discontinuous phase rich in this or these magnetic element (s) so as to generate a lateral modulation of the semiconductor composition in the plane of the thin layer, then a ferromagnetic semiconductor having a Curie temperature equal to or greater than 350 is obtained K and, advantageously, equal to or greater than 400 K.
  • this high-temperature Curie ferromagnetic phase originates from the zones enriched with the said magnetic element (s) introduced.
  • said ferromagnetic semiconductor also has an extraordinary Hall effect ("EHE" abbreviated) at a temperature greater than 300 K and can reach at least 400 K.
  • EHE extraordinary Hall effect
  • manganese is used as said or at least one of said magnetic element (s), for obtaining Curie temperatures - and temperatures where said effect "EHE" - maximum.
  • said ferromagnetic semiconductor according to the invention is based on at least one other element selected from the group consisting of germanium, silicon and their alloys.
  • said ferromagnetic semiconductor according to the invention is based on germanium and manganese, thus advantageously satisfying the formula GeMn or, alternatively, a formula of the GeMnX type, where X is a metal or an alloy of a metal which may be, for example, iron, cobalt, nickel or chromium.
  • said manganese-rich discontinuous phase does not have a composition similar to that of the known compounds of the phase diagram of the GeMn binary alloy, ie Ge 3 Mn 5 or Ge 8 Mn 11 .
  • said ferromagnetic semiconductor according to the invention is completely devoid of a metal phase of formula Ge 3 Mn 5 , which is known not to provide semiconductor properties.
  • the atomic fraction of this or these magnetic element (s) in said discontinuous phase is between 5% and 50%.
  • the atomic fraction of this or these magnetic element (s), such as manganese, in said discontinuous phase and in said matrix is between 20% and 40% and between 1% and 10%, respectively.
  • said discontinuous phase comprises an irregular distribution of volumic zones rich in this or these magnetic element (s) which are separated from each other by said matrix.
  • Said irregular distribution does not exclude, under certain growth conditions presented in the invention, the appearance of a distance and / or a characteristic organization between the volumic zones rich in this or these magnetic element (s) ).
  • said volume zones are respectively formed by columns substantially perpendicular to the surface of said thin layer, which preferably have a mean diameter of between 1 nm and 10 nm, for a thickness of said thin layer, for example between 60 nm and 100 nm.
  • said columns which are formed by being substantially parallel to one another in the mass of said semiconductor, are separated from each other by an average distance of between 5 nm and 15 nm.
  • a manufacturing method according to the invention of said ferromagnetic semiconductor consists of a molecular beam epitaxy comprising a simultaneous deposition of at least one magnetic element selected from the group consisting of manganese, iron, cobalt, nickel and nickel. chromium and at least one other element selected from group IVA of the periodic table, on a substrate whose temperature during crystal growth is between 80 ° C. and 200 ° C. (preferably between 100 ° C. and 150 ° C. ), for obtaining a thin layer of said group IV semiconductor.
  • this growth temperature is much lower than the growth temperatures of between 550 ° C. and 600 ° C., which are commonly used in the epitaxy of Group IV semiconductor materials, and that this low growth temperature according to US Pat.
  • the invention makes it possible to stabilize the semiconductor metastable phases obtained which are rich in magnetic element (s) and which are ferromagnetic.
  • said deposition of said elements is carried out using an average ratio [rate of deposition of the magnetic element (s) / deposition rate of all of said elements] which is between 5% and 10%.
  • the essential parameters in this method according to the invention are in particular the temperature of the substrate during the deposition, the respective flows of said magnetic element and said element of group IVA. during the deposition, as well as the thickness of the thin layer of the semiconductor obtained. It will be understood that these parameters can be modified to a certain extent, while leading to a ferromagnetic semiconductor according to the invention having a Curie temperature of at least 350 K and advantageously at least 400 K, thanks to a structure in columns as mentioned above but whose column size, the concentration of magnetic element (s) in them and their density in the thin layer (ie the spacing between columns) may be different from those indicated above.
  • said at least one of said magnetic element (s) is manganese.
  • the said other element (s) deposited simultaneously are germanium, silicon or one of their alloys.
  • said magnetic element and said other element deposited simultaneously are respectively manganese and germanium, for obtaining a semiconductor GeMn or SiMn or SiGeMn, or, alternatively, of type GeMnX, SiMnX or SiGeMnX where X is a metal or an alloy of a metal which may be, for example, iron, cobalt, nickel or chromium.
  • said method according to the invention further comprises a deposit on said substrate of a "buffer" germanium layer, prior to said simultaneous deposition of germanium and manganese to obtain said thin layer, so as to obtain a surface as smooth as possible at the atomic scale for two-dimensional growth of the germanium-manganese film.
  • said substrate used to implement this process is based on a material selected from the group consisting of germanium, silicon and alloys thereof.
  • An electronic component according to the invention may advantageously be of the diode type for the injection or the collection of spins in or from another semiconductor, respectively, or of element type sensitive to a magnetic field, and this component advantageously comprises a ferromagnetic semiconductor according to the invention as defined above.
  • said first ferromagnetic semiconductor is as defined above in relation to said columns, so that said first and second thin layers applied to one another form a Esaki diode tunneling, wherein said columns and said matrix of said first layer respectively form passing junctions and junctions blocking with said second layer, due to the difference in concentrations of manganese and therefore p-doping between the two areas.
  • said component is sensitive to a magnetic field and it may be a magnetic field sensor, which comprises a thin film formed of a ferromagnetic semiconductor according to the invention such that defined above, for the detection or measurement of said field by measuring a magnetoresistance effect vis-à-vis a magnetic field applied perpendicular to the thin layer or in the plane thereof.
  • this component makes it possible to overcome the phenomenon of "super-paramagnetism” which characterizes dilute systems based on nanoparticles, and that the magnetoresistance measured according to the invention remains high even at ambient temperature, unlike these diluted systems, which gives this component according to the invention excellent capacity for measuring magnetic fields.
  • a first use according to the invention of a ferromagnetic semiconductor as defined above consists in injecting or collecting, by contact, a current of polarized carriers in spins in or from another semiconductor based on silicon, germanium or an alloy thereof, at a temperature equal to or greater than 350 K and which may be equal to or greater than 400 K.
  • a second use according to the invention of a ferromagnetic semiconductor as defined above consists in measuring a magnetic field by measuring a magnetoresistance effect in said semiconductor at a temperature equal to or greater than 350 K and may be equal to or greater than 400 K.
  • said ferromagnetic semiconductor according to the invention can also be used as a magnetic element in spin valve type devices, or as a magnetized region source of a magnetic field for applications in high-speed magnetic recording. density.
  • GeMn semiconductors each incorporating said discontinuous phase which are in the form of a thin layer in which lateral modulation of the manganese composition has been observed, have been repeatedly obtained.
  • this lateral modulation takes the form of columns which are substantially perpendicular to the plane of the thin layer and which each consist of an alloy richer in manganese than the matrix which surrounds them.
  • each thin layer according to the invention which has a thickness of 80 nm, comprises in average 6% manganese atomic fraction.
  • the manganese-rich columns they each have an atomic fraction of about 34% manganese, for an average column diameter substantially equal to 3 nm.
  • Each GeMn film obtained had a finite magnetization of 90 kA / m at 400 K as measured by said "SQUID” technique.
  • the Curie temperature of each film was therefore clearly greater than 400 K.
  • each GeMn film exhibited an extraordinary Hall effect "EHE” pronounced (the Hall angle at saturation reaches 37 °) up to a temperature of 300 K.
  • This "EHE” is manifested by a known manner by a non-linearity of the Hall resistivity measured at low magnetic field strength ( ⁇ 2 Tesla).
  • the observation of such an extraordinary Hall effect constitutes a proof of the spin polarization of the carriers involved in the electrical transport, within each GeMn semiconductor film.
  • Is illustrated at figure 3 a particularly advantageous use of these very high Curie temperature semiconductor films of the GeMn type having a lateral modulation of the Mn composition, as an injector or collector of spin-polarized carriers in or from another semiconductor, for example in germanium or silicon to form a diode-type electronic component C.
  • the component C comprises a first thin layer 1 formed of the semiconductor GeMn obtained according to the aforementioned method, a second thin layer 2 formed by the said other semiconductor and in contact with which the first layer 1 is applied, and the current source carrier (not shown) so that the ferromagnetic and Mn-rich phase of the first thin layer 1 emits or receives this spin-polarized current to or from the second thin layer 2, respectively.
  • the resulting tunnel diode is transparent at each manganese-enriched column 3 by forming a pass-through junction (because each column 3 is strongly p-doped), and will be insulating at the level of the manganese depleted matrix 4, forming a blocking junction 6 (because the matrix 4 is weakly doped p).
  • the carrier current comes mainly from the columns 3, which is sought to obtain the injection of a stream of spin polarized carriers to the lower electrode 2 of the component C, preferably selected from germanium, silicon or one of their alloys, up to a temperature of 400 K. It is the same in the case where the current comes from the lower electrode 2: the collection of spin polarized carriers is very predominantly in columns 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Hall/Mr Elements (AREA)

Description

  • La présente invention concerne un semi-conducteur ferromagnétique du groupe IV, son procédé de fabrication, un composant électronique formant une diode pour l'injection ou la collecte de spins dans ou depuis un autre semi-conducteur, respectivement, ou bien de type élément sensible à un champ magnétique, et des utilisations de ce semi-conducteur relatives à ce composant. L'invention s'applique notamment à l'injection ou la collecte d'un courant de porteurs polarisé en spin dans ou depuis un semi-conducteur et à la mesure de champs magnétiques, via un tel semi-conducteur ferromagnétique.
  • L'injection dans un semi-conducteur d'un courant de porteurs polarisé en spin, qui se caractérise par un excès de l'une des deux populations de porteurs présentes (par exemple celle de spin parallèle ou « spin up »), a récemment fait l'objet de plusieurs publications. On peut par exemple citer, à titre exemplatif, les composants électroniques décrits dans l'article Datta et Das, Applied Physics Letters, 56, 665, 1990.
  • La mise en oeuvre de cette injection d'un courant polarisé en spin présente un grand intérêt en microélectronique, mais son développement se heurte au manque de matériaux appropriés pour constituer l'électrode d'injection du courant.
  • En effet, si les métaux ferromagnétiques usuels, tels que le fer et nombre de ses alliages, présentent une part des qualités requises comme une polarisation en spin élevée et un comportement ferromagnétique à température ambiante, leur résistance électrique est de plusieurs ordres de grandeur différente de celle des semi-conducteurs, ce qui génère de grandes difficultés de mise en oeuvre et impose d'effectuer l'injection de courant par effet tunnel. Cela a pour inconvénient de nécessiter la croissance d'une hétéro-structure hybride malaisée à réaliser, du type semi-conducteur/ barrière à effet tunnel/ métal ferromagnétique.
  • A l'opposé, il existe des semi-conducteurs dits magnétiques dilués (en abrégé « DMS » en anglais, pour « Diluted Magnetic Semiconductors ») qui ne présentent pas cet inconvénient de posséder une résistivité très différente de celle des semi-conducteurs ordinaires. Ces « DMS » sont typiquement constitués d'une matrice semi-conductrice des groupes III-V, IV ou II-VI dans laquelle sont diluées des impuretés magnétiques comme le manganèse, le fer, le chrome, le cobalt ou le nickel.
  • Dans le cas d'une dilution au manganèse, qui est un accepteur dans les semi-conducteurs III-V ou IV, les porteurs de charge sont constitués de trous. Lorsque la concentration en manganèse et la densité de trous (naturellement créés par la présence du manganèse ou volontairement introduits par co-dopage) sont suffisamment élevées dans le « DMS », ce dernier peut devenir ferromagnétique et le couplage d'échange entre ions manganèse est induit par les trous.
  • Un inconvénient majeur de ces « DMS » est qu'ils présentent tous à ce jour une température de Curie Tc (température jusqu'à laquelle le semi-conducteur présente des propriétés ferromagnétiques) inférieure ou égale à la température ambiante (typiquement ≤ 300 K environ). On pourra par exemple se référer à l'article K. W. Edmonds et al., Phys. Rev. Lett. 92, 037201, 2004, qui décrit un semi-conducteur de formule GaMnAs présentant une température de Curie d'environ 159 K seulement, et à l'article H. Saito et al., Phys. Rev. Lett. 90, 207202, 2003, qui décrit des « DMS » répondant à la formule Zn1-xCrxTe et présentant une température de Curie sensiblement égale à 300 K (± 10 K), lorsque x = 0,20.
  • Un autre inconvénient de ces « DMS » réside dans la formation indésirable mais fréquente de petits précipités métalliques ferromagnétiques au sein de la matrice semi-conductrice, ce qui ne plaide pas en faveur de propriétés réellement ferromagnétiques pour ces « DMS » et rend l'étape de croissance des cristaux très difficile à réaliser.
  • On notera en outre que la mise en oeuvre de ces matériaux à base de gallium ou de tellure est très difficile à concevoir sur des substrats en silicium, matériau de base de l'industrie microélectronique.
  • Le document de Brevet US-B-6 946 301 divulgue un procédé de fabrication par évaporation thermique d'un semi-conducteur ferromagnétique de type GeMn, qui présente une température de Curie pouvant atteindre 250 K, pour un taux de manganèse d'environ 35 %.
  • Le document de Brevet US-B-6 307 241 enseigne, dans son unique exemple de réalisation, de fabriquer un semi-conducteur ferromagnétique de type III-V (GaAs) de température de Curie Tc supérieure à 400 K, par la technique d'implantation ionique d'ions manganèse (Mn+) suivie d'un recuit. Comme cela est connu de l'homme du métier (voir notamment l'article Magnetooptical Study of Mn ions Implanted in Ge, Franco D'Orazio et al., IEEE Transactions on Magnetics, Vol. 38, No. 5, September 2002), on notera que cette technique d'implantation n'est pas adaptée à la fabrication de semi-conducteurs ferromagnétiques du groupe IV (typiquement à base de germanium) de Tc ≥ 350 K, étant précisé que la phase ainsi obtenue, de type Ge3Mn5, présente une Tc n'excédant jamais 300 K.
  • Le document US-A-3 850 706 n'enseigne pas non plus la mesure de températures de Curie supérieures à 300 K en relation avec des semi-conducteurs ferromagnétiques du groupe IV, mais uniquement avec des semi-conducteurs de formule Mn1-xMxGaGe (où M peut être Fe, Ni, Co, Cu, Cr, V, Ti) et contenant ainsi un élément du groupe III (Ga).
  • Un inconvénient majeur de ces semi-conducteurs magnétiques connus, de type dilués ou bien ferromagnétiques, réside dans leur température de Curie relativement basse, qui est généralement limitée à environ 300 K. De plus, lorsque la température de Curie mesurée est proche de 300 K, il est difficile d'exclure la présence de la phase métallique Ge3Mn5, dont la température de Curie est précisément proche de 300 K.
  • Un but de la présente invention est de proposer un semi-conducteur ferromagnétique qui permette de remédier aux inconvénients précités, et ce but est atteint en ce que la Demanderesse a découvert d'une manière inattendue que si l'on forme, dans une couche mince formée d'un semi-conducteur du groupe IV comprenant au moins un élément magnétique choisi dans le groupe constitué par le manganèse, le fer, le cobalt, le nickel et le chrome, une matrice pauvre en cet ou ces élément(s) magnétique(s) à l'intérieur de laquelle est formée une phase discontinue riche en cet ou ces élément(s) magnétique(s) de sorte à générer une modulation latérale de la composition du semi-conducteur dans le plan de la couche mince, alors on obtient un semi-conducteur ferromagnétique présentant une température de Curie égale ou supérieure à 350 K et, avantageusement, égale ou supérieure à 400 K.
  • On notera que cette phase ferromagnétique à haute température de Curie provient des zones enrichies en ledit ou lesdits élément(s) magnétique(s) introduit(s).
  • A la connaissance de la Demanderesse, ces valeurs très élevées de températures de Curie, mesurées via un magnétomètre de type à « SQUID » (i.e. « Superconducting Quantum Interference Device », ou détecteur d'énergie quantique à supraconducteurs), n'ont jamais été atteintes à ce jour pour des semi-conducteurs ferromagnétiques du groupe IV.
  • Selon une autre caractéristique de l'invention, ledit semi-conducteur ferromagnétique présente également un effet Hall extraordinaire (« EHE » en abrégé) à une température supérieure à 300 K et pouvant atteindre au moins 400 K.
  • Toujours à la connaissance de la Demanderesse, ces valeurs très élevées de températures où se manifeste cet effet « EHE », températures mesurées via un banc de magnéto-transport équipé d'un cryostat et d'une bobine supraconductrice, n'ont jamais été atteintes à ce jour pour des semi-conducteurs ferromagnétiques du groupe IV.
  • De préférence, on utilise le manganèse à titre dudit ou de l'un au moins desdits élément(s) magnétique(s), pour l'obtention de températures de Curie - et de températures ou se produit ledit effet « EHE » - maximales.
  • Egalement à titre préférentiel, ledit semi-conducteur ferromagnétique selon l'invention est à base d'au moins un autre élément choisi dans le groupe constitué par le germanium, le silicium et leurs alliages.
  • Encore plus préférentiellement, ledit semi-conducteur ferromagnétique selon l'invention est à base de germanium et de manganèse, répondant ainsi avantageusement à la formule GeMn ou, en variante, à une formule de type GeMnX, où X est un métal ou un alliage d'un métal pouvant être par exemple le fer, le cobalt le nickel ou le chrome.
  • Dans le cas préférentiel d'un semi-conducteur GeMn, on notera que ladite phase discontinue riche en manganèse ne présente pas une composition similaire à celle des composés connus du diagramme de phase de l'alliage binaire GeMn, i.e. Ge3Mn5 ou Ge8Mn11. Ainsi, ledit semi-conducteur ferromagnétique selon l'invention est totalement dépourvu de phase métallique de formule Ge3Mn5, laquelle est connue pour ne pas procurer des propriétés semi-conductrices.
  • Avantageusement, la fraction atomique de cet ou ces élément(s) magnétique(s) dans ladite phase discontinue est comprise entre 5 % et 50 %.
  • Encore plus avantageusement, la fraction atomique de cet ou ces élément(s) magnétique(s), tel que le manganèse, dans ladite phase discontinue et dans ladite matrice est comprise entre 20 % et 40 % et entre 1 % et 10 %, respectivement.
  • Selon une autre caractéristique de l'invention, ladite phase discontinue comprend une répartition irrégulière de zones volumiques riches en cet ou ces élément(s) magnétique(s) qui sont séparées entre elles par ladite matrice. Ladite répartition irrégulière n'exclut pas, dans certaines conditions de croissance présentées dans l'invention, l'apparition d'une distance ou/et d'une organisation caractéristiques entre les zones volumiques riches en cet ou ces élément(s) magnétique(s).
  • Avantageusement, lesdites zones volumiques sont respectivement formées par des colonnes sensiblement perpendiculaires à la surface de ladite couche mince, qui présentent de préférence un diamètre moyen compris entre 1 nm et 10 nm, pour une épaisseur de ladite couche mince par exemple comprise entre 60 nm et 100 nm.
  • Encore plus avantageusement, lesdites colonnes, qui sont formées en étant sensiblement parallèles entre elles dans la masse dudit semi-conducteur, sont séparées entre elles d'une distance moyenne comprise entre 5 nm et 15 nm.
  • Un procédé de fabrication selon l'invention dudit semi-conducteur ferromagnétique consiste en une épitaxie par jets moléculaires comprenant un dépôt simultané d'au moins un élément magnétique choisi dans le groupe constitué par le manganèse, le fer, le cobalt, le nickel et le chrome et d'au moins un autre élément choisi dans le groupe IVA de la classification périodique, sur un substrat dont la température pendant la croissance des cristaux est comprise entre 80° C et 200° C (préférentiellement entre 100° C et 150° C), pour l'obtention d'une couche mince dudit semi-conducteur du groupe IV.
  • On notera que cette température de croissance est très inférieure aux températures de croissance comprises entre 550° C et 600° C qui sont communément utilisées dans l'épitaxie de matériaux semi-conducteurs du groupe IV, et que cette basse température de croissance selon l'invention permet de stabiliser les phases métastables semi-conductrices obtenues qui sont riches en élément(s) magnétique(s) et qui sont ferromagnétiques.
  • Avantageusement, on réalise ledit dépôt desdits éléments en utilisant un rapport moyen [vitesse de dépôt du ou des élément(s) magnétique(s) / vitesses de dépôt de l'ensemble desdits éléments] qui est compris entre 5 % et 10 %.
  • On notera que les paramètres essentiels dans ce procédé selon l'invention sont notamment la température du substrat pendant le dépôt, les flux respectifs dudit élément magnétique et dudit élément du groupe IVA pendant le dépôt, ainsi que l'épaisseur de la couche mince du semi-conducteur obtenu. On comprendra que ces paramètres peuvent être modifiés dans une certaine mesure, tout en conduisant à un semi-conducteur ferromagnétique selon l'invention présentant une température du Curie d'au moins 350 K et avantageusement d'au moins 400 K, grâce à une structure en colonnes telle que susmentionnée mais dont la taille des colonnes, la concentration en élément(s) magnétique(s) dans celles-ci et leur densité dans la couche mince (i.e. l'espacement entre colonnes) peuvent être différentes de celles indiquées précédemment.
  • De préférence, ledit ou l'un au moins desdits élément(s) magnétique(s) est le manganèse.
  • Egalement à titre préférentiel, le(s)dit(s) autre(s) élément(s) déposés simultanément sont le germanium, le silicium ou un de leurs alliages.
  • Encore plus préférentiellement, ledit élément magnétique et ledit autre élément déposés simultanément sont respectivement le manganèse et le germanium, pour l'obtention d'un semi-conducteur GeMn ou SiMn voire SiGeMn, ou bien, en variante, de type GeMnX, SiMnX voire SiGeMnX où X est un métal ou un alliage d'un métal pouvant être par exemple le fer, le cobalt le nickel ou le chrome.
  • Avantageusement, ledit procédé selon l'invention comprend en outre un dépôt sur ledit substrat d'une couche « tampon » de germanium, antérieurement audit dépôt simultané de germanium et de manganèse pour l'obtention de ladite couche mince, de sorte à obtenir une surface la plus lisse possible à l'échelle atomique pour une croissance bidimensionnelle du film de germanium-manganèse.
  • De préférence, ledit substrat utilisé pour mettre en oeuvre ce procédé est à base d'un matériau choisi dans le groupe constitué par le germanium, le silicium et les alliages de ces derniers.
  • Un composant électronique selon l'invention peut être avantageusement de type diode pour l'injection ou la collecte de spins dans ou depuis un autre semi-conducteur, respectivement, ou bien de type élément sensible à un champ magnétique, et ce composant comporte avantageusement un semi-conducteur ferromagnétique selon l'invention tel que défini ci-dessus.
  • Selon un premier mode de réalisation de l'invention, il s'agit d'un composant de type diode pour l'injection ou la collecte de spins dans ou depuis un autre semi-conducteur par exemple du groupe IV, comportant :
    • une première couche mince formée d'un premier semi-conducteur ferromagnétique selon l'invention tel que défini ci-dessus,
    • une seconde couche mince formée d'un second semi-conducteur à base de silicium, de germanium ou d'un de leurs alliages, au contact de laquelle est appliquée ladite première couche mince, et
    • une source de courant de porteurs couplée à ladite première couche pour, dans un premier cas, en extraire sélectivement un courant polarisé en spin et pour l'injecter dans ladite seconde couche ou bien, dans un second cas, pour extraire sélectivement un courant de porteurs polarisés en spin depuis ladite seconde couche et l'injecter dans ladite première couche,
    pour que ladite phase ferromagnétique discontinue et riche en élément(s) magnétique(s) dudit premier semi-conducteur émette ou reçoive ce courant polarisé en spin vers ou depuis ledit second semi-conducteur, respectivement selon lesdits premier ou second cas.
  • Plus précisément selon ce premier mode de l'invention :
    • ledit semi-conducteur présente ladite matrice à l'intérieur de laquelle est formée ladite phase ferromagnétique discontinue, de sorte à générer la modulation latérale précitée,
    • la fraction atomique de cet ou ces élément(s) magnétique(s) dans ladite phase est avantageusement comprise entre 5 % et 50 % et de préférence entre 20 % et 40 %, la fraction atomique de cet ou ces élément(s) magnétique(s) dans ladite matrice étant alors avantageusement comprise dans ce dernier cas entre 1 et 10 %,
    • ladite phase comprend une répartition irrégulière de zones volumiques riches en cet ou ces élément(s) magnétique(s) qui sont séparées entre elles par ladite matrice et qui sont respectivement formées par des colonnes sensiblement perpendiculaires à la surface de la couche mince et qui sont telles que définies ci-dessus.
  • Selon une autre caractéristique de ce premier mode de l'invention, ledit premier semi-conducteur ferromagnétique est tel que défini ci-dessus en relation avec lesdites colonnes, pour que lesdites première et seconde couche minces appliquées l'une sur l'autre forment une diode d'Esaki à effet tunnel, dans laquelle lesdites colonnes et ladite matrice de ladite première couche forment respectivement des jonctions passantes et des jonctions bloquantes avec ladite seconde couche, du fait de la différence de concentrations en manganèse et donc de dopage p entre les deux zones.
  • Selon un second mode de réalisation de l'invention, ledit composant est sensible à un champ magnétique et il peut s'agir un capteur de champ magnétique, qui comporte une couche mince formée d'un semi-conducteur ferromagnétique selon l'invention tel que défini ci-dessus, pour la détection ou la mesure dudit champ par mesure d'un effet de magnétorésistance vis-à-vis d'un champ magnétique appliqué perpendiculairement à la couche mince ou dans le plan de celle-ci.
  • On notera que ce composant permet de s'affranchir du phénomène de « super-paramagnétisme » qui caractérise les systèmes dilués à base de nanoparticules, et que la magnétorésistance mesurée selon l'invention reste élevée même à température ambiante contrairement à ces systèmes dilués, ce qui confère à ce composant selon l'invention d'excellentes capacités pour mesurer les champs magnétiques.
  • Une première utilisation selon l'invention d'un semi-conducteur ferromagnétique tel que défini ci-dessus consiste à injecter ou collecter par contact un courant de porteurs polarisés en spins dans ou depuis un autre semi-conducteur à base de silicium, de germanium ou d'un alliage de ces derniers, à une température égale ou supérieure à 350 K et pouvant être égale ou supérieure à 400 K.
  • Une seconde utilisation selon l'invention d'un semi-conducteur ferromagnétique tel que défini ci-dessus consiste à mesurer un champ magnétique par mesure d'un effet de magnétorésistance dans ledit semi-conducteur, à une température égale ou supérieure à 350 K et pouvant être égale ou supérieure à 400 K.
  • On notera que ledit semi-conducteur ferromagnétique selon l'invention peut également être utilisé comme élément magnétique dans des dispositifs de type vanne de spin, ou bien comme une région aimantée source d'un champ magnétique pour des applications dans l'enregistrement magnétique à haute densité.
  • Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif, ladite description étant réalisée en relation avec les dessins joints, parmi lesquels :
    • la figure 1 est un cliché obtenu au microscope d'un semi-conducteur ferromagnétique selon l'invention observé en coupe transversale latérale,
    • la figure 2 est un cliché obtenu au microscope du semi-conducteur ferromagnétique de la figure 1 observé en vue de dessus, et
    • la figure 3 est une vue schématique en coupe transversale latérale d'un composant électronique de type diode pour l'injection ou la collecte de spins dans ou depuis un autre semi-conducteur par exemple du groupe IV, selon un premier mode de mise en oeuvre d'un semi-conducteur ferromagnétique selon l'invention.
  • On va décrire ci-après un exemple de fabrication de semi-conducteurs ferromagnétiques selon l'invention de type GeMn, dans chacun desquels la phase ferromagnétique discontinue a été obtenue par Epitaxie par Jets Moléculaires (« EJM » en abrégé) à basse température. Dans ce mode de réalisation, on a opéré sous « ultra-vide », et l'on a fait évaporer le germanium et le manganèse sur un substrat de germanium ou de silicium monocristallin, à partir de sources solides correspondant respectivement à ces deux éléments métalliques.
  • On a suivi la procédure de croissance suivante :
    1. a) désoxydation du substrat, selon une procédure standard bien connue de l'homme de l'art,
    2. b) dépôt sur ce substrat désoxydé d'une couche « tampon » de germanium d'épaisseur comprise entre 20 nm et 50 nm à une température du substrat égale à 180° C, de sorte à obtenir une surface la plus lisse possible à l'échelle atomique pour la croissance bidimensionnelle du germanium-manganèse, et
    3. c) dépôt d'une couche de GeMn d'épaisseur égale à 80 nm, à une température de 100° C pour le substrat ainsi traité.
  • On a réalisé ce dépôt de GeMn avec des pressions partielles de germanium et manganèse dans le flux au niveau du substrat respectivement égales à 1,8 10-8 Torr (soit 2,4 µPa) et à 2,5 10-9 Torr (soit 0,3 µPa). On a ainsi obtenu une vitesse de dépôt de l'ordre de 0,02 nm/ s.
  • Dans ces conditions de croissance, on a obtenu à plusieurs reprises des semi-conducteurs GeMn incorporant chacun ladite phase discontinue, qui se présentent sous la forme d'une couche mince dans laquelle on a observé une modulation latérale de la composition en manganèse.
  • Comme cela est illustré dans la vue en coupe de la figure 1, cette modulation latérale prend la forme de colonnes qui sont sensiblement perpendiculaires au plan de la couche mince et qui sont chacune constituées d'un alliage plus riche en manganèse que la matrice qui les entoure.
  • Des mesures ont établi que chaque couche mince selon l'invention ainsi obtenue, qui présente une épaisseur de 80 nm, comprend en moyenne 6 % de manganèse en fraction atomique. Quant aux colonnes riches en manganèse, elles présentent chacune une fraction atomique d'environ 34 % en manganèse, pour un diamètre moyen de colonne sensiblement égal à 3 nm.
  • Comme cela est illustré dans la vue de dessus de la figure 2, on a pu vérifier que ces colonnes sont réparties de façon irrégulière au sein de la couche mince de chaque semi-conducteur GeMn obtenu, et qu'elles sont espacées entre elles d'une distance moyenne de l'ordre de 10 nm.
  • Par les méthodes bien connues de l'homme de l'art, on a établi le ferromagnétisme de chaque couche mince ainsi obtenue et son attribution à une phase discontinue ferromagnétique et semi-conductrice, et non à des inclusions ferromagnétiques sous forme de précipités comme dans le cas des semi-conducteurs magnétique dilués.
  • A cet effet, on a utilisé en combinaison, pour les semi-conducteurs GeMn sous forme de films ainsi obtenus :
    • des mesures de l'aimantation en fonction de la température, à l'aide d'un magnétomètre dit à « SQUID », pour la mesure de la température de Curie de ces semi-conducteurs GeMn, et
    • des mesures de transport électrique au moyen d'un banc de magnéto-transport équipé d'un cryostat et d'une bobine supraconductrice avec des intensités de champ magnétiques allant de 0 à 9 Tesla, pour mettre en évidence un effet Hall Extraordinaire « EHE » dans ces films semi-conducteurs GeMn.
  • On a obtenu les résultats suivants pour ces films de GeMn.
  • Chaque film de GeMn obtenu présentait une aimantation finie de 90 kA/m à 400 K, mesurée par ladite technique « SQUID ». La température de Curie de chaque film était donc clairement supérieure à 400 K.
  • De plus, on a vérifié que chaque film de GeMn présentait un effet Hall extraordinaire « EHE » prononcé (l'angle de Hall à saturation atteint 37°) jusqu'à une température de 300 K. Cet « EHE » se manifeste d'une manière connue par une non-linéarité de la résistivité de Hall mesurée à faible intensité de champ magnétique (< 2 Tesla). L'observation d'un tel effet Hall extraordinaire constitue une preuve de la polarisation en spin des porteurs impliqués dans le transport électrique, au sein de chaque film semi-conducteur GeMn.
  • Est illustrée à la figure 3 une utilisation particulièrement avantageuse de ces films semi-conducteurs de type GeMn à température de Curie très élevée présentant une modulation latérale de la composition en Mn, comme injecteur ou collecteur de porteurs polarisés en spin dans ou depuis un autre semi-conducteur par exemple en germanium ou en silicium pour former un composant électronique C de type diode.
  • Le composant C comporte une première couche mince 1 formée du semi-conducteur GeMn obtenu selon le procédé précité, une seconde couche mince 2 formée par ledit autre semi-conducteur et au contact de laquelle est appliquée la première couche 1, et la source de courant de porteurs (non illustrée), pour que la phase ferromagnétique et riche en Mn de la première couche mince 1 émette ou reçoive ce courant polarisé en spin vers ou depuis la seconde couche mince 2, respectivement.
  • En l'absence de dopage complémentaire à celui introduit par le manganèse, le manganèse constituant un double accepteur dans le germanium, les porteurs sont nécessairement des trous. Pour réaliser l'injection ou la collecte sélective de trous polarisés en spin dans la seconde couche mince 2 (fortement dopée n) à partir des colonnes 3 ferromagnétiques formant ladite phase, on a utilisé le principe d'une diode à effet tunnel d'Esaki, qui utilise le fait que la transparence d'une diode tunnel p-n augmente avec le dopage des couches.
  • Par conséquent, la diode tunnel obtenue est transparente au niveau de chaque colonne 3 enrichie en manganèse en formant une jonction passante 5 (car chaque colonne 3 est fortement dopée p), et sera isolante au niveau de la matrice 4 appauvrie en manganèse en formant une jonction bloquante 6 (car la matrice 4 est faiblement dopée p).
  • De cette façon, le courant de porteurs provient très majoritairement des colonnes 3, ce qui est recherché pour obtenir l'injection d'un courant de porteurs polarisés en spin vers l'électrode inférieure 2 du composant C, avantageusement choisie à base de germanium, de silicium ou d'un de leurs alliages, jusqu'à une température de 400 K. Il en est de même dans le cas où le courant provient de l'électrode inférieure 2 : la collecte de porteurs polarisés en spin se fait très majoritairement dans les colonnes 3.
  • On a par ailleurs cherché à utiliser les films semi-conducteurs GeMn obtenus par le procédé décrit ci-dessus comme des capteurs de champ de type magnétorésistifs.
  • Dans chaque film de GeMn de 80 nm d'épaisseur ainsi obtenu, on a mesuré de forts effets de magnétorésistance pour un champ appliqué perpendiculairement à la couche mince et pour un transport planaire, cette couche mince ayant été disposée au contact d'électrodes en or.
  • On a en effet mesuré, à température ambiante, une magnétorésistance positive de + 50 %, pour une intensité de champ magnétique variant de 0 à 3 Tesla (cette magnétorésistance devient linéaire en champ magnétique et augmente fortement jusqu'à quelques milliers de %, lorsqu'on réduit la température).

Claims (22)

  1. Semi-conducteur ferromagnétique (1) du groupe IV comprenant au moins un élément magnétique choisi dans le groupe constitué par le manganèse, le fer, le cobalt, le nickel et le chrome, ledit semi-conducteur ferromagnétique formant une couche mince et présentant une température de Curie égale ou supérieure à 350 K, de préférence égale ou supérieure à 400 K, et caractérisé en ce que ledit semi-conducteur présente une matrice (4) pauvre en cet ou ces éléments(s) magnétique(s), à l'intérieur de laquelle est formée une phase discontinue (3) qui est riche en cet ou ces élément(s) magnétique et qui est ferromagnétique jusqu'à ladite température de Curie, de sorte à générer une modulation latérale de la composition dudit semi-conducteur dans le plan de ladite couche mince.
  2. Semi-conducteur ferromagnétique (1) selon la revendication 1, caractérisé en ce qu'il présente un effet Hall extraordinaire (EHE) à une température supérieure à 300 K.
  3. Semi-conducteur ferromagnétique (1) selon une des revendications précédentes, caractérisé en ce que ledit ou l'un au moins desdits élément(s) magnétique(s) est le manganèse.
  4. Semi-conducteur ferromagnétique (1) selon une des revendications précédentes, caractérisé en ce qu'il est à base d'au moins un autre élément choisi dans le groupe constitué par le germanium, le silicium et leurs alliages.
  5. Semi-conducteur ferromagnétique (1) selon les revendications 3 et 4, caractérisé en ce qu'il est à base de germanium et de manganèse.
  6. Semi-conducteur ferromagnétique (1) selon la revendication 5, caractérisé en ce qu'il est totalement dépourvu de phase métallique de formule Ge3Mn5.
  7. Semi-conducteur ferromagnétique (1) selon la revendication 1, caractérisé en ce que la fraction atomique de cet ou ces élément(s) magnétique(s) dans ladite phase (3) est comprise entre 5 % et 50 %.
  8. Semi-conducteur ferromagnétique (1) selon les revendications 5 et 7, caractérisé en ce que la fraction atomique de cet ou ces élément(s) magnétique(s) dans ladite phase (3) et dans ladite matrice (4) est comprise entre 20 % et 40 % et entre 1 % et 10 %, respectivement.
  9. Semi-conducteur ferromagnétique (1) selon revendications 1 et 9, caractérisé en ce que ladite phase (3) comprend une répartition irrégulière de zones volumiques riches en cet ou ces élément(s) magnétique(s) qui sont séparées entre elles par ladite matrice (4).
  10. Semi-conducteur ferromagnétique (1) selon la revendication 9, caractérisé en ce que lesdites zones volumiques sont respectivement formées par des colonnes (3) sensiblement perpendiculaires à la surface de ladite couche mince, lesdites colonnes (3) présentant de préférence un diamètre moyen compris entre 1 nm et 10 nm, pour une épaisseur de ladite couche mince comprise entre 60 nm et 100 nm, lesdites colonnes (3) étant séparées entre elles d'une distance moyenne de préférence comprise entre 5 nm et 15 nm.
  11. Procédé de fabrication d'un semi-conducteur ferromagnétique (1) selon une des revendications précédentes, caractérisé en ce qu'il consiste en une épitaxie par jets moléculaires comprenant un dépôt simultané d'au moins ledit élément magnétique choisi dans le groupe constitué par le manganèse, le fer, le cobalt, le nickel et le chrome et d'au moins un autre élément choisi dans le groupe IVA de la classification périodique, sur un substrat dont la température pendant la croissance des cristaux est comprise entre 80° C et 200° C, pour l'obtention d'une couche mince dudit semi-conducteur du groupe IV.
  12. Procédé de fabrication selon la revendication 11, caractérisé en ce qu'on réalise ledit dépôt desdits éléments en utilisant un rapport moyen [vitesse de dépôt du ou des élément(s) magnétique(s) / vitesses totales de dépôt desdits éléments] qui est compris entre 5 % et 10 %.
  13. Procédé de fabrication selon la revendication 11 ou 12, caractérisé en ce que ledit ou l'un au moins desdits élément(s) magnétique(s) est le manganèse, le(s)dit(s) autre(s) élément(s) déposés simultanément étant de préférence le germanium, le silicium ou un alliage de ces derniers.
  14. Procédé de fabrication selon la revendication 13, caractérisé en ce que ledit élément magnétique et ledit autre élément déposés simultanément sont respectivement le manganèse et le germanium, pour l'obtention d'un semi-conducteur (1) à base de germanium et de manganèse.
  15. Procédé de fabrication selon la revendication 14, caractérisé en ce qu'il comprend un dépôt sur ledit substrat d'une couche « tampon » de germanium, antérieurement audit dépôt simultané de germanium et de manganèse pour l'obtention de ladite couche mince.
  16. Procédé de fabrication selon une des revendications 11 à 15, caractérisé en ce que ledit substrat est à base d'un matériau choisi dans le groupe constitué par le germanium, le silicium et les alliages de ces derniers.
  17. Composant électronique (C) formant une diode pour l'injection ou la collecte de spins dans ou depuis un autre semi-conducteur, respectivement, ou bien de type élément sensible à un champ magnétique, caractérisé en ce qu'il comporte un semi-conducteur ferromagnétique (1) selon une des revendications 1 à 10.
  18. Composant électronique (C) selon la revendication 17, ledit composant formant une diode pour l'injection ou la collecte de spins dans ou depuis un autre semi-conducteur, caractérisé en ce qu'il comporte :
    - une première couche mince formée d'un premier semi-conducteur ferromagnétique (1),
    - une seconde couche mince (2) formée d'un second semi-conducteur à base de silicium, de germanium ou d'un de leurs alliages, au contact de laquelle est appliquée ladite première couche mince, et
    - une source de courant de porteurs couplée à ladite première couche pour, dans un premier cas, en extraire sélectivement un courant polarisé en spin et pour l'injecter dans ladite seconde couche ou bien, dans un second cas, pour extraire sélectivement un courant polarisé en spin de ladite seconde couche et l'injecter dans ladite première couche,
    caractérisé en ce que ledit premier semi-conducteur est tel que défini à l'une des revendications 6 à 11, pour que ladite phase ferromagnétique et riche en élément(s) magnétique(s) dudit premier semi-conducteur émette ou reçoive ce courant polarisé en spin vers ou depuis ledit second semi-conducteur, respectivement selon lesdits premier ou second cas.
  19. Composant électronique (C) selon la revendication 18, caractérisé en ce que ledit premier semi-conducteur ferromagnétique (1) est tel que défini à la revendication 9 ou 10, pour que lesdites première et seconde couche minces (1 et 2) appliquées l'une sur l'autre forment une diode d'Esaki à effet tunnel, dans laquelle lesdites colonnes (3) et ladite matrice (4) de ladite première couche forment respectivement des jonctions passantes (5) et des jonctions bloquantes (6) avec ladite seconde couche.
  20. Composant électronique sensible à un champ magnétique selon la revendication 17, notamment pour constituer un capteur de champ magnétique, caractérisé en ce qu'il comporte une couche mince formée d'un semi-conducteur ferromagnétique (1) selon une des revendications 1 à 10, pour la détection ou la mesure dudit champ par mesure d'un effet de magnétorésistance vis-à-vis d'un champ magnétique appliqué perpendiculairement à ladite couche mince ou dans le plan de cette dernière.
  21. Utilisation d'un semi-conducteur ferromagnétique (1) selon une des revendications 1 à 10 pour injecter ou collecter par contact un courant de porteurs polarisés en spins, respectivement dans ou depuis un autre semi-conducteur à base de silicium, de germanium ou d'un alliage de ces
    derniers, à une température égale ou supérieure à 350 K et pouvant être égale ou supérieure à 400 K.
  22. Utilisation d'un semi-conducteur ferromagnétique (1) selon une des revendications 1 à 10 pour mesurer un champ magnétique par mesure d'un effet de magnétorésistance dans ledit semi-conducteur, lequel présente les propriétés de magnétorésistance recherchées jusqu'à une température égale ou supérieure à 350 K et pouvant être égale ou supérieure à 400 K.
EP07730902.9A 2006-02-09 2007-02-01 Semi-conducteur ferromagnetique, son procede de fabrication, composants l'incorporant et utilisations de ce semi-conducteur s'y rapportant Not-in-force EP1989716B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0601149A FR2897195B1 (fr) 2006-02-09 2006-02-09 Semi-conducteur ferromagnetique, son procede de fabrication, composants l'incorporant et utilisations de ce semi-conducteur s'y rapportant.
PCT/FR2007/000186 WO2007090946A1 (fr) 2006-02-09 2007-02-01 Semi-conducteur ferromagnetique, son procede de fabrication, composants l'incorporant et utilisations de ce semi-conducteur s'y rapportant

Publications (2)

Publication Number Publication Date
EP1989716A1 EP1989716A1 (fr) 2008-11-12
EP1989716B1 true EP1989716B1 (fr) 2016-11-23

Family

ID=37075267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07730902.9A Not-in-force EP1989716B1 (fr) 2006-02-09 2007-02-01 Semi-conducteur ferromagnetique, son procede de fabrication, composants l'incorporant et utilisations de ce semi-conducteur s'y rapportant

Country Status (4)

Country Link
US (1) US8310018B2 (fr)
EP (1) EP1989716B1 (fr)
FR (1) FR2897195B1 (fr)
WO (1) WO2007090946A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964253B1 (fr) * 2010-08-24 2012-09-14 Commissariat Energie Atomique Méthode de préparation d'un substrat de gaas pour semi-conducteur ferromagnétique, procédé de fabrication d'un tel semi-conducteur, substrat et semi-conducteur obtenus et utilisations de ce dernier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850706A (en) * 1972-09-15 1974-11-26 Ibm Mn{11 {118 {11 M{11 {11 Ga Ge FERROMAGNETIC MATERIALS WHERE M COMPRISES TRANSITION METALS
US6307241B1 (en) * 1995-06-07 2001-10-23 The Regents Of The Unversity Of California Integrable ferromagnets for high density storage
KR101064318B1 (ko) * 2003-04-04 2011-09-14 큐나노에이비 Pn 접합을 갖는 나노위스커 및 이의 가공 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8310018B2 (en) 2012-11-13
EP1989716A1 (fr) 2008-11-12
US20090230954A1 (en) 2009-09-17
FR2897195B1 (fr) 2008-05-02
WO2007090946A1 (fr) 2007-08-16
FR2897195A1 (fr) 2007-08-10

Similar Documents

Publication Publication Date Title
EP2286473B1 (fr) Element magnetique tricouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique magnetique mettant en oeuvre un tel element
EP2106612B1 (fr) Dispositif magnétique multicouches, procédé pour sa réalisation, capteur de champ magnétique, mémoire magnétique et porte logique mettant en oeuvre un tel dispositif
EP2047489B1 (fr) Dispositif magnétique en couches minces à forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnétique et vanne de spin mettant en oeuvre un tel dispositif
EP0406060B1 (fr) Capteur à effet magnétorésistif
EP0779632B1 (fr) Structure et capteur multicouches et procédé de réalisation
FR3033936A1 (fr)
EP0206865A1 (fr) Capteur à effet magnéto-résistif linéaire, son procédé de réalisation et son application dans un détecteur de domaines magnétiques
FR2771511A1 (fr) Capteur de champ magnetique et procede de fabrication de ce capteur
EP1989716B1 (fr) Semi-conducteur ferromagnetique, son procede de fabrication, composants l&#39;incorporant et utilisations de ce semi-conducteur s&#39;y rapportant
EP2313897A1 (fr) Materiau magnetique a base de semi-conducteur
Chung et al. Possible indication of interlayer exchange coupling in GaMnAs/GaAs ferromagnetic semiconductor superlattices
KR20230118765A (ko) 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기터널 접합 및 이의 제조 방법
Akinaga Magnetoresistive switch effect in metal/semiconductor hybrid granular films: extremely huge magnetoresistance effect at room temperature
FR2701167A1 (fr) Elément à effet magnétorésistif.
FR2898414A1 (fr) Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l&#39;incorporant et procede de mise en oeuvre.
EP2839488B1 (fr) Dispositif injecteur de spins comportant une couche de protection en son centre
EP2609638B1 (fr) METHODE DE PREPARATION D&#39;UN SUBSTRAT DE GaAs POUR SEMI-CONDUCTEUR FERROMAGNETIQUE, PROCEDE DE FABRICATION D&#39;UN TEL SEMI-CONDUCTEUR, SUBSTRAT ET SEMI-CONDUCTEUR OBTENUS ET UTILISATIONS DE CE DERNIER
FR2677811A1 (fr) Dispositif incluant un super-reseau de couches ayant des proprietes de magnetoresistance geante realisees sur un substrat semiconducteur.
KR102560822B1 (ko) 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기 터널 접합 및 이의 제조 방법
Devillers et al. Ferromagnetism of self‐organized Ge1–xMnx nano‐pillars
EP2364499A1 (fr) Procede de fabrication d&#39;une couche d&#39;un materiau antiferromagnetique a structures magnetiques controlees
Maksimov et al. Molecular-beam epitaxial growth and characterization of (In0. 5Al0. 5) 1− xMnxAs-(In0. 5Ga0. 5) 1− xMnxAs: Thin films and superlattices
Shapiro et al. Suppression of growth-induced perpendicular magnetic anisotropy in Co–Pt alloys by trace amounts of Si
Boukari et al. Control of magnetic properties in (Cd, Mn) Te quantum wells inserted in pin diodes
Akinaga Magnetic-Field-Sensing Materials Composed of Metal–Semiconductor Hybrid Nanostructures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARSKI, ANDRE

Inventor name: SAMSON, YVES

Inventor name: DEVILLERS, THIBAUT

Inventor name: JAMET, MATTHIEU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007048865

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01F0001400000

Ipc: H01F0041300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B82Y 40/00 20110101ALI20160608BHEP

Ipc: C30B 23/06 20060101ALI20160608BHEP

Ipc: H01F 1/40 20060101ALI20160608BHEP

Ipc: C30B 29/52 20060101ALI20160608BHEP

Ipc: H01F 41/30 20060101AFI20160608BHEP

Ipc: H01F 10/193 20060101ALI20160608BHEP

Ipc: G01R 33/09 20060101ALI20160608BHEP

Ipc: B82Y 25/00 20110101ALI20160608BHEP

INTG Intention to grant announced

Effective date: 20160711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 848560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007048865

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 848560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007048865

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

26N No opposition filed

Effective date: 20170824

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190215

Year of fee payment: 13

Ref country code: DE

Payment date: 20190211

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190228

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007048865

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229