EP1970921B1 - Power supply line with high-temperature superconductors for superconductive magnets in a cryostat - Google Patents

Power supply line with high-temperature superconductors for superconductive magnets in a cryostat Download PDF

Info

Publication number
EP1970921B1
EP1970921B1 EP08004323.5A EP08004323A EP1970921B1 EP 1970921 B1 EP1970921 B1 EP 1970921B1 EP 08004323 A EP08004323 A EP 08004323A EP 1970921 B1 EP1970921 B1 EP 1970921B1
Authority
EP
European Patent Office
Prior art keywords
cryostat
contact element
assembly according
terminal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08004323.5A
Other languages
German (de)
French (fr)
Other versions
EP1970921A2 (en
EP1970921A3 (en
Inventor
Concetta Beneduce
Andreas Kraus
Michael Bauernschmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin SAS
Original Assignee
Bruker Biospin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin SAS filed Critical Bruker Biospin SAS
Publication of EP1970921A2 publication Critical patent/EP1970921A2/en
Publication of EP1970921A3 publication Critical patent/EP1970921A3/en
Application granted granted Critical
Publication of EP1970921B1 publication Critical patent/EP1970921B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • HTSC high-temperature superconductor
  • Cryostat arrangements of the aforementioned type are used, for example, for measurements with nuclear magnetic resonance (NMR) or electron spin resonance (EPR) or laboratory magnets.
  • NMR nuclear magnetic resonance
  • EPR electron spin resonance
  • the contained superconducting magnet arrangements are used to generate strong magnetic fields, whereby stable, low temperatures must prevail in order to achieve the superconducting state, as can be ensured in such a cryostat arrangement.
  • the superconducting magnet assembly (magnet coil system) is disposed in a cryogenic liquid cryogenic container, usually liquid helium, which is surrounded by radiation shields, superinsulation sheets, and another cryogenic container, typically liquid nitrogen.
  • a cryogenic liquid cryogenic container usually liquid helium
  • the superconducting magnet is cooled by the vaporizing surrounding helium and kept at a constant temperature.
  • the elements surrounding the helium container serve to heat-insulate the helium container so that the heat input to the helium container is minimized and the evaporation rate of the helium remains small.
  • the helium container is usually connected to at least two thin-walled hanger ears with the outer vacuum envelope.
  • the container is thus mechanically fixed, on the other hand, the suspension tubes provide access to the magnet, as z. B. when loading is necessary.
  • that will Leakage gas is discharged through the suspension tubes, whereby the suspension tubes are cooled again and ideally the heat input through the tube wall is completely compensated.
  • Such a system is used for example in DE 29 06 060 A1 and in the Reference, Superconducting NMR Magnet Design (Concepts in Magnetic Resonance, 1993, 6, 255-273 ).
  • the charging of the superconducting magnet is usually carried out via a power supply, which is installed stationary or introduced via a plug connection in one of the suspension tubes.
  • the power supply is the connection between the magnet at cryogenic temperature and the power supply at room temperature.
  • Such a supply line achieves a minimum heat input of the order of magnitude of 1 mW / A of the design current without current flow. In the case of a frequent charging and discharging operation of the superconducting magnet, the heat input also increases due to the Joule heat generated in the conductor.
  • One way of substantially reducing the heat input to the helium vessel is to use a two-part power supply, the lower part being formed by the temperature of the helium bath (about 4K) to a temperature between 20K and 90K by a HTSC and the upper part to room temperature through an exhaust-cooled copper conductor.
  • the use of HTSC makes it possible to carry high electrical currents at, compared to copper / brass, lower thermal conductivities and cross-sectional areas. Since the current in the superconductor can flow without loss, the heat input to the helium bath is practically independent of the current and only determined by the heat conduction in the superconductor. The The ability to transport high electrical currents lossless, combined with a low thermal conductivity, causes a reduction in He losses and thus the operating costs.
  • HTSC and copper conductors are connected to a transition piece by soldering.
  • the transition from the HTSC to the normal conductor is therefore additionally cooled in order to keep the temperature below the critical temperature of the HTSC.
  • This can be done by a heat exchanger through which helium gas or liquid nitrogen is pumped.
  • a heat exchanger through which helium gas or liquid nitrogen is pumped.
  • Another possibility is to actively cool the transition by coupling to a cold stage of a cryocooler.
  • Such an arrangement is for example in EP 870,307 or in US 4,895,831 or in US 5,991,647 described.
  • the arrangements described have the disadvantage that the cooling must be carried out by additional components or cooling units, which are not required for the normal operation of the cryostat or even interfere with normal operation.
  • additional components or cooling units the structure of the arrangements is complicated and expensive.
  • the FR 2 637 728 A1 describes a cryostat assembly according to the preamble of claim 1, with a helium tank containing a superconducting coil and in turn is arranged in a nitrogen tank. From the superconducting coil lead to a voltage feedthrough power lines in an insulating tube. This tube is fitted with a clamping ring on a lid of a nitrogen tank seated, held. The tube ends at an upper end of the voltage feedthrough, which is also seated on the lid and filled with an oil. The power line in the pipe contains a transition from a superconducting line section to a normal line section.
  • Object of the present invention is to ensure a simple and inexpensive way efficient cooling of the transition from HTSL to the normal conductor in the power supply.
  • a cryostat arrangement of the aforementioned type which is characterized in that a terminal pole of the at least one power line through which the normally conductive line part is electrically connected to the superconducting line part is thermally coupled to a wall of the nitrogen tank.
  • the thermal coupling is produced by a solid-state connection of the connection pole to the nitrogen tank via contact elements, contacting elements and the same made of highly thermally conductive material, preferably copper, aluminum and / or aluminum nitride.
  • a material is considered to have good thermal conductivity if the thermal conductivity is at least 20 W / (K * m), preferably at least 100 W / (K * m), in each case measured at room temperature.
  • the cooling of the at least one terminal pole in which the normal conductor part and the HTSC part of the current line are connected takes place by means of a thermal coupling to the nitrogen container present in the cryostat.
  • This container is independent of the power supply part of the cryostat arrangement.
  • the transition from the metallic conductor to the HTSC conductor is coupled with a preferably detachable and highly thermally conductive compound to the nitrogen container, and the compound simultaneously ensures a galvanic separation.
  • the temperature of the nitrogen tank of about 77 K allows the transition from the normal conductor to the HTSC conductor in the temperature range between 81 and 90 K to operate.
  • the advantage of the arrangement is also that a simple suspension tube of the helium container can be used with few modifications for receiving the power supply.
  • a variant of the cryostat arrangement according to the invention provides that a good heat-conducting element, such as a réelleleitblech made of aluminum, in the N 2 container is mounted. If this element connects the lid and bottom of the container, the temperature gradient from the bottom to the lid remains small even at a low LN 2 level.
  • This thermal short circuit thus makes it possible to keep the temperature of the junction between the normal conductor and the HTSC conductor at a lower level, independently of the LN 2 level, even if the contact element is thermally coupled to the cover of the nitrogen tank (ie the connection of the terminal pole to the Cover of the nitrogen tank is set up). In the context of the invention, however, it is sufficient if the heat conducting plate dips into the liquid nitrogen.
  • the HTSC line part preferably consists of strip conductors. At the temperature of the transition from the normal conductor to the HTSC conductor, the critical current I c of a single HTSC band conductor is very low. The number of bands is chosen according to the magnetic current and the current carrying capacity of the band at the maximum operating temperature so that the current flows lossless.
  • a multifilament ribbon conductor with Bi 2 Sr 2 Ca 2 Cu 3 O x is used with a critical temperature T c of 110 K.
  • a preferred embodiment of the invention provides for integrating a plurality of individual and galvanically isolated supply lines (current lines) for different current loads (such as coil sections of the magnet arrangement) in a single power supply in order to charge different superconducting coils of the magnet arrangement separately.
  • current lines current lines
  • the warm end of the HTS part and the cold end of the metallic part of a lead to a terminal pole made of a highly conductive metal such. Pure copper, soldered.
  • the terminal poles of the different leads are electrically isolated from each other and against the cryostat assembly and connected to a metallic contact piece (inner contact element) by an electrically insulating and good heat conducting material.
  • This material is preferably made of aluminum nitride.
  • the aluminum nitride is coated with a solderable metal film and connected by soldering to the terminal pole and the contact piece.
  • each terminal pole has an electrically insulating and highly thermally conductive coating.
  • This coating preferably consists of a diamond-like carbon layer (DLC).
  • DLC diamond-like carbon layer
  • the pole of this variant is preferably made conical and pressed into a conical bore of the contact piece (inner contact element), whereby an electrically insulated and good heat-conducting connection is formed.
  • the contact piece (inner contact element) is made conical and pressed during assembly of the cryostat assembly in an outer copper part (outer contact element).
  • This compound ensures excellent heat transfer due to the high surface pressure, can be easily released and is very compact.
  • the contact piece (inner contact element) allows through openings the flow of vaporizing helium gas from the helium container and thus a helium gas cooling of the power supply over its entire length.
  • the outer copper part (outer contact element) is connected in vacuum via a good thermal conductivity metal with the nitrogen tank. With this arrangement according to the invention results in a thermal resistance of less than 0.5 K / W between the terminal poles and the nitrogen tank.
  • connection poles are not cooled via a coupling to the nitrogen tank, but with another cooling source, such as a cryocooler.
  • a cryocooler such as a cryocooler
  • the power supply according to the invention achieves a minimum heat input without current flow, which is 3 to 4 times smaller than the heat input of a metallic power supply.
  • the inventive arrangement allows the operation of the power supply line up to a current of about 150 A with respect to the currentless state comparable helium losses. Due to the good thermal contact with the nitrogen tank, only the nitrogen losses increase steadily with rising Current in the power supply line. The maximum current in the power supply is limited by the critical current of the HTSC conductor at the temperature setting and the magnetic field at the location of the terminal poles.
  • the cooling at the connecting poles can be increased.
  • the temperature of the transition metal - HTSL is monitored, for example with a temperature sensor.
  • the monitoring or a control can be implemented in the power supply unit. If the temperature exceeds an upper threshold, heating in the helium vessel is activated to produce additional low helium loss.
  • the additional helium loss leads to improved cooling of the power supply by passing, cold helium vapor. The heating is switched off as soon as the temperature falls below a lower threshold.
  • Fig.1 shows a Kryostatan extract with an inner and outer liquid tank and a superconducting magnet coil and two suspension tubes.
  • Fig. 1 shows a schematic representation of a cryostat 1 with a magnet assembly 6.
  • the cryostat 1 comprises a filled with helium liquid tank (helium tank) 2, which is connected to suspension tubes 4 with an outer jacket 9 of the cryostat 1 and in which a superconducting magnet assembly 6 is housed.
  • the suspension tubes 4 are simultaneously access tubes 4 for power supply assemblies (see Fig. 2 ) to the magnet assembly 6.
  • a further liquid tank (nitrogen tank) 3 is arranged, which contains nitrogen at about 77 K and is connected to suspension tubes 5 with the outer jacket 9 of the cryostat 1.
  • the liquid tank 3 with nitrogen is thermal with the hanger ears (Access pipes) 4 contacted.
  • a radiation shield 7 is arranged, which in turn is thermally contacted with the suspension tubes 4.
  • a heating resistor (heater) 11 is mounted in the liquid tank 2.
  • the liquid tank (nitrogen tank) 3 contains a heat conducting element 10, which is welded to the lid of the nitrogen tank.
  • Fig.2 shows a representation of the power supply tower with inserted power supply.
  • a power supply is used according to the invention.
  • the power supply comprises a metallic part 13 with a plurality of (shown here two) electrically isolated lines (from room temperature to Anschlußpol 12) and a HTSC part 14 (from Anschlußpol 12 to the liquid tank 2) with galvanically separated strip conductors or strip conductor stacks.
  • the connection of the metallic part 13 to the HTSC part 14 is made by connecting poles 12, which are soldered to the two conductors 13, 14.
  • the connection poles 12 are arranged within an inner contact cone (inner contact element) 16.
  • the inner contact cone 16 is positively within an outer contact cone (outer contact element) 15, which in turn with a good heat conducting element 8, such as (here) a contacting tube or highly conductive strands of pure copper, screwed or flanged.
  • a good heat conducting element 8 such as (here) a contacting tube or highly conductive strands of pure copper, screwed or flanged.
  • the contacting element 8 is connected to the cold surface 17 of the liquid tank (nitrogen tank) 3.
  • Figure 3 shows a preferred arrangement of the inner 16 and outer 15 contact cone.
  • the inner cone 16 When mounting the power supply, the inner cone 16 is pressed with high surface pressure against the outer cone 15.
  • the cone angle is between 1 and 5 °.
  • Fig. 4 shows an illustration of a contact arrangement according to the invention.
  • Figure 6 shows a preferred arrangement of (shown here) six separate terminal poles 12 within the inner contact cone (inner contact element) 16. Between terminal poles 12 and cone 16, thin aluminum nitride (contact) plates 18 are soldered. The aluminum nitride ensures galvanic separation with high thermal conductivity. The metallic conductors are soldered into corresponding holes of the connection poles 12.
  • the connection poles 12 are each connected to the inner contact element 16 with two adjacent side surfaces in a corner of the opening 19 via contact elements 18 made of AIN.
  • This embodiment allows the compact arrangement of different and galvanically isolated lines within a standard suspension tube with an inner diameter of (here), for example, 29 mm.
  • the open arrangement of the connection poles leaves a sufficient opening (opening) 19 for the passage of the evaporating from the liquid tank 2 helium. This allows helium gas cooling over the entire length of the power supply.
  • the invention describes a power supply arrangement within a cryostat arrangement, with which electrical current can be conducted from room temperature into a superconducting magnet arrangement.
  • the power supply consists of a metallic part and a part with HTSL, which are mounted inside a suspension tube.
  • the arrangement provides that the galvanically isolated terminal poles between the metallic part and the HTSL bands of the power supply via a removable conical positive connection via an inner and outer contact cone are connected to the nitrogen tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

Die Erfindung betrifft eine Kryostatenanordnung für eine supraleitfähige Magnetanordnung,
mit einem Heliumtank für flüssiges Helium, wobei im Heliumtank die supraleitfähige Magnetanordnung angeordnet ist,
mit einem Stickstofftank für flüssigen Stickstoff, wobei der Stickstofftank den Heliumtank umgibt,
und mit wenigstens einem Zugangsrohr, in dem eine Stromzuführungsanordnung montiert ist, durch die Strom von raumtemperaturwarmen Bereich des Kryostaten in die supraleitende Magnetanordnung geleitet werden kann,
wobei die Stromzuführungsanordnung mindestens eine Stromleitung mit einem normalleitenden Leitungsteil und einem supraleitenden Leitungsteil aus Hochtemperatursupraleiter(=HTSL)-Material aufweist.
The invention relates to a cryostat arrangement for a superconducting magnet arrangement,
with a helium tank for liquid helium, wherein in the helium tank the superconducting magnet arrangement is arranged,
with a nitrogen tank for liquid nitrogen, where the nitrogen tank surrounds the helium tank,
and having at least one access tube in which a power supply arrangement is mounted, can be passed through the current of space temperature-warm area of the cryostat in the superconducting magnet assembly,
wherein the power supply arrangement comprises at least one power line with a normal-conducting line part and a superconducting line part of high-temperature superconductor (= HTSC) material.

Stromzuführungsanordnungen mit normalleitenden Leitungsteilen und supraleitenden Leitungsteilen aus HTSL-Material zum Laden von supraleitenden Magnetanordnungen in Kryostaten sind bekannt geworden zum Beispiel durch J. R. Hull, IEEE Transanctions on applied superconductivity, Vol. 3, No. 1, March 1993, S. 869-875 .Power supply arrangements with normal-conducting line parts and superconducting line parts made of HTSC material for charging superconducting magnet arrangements in cryostats have become known, for example, by US Pat JR Hull, IEEE Transactions on Applied Superconductivity, Vol. 1, March 1993, pp. 869-875 ,

Kryostatenanordnungen der eingangs genannten Art finden beispielsweise Verwendung für Messungen mit Kernspinresonanz (NMR) oder Elektronenspinresonanz (EPR) oder Labormagneten. Die enthaltenen supraleitenden Magnetanordnungen dienen zur Erzeugung starker Magnetfelder, wobei zum Erreichen des supraleitenden Zustands stabile, tiefe Temperaturen herrschen müssen, wie sie in einer solchen Kryostatenanordnung gewährleistet werden können.Cryostat arrangements of the aforementioned type are used, for example, for measurements with nuclear magnetic resonance (NMR) or electron spin resonance (EPR) or laboratory magnets. The contained superconducting magnet arrangements are used to generate strong magnetic fields, whereby stable, low temperatures must prevail in order to achieve the superconducting state, as can be ensured in such a cryostat arrangement.

Die supraleitende Magnetanordnung (Magnetspulensystem) ist in einem ersten Kryobehälter mit kryogener Flüssigkeit, üblicherweise flüssigem Helium, angeordnet, welcher von Strahlungsschilden, Superisolationsfolien und einem weiteren Kryobehälter mit kryogener Flüssigkeit, üblicherweise flüssigem Stickstoff, umgeben ist. Die Flüssigkeitsbehälter, Strahlungsschilde und Superisolationsfolien sind in einem äußeren Behälter untergebracht, welcher einen Vakuumraum begrenzt (=äußere Vakuumhülle, Außenmantel). Der supraleitende Magnet wird durch das verdampfende, ihn umgebende Helium gekühlt und auf konstanter Temperatur gehalten. Die den Heliumbehälter umgebenden Elemente dienen der Wärmeisolierung des Heliumbehälters, so dass der Wärmeeinfall auf den Heliumbehälter minimiert wird und die Abdampfrate des Heliums klein bleibt.The superconducting magnet assembly (magnet coil system) is disposed in a cryogenic liquid cryogenic container, usually liquid helium, which is surrounded by radiation shields, superinsulation sheets, and another cryogenic container, typically liquid nitrogen. The liquid containers, radiation shields and superinsulation films are accommodated in an outer container which limits a vacuum space (= outer vacuum envelope, outer jacket). The superconducting magnet is cooled by the vaporizing surrounding helium and kept at a constant temperature. The elements surrounding the helium container serve to heat-insulate the helium container so that the heat input to the helium container is minimized and the evaporation rate of the helium remains small.

Der Heliumbehälter ist gewöhnlich an mindestens zwei dünnwandigen Aufhängerohren mit der äußeren Vakuumhülle verbunden. Zum einen wird der Behälter somit mechanisch fixiert, zum anderen bieten die Aufhängerohre Zugang zum Magneten, wie es z. B. beim Laden notwendig ist. Zudem wird das Verlustgas über die Aufhängerohre abgeführt, wodurch die Aufhängerohre wiederum gekühlt werden und im Idealfall der Wärmeeintrag über die Rohrwand komplett kompensiert wird. Ein derartiges System wird beispielsweise in DE 29 06 060 A1 und in der Druckschrift ,Superconducting NMR Magnet Design' (Concepts in Magnetic Resonance, 1993, 6, 255-273 ) beschrieben.The helium container is usually connected to at least two thin-walled hanger ears with the outer vacuum envelope. On the one hand, the container is thus mechanically fixed, on the other hand, the suspension tubes provide access to the magnet, as z. B. when loading is necessary. In addition, that will Leakage gas is discharged through the suspension tubes, whereby the suspension tubes are cooled again and ideally the heat input through the tube wall is completely compensated. Such a system is used for example in DE 29 06 060 A1 and in the Reference, Superconducting NMR Magnet Design (Concepts in Magnetic Resonance, 1993, 6, 255-273 ).

Das Laden des supraleitenden Magneten erfolgt üblicherweise über eine Stromzuführung, welche stationär eingebaut oder über eine Steckverbindung in eines der Aufhängerohre eingeführt wird. Die Stromzuführung stellt die Verbindung zwischen dem Magnet bei Tieftemperatur und dem Netzgerät bei Raumtemperatur dar.The charging of the superconducting magnet is usually carried out via a power supply, which is installed stationary or introduced via a plug connection in one of the suspension tubes. The power supply is the connection between the magnet at cryogenic temperature and the power supply at room temperature.

Ein Typ solcher Stromzuführungen besteht aus Kupfer- oder Messingleitungen, deren Querschnitt für die gegebene Länge und den Magnetstrom optimiert ist und welche über das abströmende Heliumgas gekühlt werden. Eine derartige Zuleitung erreicht ohne Stromfluss einen minimalen Wärmeeintrag in der Größenordnung von 1mW/A des Auslegungsstroms. Im Falle eines häufigen Lade- und Entladenvorgangs des supraleitenden Magneten steigt der Wärmeintrag zusätzlich infolge der im Leiter erzeugten Jouleschen Wärme.One type of such leads is copper or brass leads whose cross-section is optimized for the given length and magnet current and which are cooled by the effluent helium gas. Such a supply line achieves a minimum heat input of the order of magnitude of 1 mW / A of the design current without current flow. In the case of a frequent charging and discharging operation of the superconducting magnet, the heat input also increases due to the Joule heat generated in the conductor.

Eine Möglichkeit zu einer wesentlichen Verringerung des Wärmeeintrags auf den Heliumbehälter besteht in der Verwendung einer zweiteiligen Stromzuführung, wobei der untere Teil von der Temperatur des Heliumbades (ca. 4K) bis zu einer Temperatur zwischen 20K und 90K durch einen HTSL gebildet wird und der obere Teil bis Raumtemperatur durch einen abgasgekühlten Kupferleiter. Der Einsatz der HTSL erlaubt es, hohe elektrische Ströme bei, im Vergleich zum Kupfer/Messing, geringeren Wärmeleitfähigkeiten und Querschnittsflächen zu tragen. Da der Strom im Supraleiter verlustfrei fließen kann, ist der Wärmeeintrag auf das Heliumbad praktisch unabhängig vom Strom und nur durch die Wärmeleitung im Supraleiter bestimmt. Das Vermögen, hohe elektrische Ströme verlustfrei zu transportieren, verbunden mit einer geringen thermischen Leitfähigkeit, bewirkt eine Reduzierung der He-Verluste und somit der Betriebskosten. Es gibt viele Artikel betreffend das Design der HTSL Stromzuführungen, insbesondere J. R. Hull, IEEE Transactions on Applied Superconductivity, 1993, 3, 869-875 ; R. Wesche und A. M. Fuchs, Cryogenics, 1994, 34, 145-154 .One way of substantially reducing the heat input to the helium vessel is to use a two-part power supply, the lower part being formed by the temperature of the helium bath (about 4K) to a temperature between 20K and 90K by a HTSC and the upper part to room temperature through an exhaust-cooled copper conductor. The use of HTSC makes it possible to carry high electrical currents at, compared to copper / brass, lower thermal conductivities and cross-sectional areas. Since the current in the superconductor can flow without loss, the heat input to the helium bath is practically independent of the current and only determined by the heat conduction in the superconductor. The The ability to transport high electrical currents lossless, combined with a low thermal conductivity, causes a reduction in He losses and thus the operating costs. There are many articles regarding the design of HTSC power supplies, in particular JR Hull, IEEE Transactions on Applied Superconductivity, 1993, 3, 869-875 ; R. Wesche and AM Fuchs, Cryogenics, 1994, 34, 145-154 ,

HTSL und Kupferleiter werden mit einem Übergangsstück durch Weichlöten verbunden. Insbesondere beim Laden des supraleitenden Magneten wird im metallischen Teil der Stromzuführung viel Joulesche Wärme erzeugt, welche den oberen Teil des HTSL über seine kritische Temperatur erwärmen würde. Der Übergang vom HTSL zum Normalleiter wird darum zusätzlich gekühlt, um die Temperatur unterhalb der kritischen Temperatur des HTSL halten zu können. Dies kann durch einen Wärmetauscher erfolgen, durch den Heliumgas oder flüssiger Stickstoff gepumpt wird. Eine solche Anordnung wird beispielsweise in US 5,563,369 oder US 5,166,776 beschrieben. Eine weitere Möglichkeit besteht darin, den Übergang durch die Ankoppelung an eine Kältestufe eines Kryokühlers aktiv zu kühlen. Eine solche Anordnung ist beispielsweise in EP 870,307 oder in US 4,895,831 oder in US 5,991,647 beschrieben.HTSC and copper conductors are connected to a transition piece by soldering. In particular, when charging the superconducting magnet much Joule heat is generated in the metallic part of the power supply, which would heat the upper part of the HTSC above its critical temperature. The transition from the HTSC to the normal conductor is therefore additionally cooled in order to keep the temperature below the critical temperature of the HTSC. This can be done by a heat exchanger through which helium gas or liquid nitrogen is pumped. Such an arrangement is for example in US 5,563,369 or US 5,166,776 described. Another possibility is to actively cool the transition by coupling to a cold stage of a cryocooler. Such an arrangement is for example in EP 870,307 or in US 4,895,831 or in US 5,991,647 described.

Die beschriebenen Anordnungen haben den Nachteil, dass die Kühlung durch zusätzliche Komponenten bzw. Kühlaggregate erfolgen muss, welche für den normalen Betrieb des Kryostaten nicht erforderlich sind oder den normalen Betrieb sogar stören. Durch die zusätzlichen Komponenten oder Kühlaggregate wird der Aufbau der Anordnungen aufwändig und teuer.The arrangements described have the disadvantage that the cooling must be carried out by additional components or cooling units, which are not required for the normal operation of the cryostat or even interfere with normal operation. The additional components or cooling units, the structure of the arrangements is complicated and expensive.

Die FR 2 637 728 A1 beschreibt eine Kryostatenanordnung gemäß Oberbegriff von Anspruch 1, mit einem Heliumtank, der eine supraleitende Spule enthält und seinerseits in einem Stickstofftank angeordnet ist. Von der supraleitenden Spule verlaufen zu einer Spannungsdurchführung Stromleitungen in einem isolierenden Rohr. Dieses Rohr ist mit einem Klemmring, der auf einem Deckel eines Stickstofftanks aufsitzt, gehalten. Das Rohr endet an einem oberen Ende der Spannungsdurchführung, die ebenfalls auf dem Deckel aufsitzt und mit einem Öl gefüllt ist. Die Stromleitung im Rohr enthält einen Übergang von einem supraleitenden Leitungsabschnitt auf einen normalleitenden Leitungsabschnitt.The FR 2 637 728 A1 describes a cryostat assembly according to the preamble of claim 1, with a helium tank containing a superconducting coil and in turn is arranged in a nitrogen tank. From the superconducting coil lead to a voltage feedthrough power lines in an insulating tube. This tube is fitted with a clamping ring on a lid of a nitrogen tank seated, held. The tube ends at an upper end of the voltage feedthrough, which is also seated on the lid and filled with an oil. The power line in the pipe contains a transition from a superconducting line section to a normal line section.

Aufgabe der ErfindungObject of the invention

Aufgabe der vorliegenden Erfindung ist es, auf einfache und kostengünstige Weise eine effiziente Kühlung des Übergangs vom HTSL zum Normalleiter in der Stromzuführung zu gewährleisten.Object of the present invention is to ensure a simple and inexpensive way efficient cooling of the transition from HTSL to the normal conductor in the power supply.

Kurze Beschreibung der ErfindungBrief description of the invention

Diese Aufgabe wird gelöst durch eine Kryostatenanordnung der eingangs genannten Art, die dadurch gekennzeichnet ist, dass ein Anschlusspol der mindestens eine Stromleitung, durch den der normalleitende Leitungsteil mit dem supraleitenden Leitungsteil elektrisch verbunden ist, thermisch an eine Wand des Stickstofftanks gekoppelt ist. Die thermische Kopplung wird durch eine Festkörper-Verbindung des Anschlusspols zum Stickstofftank über Kontaktelemente, Kontaktierungselemente und der gleichen aus gut wärmeleitfähigem Material, bevorzugt Kupfer, Aluminium und/oder Aluminiumnitrid, hergestellt. Ein Material wird als gut wärmeleitfähig angesehen, wenn die Wärmeleitfähigkeit wenigstens 20 W/(K*m), bevorzugt wenigstens 100 W/(K*m), jeweils gemessen bei Raumtemperatur, beträgt.This object is achieved by a cryostat arrangement of the aforementioned type, which is characterized in that a terminal pole of the at least one power line through which the normally conductive line part is electrically connected to the superconducting line part is thermally coupled to a wall of the nitrogen tank. The thermal coupling is produced by a solid-state connection of the connection pole to the nitrogen tank via contact elements, contacting elements and the same made of highly thermally conductive material, preferably copper, aluminum and / or aluminum nitride. A material is considered to have good thermal conductivity if the thermal conductivity is at least 20 W / (K * m), preferably at least 100 W / (K * m), in each case measured at room temperature.

Gemäß der Erfindung erfolgt die Kühlung des mindestens einen Anschlusspols, in dem der Normalleiter-Teil und der HTSL-Teil der Stromleitung verbunden sind (etwa durch Weichlöten) mit Hilfe einer thermischen Kopplung zu dem im Kryostaten vorhandenen Stickstoffbehälter. Dieser Behälter ist unabhängig von der Stromzuführung Teil der Kryostatenanordnung.According to the invention, the cooling of the at least one terminal pole in which the normal conductor part and the HTSC part of the current line are connected (for example by soft soldering) takes place by means of a thermal coupling to the nitrogen container present in the cryostat. This container is independent of the power supply part of the cryostat arrangement.

Der Übergang vom metallischen Leiter zum HTSL-Leiter wird mit einer bevorzugt lösbaren und thermisch hochleitfähigen Verbindung an den Stickstoffbehälter gekoppelt, wobei und die Verbindung gleichzeitig eine galvanische Trennung gewährleistet. Die Temperatur des Stickstofftanks von ungefähr 77 K erlaubt es, den Übergang vom Normalleiter zum HTSL-Leiter im Temperaturbereich zwischen 81 und 90 K zu betreiben. Der Vorteil der Anordnung besteht auch darin, dass ein einfaches Aufhängerohr des Heliumbehälters mit wenigen Modifikationen für die Aufnahme der Stromzuführung verwendet werden kann.The transition from the metallic conductor to the HTSC conductor is coupled with a preferably detachable and highly thermally conductive compound to the nitrogen container, and the compound simultaneously ensures a galvanic separation. The temperature of the nitrogen tank of about 77 K allows the transition from the normal conductor to the HTSC conductor in the temperature range between 81 and 90 K to operate. The advantage of the arrangement is also that a simple suspension tube of the helium container can be used with few modifications for receiving the power supply.

Bevorzugte Ausführungsformen der ErfindungPreferred embodiments of the invention

Bevorzugte Ausführungsformen der Erfindung ergeben sich aus den abhängigen Patentansprüchen.Preferred embodiments of the invention will become apparent from the dependent claims.

Eine Variante der erfindungsgemäßen Kryostatenanordnung sieht vor, dass ein gut wärmeleitendes Element, wie ein Wärmeleitblech aus Aluminium, im N2-Behälter montiert wird. Verbindet dieses Element den Deckel und Boden des Behälters, bleibt selbst bei niedrigem LN2-Level der Temperaturgradient vom Boden zum Deckel klein. Dieser thermische Kurzschluss erlaubt es somit, die Temperatur des Übergangs zwischen dem Normalleiter und dem HTSL Leiter unabhängig vom LN2 - Level auf einem niedrigeren Wert zu halten, selbst wenn das Kontaktelement thermisch mit dem Deckel des Stickstofftanks gekoppelt ist (d.h. die Verbindung des Anschlusspols zum Deckel des Stickstofftanks eingerichtet ist). Im Rahmen der Erfindung genügt es aber, wenn das Wärmeleitblech in den flüssigen Stickstoff eintaucht.A variant of the cryostat arrangement according to the invention provides that a good heat-conducting element, such as a Wärmeleitblech made of aluminum, in the N 2 container is mounted. If this element connects the lid and bottom of the container, the temperature gradient from the bottom to the lid remains small even at a low LN 2 level. This thermal short circuit thus makes it possible to keep the temperature of the junction between the normal conductor and the HTSC conductor at a lower level, independently of the LN 2 level, even if the contact element is thermally coupled to the cover of the nitrogen tank (ie the connection of the terminal pole to the Cover of the nitrogen tank is set up). In the context of the invention, however, it is sufficient if the heat conducting plate dips into the liquid nitrogen.

Bevorzugt besteht der HTSL-Leitungsteil aus Bandleitern. Bei der Temperatur des Übergangs vom Normalleiter zum HTSL-Leiter ist der kritische Strom Ic eines einzigen HTSL-Bandleiters sehr gering. Die Anzahl Bänder wird entsprechend dem Magnetstrom und der Stromtragfähigkeit des Bandes bei der maximalen Betriebstemperatur so gewählt, dass der Strom verlustfrei fließt.The HTSC line part preferably consists of strip conductors. At the temperature of the transition from the normal conductor to the HTSC conductor, the critical current I c of a single HTSC band conductor is very low. The number of bands is chosen according to the magnetic current and the current carrying capacity of the band at the maximum operating temperature so that the current flows lossless.

Bänder des gleichen Pols werden zu einem Stack zusammengelötet, um einen kompakten Stromleiter zu erhalten.Bands of the same pole are soldered together in a stack to obtain a compact conductor.

In einer bevorzugten Ausführung wird ein Multifilament-Bandleiter mit Bi2Sr2Ca2Cu3Ox mit einer kritischen Temperatur Tc von 110 K eingesetzt.In a preferred embodiment, a multifilament ribbon conductor with Bi 2 Sr 2 Ca 2 Cu 3 O x is used with a critical temperature T c of 110 K.

Bei einer weiteren vorteilhaften Variante wird einen anderen HTSL mit einer kritischen Temperatur > 90 K, wie zum Beispiel YBa2Cu3Ox (Tc = 93 K) oder Bi2Sr2CaCu2Ox (Tc = 95 K) eingesetzt.In a further advantageous variant, another HTSC with a critical temperature> 90 K, such as YBa 2 Cu 3 O x (T c = 93 K) or Bi 2 Sr 2 CaCu 2 O x (T c = 95 K) is used ,

Eine bevorzugte Ausführungsform der Erfindung sieht vor, mehrere einzelne und galvanisch getrennte Zuleitungen (Stromleitungen) für unterschiedliche Strombelastungen (etwa Spulensektionen der Magnetanordnung) in einer einzigen Stromzuführung zu integrieren, um unterschiedliche supraleitende Spulen der Magnetanordnung getrennt laden zu können. Dazu wird das warme Ende des HTSL-Teils sowie das kalte Ende des metallischen Teils einer Zuleitung mit einem Anschlusspol aus einem gut leitenden Metall wie z.B. Reinkupfer, verlötet. Die Anschlusspole der unterschiedlichen Zuleitungen sind elektrisch gegeneinander und gegen die Kryostatenanordnung isoliert und mit einem metallischen Kontaktstück (inneres Kontaktelement) durch ein elektrisch isolierendes und gut wärmeleitendes Material verbunden. Dieses Material besteht bevorzugt aus Aluminiumnitrid. In einer bevorzugten Anordnung wird das Aluminiumnitrid mit einem lötbaren Metallfilm beschichtet und durch Löten mit dem Anschlusspol und dem Kontaktstück verbunden.A preferred embodiment of the invention provides for integrating a plurality of individual and galvanically isolated supply lines (current lines) for different current loads (such as coil sections of the magnet arrangement) in a single power supply in order to charge different superconducting coils of the magnet arrangement separately. For this purpose, the warm end of the HTS part and the cold end of the metallic part of a lead to a terminal pole made of a highly conductive metal such. Pure copper, soldered. The terminal poles of the different leads are electrically isolated from each other and against the cryostat assembly and connected to a metallic contact piece (inner contact element) by an electrically insulating and good heat conducting material. This material is preferably made of aluminum nitride. In a preferred arrangement, the aluminum nitride is coated with a solderable metal film and connected by soldering to the terminal pole and the contact piece.

Als weitere bevorzugte Variante weist jeder Anschlusspol eine elektrisch isolierende und gut wärmeleitende Beschichtung auf. Diese Beschichtung besteht bevorzugt aus einer diamantähnlichen Kohlenstoffschicht (DLC). Der Anschlusspol dieser Variante wird bevorzugt konisch ausgeführt und in eine konische Bohrung des Kontaktstücks (inneres Kontaktelement) gepresst, wodurch eine elektrisch isolierte und gut wärmeleitende Verbindung entsteht.As a further preferred variant, each terminal pole has an electrically insulating and highly thermally conductive coating. This coating preferably consists of a diamond-like carbon layer (DLC). The pole of this variant is preferably made conical and pressed into a conical bore of the contact piece (inner contact element), whereby an electrically insulated and good heat-conducting connection is formed.

Bei einer vorteilhaften Ausführungsform dieser Erfindung wird das Kontaktstück (inneres Kontaktelement) konisch ausgeführt und bei der Montage der Kryostatenanordnung in ein äußeres Kupferteil (äußeres Kontaktelement) gepresst. Diese Verbindung gewährleistet infolge der hohen Flächenpressung einen ausgezeichneten Wärmeübergang kann einfach wieder gelöst werden und ist sehr kompakt. Das Kontaktstück (inneres Kontaktelement) erlaubt durch Öffnungen den Durchfluss von verdampfendem Heliumgas vom Heliumbehälter und damit eine Heliumgaskühlung der Stromzuführung über seine gesamte Länge. Das äußere Kupferteil (äußeres Kontaktelement) wird im Vakuum über ein thermisch gut leitendes Metall mit dem Stickstoffbehälter verbunden. Mit dieser erfindungsgemäßen Anordnung resultiert ein Wärmewiderstand von weniger als 0.5 K/W zwischen den Anschlusspolen und dem Stickstoffbehälter.In an advantageous embodiment of this invention, the contact piece (inner contact element) is made conical and pressed during assembly of the cryostat assembly in an outer copper part (outer contact element). This compound ensures excellent heat transfer due to the high surface pressure, can be easily released and is very compact. The contact piece (inner contact element) allows through openings the flow of vaporizing helium gas from the helium container and thus a helium gas cooling of the power supply over its entire length. The outer copper part (outer contact element) is connected in vacuum via a good thermal conductivity metal with the nitrogen tank. With this arrangement according to the invention results in a thermal resistance of less than 0.5 K / W between the terminal poles and the nitrogen tank.

Es ist auch denkbar, eine derartige kompakte Kontaktverbindung dann einzusetzen, wenn die Anschlusspole nicht über eine Ankopplung an den Stickstoffbehälter, sondern mit einer anderen Kältequelle, wie z.B. einem Kryokühler, gekühlt werden. Dies wäre für kryogenfreie Magnetsysteme, aber besonders auch für Magnetsysteme interessant, bei denen der Magnet immer noch mit LHe gekühlt wird (wie beispielsweise in US 2002 002 830 beschrieben) und die Stromzuführung in einem Aufhängerohr des Heliumbehälters montiert ist.It is also conceivable to use such a compact contact connection when the connection poles are not cooled via a coupling to the nitrogen tank, but with another cooling source, such as a cryocooler. This would be interesting for cryogen-free magnet systems, but especially for magnet systems in which the magnet is still cooled with LHe (such as in US 2002 002 830 described) and the power supply is mounted in a suspension tube of the helium container.

Die erfindungsgemäße Stromzuführung erreicht ohne Stromfluss einen minimalen Wärmeeintrag, welcher 3 bis 4 mal kleiner ist als der Wärmeeintrag einer metallischen Stromzuführung.The power supply according to the invention achieves a minimum heat input without current flow, which is 3 to 4 times smaller than the heat input of a metallic power supply.

Die erfindungsgemäße Anordnung erlaubt den Betrieb der Stromzuleitung bis zu einem Strom von ca. 150 A mit gegenüber dem stromlosen Zustand vergleichbaren Heliumverlusten. Infolge des guten Wärmekontaktes zum Stickstoffbehälter steigen lediglich die Stickstoffverluste stetig mit steigender Stromstärke in der Stromzuleitung. Die maximale Stromstärke in der Stromzuleitung wird durch den kritischen Strom des HTSL-Leiters bei der sich einstellenden Temperatur und bei dem magnetischen Feld am Ort der Anschlusspole limitiert.The inventive arrangement allows the operation of the power supply line up to a current of about 150 A with respect to the currentless state comparable helium losses. Due to the good thermal contact with the nitrogen tank, only the nitrogen losses increase steadily with rising Current in the power supply line. The maximum current in the power supply is limited by the critical current of the HTSC conductor at the temperature setting and the magnetic field at the location of the terminal poles.

Insbesondere für Ladeströme über 150A in der Stromzuleitung kann die Kühlung an den Anschlusspolen verstärkt werden. In einer weiteren vorteilhaften Anordnung wird die Temperatur des Übergangs Metall - HTSL überwacht, beispielsweise mit einem Temperatursensor. Die Überwachung bzw. eine Steuerung kann im Netzgerät implementiert werden. Falls die Temperatur einen oberen Schwellenwert überschreitet, wird eine Heizung im Helium-Behälter aktiviert, um einen zusätzlichen geringen Heliumverlust zu produzieren. Der zusätzliche Heliumverlust führt zu einer verbesserten Kühlung der Stromzuführung durch vorbeiströmenden, kalten Heliumdampf. Die Heizung wird ausgeschaltet, sobald die Temperatur einen unteren Schwellewert unterschreitet.In particular for charging currents above 150A in the power supply line, the cooling at the connecting poles can be increased. In a further advantageous arrangement, the temperature of the transition metal - HTSL is monitored, for example with a temperature sensor. The monitoring or a control can be implemented in the power supply unit. If the temperature exceeds an upper threshold, heating in the helium vessel is activated to produce additional low helium loss. The additional helium loss leads to improved cooling of the power supply by passing, cold helium vapor. The heating is switched off as soon as the temperature falls below a lower threshold.

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und den Zeichnungen.Further advantages of the invention will become apparent from the description and the drawings.

Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.The embodiments shown and described are not to be understood as exhaustive enumeration, but rather have exemplary character for the description of the invention.

Zeichnung und detaillierte Beschreibung der ErfindungDrawing and detailed description of the invention

Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig.1
einen schematischen Querschnitt durch eine erfindungsgemäße Kryostatenanordnung;
Fig.2
eine schematische Darstellung des Zugangsrohrs der erfindungsgemäßen Kryostatenanordnung;
Fig.3
eine schematische Darstellung des Bereichs um die Anschlusspole der erfindungsgemäßen Kryostatenanordnung;
Fig.4
einen schematischen Querschnitt durch das innere Kontaktelement der erfindungsgemäßen Kryostatenanordnung.
The invention is illustrated in the drawing and will be explained in more detail with reference to embodiments. Show it:
Fig.1
a schematic cross section through a cryostat arrangement according to the invention;
Fig.2
a schematic representation of the access tube of the cryostat arrangement according to the invention;
Figure 3
a schematic representation of the area around the terminal poles of the cryostat arrangement according to the invention;
Figure 4
a schematic cross section through the inner contact element of the cryostat arrangement according to the invention.

Fig.1 zeigt eine Kryostatanordnung mit einem inneren und äußeren Flüssigkeitstank und einer supraleitenden Magnetspule sowie zwei Aufhängerohren. Fig.1 shows a Kryostatanordnung with an inner and outer liquid tank and a superconducting magnet coil and two suspension tubes.

Fig. 1 zeigt eine schematische Darstellung eines Kryostaten 1 mit einer Magnetanordnung 6. Der Kryostat 1 umfasst einen mit Helium gefüllten Flüssigkeitstank (Heliumtank) 2, der an Aufhängerohren 4 mit einem Außenmantel 9 des Kryostaten 1 verbunden ist und in dem eine supraleitende Magnetanordnung 6 untergebracht ist. Die Aufhängerohre 4 sind gleichzeitig Zugangsrohre 4 für Stromzuführungsanordnungen (siehe Fig. 2) zur Magnetanordnung 6. Um den Flüssigkeitstank 2 ist ein weiterer Flüssigkeitstank (Stickstofftank) 3 angeordnet, der Stickstoff bei ca. 77 K enthält und an Aufhängerohren 5 mit dem Außenmantel 9 des Kryostaten 1 verbunden ist. Der Flüssigkeitstank 3 mit Stickstoff ist thermisch mit den Aufhängerohren (Zugangsrohren) 4 kontaktiert. Zwischen den beiden Flüssigkeitstanks 2 und 3 ist ein Strahlungsschild 7 angeordnet, der wiederum mit den Aufhängerohren 4 thermisch kontaktiert ist. Im Flüssigkeitstank 2 ist ein Heizwiderstand (Heizeinrichtung) 11 montiert. Der Flüssigkeitstank (Stickstofftank) 3 enthält ein Wärmeleitelement 10, das mit dem Deckel des Stickstofftanks verschweißt ist. Fig. 1 shows a schematic representation of a cryostat 1 with a magnet assembly 6. The cryostat 1 comprises a filled with helium liquid tank (helium tank) 2, which is connected to suspension tubes 4 with an outer jacket 9 of the cryostat 1 and in which a superconducting magnet assembly 6 is housed. The suspension tubes 4 are simultaneously access tubes 4 for power supply assemblies (see Fig. 2 ) to the magnet assembly 6. To the liquid tank 2, a further liquid tank (nitrogen tank) 3 is arranged, which contains nitrogen at about 77 K and is connected to suspension tubes 5 with the outer jacket 9 of the cryostat 1. The liquid tank 3 with nitrogen is thermal with the hanger ears (Access pipes) 4 contacted. Between the two liquid tanks 2 and 3, a radiation shield 7 is arranged, which in turn is thermally contacted with the suspension tubes 4. In the liquid tank 2, a heating resistor (heater) 11 is mounted. The liquid tank (nitrogen tank) 3 contains a heat conducting element 10, which is welded to the lid of the nitrogen tank.

Fig.2 zeigt eine Darstellung des Stromzuführungsturms mit eingesetzter Stromzuführung. Fig.2 shows a representation of the power supply tower with inserted power supply.

In zumindest einem der Aufhängerohre (Zugangsrohre) 4 ist erfindungsgemäß eine Stromzuführung eingesetzt. Die Stromzuführung umfasst einem metallischen Teil 13 mit mehreren (hier dargestellt zwei) galvanisch getrennten Leitungen (von Raumtemperatur bis zum Anschlusspol 12) und einen HTSL-Teil 14 (vom Anschlusspol 12 bis zum Flüssigkeitstank 2) mit galvanisch getrennten Bandleitern oder Bandleiterstacks. Die Verbindung des metallischen Teils 13 mit dem HTSL-Teil 14 wird durch Anschlusspole 12, welche mit den beiden Leitern 13, 14 verlötet werden, hergestellt. Die Anschlusspole 12 sind innerhalb eines inneren Kontaktkonus (inneres Kontaktelement) 16 angeordnet. Der innere Kontaktkonus 16 liegt formschlüssig innerhalb eines äußeren Kontaktkonus (äußeres Kontaktelement) 15, welcher seinerseits mit einem gut wärmeleitenden Element 8, wie (hier) ein Kontaktierungsrohr oder hochleitfähige Litzen aus Reinkupfer, verschraubt bzw. verflanscht ist. Das Kontaktierungselement 8 ist mit der kalten Fläche 17 des Flüssigkeitstanks (Stickstofftank) 3 verbunden.In at least one of the suspension pipes (access pipes) 4, a power supply is used according to the invention. The power supply comprises a metallic part 13 with a plurality of (shown here two) electrically isolated lines (from room temperature to Anschlußpol 12) and a HTSC part 14 (from Anschlußpol 12 to the liquid tank 2) with galvanically separated strip conductors or strip conductor stacks. The connection of the metallic part 13 to the HTSC part 14 is made by connecting poles 12, which are soldered to the two conductors 13, 14. The connection poles 12 are arranged within an inner contact cone (inner contact element) 16. The inner contact cone 16 is positively within an outer contact cone (outer contact element) 15, which in turn with a good heat conducting element 8, such as (here) a contacting tube or highly conductive strands of pure copper, screwed or flanged. The contacting element 8 is connected to the cold surface 17 of the liquid tank (nitrogen tank) 3.

Fig.3 zeigt eine bevorzugte Anordnung des inneren 16 und äußeren 15 Kontaktkonus. Bei der Montage der Stromzuführung wird der innere Konus 16 mit hoher Flächenpressung gegen den äußeren Konus 15 gepresst. Der Konuswinkel liegt zwischen 1 und 5°. Durch diese erfindungsgemäße Anordnung kann mit geringer Montagekraft eine lösbare Verbindung mit hoher Flächenpressung und gutem Wärmübergang hergestellt werden. Die lösbare Verbindung erleichtert einen Zugang, etwa für Reparaturzwecke. Figure 3 shows a preferred arrangement of the inner 16 and outer 15 contact cone. When mounting the power supply, the inner cone 16 is pressed with high surface pressure against the outer cone 15. The cone angle is between 1 and 5 °. By this arrangement according to the invention can with low mounting force a detachable connection with high Surface pressure and good heat transfer are produced. The detachable connection facilitates access, for example for repair purposes.

Fig. 4 zeigt eine Darstellung einer erfindungsgemäßen Kontaktanordnung. Fig. 4 shows an illustration of a contact arrangement according to the invention.

Fig. 4 zeigt eine bevorzugte Anordnung von (hier dargestellt) beispielsweise sechs getrennten Anschlusspolen 12 innerhalb des inneren Kontaktkonus (inneren Kontaktelements) 16. Zwischen Anschlusspolen 12 und Konus 16 sind dünne Aluminiumnitrid-Plättchen (Kontaktplättchen) 18 eingelötet. Das Aluminiumnitrid gewährleistet die galvanische Trennung bei gleichzeitig hoher Wärmeleitfähigkeit. Die metallischen Leiter werden in entsprechende Bohrungen der Anschlusspole 12 eingelötet. In der gezeigten Ausführungsform sind die Anschlusspole 12 mit je zwei benachbarten Seitenflächen in einer Ecke der Durchbruchöffnung 19 über Kontaktelemente 18 aus AIN mit dem inneren Kontaktelement 16 verbunden. Fig. 4 For example, Figure 6 shows a preferred arrangement of (shown here) six separate terminal poles 12 within the inner contact cone (inner contact element) 16. Between terminal poles 12 and cone 16, thin aluminum nitride (contact) plates 18 are soldered. The aluminum nitride ensures galvanic separation with high thermal conductivity. The metallic conductors are soldered into corresponding holes of the connection poles 12. In the embodiment shown, the connection poles 12 are each connected to the inner contact element 16 with two adjacent side surfaces in a corner of the opening 19 via contact elements 18 made of AIN.

Diese Ausführung erlaubt die kompakte Anordnung unterschiedlicher und galvanisch getrennter Leitungen innerhalb eines standardmäßigen Aufhängerohres mit einem Innendurchmesser von (hier) beispielsweise 29 mm. Die offene Anordnung der Anschlusspole lässt eine genügende Öffnung (Durchbruchöffnung) 19 für das Durchströmen des vom Flüssigkeitstank 2 abdampfenden Heliums. Dies erlaubt die Heliumgaskühlung auf der gesamten Länge der Stromzuführung.This embodiment allows the compact arrangement of different and galvanically isolated lines within a standard suspension tube with an inner diameter of (here), for example, 29 mm. The open arrangement of the connection poles leaves a sufficient opening (opening) 19 for the passage of the evaporating from the liquid tank 2 helium. This allows helium gas cooling over the entire length of the power supply.

Zusammenfassend beschreibt die Erfindung eine Stromzuführungsanordnung innerhalb einer Kryostatenanordnung, mit der elektrischer Strom von Raumtemperatur in eine supraleitende Magnetanordnung geleitet werden kann. Die Stromzuführung besteht aus einem metallischen Teil und einem Teil mit HTSL, welche innerhalb eines Aufhängerohres montiert sind. Die Anordnung sieht vor, dass die galvanisch getrennten Anschlusspole zwischen dem metallischen Teil und den HTSL- Bändern der Stromzuführung über eine demontierbare konisch formschlüssige Verbindung über einen inneren und äußeren Kontaktkonus mit dem Stickstoffbehälter verbunden sind.In summary, the invention describes a power supply arrangement within a cryostat arrangement, with which electrical current can be conducted from room temperature into a superconducting magnet arrangement. The power supply consists of a metallic part and a part with HTSL, which are mounted inside a suspension tube. The arrangement provides that the galvanically isolated terminal poles between the metallic part and the HTSL bands of the power supply via a removable conical positive connection via an inner and outer contact cone are connected to the nitrogen tank.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Kryostatcryostat
22
Heliumtankhelium tank
33
Stickstofftanknitrogen tank
4,54.5
Aufhängerohresuspension tubes
4a, 4b4a, 4b
Abschnitte Aufhängerohr 4Sections hanger ear 4
66
Supraleitende MagnetanordnungSuperconducting magnet arrangement
77
Strahlungsschildradiation shield
88th
Kontaktierungselementcontacting
99
Außenmantel des KryostatenOuter jacket of the cryostat
1010
Wärmeleitelementthermally conductive element
1111
Heizungheater
1212
Anschlusspolconnecting pole
1313
Metallische StromleitungenMetallic power lines
1414
HTSL Bänder oder StacksHTSL tapes or stacks
1515
Äußerer Kontaktkonus/äußeres KontaktelementOuter contact cone / outer contact element
1616
Innerer Kontaktkonus/inneres KontaktelementInner contact cone / inner contact element
1717
Wand des StickstoffbehältersWall of nitrogen tank
1818
Isolationsplättcheninsulation plates
1919
DurchbruchöffnungThrough opening

Claims (16)

  1. Cryostat assembly (1) for a superconductive magnet assembly,
    with a helium tank (2) for liquid helium, wherein the superconductive magnet assembly (6) is located in the helium tank (2),
    with a nitrogen tank (3) for liquid nitrogen, wherein the nitrogen tank (3) encloses the helium tank (2),
    and with at least one access tube (4) in which a power supply assembly of the cryostat assembly is mounted through which current can flow from the room-temperature warm area of the cryostat (1) into the superconductive magnet assembly (6),
    wherein the power supply assembly comprises at least one power supply line with a normal conductor part (13) and a superconductor part (14) made of HTSL material,
    characterized in that
    a terminal (12) of the at least one power supply line, through which the normal conductor part (13) is electrically connected to the superconductor part (14), is thermally coupled with a wall of the nitrogen tank (3), wherein the thermal coupling is produced through a solid state connection of the terminal (12) to the nitrogen tank (3) via contact elements and contacting elements (15, 16, 8) of a material with good thermal conductivity having a thermal conductivity of at least 20 W/(K*m) measured at room temperature.
  2. Cryostat assembly according to claim 1, characterized in that the terminal (12) is fixed to a radially inner contact element (16),
    that the inner contact element (16) is detachably fixed to a radially outer contact element (15),
    and that the outer contact element (15) is thermally coupled with the wall of the nitrogen tank (3).
  3. Cryostat assembly according to claim 2, characterized in that the inner contact element (16) has a cone-shaped outer surface,
    that the outer contact element (15) has a cone-shaped inner surface, and that the cone-shaped outer surface and the cone-shaped inner surface abut in a form-fit way,
    in particular the inner contact element (16) being pressed into the outer contact element (15).
  4. Cryostat assembly according to claim 2 or 3, characterized in that the outer contact element (15) is fixed to the nitrogen tank (3) with a contacting element (8) with good thermal conductivity having a thermal conductivity of at least 20W/(K*m) measured at room temperature, in particular with a contacting tube or a highly conductive strand assembly made of pure copper, in particular via a flange connection.
  5. Cryostat assembly according to one of the claims 2 to 4, characterized in that two opposing sections of the access tube (4a and 4b) are fixed to the outer contact element (15).
  6. Cryostat assembly according to one of the claims 2 to 5, characterized in that the inner contact element (16) has a breakthrough opening (19),
    in particular the breakthrough opening (19) being formed in such a way that helium gas evaporating from the helium tank (2) flows through the breakthrough opening (19), thus cooling the power supply assembly over its entire length.
  7. Cryostat assembly according to one of the claims 2 to 6, characterized in that the terminal (12) is fixed to the inner contact element (16) via at least one contact shim (18), in particular by soldering, the at least one contact shim (18) consisting of an electrically insulating material with a high thermal conductivity of at least 20 W/(K*m) measured at room temperature.
  8. Cryostat assembly according to claim 7, characterized in that the at least one contact shim (18) consists of aluminium nitride, in particular the contact shim (18) having a metal coating on both sides so that it can be soldered with a soft solder.
  9. Cryostat assembly according to claim 7 or 8, characterized in that the terminal (12) has a rectangular, in particular square, cross-section, that one contact shim (18) each is fixed to two adjacent side surfaces of the terminal (12),
    that two adjacent contact shims (18) of the terminal (12) are fixed in a corner of a breakthrough opening (19) of the inner contact element (16), in particular by soldering,
    and that the side surfaces of the terminal (12) not provided with contact shims (18) are distanced from the inner contact element (16).
  10. Cryostat assembly according to one of the claims 2 to 6, characterized in that the terminal (12) is cone-shaped and pressed in a corresponding cone-shaped bore of the inner contact element (16).
  11. Cryostat assembly according to one of the claims 2 to 6 or 10, characterized in that the terminal (12) has an electrically insulating coating with good thermal conductivity having a thermal conductivity of at least 20 W/(K*m) measured at room temperature, in particular a coating consisting of a diamond-like carbon coating (=DLC).
  12. Cryostat assembly according to one of the claims 2 to 11, characterized in that the power supply assembly has several galvanically isolated power supply lines and therefore several terminals (12) being fixed to the inner contact element (16).
  13. Cryostat assembly according to one of the preceding claims, characterized in that the superconductor part (14) is formed from Bi2Sr2Ca2Cu3Ox strip conductor.
  14. Cryostat assembly according to one of the claims 1 to 12, characterized in that the superconductor part (14) has a critical temperature Tc > 90 K, in particular the superconductor part (14) being formed from YBa2Cu3Ox or Bi2Sr2CaCu2Ox.
  15. Cryostat assembly according to one of the preceding claims, characterized in that the assembly comprises an element (10) with good thermal conductivity having a thermal conductivity of at least 20 W/(K*m) measured at room temperature, in the nitrogen tank (3), the element (10) with good thermal conductivity being a heat-conducting plate which connects a top cover and a bottom of the nitrogen tank (3) and is preferably made of aluminium.
  16. Cryostat assembly according to one of the preceding claims, characterized in that the assembly comprises a temperature sensor for monitoring the temperature of the terminal (12), heat equipment (11) in the helium tank (2) and control equipment, the control equipment being designed to activate the heat equipment (11) when a limit temperature at the terminal (12) is exceeded.
EP08004323.5A 2007-03-16 2008-03-08 Power supply line with high-temperature superconductors for superconductive magnets in a cryostat Not-in-force EP1970921B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007013350A DE102007013350B4 (en) 2007-03-16 2007-03-16 Power supply with high-temperature superconductors for superconducting magnets in a cryostat

Publications (3)

Publication Number Publication Date
EP1970921A2 EP1970921A2 (en) 2008-09-17
EP1970921A3 EP1970921A3 (en) 2014-01-01
EP1970921B1 true EP1970921B1 (en) 2017-03-01

Family

ID=39512784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08004323.5A Not-in-force EP1970921B1 (en) 2007-03-16 2008-03-08 Power supply line with high-temperature superconductors for superconductive magnets in a cryostat

Country Status (3)

Country Link
US (1) US20080227647A1 (en)
EP (1) EP1970921B1 (en)
DE (1) DE102007013350B4 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456455B (en) * 2013-09-28 2015-09-30 西部超导材料科技股份有限公司 A kind of current lead of superconducting magnets
DE102015202638A1 (en) 2014-06-17 2015-12-17 Siemens Aktiengesellschaft Power supply for a superconducting coil device
KR101605072B1 (en) 2014-10-16 2016-03-21 한국전기연구원 High temperature superconducting current lead having a terminal that has been anodized and superconducting magnet including thereof
CN104637645B (en) * 2015-03-05 2017-09-08 奥泰医疗系统有限责任公司 The fixed current down-lead structure of superconducting magnet
RU2601218C1 (en) * 2015-04-08 2016-10-27 Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН (ИЯФ СО РАН) Method of inductive accumulator superconducting winding cryostatting and supply and device for its implementation
US9552906B1 (en) * 2015-09-01 2017-01-24 General Electric Company Current lead for cryogenic apparatus
DE102017217930A1 (en) 2017-10-09 2019-04-11 Bruker Biospin Ag Magnet arrangement with cryostat and magnetic coil system, with cold accumulators on the power supply lines
DE102018213598A1 (en) 2018-08-13 2020-02-13 Siemens Aktiengesellschaft Superconducting power supply
CN109360707A (en) * 2018-12-04 2019-02-19 湖南迈太科医疗科技有限公司 Plug-in current down-lead structure and superconducting magnet
GB2582342A (en) * 2019-03-20 2020-09-23 Siemans Healthcare Ltd Superconductor current leads
CN112712958B (en) * 2020-12-23 2023-01-31 中国科学院电工研究所 High-temperature superconducting magnet cooled by liquid nitrogen shielding mixed liquid medium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950606A (en) * 1973-10-24 1976-04-13 Siemens Aktiengesellschaft Apparatus and method for cooling a superconducting cable
DE2653507A1 (en) * 1975-11-28 1977-06-08 Anvar METHOD AND DEVICE FOR DETERMINING HARD RADIATIONS
GB2015716B (en) 1978-02-21 1982-12-08 Varian Associates Cryostat with radiation shield
US4895831A (en) 1988-07-05 1990-01-23 General Electric Company Ceramic superconductor cryogenic current lead
FR2637728A1 (en) * 1988-10-11 1990-04-13 Alsthom Gec Low-loss cryogenic power lead
EP0464498A3 (en) 1990-06-22 1992-03-04 Kabushiki Kaisha Toshiba Current lead
US5093645A (en) * 1990-08-06 1992-03-03 General Electric Company Superconductive switch for conduction cooled superconductive magnet
US5166776A (en) 1990-10-20 1992-11-24 Westinghouse Electric Corp. Hybrid vapor cooled power lead for cryostat
US5623240A (en) * 1992-10-20 1997-04-22 Sumitomo Heavy Industries, Ltd. Compact superconducting magnet system free from liquid helium
FR2701157B1 (en) * 1993-02-04 1995-03-31 Alsthom Cge Alcatel Supply link for superconductive coil.
DE4430408A1 (en) * 1994-08-26 1995-07-27 Siemens Ag Lead for connecting cryogenic load to current source
FR2729501A1 (en) * 1995-01-17 1996-07-19 Gec Alsthom Electromec HIGH VOLTAGE CURRENT BETWEEN A BTC SUPERCONDUCTING INSTALLATION AND AN AMBIENT TEMPERATURE CONNECTION END OF A HIGH VOLTAGE CABLE
US5742217A (en) 1995-12-27 1998-04-21 American Superconductor Corporation High temperature superconductor lead assembly
US5991647A (en) 1996-07-29 1999-11-23 American Superconductor Corporation Thermally shielded superconductor current lead
DE10033410C1 (en) 2000-07-08 2002-05-23 Bruker Biospin Gmbh Kreislaufkryostat
DE102004037173B3 (en) * 2004-07-30 2005-12-15 Bruker Biospin Ag Cryogenic cooler for workpiece incorporates cold head attached to two-stage cooler with attachments to sealed cryostat and with radiation shield inside vacuum-tight housing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102007013350A1 (en) 2008-09-18
EP1970921A2 (en) 2008-09-17
EP1970921A3 (en) 2014-01-01
DE102007013350B4 (en) 2013-01-31
US20080227647A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
EP1970921B1 (en) Power supply line with high-temperature superconductors for superconductive magnets in a cryostat
DE68907278T2 (en) Superconducting magnetic resonance magnet.
DE102004061869B4 (en) Device for superconductivity and magnetic resonance device
DE69725942T2 (en) Arrangement for cooling a superconducting winding
DE68907276T2 (en) Support device for a radiation shield in a magnetic resonance magnet.
DE69106313T2 (en) Hybrid steam-cooled power connector for a cryostat.
WO2003098645A1 (en) Superconductor technology-related device comprising a superconducting magnet and a cooling unit
EP1311785B1 (en) Cryostat for electrical devices such as superconducting current limiters and electrical machines such as transformers, motors, generators and electrical magnets with a superconducting winding
DE4412761C2 (en) Conductor feedthrough for an AC device with superconductivity
EP0958585B1 (en) Current supply device for a cooled electrical device
EP2284845A1 (en) HTSL power supply for connecting a superconducting consumer system with a power feed-in point
DE102009027429A1 (en) Method for cooling a cryostat arrangement during transport and cryostat arrangement with transport refrigeration unit
EP3121860B1 (en) System for limiting energy in a power supply network
DE202019003381U1 (en) Socket for superconducting cable and superconducting cable with connection for intermediate cooling
DE102014224363A1 (en) Device of superconducting technology with coil devices and cooling device as well as vehicle equipped therewith
DE102004057204A1 (en) Superconducting device with cryosystem and superconducting switch
EP3609057B1 (en) Coil for an electric machine
DE4223145C2 (en) Power supply device for a device to be kept at low temperature, in particular superconducting device
EP0694200B1 (en) Low-temperature current supply with heat exchanger
DE102015202638A1 (en) Power supply for a superconducting coil device
EP3861573B1 (en) Superconducting current limiter device having power feed
DE102009009127A1 (en) Coil for a superconducting magnetic bearing
EP3420566B1 (en) Bus bar and bus bar system
DE19534096A1 (en) Current supply device for electric apparatus kept at low temp. esp. superconducting cable and magnet coils
DE9209457U1 (en) Power supply device for a device to be kept at low temperature, in particular a superconducting device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 6/06 20060101AFI20131122BHEP

Ipc: H01F 6/04 20060101ALN20131122BHEP

17P Request for examination filed

Effective date: 20140618

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 6/06 20060101AFI20160812BHEP

Ipc: H01F 6/04 20060101ALN20160812BHEP

INTG Intention to grant announced

Effective date: 20160921

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BRUKER SWITZERLAND AG, CH

Free format text: FORMER OWNER: BRUKER BIOSPIN AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200325

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200325

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210308