EP1962693A1 - Ophthalmological measuring system and method for determining the biometric data of an eye - Google Patents

Ophthalmological measuring system and method for determining the biometric data of an eye

Info

Publication number
EP1962693A1
EP1962693A1 EP06818939A EP06818939A EP1962693A1 EP 1962693 A1 EP1962693 A1 EP 1962693A1 EP 06818939 A EP06818939 A EP 06818939A EP 06818939 A EP06818939 A EP 06818939A EP 1962693 A1 EP1962693 A1 EP 1962693A1
Authority
EP
European Patent Office
Prior art keywords
measuring
eye
evaluation unit
ophthalmological
measuring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06818939A
Other languages
German (de)
French (fr)
Inventor
Roland Bergner
Ingo Koschmieder
Wilfried Bissmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Carl Zeiss Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Meditec AG filed Critical Carl Zeiss Meditec AG
Publication of EP1962693A1 publication Critical patent/EP1962693A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Definitions

  • the present invention relates to an ophthalmological measuring system with which biometric data of an eye can be determined.
  • biometric data of an eye there are a number of known methods and measuring devices. For example, it is necessary to determine different biometric parameters of the eye before surgery to replace the eye lens in the presence of lens opacification (cataract). In order to ensure the best possible vision after surgery, it is necessary to determine these parameters with correspondingly high accuracy.
  • the selection of a suitable replacement lens based on the measured values is based on established formulas and calculation methods.
  • the most important parameters to be determined are u. a. the axial length (distance to the retina), the corneal curvature and refractive power, as well as the length of the anterior chamber (distance to the eye lens). These readings can be obtained sequentially on different ophthalmic devices or with the help of specially optimized biometric gauges.
  • ultrasound measuring instruments and optical measuring instruments based on short-coherent methods have prevailed in particular.
  • the ultrasound devices there are two different embodiments, which operate according to either the so-called “A-scan” principle or the “B-scan” principle. While the A-scan only provides a measurement in the axial direction, the B-scan performs an additional measurement in the transverse direction.
  • the ultrasound procedure always requires direct contact with the eye.
  • DE 42 35 079 C2 a device for examining the eye, in particular of the human eye is described, which is essentially a frusto-conical holder, adapted to the eye shape inside a probe for the evaluation of acoustic (ultrasonic) Signals has.
  • the probe is inclined relative to the central axis of the holder and suitable both for transmitting and for receiving pulse-shaped signals.
  • the specific disadvantages of determining the biometric data of an eye with ultrasound devices are on the one hand in a lower accuracy and on the other hand in the need for direct contact with the eye.
  • the measured values can be falsified by indentation of the eye.
  • the use of the immersion operation in which the ultrasonic waves are conducted into the eye via a funnel filled with water and placed on the eye, can reduce these disadvantages, the main disadvantages of this measuring method remain.
  • optical images of the structure transitions are represented as two-dimensional depth cross-sectional images in the optical measuring devices on the basis of short-coherent methods.
  • OCT optical coherence tomography
  • the basic principle of the OCT method is based on white-light interferometry and compares the propagation time of a signal using an interferometer (usually Michelson interferometer).
  • the interference of the signals from both arms gives a pattern from which one can read the relative optical path length within an A-scan (single depth signal).
  • the beam is then transversely guided in one or two directions analogously to the ultrasound technique, with which a planar B-scan or a three-dimensional tomogram (C-scan) can be recorded.
  • the amplitude values of the individual scans are displayed in logarithmized greyscale or false color values. For example, a one-second measurement time is required for a B-scan consisting of 100 individual A-scans.
  • the measurement resolution of the OCT method is determined by the so-called coherence length of the light source used and is typically about 15 ⁇ m. Because of its particular suitability for the examination of optically transparent media, the method is widely used in ophthalmology.
  • the OCT method used in ophthalmology has become popular in two different types.
  • the length of the reference arm is changed in the first type and the intensity of the interference is continuously measured without taking the spectrum into account.
  • This method is referred to as the "time domain” method, while the other method, referred to as the "frequency domain", takes the spectrum into account and determines the interference of the individual spectral components in order to determine the measured values. Therefore one speaks on the one hand of the signal in the time domain (Time Domain) and on the other hand of the signal in the frequency domain (Frequency Domain).
  • the advantage of the "Frequency DomairV" method is the simple and fast simultaneous measurement, where complete information about the depth can be determined without the need for moving parts. This increases stability and speed.
  • the big technological advantage of the OCT is the decoupling of the depth resolution from the transversal resolution. In contrast to microscopy, this allows the three-dimensional structure of the object to be examined to be detected.
  • the purely reflective and thus non-contact measurement enables the generation of microscopic images of living tissue (in vivo).
  • the measured values are processed in the device and proposals made for replacement lenses to be used. These depend on the formulas used for the calculation and the type of lenses available (manufacturer-specific). There is the possibility or need to include the post-operative results on the optimization of constants in the calculation formulas to account for individual influences in the operation and the measurement technique used. All measured values, data and formulas are managed, analyzed and stored in databases and software programs. In some cases, these solutions are integrated into networks that can be used to connect a wide range of other applications. In the case of optical measuring instruments based on short-coherent methods, the interferometer principle is used according to the dual beam method. This method is non-contact and works with the highest accuracy. Solutions based on this measuring principle are described, for example, in DE 198 12 297 C2, DE 103 60 570 A1 and WO 2004/071286 A1.
  • the disadvantages mentioned in the ultrasonic devices are avoided by the optical method, in particular the high accuracy (interferometer) and the patient-friendliness are to be emphasized.
  • the disadvantage here proves that about 10 to 20 percent of patients are not measurable because z. B. the scattering in dense cataracts attenuates the measurement signal too strong and the laser power can not be increased as desired due to the limits to be met by the eye. In these cases, it is also possible that the patient can no longer perceive the fixation point and a measurement becomes difficult.
  • the object of the present invention is to develop a solution which avoids the disadvantages of the prior art and enables biometric measurement data of an eye to be determined with high reliability and accuracy even under difficult conditions.
  • the present technical solution is to determine the biometric data of an eye in the context of the pre-operative determination of the exchange or Additional lenses or refractive intervention provided, the measured values can be determined under difficult conditions with high reliability and accuracy.
  • the proposed solution can be used to determine the position of the anterior chamber and crystalline lens, the shape of the anterior surface of the cornea of the human eye (keratometric measurement) and the thickness of the cornea (pachymetry measurement).
  • Figure 1 an ophthalmological measuring system as a coupling of a
  • Figure 2 an ophthalmological measuring system in which a
  • Ultrasonic-based and a short-coherent method-based optical measuring device are integrated.
  • the ophthalmological measuring system according to the invention for determining the biometric data of an eye in the context of the pre-operative determination of the replacement or additional lens or refractive interventions consists of a combination of an ultrasound-based measuring device and an optical measuring device and an evaluation unit.
  • measured values of the optical and / or the ultrasound measuring device are used by the evaluation unit for determining the biometric data of an eye.
  • a Scheimpflug camera or else an optical measuring device based on short-coherent methods such as, for example, a LOLMaster® (Carl Zeiss Meditec AG)
  • a Scheimpflug camera can generate 2-D images of the anterior segment of the eye and measure distances in this region of the eye
  • the lOLMaster® is used to precisely determine the axial length, anterior chamber depth and corneal refractive power.
  • the measured values obtained by the evaluation unit of both measuring devices are used for mutual calibration, with preferably sample eyes being used.
  • the required transfer of the measured values is preferably effected via a data connection which connects the evaluation unit to both measuring devices.
  • both measuring devices are integrated into one device, as a result of which the ophthalmological measuring system becomes compact and easier to handle.
  • This has the further advantage that certain system components such as PC, monitor, as well as u. Output units can be shared.
  • FIG. 1 The illustrated in Figure 1 combination of an ultrasound-based measuring device 1 (acoustic imaging method for displaying the front and / or rear eye portions) and a short-coherent method based optical measuring device 2 (optical imaging method for displaying the front and / or rear eye portions)
  • a particularly advantageous ophthalmological measuring system is used, wherein a LOLMaster® from Carl Zeiss Meditec AG is preferably used as the optical measuring device 2.
  • a comprehensive diagnosis or clarification of unexpected or unclear results is possible.
  • 2D or 3D representations of the examined eye are determined and evaluated by the evaluation unit 3 from the measured values determined. The required transfer of the measured values takes place via data connection 4, which connects the evaluation unit 3 with both measuring devices 1 and 2.
  • FIG. 2 shows an ophthalmological measuring system in which an ultrasound-based optical measuring device based on a short-coherent method is integrated.
  • biometric data of an eye determined by the ophthalmological measuring system can advantageously be forwarded to other devices downstream of the treatment, such as surgical microscopes, within the scope of the pre-operative determination of the replacement or additional lens or refractive interventions.
  • an evaluation unit is supplied with measured values of an ultrasound-based measuring device and / or an optical measuring device, from which the evaluation unit Parameters of the lenses to be implanted are determined using known formulas and calculation methods.
  • the biometric data determined by the evaluation unit on the basis of measured values of both measuring devices are compared with one another. This has the advantage that possible incorrect measurements can be detected and corrected. If there are major differences between the measured values of both measuring devices, it is always advisable to make a 2D representation of the eye in order to be able to determine causes of faulty measuring results. Possible causes of such differences may be retinal detachments or staphylomas. Also, in pseudephak eye artifacts in the various measurement methods can occur, which can lead to erroneous interpretation to erroneous measurement results.
  • the measured values obtained from both measuring devices for mutual calibration, sample probes preferably being used. Also, the obtained measured values of both measuring instruments are used to optimize the lens constants.
  • the measurement data of two separate measuring devices are further processed by the evaluation unit of the respective measuring device and the measurement results are transferred to the respective other measuring device via a data connection.
  • the solution according to the invention provides an ophthalmological measuring system and a method for determining the biometric data of an eye, with which measured values can be determined with high reliability and accuracy even under difficult conditions.
  • the combination of the existing specific disadvantages of the various measurement methods can be at least partially compensated without losing their benefits.
  • the very high accuracy of the optical measuring method with corresponding non-contact measured value determination remains as well as the possibility of using ultrasound-based measuring methods under difficult conditions, such as dense cataract. By comparing the measured values of both methods, the reliability and accuracy of the measured values can be additionally increased.
  • the combination of different measuring systems thus enables a complete examination or diagnosis of a patient at a measuring station, so that the patient neither needs to be implemented, nor further measurements on repetitive dates are required.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

The invention relates to an ophthalmological measuring system for obtaining the biometric data of an eye. The inventive ophthalmological measuring system for obtaining the biometric data of an eye in view of the pre-operative determination of the replacement lens or supplementary lens or refractive operations consists of a combination of a measuring instrument (1) based on ultrasound, an optical measuring instrument (2), and an evaluation unit (3), measuring values of the optical measuring instrument (2) and/or of the measuring instrument (1) based on ultrasound being used by the evaluation unit (3) for determining the biometric data of an eye. The present technical solution enables the biometric data of an eye to be obtained in a highly reliable and highly precise manner, even under difficult conditions. Furthermore, keratometric and/or pachymetric measurements can also be carried out. The combination of different measuring systems enables a complete examination or diagnosis of a patient on a measuring table, so that the patient does not need to be moved, or have to come back at a later date for more measurements.

Description

Ophthalmologisches Messsystem und Verfahren zur Ermittlung der biometrischen Daten eines AugesOphthalmological measuring system and method for determining the biometric data of an eye
Die vorliegende Erfindung betrifft ein ophthalmologisches Messsystem, mit dem biometrische Daten eines Auges bestimmt werden können.The present invention relates to an ophthalmological measuring system with which biometric data of an eye can be determined.
Zur Bestimmung der biometrischen Daten eines Auges gibt es eine Reihe bekannter Verfahren und Messgeräte. Beispielsweise ist es erforderlich vor einem operativen Eingriff zum Austausch der Augenlinse bei Vorliegen einer Linsentrübung (Katarakt) verschiedene biometrische Parameter des Auges zu bestimmen. Um ein möglichst optimales Sehvermögen nach der Operation zu gewährleisten, ist es notwendig diese Parameter mit entsprechend hoher Genauigkeit zu bestimmen. Die Auswahl einer geeigneten Ersatzlinse anhand der ermittelten Messwerte erfolgt anhand etablierter Formeln und Berechnungsmethoden.To determine the biometric data of an eye, there are a number of known methods and measuring devices. For example, it is necessary to determine different biometric parameters of the eye before surgery to replace the eye lens in the presence of lens opacification (cataract). In order to ensure the best possible vision after surgery, it is necessary to determine these parameters with correspondingly high accuracy. The selection of a suitable replacement lens based on the measured values is based on established formulas and calculation methods.
Die wichtigsten, zu ermittelnden Parameter sind u. a. die Achslänge (Abstand bis zur Retina), die Hornhautkrümmung und -brechkraft, sowie die Länge der Vorderkammer (Abstand bis zur Augenlinse). Diese Messwerte können nacheinander an verschiedenen ophthalmologischen Geräten oder mit Hilfe speziell optimierter, biometrischer Messgeräte gewonnen werden.The most important parameters to be determined are u. a. the axial length (distance to the retina), the corneal curvature and refractive power, as well as the length of the anterior chamber (distance to the eye lens). These readings can be obtained sequentially on different ophthalmic devices or with the help of specially optimized biometric gauges.
Zur Ermittlung dieser Parameter haben sich vor allem Ultraschallmessgeräte und optische Messgeräte auf der Basis kurzkohärenter Verfahren durchgesetzt.For the determination of these parameters, ultrasound measuring instruments and optical measuring instruments based on short-coherent methods have prevailed in particular.
Bei den Ultraschallgeräten gibt es zwei verschiedene Ausführungsformen, die entweder nach dem sogenannten „A-scan"-Prinzip oder nach dem „B-scan"- Prinzip arbeiten. Während der A-scan nur eine Messung in axialer Richtung vorsieht, erfolgt beim B-Scan eine zusätzliche Messung in transversaler Richtung. Das Ultraschallverfahren erfordert grundsätzlich direkten Kontakt zum Auge. In der DE 42 35 079 C2 wird hierzu eine Vorrichtung zum Untersuchen des Auges, insbesondere des menschlichen Auges beschrieben, die im wesentlichen einen kegelstumpfförmigen Halter, mit an das Auge angepasster Form darstellt, der im Innern über eine Sonde zur Auswertung akustischer (Ultraschall-) Signale verfügt. Die Sonde ist dabei gegenüber der Mittelachse des Halters geneigt angeordnet und sowohl zum Senden als auch zum Empfangen von pulsförmigen Signalen geeignet.In the case of the ultrasound devices, there are two different embodiments, which operate according to either the so-called "A-scan" principle or the "B-scan" principle. While the A-scan only provides a measurement in the axial direction, the B-scan performs an additional measurement in the transverse direction. The ultrasound procedure always requires direct contact with the eye. In DE 42 35 079 C2 a device for examining the eye, in particular of the human eye is described, which is essentially a frusto-conical holder, adapted to the eye shape inside a probe for the evaluation of acoustic (ultrasonic) Signals has. The probe is inclined relative to the central axis of the holder and suitable both for transmitting and for receiving pulse-shaped signals.
Die spezifischen Nachteile einer Bestimmung der biometrischen Daten eines Auges mit Ultraschallgeräten liegen zum einen in einer geringeren Genauigkeit und zum anderen in der Notwendigkeit des direkten Kontaktes zum Auge. Hierbei können die Messwerte durch Eindellung des Auges verfälscht werden. Durch die Anwendung des Immersionsbetriebes, bei dem die Ultraschallwellen über einen mit Wasser gefüllten, auf das Auge aufgesetzten Trichter in das Auge geleitet werden, können diese Nachteile zwar verringert werden, jedoch bleiben die Hauptnachteile dieses Messverfahrens bestehen.The specific disadvantages of determining the biometric data of an eye with ultrasound devices are on the one hand in a lower accuracy and on the other hand in the need for direct contact with the eye. Here, the measured values can be falsified by indentation of the eye. Although the use of the immersion operation, in which the ultrasonic waves are conducted into the eye via a funnel filled with water and placed on the eye, can reduce these disadvantages, the main disadvantages of this measuring method remain.
Diese liegen zum einen in der Notwendigkeit eines direkten Kontaktes zum Auge, welcher immer ein Risiko für die Übertragung von Infektionen beinhaltet und zum anderen ist es erforderlich das Auge für die Messwertbestimmung zu a- nästhesieren. Zur korrekten Auswahl einer Ersatzlinse ist zu gewährleisten, dass bei der Bestimmung der biometrischen Daten die Sehachse des Auges entsprechend ausgerichtet ist. Dafür sind bei Ultraschallgeräten spezielle Mittel vorzusehen, da eine Ausrichtung der Sehachse nicht automatisch erfolgt.These are on the one hand the need for a direct contact with the eye, which always involves a risk for the transmission of infections and on the other hand it is necessary to anesthetize the eye for the determination of the measured value. To correctly select a replacement lens, ensure that the visual axis of the eye is properly aligned when determining the biometric data. For this purpose, special means are to be provided for ultrasound devices, since an alignment of the visual axis does not take place automatically.
Analog zu den Ultraschallgeräten, bei denen anhand der akustischen Signale Bilder der Strukturübergänge rekonstruiert werden, werden bei den optischen Messgeräten auf der Basis kurzkohärenter Verfahren optische Bilder der Strukturübergänge als zweidimensionale Tiefenschnittbilder dargestellt. Als kurzkohärentes Messverfahren hat sich hierbei das sogenannte OCT-Verfahren (OCT=optical coherence tomography) durchgesetzt, bei dem zeitlich inkohären- tes Licht mit Hilfe eines Interferometers zur Entfernungsmessung reflektiver und streuender Materialien eingesetzt wird.Analogous to the ultrasound devices, in which images of the structure transitions are reconstructed on the basis of the acoustic signals, optical images of the structure transitions are represented as two-dimensional depth cross-sectional images in the optical measuring devices on the basis of short-coherent methods. As a short-coherent measuring method, the so-called OCT method (OCT = optical coherence tomography) has prevailed, in which incoherently Light is used with the help of an interferometer for distance measurement of reflective and scattering materials.
Das Grundprinzip des OCT-Verfahrens basiert auf der Weißlicht-Interferometrie und vergleicht die Laufzeit eines Signals mit Hilfe eines Interferometers (meist Michelson-Interferometer). Dabei wird der Arm mit bekannter optischer Weglänge (= Referenzarm) als Referenz zum Messarm herangezogen. Die Interferenz der Signale aus beiden Armen ergibt ein Muster, aus dem man die relative optische Weglänge innerhalb eines A-Scans (einzelnes Tiefensignal) herauslesen kann. In den eindimensionalen Rasterverfahren wird der Strahl dann, analog zur Ultraschalltechnik transversal in einer oder zwei Richtungen geführt, womit sich ein flächiger B-Scan oder ein dreidimensionales Tomogramm (C- Scan) aufnehmen lässt. Dabei werden die Amplitudenwerte der einzelnen A- scans in logarithmierten Graustufen- oder Falschfarbenwerten dargestellt. Beispielsweise wird für einen aus 100 einzelnen A-scans bestehenden B-scan eine Sekunde Messzeit benötigt.The basic principle of the OCT method is based on white-light interferometry and compares the propagation time of a signal using an interferometer (usually Michelson interferometer). The arm with known optical path length (= reference arm) is used as a reference to the measuring arm. The interference of the signals from both arms gives a pattern from which one can read the relative optical path length within an A-scan (single depth signal). In the one-dimensional scanning method, the beam is then transversely guided in one or two directions analogously to the ultrasound technique, with which a planar B-scan or a three-dimensional tomogram (C-scan) can be recorded. The amplitude values of the individual scans are displayed in logarithmized greyscale or false color values. For example, a one-second measurement time is required for a B-scan consisting of 100 individual A-scans.
Die Messauflösung des OCT-Verfahrens wird durch die sogenannte Kohärenzlänge der eingesetzten Lichtquelle bestimmt und liegt typischerweise bei etwa 15μm. Aufgrund seiner besonderen Eignung zur Untersuchung optisch transparenter Medien ist das Verfahren in der Ophthalmologie weit verbreitet.The measurement resolution of the OCT method is determined by the so-called coherence length of the light source used and is typically about 15 μm. Because of its particular suitability for the examination of optically transparent media, the method is widely used in ophthalmology.
Bei den in der Ophthalmologie verwendeten OCT-Verfahrens haben sich zwei verschiedene Typen durchgesetzt. Zur Bestimmung der Messwerte wird beim ersten Typ der Referenzarm in der Länge verändert und kontinuierlich die Intensität der Interferenz gemessen, ohne dass dabei das Spektrum berücksichtigt wird. Dieses Verfahren wird als „Time Domain"-Verfahren bezeichnet. Bei dem anderen, als „Frequency Domain" bezeichneten Verfahren, wird hingegen zur Bestimmung der Messwerte das Spektrum berücksichtigt und die Interferenz der einzelnen spektralen Komponenten erfasst. Deshalb spricht man einerseits vom Signal in der Zeitdomäne (Time Domain) und andererseits vom Signal in der Frequenzdomäne (Frequency Domain). Der Vorteil des „Frequency DomairV'-Verfahrens liegt in der einfachen und schnellen simultanen Messung, wobei vollständige Informationen über die Tiefe ermittelt werden können, ohne bewegliche Teile zu benötigen. Dies erhöht die Stabilität und die Geschwindigkeit.The OCT method used in ophthalmology has become popular in two different types. In order to determine the measured values, the length of the reference arm is changed in the first type and the intensity of the interference is continuously measured without taking the spectrum into account. This method is referred to as the "time domain" method, while the other method, referred to as the "frequency domain", takes the spectrum into account and determines the interference of the individual spectral components in order to determine the measured values. Therefore one speaks on the one hand of the signal in the time domain (Time Domain) and on the other hand of the signal in the frequency domain (Frequency Domain). The advantage of the "Frequency DomairV" method is the simple and fast simultaneous measurement, where complete information about the depth can be determined without the need for moving parts. This increases stability and speed.
Der große technologische Vorteil der OCT ist die Entkopplung der Tiefenauflösung von der transversalen Auflösung. Im Gegensatz zur Mikroskopie kann dadurch die dreidimensionale Struktur des zu untersuchenden Gegenstandes er- fasst werden. Die rein reflektive und damit berührungslose Messung ermöglicht die Erzeugung mikroskopischer Bilder von lebendem Gewebe (in vivo).The big technological advantage of the OCT is the decoupling of the depth resolution from the transversal resolution. In contrast to microscopy, this allows the three-dimensional structure of the object to be examined to be detected. The purely reflective and thus non-contact measurement enables the generation of microscopic images of living tissue (in vivo).
Aufgrund der hohen Selektivität des Wirkungsprinzips können sehr kleine Signale (unterhalb von Nanowatt) detektiert und einer bestimmten Tiefe zugeordnet werden. Damit eignet sich dieses Verfahren um lichtempfindliche Gewebe zu untersuchen. Der Einsatz der OCT-Verfahren wird durch die wellenlängenabhängige Eindringtiefe der elektromagnetischen Strahlung in das Untersuchungsobjekt, sowie durch die bandbreitenabhängige Auflösung beschränkt.Due to the high selectivity of the principle of action, very small signals (below nanowatt) can be detected and assigned to a specific depth. Thus, this method is suitable to investigate photosensitive tissue. The use of the OCT method is limited by the wavelength-dependent penetration depth of the electromagnetic radiation into the examination subject, as well as by the bandwidth-dependent resolution.
Bei den derzeit üblichen biometrischen Messgeräten werden die Messwerte im Gerät verarbeitet und Vorschläge für die zu verwendeten Austauschlinsen unterbreitet. Diese sind abhängig von den zur Berechnung verwendeten Formeln und dem Typ der verfügbaren (herstellerbedingten) Linsen. Es besteht die Möglichkeit bzw. Notwendigkeit die post operativen Ergebnisse über die Optimierung von Konstanten in den Berechnungsformeln einfließen zu lassen um individuelle Einflüsse bei der Operation sowie die verwendete Messtechnik zu berücksichtigen. Alle Messwerte, Daten und Formeln werden in Datenbanken und Softwareprogrammen verwaltet, analysiert und gespeichert. Teilweise sind diese Lösungen in Netzwerken integriert, mit denen vielfältige weitere Anwendungen verknüpft werden können. Bei den optischen Messgeräten auf der Basis kurzkohärenter Verfahren wird das Interferometerprinzip nach dem Dualbeamverfahren genutzt. Dieses Verfahren ist berührungslos und arbeitet mit derzeit höchster Genauigkeit. Auf diesem Messprinzip basierende Lösungen werden beispielsweise beschrieben in DE 198 12 297 C2, DE 103 60 570 A1 und WO 2004/071286 A1.In the currently used biometric measuring devices, the measured values are processed in the device and proposals made for replacement lenses to be used. These depend on the formulas used for the calculation and the type of lenses available (manufacturer-specific). There is the possibility or need to include the post-operative results on the optimization of constants in the calculation formulas to account for individual influences in the operation and the measurement technique used. All measured values, data and formulas are managed, analyzed and stored in databases and software programs. In some cases, these solutions are integrated into networks that can be used to connect a wide range of other applications. In the case of optical measuring instruments based on short-coherent methods, the interferometer principle is used according to the dual beam method. This method is non-contact and works with the highest accuracy. Solutions based on this measuring principle are described, for example, in DE 198 12 297 C2, DE 103 60 570 A1 and WO 2004/071286 A1.
Die bei den Ultraschallgeräten genannten Nachteile werden durch das optische Verfahren vermieden, insbesondere sind die hohe Genauigkeit (Interferometer) und die Patientenfreundlichkeit hervorzuheben. Nachteilig erweist sich jedoch hier, dass etwa 10 bis 20 Prozent der Patienten nicht messbar sind, weil z. B. die Streuung bei dichten Katarakten das Messsignal zu stark abschwächt und die Laserleistung aufgrund der einzuhaltenden Grenzwerte am Auge nicht beliebig erhöht werden kann. In diesen Fällen ist es auch möglich, dass der Patient den Fixierpunkt nicht mehr wahrnehmen kann und eine Messung schwierig wird.The disadvantages mentioned in the ultrasonic devices are avoided by the optical method, in particular the high accuracy (interferometer) and the patient-friendliness are to be emphasized. However, the disadvantage here proves that about 10 to 20 percent of patients are not measurable because z. B. the scattering in dense cataracts attenuates the measurement signal too strong and the laser power can not be increased as desired due to the limits to be met by the eye. In these cases, it is also possible that the patient can no longer perceive the fixation point and a measurement becomes difficult.
Bei beiden Verfahren kann es zusätzlich bei bestimmten pathologischen Veränderungen zu individuellen Problemen bei der Messwertgewinnung kommen. Im Ergebnis dieser negativen Einflüsse auf die Messung steigt das Risiko für Fehlentscheidungen bei der Auswahl einer geeigneten Austauschlinse.In both cases, certain pathological changes can lead to individual problems in obtaining the measured value. As a result of these negative influences on the measurement, the risk of wrong decisions in choosing a suitable replacement lens increases.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde eine Lösung zu entwickeln, mit der die Nachteile des Standes der Technik vermieden und biometrische Messdaten eines Auges auch unter schwierigen Bedingungen mit hoher Zuverlässigkeit und Genauigkeit ermittelt werden können.The object of the present invention is to develop a solution which avoids the disadvantages of the prior art and enables biometric measurement data of an eye to be determined with high reliability and accuracy even under difficult conditions.
Erfindungsgemäß wird die Aufgabe durch die Merkmale der unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.According to the invention the object is solved by the features of the independent claims. Preferred developments and refinements are the subject of the dependent claims.
Die vorliegende technische Lösung ist zur Ermittlung der biometrischen Daten eines Auges im Rahmen der pre-operativen Bestimmung der Austausch- oder Zusatzlinse oder refraktiver Eingriffe vorgesehen, wobei die Messwerte auch unter schwierigen Bedingungen mit hoher Zuverlässigkeit und Genauigkeit ermittelt werden können. Zusätzlich können mit der vorgeschlagenen Lösung die Position von Vorderkammer und Augenlinse, die Form der Vorderfläche der Hornhaut des menschlichen Auges (Keratometermessung) sowie die Dicke der Hornhaut (Pachymetriemessung) bestimmt werden.The present technical solution is to determine the biometric data of an eye in the context of the pre-operative determination of the exchange or Additional lenses or refractive intervention provided, the measured values can be determined under difficult conditions with high reliability and accuracy. In addition, the proposed solution can be used to determine the position of the anterior chamber and crystalline lens, the shape of the anterior surface of the cornea of the human eye (keratometric measurement) and the thickness of the cornea (pachymetry measurement).
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher beschrieben. Dazu zeigtThe invention will be described in more detail below with reference to exemplary embodiments. In addition shows
Figur 1 : ein ophthalmologisches Messsystem als Kopplung eines aufFigure 1: an ophthalmological measuring system as a coupling of a
Ultraschall basierenden sowie eines auf kurzkohärenten Verfahren basierenden optischen Messgerätes undUltrasonic-based and a short-coherent method-based optical measuring device and
Figur 2: ein ophthalmologisches Messsystem in welches ein aufFigure 2: an ophthalmological measuring system in which a
Ultraschall basierendes sowie ein auf kurzkohärenten Verfahren basierendes optisches Messgerät integriert sind.Ultrasonic-based and a short-coherent method-based optical measuring device are integrated.
Das erfindungsgemäße ophthalmologische Messsystem zur Ermittlung der biometrischen Daten eines Auges im Rahmen der pre-operativen Bestimmung der Austausch- oder Zusatzlinse oder refraktiver Eingriffe besteht aus einer Kombination eines auf Ultraschall basierenden Messgerätes sowie eines optischen Messgerätes und einer Auswerteeinheit. Dabei werden von der Auswerteeinheit zur Ermittlung der biometrischen Daten eines Auges Messwerte des optischen und/oder des Ultraschall-Messgerätes verwendet.The ophthalmological measuring system according to the invention for determining the biometric data of an eye in the context of the pre-operative determination of the replacement or additional lens or refractive interventions consists of a combination of an ultrasound-based measuring device and an optical measuring device and an evaluation unit. In this case, measured values of the optical and / or the ultrasound measuring device are used by the evaluation unit for determining the biometric data of an eye.
Als optisches Messgerät kann hierbei eine Scheimpflug-Kamera oder auch ein auf kurzkohärenten Verfahren basierendes optisches Messgerät, wie beispielsweise ein lOLMaster® (Carl Zeiss Meditec AG) verwendet werden. Während mit einer Scheimpflug-Kamera 2-D-Bilder der vorderen Augenabschnitte erzeugt und Abstände in diesem Bereich des Auges gemessen werden können, dient der lOLMaster® zur exakten Bestimmung von Achslänge, Vorderkammertiefe und Hornhautbrechkraft.In this case, a Scheimpflug camera or else an optical measuring device based on short-coherent methods, such as, for example, a LOLMaster® (Carl Zeiss Meditec AG), can be used as the optical measuring device. While a Scheimpflug camera can generate 2-D images of the anterior segment of the eye and measure distances in this region of the eye, the lOLMaster® is used to precisely determine the axial length, anterior chamber depth and corneal refractive power.
In einer vorteilhaften technischen Ausgestaltung werden die von der Auswerteeinheit gewonnenen Messwerte beider Messgeräte zur gegenseitigen Kalibrierung genutzt, wobei vorzugsweise Musteraugen Verwendung finden. Die dazu erforderliche Übergabe der Messwerte erfolgt vorzugsweise über Datenverbindung, die die Auswerteeinheit mit beiden Messgeräten verbindet.In an advantageous technical embodiment, the measured values obtained by the evaluation unit of both measuring devices are used for mutual calibration, with preferably sample eyes being used. The required transfer of the measured values is preferably effected via a data connection which connects the evaluation unit to both measuring devices.
In einer weiteren technischen Ausgestaltung sind beide Messgeräte in ein Gerät integriert, wodurch das ophthalmologische Messsystem kompakt und besser handhabbar wird. Dies hat weiterhin den Vorteil, dass bestimmte Systemkomponenten wie PC, Monitor, sowie Ein- u. Ausgabeeinheiten gemeinsam genutzt werden können.In a further technical embodiment, both measuring devices are integrated into one device, as a result of which the ophthalmological measuring system becomes compact and easier to handle. This has the further advantage that certain system components such as PC, monitor, as well as u. Output units can be shared.
Die in Figur 1 dargestellte Kombination eines auf Ultraschall basierenden Messgerätes 1 (akustisches bildgebendes Verfahren zur Darstellung der vorderen und/oder hinteren Augenabschnitte) und eines auf kurzkohärenten Verfahren basierendes optisches Messgerätes 2 (optisches bildgebendes Verfahren zur Darstellung der vorderen und/oder hinteren Augenabschnitte) stellt hierbei ein besonders vorteilhaftes ophthalmologisches Messsystem dar, wobei als optisches Messgerät 2 vorzugsweise ein lOLMaster® der Carl Zeiss Meditec AG verwendet wird. Mit diesem ophthalmologischen Messsystem ist eine umfassende Befundung bzw. Aufklärung unerwarteter oder unklarer Ergebnisse möglich. Vorzugsweise werden von der Auswerteeinheit 3 aus den ermittelten Messwerten 2D- oder 3D-Darstellungen des untersuchten Auges ermittelt und ausgewertet. Die dazu erforderliche Übergabe der Messwerte erfolgt über Datenverbindung 4, die die Auswerteeinheit 3 mit beiden Messgeräten 1 und 2 verbindet. Im Gegensatz dazu zeigt Figur 2 ein ophthalmologisches Messsystem in welches ein auf Ultraschall basierendes sowie ein auf kurzkohärenten Verfahren basierendes optisches Messgerät integriert sind.The illustrated in Figure 1 combination of an ultrasound-based measuring device 1 (acoustic imaging method for displaying the front and / or rear eye portions) and a short-coherent method based optical measuring device 2 (optical imaging method for displaying the front and / or rear eye portions) In this case, a particularly advantageous ophthalmological measuring system is used, wherein a LOLMaster® from Carl Zeiss Meditec AG is preferably used as the optical measuring device 2. With this ophthalmic measuring system a comprehensive diagnosis or clarification of unexpected or unclear results is possible. Preferably, 2D or 3D representations of the examined eye are determined and evaluated by the evaluation unit 3 from the measured values determined. The required transfer of the measured values takes place via data connection 4, which connects the evaluation unit 3 with both measuring devices 1 and 2. In contrast, FIG. 2 shows an ophthalmological measuring system in which an ultrasound-based optical measuring device based on a short-coherent method is integrated.
Die vom ophthalmologischen Messsystem ermittelten biometrischen Daten eines Auges können vorteilhafter Weise im Rahmen der pre-operativen Bestimmung der Austausch- oder Zusatzlinse oder refraktiver Eingriffe an andere, der Behandlung nachgeordnete Geräte, wie beispielsweise Operationsmikroskope weitergeleitet werden.The biometric data of an eye determined by the ophthalmological measuring system can advantageously be forwarded to other devices downstream of the treatment, such as surgical microscopes, within the scope of the pre-operative determination of the replacement or additional lens or refractive interventions.
Bei dem erfindungsgemäßen Verfahren zur Ermittlung der biometrischen Daten eines Auges im Rahmen der pre-operativen Bestimmung der Austausch- oder Zusatzlinse oder refraktiver Eingriffe werden einer Auswerteeinheit Messwerte eines auf Ultraschall basierenden Messgerätes und/oder eines optischen Messgerätes zugeführt werden, aus denen von der Auswerteeinheit die Parameter der zu implantierenden Linsen anhand bekannter Formeln und Berechnungsmethoden ermittelt werden.In the method according to the invention for determining the biometric data of an eye in the context of the pre-operative determination of the replacement or additional lens or refractive interventions, an evaluation unit is supplied with measured values of an ultrasound-based measuring device and / or an optical measuring device, from which the evaluation unit Parameters of the lenses to be implanted are determined using known formulas and calculation methods.
Die von der Auswerteeinheit anhand von Messwerten beider Messgeräte ermittelten biometrischen Daten werden miteinander verglichen. Dies hat den Vorteil, dass mögliche Fehlmessungen erkannt und korrigiert werden können. Bei vorhandenen größeren Differenzen zwischen den Messwerten beider Messgeräte ist es immer sinnvoll eine 2D-Darstellung des Auges anzufertigen, um Ursachen für fehlerbehaftete Messergebnisse ermitteln zu können. Mögliche Ursachen für solche Differenzen können Netzhautablösungen oder Staphylome sein. Auch können bei pseudephaken Augen Artefakte in den verschiedenen Messverfahren auftreten, welche bei falscher Interpretation zu fehlerbehafteten Messergebnissen führen können.The biometric data determined by the evaluation unit on the basis of measured values of both measuring devices are compared with one another. This has the advantage that possible incorrect measurements can be detected and corrected. If there are major differences between the measured values of both measuring devices, it is always advisable to make a 2D representation of the eye in order to be able to determine causes of faulty measuring results. Possible causes of such differences may be retinal detachments or staphylomas. Also, in pseudephak eye artifacts in the various measurement methods can occur, which can lead to erroneous interpretation to erroneous measurement results.
Weiterhin ist es zur Erhöhung der Sicherheit und Genauigkeit vorteilhaft, die gewonnenen Messwerte beider Messgeräte zur gegenseitigen Kalibrierung zu nutzen, wobei vorzugsweise Musteraugen verwendet werden. Auch können die gewonnenen Messwerte beider Messgeräte zur Optimierung der Linsenkonstanten verwendet werden.Furthermore, in order to increase the safety and accuracy, it is advantageous to use the measured values obtained from both measuring devices for mutual calibration, sample probes preferably being used. Also, the obtained measured values of both measuring instruments are used to optimize the lens constants.
In einer weiteren Ausgestaltung des Verfahrens werden die Messdaten zweier separater Messgeräte von der Auswerteeinheit des jeweiligen Messgerätes weiterverarbeitet und die Messergebnisse über eine Datenverbindung an das jeweils andere Messgerät übergeben.In a further embodiment of the method, the measurement data of two separate measuring devices are further processed by the evaluation unit of the respective measuring device and the measurement results are transferred to the respective other measuring device via a data connection.
Mit der erfindungsgemäßen Lösung wird ein ophthalmologisches Messsystem und ein Verfahren zur Ermittlung der biometrischen Daten eines Auges zur Verfügung gestellt, mit dem Messwerte auch unter schwierigen Bedingungen mit hoher Zuverlässigkeit und Genauigkeit ermittelt werden können. Durch die Kombination können die vorhandene spezifische Nachteile der verschiedenen Messverfahren zumindest teilweise kompensiert werden, ohne deren Vorteile zu verlieren. Die sehr hohe Genauigkeit der optischen Messverfahren bei entsprechender berührungslosen Messwertermittlung bleibt ebenso erhalten, wie die Einsatzmöglichkeit von auf Ultraschall basierenden Messverfahren unter schwierigen Bedingungen, wie beispielsweise dichtem Katarakt. Durch einen Vergleich der Messwerte beider Verfahren kann die Zuverlässigkeit und Genauigkeit der Messwerte zusätzlich erhöht werden.The solution according to the invention provides an ophthalmological measuring system and a method for determining the biometric data of an eye, with which measured values can be determined with high reliability and accuracy even under difficult conditions. The combination of the existing specific disadvantages of the various measurement methods can be at least partially compensated without losing their benefits. The very high accuracy of the optical measuring method with corresponding non-contact measured value determination remains as well as the possibility of using ultrasound-based measuring methods under difficult conditions, such as dense cataract. By comparing the measured values of both methods, the reliability and accuracy of the measured values can be additionally increased.
Die Kombination verschiedener Messsysteme ermöglicht somit eine komplette Untersuchung bzw. Befundung eines Patienten an einem Messplatz, so dass der Patient weder umgesetzt werden braucht, noch weitere Messungen an Wiederholungsterminen erforderlich sind.The combination of different measuring systems thus enables a complete examination or diagnosis of a patient at a measuring station, so that the patient neither needs to be implemented, nor further measurements on repetitive dates are required.
Durch Ermittlung einer Vielzahl verschiedener biometrischer Daten eines Auges wird eine Verbesserung der Charakterisierung des Sehvermögens des Patienten ermöglicht und die daraus abzuleitenden Auswahl von Ersatz- oder refrakti- ven Zusatzlinsen wird sicherer. By identifying a large number of different biometric data of one eye, it is possible to improve the characterization of the patient's vision and the selection of alternative or refractive additional lenses derived therefrom becomes safer.

Claims

Patentansprüche claims
1. Ophthalmologisches Messsystem zur Ermittlung der biometrischen Daten eines Auges im Rahmen der pre-operativen Bestimmung der Austauschoder Zusatzlinse oder refraktiver Eingriffe, bestehend aus einer Kombination eines auf Ultraschall basierenden Messgerätes (1) sowie eines optischen Messgerätes (2) und einer Auswerteeinheit (3), bei dem von der Auswerteeinheit (3) zur Ermittlung der biometrischen Daten eines Auges Messwerte des optischen Messgerätes (2) und/oder des auf Ultraschall basierenden Messgerätes (1) verwendet werden.1. Ophthalmological measuring system for determining the biometric data of an eye in the context of the pre-operative determination of the replacement or additional lens or refractive interventions, consisting of a combination of an ultrasound-based measuring device (1) and an optical measuring device (2) and an evaluation unit (3) in which measured values of the optical measuring device (2) and / or of the ultrasound-based measuring device (1) are used by the evaluation unit (3) to determine the biometric data of an eye.
2. Ophthalmologisches Messsystem nach Anspruch 1 , bei dem als optisches Messgerät (2) ein auf kurzkohärenten Verfahren basierendes optisches Messgerät oder eine Scheimpflug-Kamera Verwendung findet.2. Ophthalmological measuring system according to claim 1, wherein the optical measuring device (2) based on a short-coherent method optical measuring device or a Scheimpflug camera is used.
3. Ophthalmologisches Messsystem nach Anspruch 1 und 2, bei dem als optisches, auf kurzkohärenten Verfahren basierendes Messgerät ein lOLMaster® Verwendung findet.3. Ophthalmological measuring system according to claim 1 and 2, in which a lOLMaster® is used as an optical measuring device based on a short-coherent method.
4. Ophthalmologisches Messsystem nach mindestens einem der vorgenannten Ansprüche, bei dem die von der Auswerteeinheit (3) gewonnenen Messwerte beider Messgeräte zur gegenseitigen Kalibrierung genutzt werden, wobei Musteraugen Verwendung finden.4. Ophthalmological measuring system according to at least one of the preceding claims, in which the measured values of both measuring devices obtained by the evaluation unit (3) are used for mutual calibration, sample eyes being used.
5. Ophthalmologisches Messsystem nach mindestens einem der vorgenannten Ansprüche, bei dem das Messsystem als Arbeitsplatz mit zwei separaten Messgeräten ausgebildet ist, wobei die Messdaten über Datenverbindung (4) übergeben werden.5. Ophthalmological measuring system according to at least one of the preceding claims, wherein the measuring system is designed as a workstation with two separate measuring devices, wherein the measured data are transmitted via data connection (4).
6. Ophthalmologisches Messsystem nach mindestens einem der vorgenannten Ansprüche, bei dem beide Messgeräte in ein Gerät integriert sind. 6. Ophthalmological measuring system according to at least one of the preceding claims, wherein both measuring devices are integrated into one device.
7. Ophthalmologisches Messsystem nach mindestens einem der vorgenannten Ansprüche, bei dem dass Messsystem Anschlüsse und/oder Datenleitungen (4) zu einem anderen Gerät aufweist.7. Ophthalmological measuring system according to at least one of the preceding claims, in which the measuring system has connections and / or data lines (4) to another device.
8. Verfahren zur Ermittlung der biometrischen Daten eines Auges im Rahmen der pre-operativen Bestimmung der Austausch- oder Zusatzlinse oder refraktiver Eingriffe, bei dem einer Auswerteeinheit (3) Messwerte eines auf Ultraschall basierenden Messgerätes (1) und/oder eines optischen Messgerätes (2) zugeführt werden, aus denen von der Auswerteeinheit (3) die Parameter der zu implantierenden Linsen anhand bekannter Formeln und Berechnungsmethoden ermittelt werden.8. A method for determining the biometric data of an eye in the context of the pre-operative determination of the replacement or additional lens or refractive interventions, in which an evaluation unit (3) measured values of an ultrasound-based measuring device (1) and / or an optical measuring device (2 ) from which the evaluation unit (3) determines the parameters of the lenses to be implanted using known formulas and calculation methods.
9. Verfahren nach Anspruch 8, bei dem der Auswerteeinheit (3) Messwerte beider Messgeräte (1 , 2) zugeführt werden, von der Auswerteeinheit (3) die Parameter der zu implantierenden Linsen anhand bekannter Formeln und Berechnungsmethoden ermittelt und diese miteinander verglichen werden.9. The method according to claim 8, wherein the evaluation unit (3) measured values of both measuring devices (1, 2) are supplied, determined by the evaluation unit (3) the parameters of the lenses to be implanted using known formulas and calculation methods and these are compared.
10. Verfahren nach mindestens einem der Ansprüche 8 und 9, bei dem die gewonnenen Messwerte beider Messgeräte (1 , 2) zur gegenseitigen Kalibrierung genutzt werden, wobei Musteraugen Verwendung finden.10. The method according to at least one of claims 8 and 9, wherein the obtained measured values of both measuring devices (1, 2) are used for mutual calibration, with sample eyes are used.
11. Verfahren nach mindestens einem der Ansprüche 8 bis 10, bei dem die gewonnenen Messwerte beider Messgeräte (1 , 2) zur Optimierung der Linsenkonstanten verwendet werden.11. The method according to at least one of claims 8 to 10, wherein the obtained measured values of both measuring devices (1, 2) are used to optimize the lens constant.
12. Verfahren nach mindestens einem der Ansprüche 8 bis 11, bei dem die Messdaten zweier separater Messgeräte (1 , 2) von der Auswerteeinheit (3) des jeweiligen Messgerätes (1 oder 2) weiterverarbeitet und die Messergebnisse über eine Datenverbindung (4) an das jeweils andere Messgerät (2 oder 1 ) übergeben werden. 12. The method according to at least one of claims 8 to 11, wherein the measurement data of two separate measuring devices (1, 2) of the evaluation unit (3) of the respective measuring device (1 or 2) further processed and the measurement results via a data link (4) to the each other meter (2 or 1) to be handed over.
EP06818939A 2005-12-22 2006-12-01 Ophthalmological measuring system and method for determining the biometric data of an eye Ceased EP1962693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062238A DE102005062238A1 (en) 2005-12-22 2005-12-22 Ophthalmological measurement system for measuring biometric eye data has evaluation unit that uses measurement values of optical measurement device and/or ultrasonic measurement device to determine biometric data of an eye
PCT/EP2006/011537 WO2007079835A1 (en) 2005-12-22 2006-12-01 Ophthalmological measuring system and method for determining biometric data of an eye

Publications (1)

Publication Number Publication Date
EP1962693A1 true EP1962693A1 (en) 2008-09-03

Family

ID=37709549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06818939A Ceased EP1962693A1 (en) 2005-12-22 2006-12-01 Ophthalmological measuring system and method for determining the biometric data of an eye

Country Status (8)

Country Link
US (2) US7794082B2 (en)
EP (1) EP1962693A1 (en)
JP (1) JP5242410B2 (en)
CN (1) CN101346104B (en)
AU (1) AU2006334829B2 (en)
CA (1) CA2631101A1 (en)
DE (1) DE102005062238A1 (en)
WO (1) WO2007079835A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062238A1 (en) 2005-12-22 2007-07-05 Carl Zeiss Meditec Ag Ophthalmological measurement system for measuring biometric eye data has evaluation unit that uses measurement values of optical measurement device and/or ultrasonic measurement device to determine biometric data of an eye
DE102008055755A1 (en) * 2008-11-04 2010-05-06 Carl Zeiss Meditec Ag Ophthalmologic measurement system i.e. optical biometer, for obtaining biometric data of eyes of patient, has test unit i.e. test eye, with test eye receiving device for varying position of test unit with respect to evaluating unit
EP2364105B1 (en) 2008-11-04 2018-03-14 Carl Zeiss Meditec AG Ophthalmological measuring system and method for calibrating and/or adjusting the same
DE102009021770B4 (en) * 2009-05-18 2012-01-26 Oculus Optikgeräte GmbH Method and analysis system for measuring eye geometry
JP5484157B2 (en) * 2010-03-30 2014-05-07 株式会社ニデック Ophthalmic equipment
DE102010032138A1 (en) * 2010-07-24 2012-01-26 Carl Zeiss Meditec Ag OCT-based ophthalmic measurement system
DE102011002941B8 (en) 2011-01-20 2012-10-18 Oculus Optikgeräte GmbH Positioning unit and observation device
DE102011002940B4 (en) * 2011-01-20 2016-06-23 Oculus Optikgeräte GmbH Positioning unit and observation device
CN102068238A (en) * 2011-02-23 2011-05-25 长春奥普光电技术股份有限公司 Automatic stereoscopic vision and colour vision examination instrument
US9677869B2 (en) 2012-12-05 2017-06-13 Perimeter Medical Imaging, Inc. System and method for generating a wide-field OCT image of a portion of a sample
CN103006274A (en) * 2012-12-21 2013-04-03 深圳大学 Method and system for ultrasonic detection of cornea viscoelasticity
JP2015085044A (en) * 2013-10-31 2015-05-07 株式会社ニデック Ophthalmology imaging apparatus, ophthalmology imaging system, and ophthalmology imaging program
CN103815931B (en) * 2014-03-13 2015-09-23 天津迈达医学科技股份有限公司 A kind of ophthalmology three-dimensional machinery sector scanning ultrasonic probe
CN104546015A (en) * 2015-01-14 2015-04-29 陈健 Ophthalmic comprehensive examination diagnosing instrument
WO2019014767A1 (en) 2017-07-18 2019-01-24 Perimeter Medical Imaging, Inc. Sample container for stabilizing and aligning excised biological tissue samples for ex vivo analysis
US10786151B2 (en) 2018-08-10 2020-09-29 Reichert, Inc. Ophthalmic instrument having multiple measurement units
CN113576396B (en) * 2021-07-30 2023-11-24 中山大学中山眼科中心南昌眼科医院 Device for evaluating removal amount of cornea in refractive surgery through optical coherence elastography
CN113499032B (en) * 2021-09-13 2022-04-05 中港大富科技(深圳)有限公司 Multi-dimensional detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512965A (en) 1993-06-24 1996-04-30 Orbtek, Inc. Ophthalmic instrument and method of making ophthalmic determinations using Scheimpflug corrections
US5968095A (en) * 1995-05-09 1999-10-19 Pharmacia & Upjohn Groningen Bv Method of selecting an intraocular lens to be implanted into an eye
US5975699A (en) 1998-04-29 1999-11-02 Carl Zeiss, Inc. Method and apparatus for simultaneously measuring the length and refractive error of an eye
WO2001072213A1 (en) 2000-03-24 2001-10-04 Bausch & Lomb Incorporated Eye measurement system
WO2003022137A2 (en) * 2001-09-10 2003-03-20 Bausch & Lomb Incorporated Intraocular lens derviation system
DE10344781A1 (en) * 2003-09-23 2005-04-14 Carl Zeiss Meditec Ag Method for determining an intraocular lens
US20080278684A1 (en) 2005-12-22 2008-11-13 Carl Zeiss Meditec Ag Ophthalmological Measuring System and Method for Determining the Biometric Data of an Eye

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249634A (en) * 1988-08-12 1990-02-20 Canon Inc Composite model eye
JPH02226290A (en) * 1989-02-28 1990-09-07 Canon Inc Model eye
JPH02228688A (en) * 1989-02-28 1990-09-11 Canon Inc Model eye
USRE37196E1 (en) * 1989-12-06 2001-05-29 Van Gelderen Herman Apparatus and method for determining contact lenses
DE4235079C2 (en) * 1992-10-17 1996-08-01 Tomey Ag Device for examining the eye, in particular the human eye
ATE223676T1 (en) * 1998-03-09 2002-09-15 Schwind Eye Tech Solutions Gmb METHOD AND DEVICE FOR EXAMINING AN EYE SECTION
DE19812297C2 (en) * 1998-03-09 2001-11-08 Schwind Gmbh & Co Kg Herbert Method and device for examining an eye section
US6053613A (en) * 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
US7303281B2 (en) * 1998-10-07 2007-12-04 Tracey Technologies, Llc Method and device for determining refractive components and visual function of the eye for vision correction
CN1309340C (en) * 1999-10-21 2007-04-11 泰克诺拉斯眼科系统有限公司 Customized corneal profiling
DE60030995T2 (en) * 1999-10-21 2007-06-06 Technolas Gmbh Ophthalmologische Systeme Iris recognition and tracking to treat visual irregularities of the eye
US20020077797A1 (en) * 2000-12-18 2002-06-20 Hall Gary W. Method and apparatus for automated simulation and design of corneal refractive procedures
US6847454B2 (en) * 2001-07-16 2005-01-25 Scimed Life Systems, Inc. Systems and methods for processing signals from an interferometer by an ultrasound console
US6663240B2 (en) * 2002-05-15 2003-12-16 Alcon, Inc. Method of manufacturing customized intraocular lenses
US7154111B2 (en) * 2002-10-16 2006-12-26 Campbell Science Group, Inc. Cornea characteristics measuring device
US7593763B2 (en) * 2003-02-05 2009-09-22 Childrens Hospital Los Angeles Non-invasive in vivo measurement of macular carotenoids
DE10313028A1 (en) 2003-03-24 2004-10-21 Technovision Gmbh Method and device for eye alignment
US7066598B2 (en) * 2003-03-25 2006-06-27 Bausch & Lomb Incorporated Eye model for measurement
DE10360570B4 (en) * 2003-12-22 2006-01-12 Carl Zeiss Optical measuring system and optical measuring method
SE0402769D0 (en) * 2004-11-12 2004-11-12 Amo Groningen Bv Method of selecting intraocular lenses
US20070088206A1 (en) * 2005-10-14 2007-04-19 Peyman Gholam A Photoacoustic measurement of analyte concentration in the eye

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512965A (en) 1993-06-24 1996-04-30 Orbtek, Inc. Ophthalmic instrument and method of making ophthalmic determinations using Scheimpflug corrections
US5968095A (en) * 1995-05-09 1999-10-19 Pharmacia & Upjohn Groningen Bv Method of selecting an intraocular lens to be implanted into an eye
US5975699A (en) 1998-04-29 1999-11-02 Carl Zeiss, Inc. Method and apparatus for simultaneously measuring the length and refractive error of an eye
WO2001072213A1 (en) 2000-03-24 2001-10-04 Bausch & Lomb Incorporated Eye measurement system
WO2003022137A2 (en) * 2001-09-10 2003-03-20 Bausch & Lomb Incorporated Intraocular lens derviation system
DE10344781A1 (en) * 2003-09-23 2005-04-14 Carl Zeiss Meditec Ag Method for determining an intraocular lens
US20080278684A1 (en) 2005-12-22 2008-11-13 Carl Zeiss Meditec Ag Ophthalmological Measuring System and Method for Determining the Biometric Data of an Eye

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007079835A1 *

Also Published As

Publication number Publication date
US20100328607A1 (en) 2010-12-30
CN101346104A (en) 2009-01-14
DE102005062238A1 (en) 2007-07-05
JP5242410B2 (en) 2013-07-24
JP2009520531A (en) 2009-05-28
CN101346104B (en) 2010-12-08
US7794082B2 (en) 2010-09-14
AU2006334829B2 (en) 2013-06-27
US7992998B2 (en) 2011-08-09
AU2006334829A1 (en) 2007-07-19
US20080278684A1 (en) 2008-11-13
WO2007079835A1 (en) 2007-07-19
CA2631101A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
EP1962693A1 (en) Ophthalmological measuring system and method for determining the biometric data of an eye
DE60038008T2 (en) DEVICE FOR IMAGING EYE TISSUE
EP2367469B1 (en) Device and method for swept-source optical coherence domain reflectometry
WO2012038011A1 (en) Method and device for recording and displaying an oct whole-eye scan
DE102011088039B4 (en) Surgical microscope system for ophthalmology and associated detection unit
WO2011137985A1 (en) System for the improved imaging of eye structures
DE102009041996A1 (en) Ophthalmic biometry or imaging system and method for acquiring and evaluating measurement data
WO2017016834A1 (en) Method for classifying the cataract of an eye
WO2014049122A1 (en) Method for the reliable determination of the axial length of an eye
DE102012016379A1 (en) Method for measuring an eye
WO2012013283A1 (en) Oct-based ophthalmological measuring system
DE102010055350A1 (en) Apparatus for the interferometric measurement of the eye length and the anterior eye portion
EP2194840B1 (en) Device and method for examining the eye fundus, especially the photoreceptors
WO2018153882A1 (en) Method and arrangement for high-resolution topography of the cornea of an eye
DE102008055755A1 (en) Ophthalmologic measurement system i.e. optical biometer, for obtaining biometric data of eyes of patient, has test unit i.e. test eye, with test eye receiving device for varying position of test unit with respect to evaluating unit
EP2384692B1 (en) Method and device for interferometry
DE102012019467A1 (en) Method for reliably determining the axial length of an eye
WO2014072402A1 (en) Method for determining the total refractive power of the cornea of an eye
DE102022122164A1 (en) Device for determining the length of an object, in particular the length of an eye
EP1969995A1 (en) Eye testing device
DE102022203938A1 (en) Device for the more reliable determination of biometric measurements of the entire eye
DE102022113798A1 (en) Device for carrying out optical coherence tomography
DE102009022598A1 (en) Human eye's absolute measuring value determining method, involves reconstructing medium of eye by local scaling factors such that two-dimensional or three-dimensional representation of medium of eye comprises absolute measuring values
DE102013002828A1 (en) Method for determining total refractive power of eye cornea, involves determining refractive power of front side of cornea, refractive power of rear side of cornea and total refractive power of cornea

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090306

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170323