EP1965108A1 - Joint à brosse tolérant le flux inverse - Google Patents

Joint à brosse tolérant le flux inverse Download PDF

Info

Publication number
EP1965108A1
EP1965108A1 EP08250634A EP08250634A EP1965108A1 EP 1965108 A1 EP1965108 A1 EP 1965108A1 EP 08250634 A EP08250634 A EP 08250634A EP 08250634 A EP08250634 A EP 08250634A EP 1965108 A1 EP1965108 A1 EP 1965108A1
Authority
EP
European Patent Office
Prior art keywords
brush seal
fluid
brush
valve
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08250634A
Other languages
German (de)
English (en)
Other versions
EP1965108B1 (fr
Inventor
Mark E. Addis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP1965108A1 publication Critical patent/EP1965108A1/fr
Application granted granted Critical
Publication of EP1965108B1 publication Critical patent/EP1965108B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • F16J15/3288Filamentary structures, e.g. brush seals

Definitions

  • the present application relates to restricting the transfer of a fluid from between two pressurized chambers, and more specifically to a reverse flow tolerant brush seal for restricting the transfer of pressurized air between chambers in various gas turbine engine applications.
  • Gas turbine engines operate according to a continuous-flow, Brayton cycle.
  • a forward compressor section pressurizes ambient air, fuel is added and the pressurized mixture is burned in a central combustor section.
  • the combustion gases expand through a rearward turbine section before a rearmost nozzle expels the gases as a propulsive jet.
  • Bladed rotors in the turbine section convert thermodynamic energy from the combustion gases into mechanical energy for rotating one or more centrally mounted shafts.
  • the shafts in turn, drive the forward compressor section, thus continuing the cycle.
  • Gas turbine engines are compact and efficient power plants for powering aircraft, heavy equipment, waterborne vehicles and electrical power generators.
  • the interfaces between adjacent engine components are sealed in various ways to restrict leakage of fluids such as the pressurized compressor air and combustion gases.
  • fluids such as the pressurized compressor air and combustion gases.
  • Sealing these interfaces presents challenges due to the excessive fluid temperatures and pressures, combined with relative axial and/or radial movement between the engine components.
  • Brush seals such as disclosed in United States Patent Number 6,910,857 , serial number 10/330,751, to Addis , provide a restriction to fluid leakage between components that are subject to relative axial and/or radial movement. Bristles with flexible ends bridge a gap between adjacent components and any relative movement is absorbed through deflection of the bristles. The tortuous path through the bristles achieves the restriction effect even as the gap distance changes.
  • Brush seal bristles are also susceptible to deflection due to fluid pressure loading. For this reason, back plates and side plates support the bristles along a majority of their length. The bristles are loaded against the back plate by the fluid pressure, thus preventing permanent deflection. The side plates are scalloped where they contact the bristles to provide a space for bristle flexure and to allow any frictional heat to dissipate out of the bristles.
  • brush seals are designed to have the bristles continuously loaded in one direction, against the back plates. Brush seals are used in applications where a continuous pressure differential exists. If a brush seal is installed in reverse or an unanticipated flow reversal occurs, the unsupported bristles will deflect under pressure. Bristle deflections eventually yield the bristle ends, reducing their sealing effectiveness and rendering them unacceptable for continued service. Reduced brush seal effectiveness will increase fluid leakage, engine fuel burn and, in turn, reduce an operator's profit until the brush seal is replaced. Removal and disassembly of a gas turbine engine for brush seal replacement is both costly and time consuming.
  • a sealing element has at least two brush stages to restrict leakage of a fluid through a gap between components to form a seal.
  • Each brush stage includes a bristle arrangement disposed between a back plate and a common mid plate.
  • a valve allows the fluid to bypass a bristle arrangement if the fluid pressure varies between the chambers.
  • a gas turbine engine 10 such as a turbofan gas turbine engine, circumferentially disposed about a longitudinal axis or axial centerline 12, is illustrated in Figure 1 .
  • the engine 10 includes a fan 14, low and high pressure compressor sections 16 and 17, a combustor section 18 and high and low pressure turbine sections 20 and 21.
  • This application extends to engines with a gear driven fan, and engines with more or fewer sections.
  • incoming ambient air 22 becomes pressurized air 23 in the compressors 16 and 17.
  • the pressurized air 23 is mixed with fuel and burned in the combustor section 18 and combustion gases 24 expand through turbine sections 20 and 21.
  • the turbine sections 20 and 21 drive high and low rotor shafts 26 and 27, which rotate in response to the combustion gases 24 and drive the attached compressor sections 16 and 17, and fan 14.
  • the combustion gases 24 are finally expelled from the rear of the engine 10 as a propulsive jet 28.
  • Seals located at the interfaces of the various components restrict leakage of the pressurized air, combustion gases and other fluids inside the engine 10. It is to be understood that this figure is included simply to provide a basic understanding and overview of the various sections and operation of a gas turbine engine. It will become apparent to those skilled in the sealing art that the present application is applicable to all types of gas turbine engines, as well as other mechanical devices.
  • a sealing element 32 extends between a supporting structure 34 and a sealing surface 36.
  • the sealing surface 36 may contain a wear resistant coating layer applied to a component such as a shaft.
  • the supporting structure 34 and/or sealing surface 36 may be stationary or rotating in relation to one another. If both the support structure 34 and sealing surface 36 are rotating, they may co-rotate or counter rotate.
  • the sealing element 32 provides a restriction of pressurized fluid F through a gap 38 between first 40 and second 42 cavities of pressures P1 and P2 respectively.
  • fluid pressure P1 is greater than pressure P2
  • fluid pressure P2 is greater than pressure P1.
  • the fluid F transfers from the higher pressure cavity to the lower pressure cavity.
  • the sealing element 32 illustrated in Figures 2 and 3 at least two bristle arrangements 44 are sandwiched between a central, mid plate 46 and outer back plates 48.
  • the mid plate 46 and back plates 48 are made from high strength, corrosion resistant materials such as Nickel based alloy, Stainless Steel or similar material for example.
  • the mid plate 46, bristle arrangement 44 and back plate 48 create a single brush stage 50 restrictor to the transfer of fluid F.
  • the mid plate 46 may contain scallops 52 at the bristle arrangement 44 interface to allow for bristle arrangement 44 deflection and the dissipation of excess heat due to friction.
  • the mid plate 46 is shown as a single element in the Figures, it may in fact be two separate, abutting plates.
  • the bristle arrangements 44 comprise a multitude of individual wires made from a high strength, corrosion resistant material such as Nickel based alloy, Stainless Steel or similar material for example.
  • the bristle arrangements 44 have free ends 54 extending beyond the back plates 48, bridging the gap 38, and contacting the sealing surface 36.
  • the bristle arrangements 44 are typically canted at an angle to the sealing surface 36 to allow flexibility and to reduce wear on the sealing surface 36.
  • a bypass chamber 56 is formed between the mid plate 46, the free ends 54 and the sealing surface 36. Opposite the free ends 54 are fixed ends 58, which are sandwiched between the mid 46 and back 48 plates.
  • the bristle arrangements 44 may be joined to the plates 46, 48 at a joint 60 such as weld, solder or braze (shown), or by clamping means (not shown). Examples of applicable clamping means are disclosed in United States Patent number 7,000,923 , serial number 10/754,955, to Addis , and United States Patent Application number 2006/0125190 , serial number 11/011,230 , to Addis, each herein incorporated by reference.
  • the bristle arrangements 44 may be independently formed prior to sandwiching as disclosed in United States Patent number 6,996,885 , serial number 10/103,629, to Szymbor and Addis , herein incorporated by reference.
  • a carrier 62 extends across the brush stages 50, with end surfaces 64 exposed to the first and second chambers 40, 42.
  • the carrier 62 is joined to the brush stages 50 at weld joint 60 (shown) or may be joined by other means such as bolting, riveting or clamping (not shown).
  • the carrier 62 is affixed to the support structure 34 by bolts 66 (shown), or other means known in the art (not shown).
  • a bypass valve 70 in the sealing element 32 allows the fluid F to bypass a bristle arrangement 44 when the fluid pressures P1 and P2 vary.
  • a pressure conduit 72 in the carrier 62 fluidly couples each of the first 40 and second 42 chambers via inlet apertures 74 at each end surface 64.
  • the spherical ball 76 is made of stainless steel, composite material, or other suitable material.
  • the pressure conduit 72 is appropriately sized to ensure that the spherical ball 76 freely rolls along its length.
  • Concave seats 80 transition the pressure conduit 72 to the inlet apertures 74 and are sized to allow the spherical ball 76 to mate with the seats 80, thus blocking the inlet apertures 74.
  • a bypass conduit 82 in the mid plate 46 fluidly couples the pressure conduit 72 to the bypass chamber 56.
  • a sealing element 32 may contain a single bypass valve 70 or preferably, several bypass valves 70 are spaced between the first 40 and second 42 chambers.
  • the individual elements of the bypass valve 70 are sized to ensure the bypass valve 70 does not create a restriction to fluid F transfer itself.
  • the cross sectional areas of each of the inlet 74, pressure conduit 72 and bypass and bypass conduit 82 are sized to permit unrestricted fluid F transfer. This is especially important where larger P1 to P2 pressure differentials exist.
  • the pressure P3 of the bypass chamber 56 now equals the pressure P1 of the first chamber 40. Since the pressure P3 of the bypass chamber 56 is now higher than the pressure P2 of the second chamber 42, the free ends 54 of the bristle arrangement 44 adjacent to the second chamber 42 are properly loaded against the back plate 48. Please note that the free ends of the bristle arrangement 44 adjacent to the first chamber 40 are unloaded since the pressure P3 of the bypass chamber 56 is now equal to the pressure P1 of the first chamber.
  • valve 70 when pressure P2 is higher than pressure P1 is disclosed in greater detail.
  • the higher pressure P2 of the second chamber 42 forces the fluid F to enter the pressure conduit 72 through the inlet aperture 74 adjacent to the second chamber 42.
  • the force of higher pressure P2 acts on the spherical ball 76, causing it to roll in the pressure conduit 72, until it mates with the seat 80.
  • the spherical ball 76 blocks the inlet aperture 74 adjacent to the first chamber 40, which is at a lower pressure P1.
  • the fluid F cannot exit the pressure conduit 72 and must enter the bypass conduit 82.
  • the fluid F travels through the mid plate 46 into the bypass chamber 56.
  • the pressure P3 of the bypass chamber 56 now equals the pressure P2 of the second chamber 42. Since the pressure P3 of the bypass chamber 56 is now higher than the pressure P1 of the first chamber 40, the free ends 54 of the bristle arrangement 44 adjacent to the first chamber 40 are properly loaded against the back plate 48. Please note that the free ends of the bristle arrangement 54 adjacent to the second chamber 42 are unloaded since the pressure P3 of the bypass chamber 56 is now equal to the pressure P2 of the second chamber 42.
  • the free ends 54 of the bristle arrangements 44 are unaffected by fluid F direction reversals caused by fluctuations in pressure P1 and P2.
  • the bristle arrangement 44 adjacent to the first chamber 40 is bypassed and in Figure 3 the bristle arrangement 44 adjacent to the second chamber 42 is bypassed.
  • the free ends 54 of the downstream bristle arrangements 44 are properly loaded against the back plate 48 and the upstream bristle arrangements 44 are unloaded. By preventing the bristle arrangements 44 from being loaded against the scalloped mid plate 46, they are not permanently damaged and remain in operational service.
  • the sealing element 32 may be linear ( Figure 4 ), a segmented arc ( Figure 5 ), or a full ring ( Figure 6 ) respectively.
  • the configuration of the sealing element 32 depends on the location of the components to be sealed and the sequence of assembly. For example, if a sealing element 32 installs around an existing shaft, it will preferably be made of a segmented arc as in Figure 5 . Feather seals or shiplap seals, or similar sealing means will seal the gaps between adjacent segments.
  • the sealing elements 32 may be oriented with the spherical ball 76 rolling horizontally, vertically or at any another angle as long as the pressure differential P1 to P2 is strong enough to overcome the mass of the spherical ball. This is especially true in a vertical orientation, where the spherical ball 76 will generally seek the lowest seat 80 position.
  • seal assembly 30 and sealing element 32 of the present application are suited for installations where fluid F reversals are known to occur.
  • New sealing installations where insufficient data exists to determine if the fluid F direction under all operating conditions, will similarly benefit from the present application.
  • sealing applications where fluid F reversals infrequently occur, but occur with damaging results, will equally benefit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP08250634A 2007-02-27 2008-02-25 Joint à brosse tolérant le flux inverse Expired - Fee Related EP1965108B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/711,583 US7458584B2 (en) 2007-02-27 2007-02-27 Reverse flow tolerant brush seal

Publications (2)

Publication Number Publication Date
EP1965108A1 true EP1965108A1 (fr) 2008-09-03
EP1965108B1 EP1965108B1 (fr) 2011-10-12

Family

ID=39462149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08250634A Expired - Fee Related EP1965108B1 (fr) 2007-02-27 2008-02-25 Joint à brosse tolérant le flux inverse

Country Status (2)

Country Link
US (1) US7458584B2 (fr)
EP (1) EP1965108B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064001A2 (fr) * 2008-12-04 2010-06-10 Schlumberger Holdings Limited Joints d'étanchéité et méthodes d'utilisation
EP2357385A1 (fr) * 2010-02-16 2011-08-17 General Electric Company Joint à brosse activé par ressort tolérant le flux inverse
EP2570706A1 (fr) * 2011-09-13 2013-03-20 Rolls-Royce plc Joint à brosse

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324709A1 (de) * 2003-05-30 2004-12-16 Mtu Aero Engines Gmbh Bürstendichtung zum Abdichten relativ zueinander beweglicher Bauteile gegenüber einem Druckgefälle
US8146922B2 (en) * 2008-06-25 2012-04-03 Dresser-Rand Company Shaft isolation seal
US8657573B2 (en) 2010-04-13 2014-02-25 Rolls-Royce Corporation Circumferential sealing arrangement
US20130033008A1 (en) * 2011-08-03 2013-02-07 General Electric Company Outward bristle brush seal design for gas turbine application
US8932001B2 (en) * 2011-09-06 2015-01-13 General Electric Company Systems, methods, and apparatus for a labyrinth seal
US9097129B2 (en) 2012-05-31 2015-08-04 United Technologies Corporation Segmented seal with ship lap ends
US9121299B2 (en) * 2013-06-05 2015-09-01 General Electric Company Axially retractable brush seal system
US9863538B2 (en) 2015-04-27 2018-01-09 United Technologies Corporation Gas turbine engine brush seal with supported tip
US11619138B2 (en) * 2021-04-30 2023-04-04 Raytheon Technologies Corporation Double brush seal assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778431A1 (fr) * 1995-12-09 1997-06-11 Rolls-Royce Plc Joint brosse
US6250879B1 (en) * 1999-10-15 2001-06-26 General Electric Company Brush seal
US6416057B1 (en) * 1999-04-16 2002-07-09 Flowserve Management Company Brush seal
US6910857B2 (en) 2002-12-26 2005-06-28 United Technologies Corporation Seal
US6996885B2 (en) 2002-03-20 2006-02-14 United Technologies Corporation Method of making bristle arrangement for brush seal
US7000923B2 (en) 2004-01-09 2006-02-21 United Technologies Corporation Quick build brush seals
DE102004047206A1 (de) * 2004-09-29 2006-04-06 Mtu Aero Engines Gmbh Dichtungsanordnung
US20060125190A1 (en) 2004-12-14 2006-06-15 United Technologies Corporation Clamp lock brush seal assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346008A (en) * 1964-03-16 1967-10-10 Scaramucci Domer Ball check valve
CH550348A (de) * 1972-10-11 1974-06-14 Bbc Brown Boveri & Cie Sperrmedium-labyrinthdichtung.
US4243067A (en) * 1979-11-15 1981-01-06 Sterling Drug Inc. Ball type check valve
US4781213A (en) * 1987-11-16 1988-11-01 Kilayko Enrique L Ball check valve
GB2250789B (en) * 1990-12-12 1994-03-30 Rolls Royce Plc Brush seal arrangement
US5732731A (en) * 1996-09-24 1998-03-31 Fmc Corporation Secondary seal bypass valve for gate valves
US6428009B2 (en) * 2000-04-03 2002-08-06 John F. Justak Robust hydrodynamic brush seal
US6505834B1 (en) * 2001-11-02 2003-01-14 General Electric Company Pressure actuated brush seal
US7052015B2 (en) * 2002-08-06 2006-05-30 United Technologies Corporation Cooling arrangement for brush seal
GB2393766A (en) * 2002-10-03 2004-04-07 Alstom A sealing arrangement for a turbine
US6991235B2 (en) * 2003-11-07 2006-01-31 The Boeing Company Gas-buffered seal assembly and method therefor
US7033134B2 (en) * 2004-02-24 2006-04-25 Honeywell International, Inc. Air turbine starter having a force balanced, pressure energized, weighted check valve
JP4776249B2 (ja) * 2005-02-25 2011-09-21 株式会社東芝 液体の軸封装置とその軸封装置を用いた回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778431A1 (fr) * 1995-12-09 1997-06-11 Rolls-Royce Plc Joint brosse
US6416057B1 (en) * 1999-04-16 2002-07-09 Flowserve Management Company Brush seal
US6250879B1 (en) * 1999-10-15 2001-06-26 General Electric Company Brush seal
US6996885B2 (en) 2002-03-20 2006-02-14 United Technologies Corporation Method of making bristle arrangement for brush seal
US6910857B2 (en) 2002-12-26 2005-06-28 United Technologies Corporation Seal
US7000923B2 (en) 2004-01-09 2006-02-21 United Technologies Corporation Quick build brush seals
DE102004047206A1 (de) * 2004-09-29 2006-04-06 Mtu Aero Engines Gmbh Dichtungsanordnung
US20060125190A1 (en) 2004-12-14 2006-06-15 United Technologies Corporation Clamp lock brush seal assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064001A2 (fr) * 2008-12-04 2010-06-10 Schlumberger Holdings Limited Joints d'étanchéité et méthodes d'utilisation
WO2010064001A3 (fr) * 2008-12-04 2010-09-10 Schlumberger Holdings Limited Joints d'étanchéité et méthodes d'utilisation
US8376366B2 (en) 2008-12-04 2013-02-19 Schlumberger Technology Corporation Sealing gland and methods of use
EP2357385A1 (fr) * 2010-02-16 2011-08-17 General Electric Company Joint à brosse activé par ressort tolérant le flux inverse
EP2570706A1 (fr) * 2011-09-13 2013-03-20 Rolls-Royce plc Joint à brosse

Also Published As

Publication number Publication date
EP1965108B1 (fr) 2011-10-12
US20080203671A1 (en) 2008-08-28
US7458584B2 (en) 2008-12-02

Similar Documents

Publication Publication Date Title
EP1965108B1 (fr) Joint à brosse tolérant le flux inverse
EP3249169B1 (fr) Scellement d'air de moteur par des joints d'étanchéité en série
US7316402B2 (en) Segmented component seal
EP2357385B1 (fr) Joint à brosse activé par ressort tolérant le flux inverse
EP1832715B1 (fr) Joint d'étanchéité pour des composants segmentés de turbine à gaz
EP3447344B1 (fr) Joint hydrostatique sans contact à double matériau
EP3418610B1 (fr) Joint hydrostatique sans contact comportant une poche de réduction de poids
EP3115659A1 (fr) Ensemble d'étanchéité sans contact pour équipement de rotation avec une liaison entre rotors adjacents
EP1130294B1 (fr) Joint à brosses suivant la surface
EP3447343B1 (fr) Joint à brosse comprenant une plaque de support coulissante
EP1892381A2 (fr) Dispositif d'étanchéité
CN105051351A (zh) 用于密封间隙的密封元件
US6250879B1 (en) Brush seal
US10060288B2 (en) Multi-flow cooling passage chamber for gas turbine engine
EP3550184B1 (fr) Joint à brosse multiplans
US10662797B2 (en) Multi-plane brush seal
EP3550185B1 (fr) Joint à brosse comprenant une plaque de support coulissante
US10502080B2 (en) Rotating labyrinth M-seal
US20230383670A1 (en) Turbine engine with a floating seal assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090206

17Q First examination report despatched

Effective date: 20090326

AKX Designation fees paid

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008010366

Country of ref document: DE

Effective date: 20111208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008010366

Country of ref document: DE

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130220

Year of fee payment: 6

Ref country code: DE

Payment date: 20130220

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008010366

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008010366

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140225

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902