EP1956206A2 - Exhaust gas cleaning system - Google Patents
Exhaust gas cleaning system Download PDFInfo
- Publication number
- EP1956206A2 EP1956206A2 EP08100270A EP08100270A EP1956206A2 EP 1956206 A2 EP1956206 A2 EP 1956206A2 EP 08100270 A EP08100270 A EP 08100270A EP 08100270 A EP08100270 A EP 08100270A EP 1956206 A2 EP1956206 A2 EP 1956206A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- purification system
- gas purification
- evaporator
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title abstract description 3
- 239000007789 gas Substances 0.000 claims abstract description 101
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims description 66
- 239000000376 reactant Substances 0.000 claims description 39
- 239000003054 catalyst Substances 0.000 claims description 36
- 238000000746 purification Methods 0.000 claims description 35
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 34
- 239000002826 coolant Substances 0.000 claims description 32
- 238000009826 distribution Methods 0.000 claims description 23
- 229910021529 ammonia Inorganic materials 0.000 claims description 17
- 239000003153 chemical reaction reagent Substances 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000005192 partition Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 238000005275 alloying Methods 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000012809 cooling fluid Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 230000002028 premature Effects 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000000977 initiatory effect Effects 0.000 claims 1
- 239000012429 reaction media Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract 6
- 239000006200 vaporizer Substances 0.000 abstract 2
- 239000000243 solution Substances 0.000 description 40
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OWIKHYCFFJSOEH-UHFFFAOYSA-N Isocyanic acid Chemical compound N=C=O OWIKHYCFFJSOEH-UHFFFAOYSA-N 0.000 description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-N anhydrous cyanic acid Natural products OC#N XLJMAIOERFSOGZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- WNVQBUHCOYRLPA-UHFFFAOYSA-N triuret Chemical compound NC(=O)NC(=O)NC(N)=O WNVQBUHCOYRLPA-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3132—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3132—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
- B01F25/31322—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices used simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3133—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
- B01F25/31331—Perforated, multi-opening, with a plurality of holes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4316—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4316—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
- B01F25/43162—Assembled flat elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2892—Exhaust flow directors or the like, e.g. upstream of catalytic device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/43197—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
- B01F25/431974—Support members, e.g. tubular collars, with projecting baffles fitted inside the mixing tube or adjacent to the inner wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/20—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/40—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/02—Exhaust treating devices having provisions not otherwise provided for for cooling the device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/02—Exhaust treating devices having provisions not otherwise provided for for cooling the device
- F01N2260/024—Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/10—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
- F01N2610/102—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance after addition to exhaust gases, e.g. by a passively or actively heated surface in the exhaust conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/11—Adding substances to exhaust gases the substance or part of the dosing system being cooled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a system for purifying exhaust gases containing NOx and a method for purifying exhaust gases containing NOx.
- the invention also relates to components in this system, in particular to mixers, evaporators and metering elements.
- SCR catalytic converter Selective Catalytic Reduction
- NOx is largely reduced to N 2 in a gas mixture of exhaust gas containing NO x and ammonia, even in the presence of oxygen.
- ammonia can not be carried and added directly to the car. That is why in the automotive industry a system is favored in which a harmless urea-water solution in the exhaust gas stream is thermally decomposed into ammonia and CO 2 .
- the amount of ammonia thus produced should be in a stoichiometric ratio to the amount of NOx contained in the exhaust gas. Therefore, the dosing system must be relatively precisely regular or at least controllable and should also have short response times.
- the metered addition and mixing of the urea-water solution into the exhaust gas is a technical problem for which no satisfactory solution has yet been found, especially if only limited space for the exhaust gas purification system is available due to the installation conditions.
- the temperatures may vary between 150 ° C in cold start mode and 700-750 ° during the burnup of a particulate filter upstream of the exhaust purification system.
- the metered addition of the urea-water solution, and thus the conversion of the NOx in the exhaust gas in N 2 is activated from an exhaust gas temperature of 150 ° C, in particular from an exhaust gas temperature of 200 ° C.
- the mass flow of urea-water solution that has to be added to the exhaust gas to produce the required stoichiometric mixture of NOx and ammonia is between 3 and 5% of the gasoline consumption.
- the additionally generated by the metering and mixing of the urea-water solution pressure loss is critical because pressure loss in the exhaust system, the engine power is reduced, consequently, the smallest possible pressure loss is sought.
- Typical exhaust pipe diameters are in the range 50-100 mm.
- the distance of the catalyst from the first of possibly several mixing points is typically between 4 and 10 pipe diameters.
- a sputtering nozzle which atomizes the urea-water solution into fine droplets.
- patent WO 98/28070 describes a method in which the urea-water solution is pressurized and heated before it is injected into the exhaust. By relaxing the superheated liquid, the evaporation is accelerated.
- WO 2004/079171 A1 is a combined evaporator and manifold, which is composed of internally porous ribs described.
- Urea-water solution should be distributed inside the porous structure and evaporated.
- the evaporation energy is extracted according to this application via heat conduction through the ribs from the flow of hot exhaust gas. Through openings in the ribs then the gaseous ammonia can escape.
- these ribs serve both as an evaporator and as a distribution grid for the ammonia.
- single-fluid nozzle injection by means of a single-substance nozzle is usually selected.
- the term single-fluid nozzle is used specifically for atomizing nozzles in which only the liquid to be atomized is pumped through the nozzle.
- a gas is also pumped into the nozzle, as a result of which the atomization can be improved.
- a compression device is required for the compression of the gas.
- Such single-fluid nozzles typically produce droplet spectra with a Sauter diameter of 70-90 ⁇ m, but individual large drops of up to 200 ⁇ m.
- the object of the invention is to avoid the introduction of drops containing urea-water solution into a catalyst, in particular an SCR catalyst.
- a catalyst in particular an SCR catalyst.
- drops of urea-water solution in the Catalyst this would cause the clogging of the catalyst and thus a deterioration of the catalytic effect.
- an exhaust gas purification system comprising a closed channel in which a NOx-containing exhaust gas stream is passed from an exhaust gas source to a catalyst, wherein upstream of the catalyst, a metering element for introducing a liquid reactant is provided in the exhaust gas stream. Downstream of the metering element, an evaporator is arranged downstream of the metering element.
- the evaporator has surfaces disposed in the exhaust stream to which the liquid reactant is applied and at the surfaces of which the liquid reactant is vaporized before the vaporized reactant impinges on the catalyst.
- the application of a liquid reactant takes place according to a particularly advantageous embodiment directly on the surface of the evaporator.
- the metering element is therefore positioned on the upstream side of the evaporator.
- the evaporator is preferably designed as a film evaporator.
- a mixer may be provided which comprises a static mixing element.
- the mixer is located downstream of the evaporator to produce a homogeneous distribution of the liquid reactant in the exhaust stream.
- a particle filter is arranged to separate out dust and particles which impair the function of the catalyst.
- the film evaporator is simultaneously formed as a mixer.
- the evaporator and / or the mixer to a cross-channel structure, in particular according to DE 2 205 371 is designed.
- the surfaces of the evaporator are made of highly thermally conductive material, which completely evaporate on the surface of the guide elements ausreendeierikeitsfilme after a short path length through the heat exchange between the guide element and liquid film.
- highly thermally conductive material which completely evaporate on the surface of the guide elements ausreendeierikeitsfilme after a short path length through the heat exchange between the guide element and liquid film.
- materials in addition to steels, which preferably contain alloying elements to increase the thermal conductivity others highly conductive metallic materials, in particular copper alloys, or ceramics of high thermal conductivity are used.
- the surfaces of the evaporator comprise a plurality of guide elements, which are arranged substantially along the main flow direction of the exhaust gas stream and may be at least partially finned.
- the guide elements are aligned in a star shape around a guide element arranged in a central position of the channel.
- the guide element is in particular designed as an annular guide element.
- At least some of the surfaces are catalytically active, in particular hydrolysis-catalytically active.
- At least one metering element protrudes into the channel. For uniform distribution of the liquid reactant in the channel, a plurality of metering elements may protrude into the channel.
- the metering element contains a supply line for applying the liquid reagent to the surface of the evaporator, which is in particular a tube with metering, through which the liquid reagent, that is, in particular a urea-water solution is passed to the surfaces of the evaporator.
- the distribution element is designed as a capillary with an outlet opening or a nozzle. In the region of the outlet opening, a curvature can be provided so that the liquid reactant can be optimally distributed on the surface of the evaporator.
- the feed line feeds a plurality of distribution elements, so that the number of feed points for the liquid reactant arranged in the channel is increased.
- the metering element comprises means to prevent the premature evaporation of the liquid reagent
- the means is designed in particular as a thermal insulation against the exhaust gas flow, for example as thermal insulation of the wall of the metering.
- the Means may comprise a thermoelectric Peltier element for cooling the liquid reagent.
- the means causes a temperature control of the liquid reactant by means of a cooling circuit or by a continuous recirculation of a portion of the urea-water solution in a cooling jacket.
- the metering element may include a coolant channel, with a coolant line for the supply of coolant and a coolant line for the removal of coolant.
- the channel may be formed as a cylindrical tube or pin, in which the distribution element is arranged, whereby the distribution element on all sides by a cooling fluid is flowed around.
- the channel is U-shaped and / or has a partition wall.
- the channel can also be bounded by two concentric tubes, creating a double tube.
- the liquid reactant comprises in particular a urea-water solution.
- an exhaust gas purification system is used in a vehicle, in particular in a passenger car or a transport vehicle equipped with a diesel engine.
- a metering element which applies the liquid reagent as a film or trickle on the evaporator, it is avoided that drops of the liquid reagent are entrained in the catalyst and as a result comes to a contamination or clogging of the catalyst.
- the method of purifying exhaust gases containing NOx includes the steps of introducing a NOx containing exhaust stream from an exhaust source into a channel, applying a liquid reactant to an evaporator, evaporating the liquid reactant on the surface of the evaporator, reacting the vaporized reactant NOx in a catalyst. Before entering the catalyst, mixing of the loaded with the vaporized reactant takes place In the catalyst, NO x is reduced with the ammonia contained in the gas mixture despite the presence of oxygen to N 2 .
- a NOx-containing exhaust stream 1 is purified by means of a liquid reagent, in particular a urea-water solution using a catalyst, in particular an SCR catalyst.
- the exhaust gas stream 1 is emitted from an exhaust gas source 2, such as an engine, in particular a diesel engine, and contains NOx.
- the exhaust gas flow is introduced downstream of the exhaust gas source 2 into a dust and particle filter 3.
- the dust-free and particle-free exhaust gas stream 1 is mixed with a liquid reagent which comprises a urea-water solution.
- the urea-water solution is stored in a reservoir 4 until use.
- the reservoir 4 is connected to a metering element 7, by means of which the liquid reagent is brought to the evaporator.
- a conveying means in particular a pump 6, can be provided to increase the feed pressure and / or to improve the delivery of the liquid reactant.
- the metering element 7 is surrounded by a cooling jacket 8, in which a coolant line 9 opens and leaves a further coolant line 10. In this figure, it is shown that the coolant is diverted from the coolant circuit of the engine.
- an evaporator 11 is provided in the exhaust gas stream.
- the evaporator 11 is a film evaporator, which receives the required energy directly from the exhaust gas.
- Such an evaporator may only be used if, upstream of the particle filter 3, dust and particles are almost completely eliminated from the exhaust gas flow 1.
- a mixer 12 is provided, which is in particular a static mixer.
- the exhaust gas stream and the vaporized reactant distributed therein are introduced into the catalyst 13.
- the exhaust gas exiting the catalyst can be discharged into the environment after a possible further cooling step, should it not have other components which require a separate aftertreatment.
- Fig. 2 shows a first embodiment of an arrangement of metering elements 7, a film evaporator 11, and a mixer 12 in a closed channel 14, through which the exhaust stream 1 is passed.
- the channel is partially cut open to make the internals visible.
- Each metering element 7 is designed as a tube which has one or more outlet openings, which are not shown in this figure.
- a liquid reactant that is to say, the urea-water solution, reaches the surfaces of the evaporator 11 through the outlet openings.
- the evaporator contains a plurality of guide elements (15, 16) which are designed in particular as thin-walled guide elements and extend in the flow direction in such a way. that they offer the lowest possible flow resistance.
- the guide elements 15 are fixed at their outer edges on the inner surface of the channel 14, for example by a welded connection. To increase the dimensional stability and to improve the heat exchange between the radial guide elements, the guide elements 15 are penetrated by an annular guide element 16, which is designed in particular as a channel 14 concentric tube. As a result of the guide elements, the channel cross section is thus subdivided into a multiplicity of channel segments that are as similar as possible.
- the surfaces of the guide elements preferably extend in the flow direction, which results in minimal pressure loss of the film evaporator. In the illustrated embodiment, the guide elements 15 are shown as flat surfaces. To increase the heat exchange surface with at most insignificant increase in the pressure loss and guide elements can be provided with surface structures, such as zigzag profiles or wavy structures. The crests (ridges or edges in zig-zag profiles) are preferably in Directed flow direction, but may also be inclined at an angle to the flow direction, if this does not result in a significant increase in the pressure loss
- Fig. 3 shows a view of the metering elements 7 and the film evaporator 11 according to the first embodiment in a view in the flow direction of the exhaust gas.
- One of the dosing is cut open to illustrate the basic structure of a dosing.
- the metering element 7 comprises a channel 18 for providing the urea-water mixture, a cooling jacket 17, in which a coolant circulates.
- the coolant is supplied via a coolant line 9 and discharged via a coolant line 10.
- Channel 18 is a continuation of the supply line 5 for the urea-water mixture, which is removed from the reservoir 4 or conveyed by a pump 6.
- the urea-water mixture is distributed by means of distribution elements 19 on the surface of the guide elements 15.
- the distribution elements 19 are nozzles 30 (see Fig. 7 )
- the urea-water mixture is applied as a spray on the surface of the guide elements 15.
- the spray wets this surface and it can lead to the formation of coherent liquid films or gutters.
- the surface which would be needed to transfer the energy for the evaporation of the liquid by means of heat transfer from the hot exhaust gas directly into the liquid film, is relatively large. However, distributing the liquid film to the surface at the given small liquid load, ie, completely wetting the surface, is difficult.
- the heat is transferred indirectly first from the exhaust gas into the evaporator, transported by heat conduction within the evaporator structure to the trickle and introduced there into the trickle, which flows on the surface of the guide element.
- Such an evaporator also works when the liquid film wets only a very small part of the surface of the guide member 15 and / or the annular guide member 16.
- the evaporator should be designed so that the guide elements (15,16) on the one hand a large surface for the Heat transfer from the exhaust gas into the evaporator body, which is formed by the guide elements (15, 16), for example by a suitable rib arrangement and / or in connection with Fig. 2 mentioned surface enlarging structures.
- the guide surfaces (15,16) should be designed so that the heat conduction in the evaporator must be made only over short distances. All surfaces of the guide elements of the evaporator are aligned substantially in the flow direction, so that the flow resistance of the evaporator body as a whole remains low.
- the cross-sections of the flow channels, which form through the evaporator body are distributed according to a particularly preferred embodiment over the total cross-section of the channel 14 as possible at equal intervals zueindander so that the film evaporator - as an obstacle, which must be flowed around by the exhaust gas flowing in the channel - not a one-sided flow distribution in the exhaust duct leads.
- the surface of the guide element, on which the urea water film flows is preferably oriented horizontally upwards, so that, due to the effect of gravity, drops can not form and dissolve.
- the surface of the entirety of the guide elements of the evaporator is particularly so large that the heat transfer function can be easily ensured.
- the volume and the blocked portion of the cross section as small as possible or to choose the hydraulic diameter as large as possible, so that the flow resistance of the evaporator remains low.
- the portion of the evaporator on which the film is flowing may be coated with a hydrolysis catalyst which provides for preferential conversion of the urea-water solution to NH 3 and CO 2 .
- Fig. 4 shows a further combination of metering element 7 with a film evaporator 11.
- the metering element 7 is not as projecting into the channel 14 arm designed, but passes through the channel 14.
- Several such dosing elements can be arranged crosswise or parallel to each other (not shown). Distributing elements, which are not visible in this illustration, direct the liquid reactant onto the surfaces of the vanes 15 and / or the vanes 16.
- the guide elements 15 of the film evaporator are arranged in a star shape and fixed centrally by a holding element located on the axis of the channel 14 or a connection to the wall of the channel 14 in their position.
- the guide elements may also be attached to the inner wall of the channel 14.
- Fig. 6 shows a further embodiment of a film evaporator 11 and an associated arrangement of dosing 7.
- the film evaporator 11 comprises a plurality of extending in the flow direction vanes 15.
- the vanes are arranged parallel to each other and at substantially equal distances from each other.
- At least one support element 20 may be provided so that the spacing of the guide elements does not change during operation.
- Metering elements 7 are arranged immediately upstream of at least part of the guide elements 15.
- the guide elements are arranged substantially horizontally, so that the film forms on the upper surface of the guide element.
- liquid can be atomized by means of a nozzle or as Jet are sprayed in the direction of the evaporator and deposited on the surface of the evaporator.
- An embodiment of a metering element with distribution elements 19, which are formed as a nozzle 30 is in the Fig. 7 shown.
- the distribution element 19 may also comprise means for atomizing the liquid reagent.
- the metering element 7 projects according to the in the Fig. 2 and Fig. 3 In the interior of the cooling jacket 17, the coolant is in a substantially U-shaped extending path from the inlet through the coolant line 9 to the outlet in the coolant line 10 led.
- the coolant channels are thus formed by two tubes 21, 25 arranged concentrically around the channel 18 extending in an inner tube 20. By the lateral surfaces of the tubes (20,21,25) thus the coolant channel is limited. Since the coolant channel is arranged around the channel 18, bores are provided for the distribution element or elements 19 into which the distribution elements 19 are received. According to a variant, not shown, the coolant channel may only partially cover the channel and / or the distribution element when the distribution element has a nozzle 30 (see FIG Fig. 7 ). The distribution element directs the flow of the liquid reactant onto the surface of the guide elements 15, as in FIG Fig. 3 . Fig. 4 or Fig. 5 (without dosing elements) was shown.
- the liquid can be passed directly by means of a supply line to the head of the evaporator and there produced a film.
- An embodiment of an associated metering element is in Fig. 8 shown.
- This metering element can, for example, in an arrangement according to Fig. 6 be used.
- the metering element 7 is in the upper part of Fig. 8 shown in a section. In the lower part of the Fig. 8 a longitudinal section of the metering element is shown.
- the metering element 7 comprises two tubes (20, 21) arranged concentrically with one another.
- the inner tube 20 contains the channel 18 through which the liquid reactant flows.
- the liquid reagent enters via the feed line 5 in the channel 18 and leaves the Channel via the opening 22, which is formed in particular as a slot, in the direction of the film evaporator 11, the in Fig. 8 not shown.
- the feed line 5 opens into a channel 23 arranged around the channel 14, which serves to distribute the liquid reagent over the circumference.
- liquid reactant enters the arrangement of metering elements, as in Fig. 6 was shown.
- the channel 14 includes a bore 24 so that liquid reactant can enter the metering element 7.
- To the liquid reactant leading channels (18,23) is arranged a coolant channel.
- the coolant channel comprises an annular channel, which is arranged around the annular channel 23, and the intermediate space between the outer and inner tube 20. The coolant is supplied via the coolant line 9 and discharged via the coolant line 10.
- a suitable static mixer 12 is connected downstream.
- the static mixer intensifies the existing turbulence in the channel 14 and additionally generates intense, large vortices that support the large-scale distribution of the reagent, ie in particular the forming of the urea-water solution ammonia transverse to the main flow direction.
- Various constructions for such mixers come into question. Particularly favorable in terms of pressure loss are static mixers that cause no flow separation.
- Fig. 9 shows a further embodiment of a metering element.
- the metering element is designed as a tube 21 extending between two opposite openings in the wall of the channel 14.
- the metering element contains in its interior at least one capillary 25, by means of which a liquid reagent, in particular a urea-water solution, is distributed to a guide element 15.
- the capillary may have a curvature 26 at the location where the liquid reactant exits, whereby the liquid reactant impinges on the baffle at an angle such that the liquid reactant wets the baffle.
- the left part of the Fig. 9 and the right part of the Fig. 9 show two different arrangements of the guide elements, which the in Fig. 2 respectively.
- Fig. 6 correspond to shown arrangements.
- the capillaries 25 and the surrounding cooling jackets 17 need not be arranged centrally.
- the middle part of the Fig. 9 shows a section of a longitudinal section through the channel 14. In each case 2 capillaries are shown with a plurality of outlet openings 27.
- Fig. 10 shows further possible embodiments of liquid reactant containing capillaries 25, their cooling jackets 17 and their arrangement in the channel 14.
- the left part of Fig. 10 corresponds to the middle part of the Fig. 9 , wherein the guide elements have been omitted in this illustration.
- One or a plurality of capillaries 25 extends in a cooling jacket 17 forming a channel 18.
- the channel 18 has a U-shape. Coolant is the Dosing supplied via the coolant line 9 and leaves the dosing via coolant line 10.
- a channel 18 is shown having a centrally disposed partition 28.
- a metering element 7 may comprise a plurality of capillaries 25 or capillaries having a plurality of outlet openings.
- a metering element comprising a cooling jacket 17, which is designed as a U-shaped channel 18 with a metering element, which has a cooling jacket 17 with a channel 18, the a partition 28 contains, are combined.
- Fig. 11 shows a further embodiment, according to which the film evaporator 11 as a mixer with a cross-channel structure, as shown in DE 2 205 371 is described is formed.
- a mixer contains at least one mixing element, which is penetrated by fluid media in direct current.
- the mixing element comprises mutually contacting, flow channel forming layers.
- the longitudinal axes of the flow channels within a layer run at least in groups substantially parallel to each other.
- the flow channels of at least two adjacent layers are at least partially open against each other.
- the longitudinal axes of the flow channels of adjacent layers are inclined towards each other according to an advantageous embodiment.
- the layers of adjacent mixing elements may be inclined relative to each other at an angle about the longitudinal axis of the mixer.
- Fig. 1 Film evaporator 11 and Mixers 12 are thus combined to form a component which is located between the upstream metering element 7 and the downstream catalyst 13.
- a diffuser In the presentation of the Fig. 11 is arranged between the metering element 7 and the film evaporator 11, a diffuser.
- the diffuser 29 may contain vanes, which may also have the function of a film evaporator.
- the metering element is located immediately before the film evaporator downstream of the diffuser.
- this line should be well tempered by means of a separate circuit and possibly additionally isolated, since under all circumstances it must be prevented that the urea-water solution evaporates already within the metering.
- part of the Cooling water circuit of the engine are diverted and circulated through this line.
- the metering of urea-water solution takes place according to an advantageous embodiment by means of a dosing formed as a dosing directly from the edge of the closed channel auslagenden exhaust pipe to the dosing on the surface of a guide element of the film evaporator, whereby a liquid film is applied to this surface.
- the dosing pin comprises a concentric double tube for the cooling water.
- the cooling water flows inside the tubes to the dosing point and is deflected there and returned through the gap between the outer and inner tube.
- the actual line for the urea water solution can be realized as a capillary within the cooled line because of the low flow rates.
- the throughput can be controlled by a simple pump.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- Exhaust Gas After Treatment (AREA)
- Radiation-Therapy Devices (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
Die Erfindung betrifft ein System zur Reinigung von Abgasen, die NOx enthalten, sowie ein Verfahren zur Reinigung von Abgasen, die NOx enthalten. Die Erfindung bezieht sich auch auf Komponenten in diesem System, insbesondere auf Mischer, Verdampfer und Dosierelemente.The invention relates to a system for purifying exhaust gases containing NOx and a method for purifying exhaust gases containing NOx. The invention also relates to components in this system, in particular to mixers, evaporators and metering elements.
Wegen neuer, verschärfter Abgasnormen werden in Zukunft auch Dieselfahrzeuge mit Katalysatoren ausgerüstet werden müssen. In Europa gelten ab 1.10.2009 die neue Euro 5 - Norm und ab 2012 die Euro 6 - Norm. Um die Euro 5 - Norm zu erfüllen, werden kleinere Transportfahrzeuge mit Abgasreinigungssystemen, die verbesserte Katalysatoren enthalten, ausgerüstet. Um die Euro 6 - Norm zu erfüllen, sind Personenkraftwagen, insbesondere PKW mit einem Dieselmotor mit Abgasreinigungssystemen, die verbesserte Katalysatoren enthalten, auszurüsten. Zur NOx - Minderung in sauerstoffreichem Abgas kann der bei Ottomotoren übliche 3-Wege-Katalysator nicht eingesetzt werden. Motoren mit sauerstoffreichem Abgas sind generell Dieselmotoren sowie Magermotoren. Eine mögliche Alternative für sauerstoffreiche Abgase ist der SCR - Katalysator (Selective Catalytic Reduction), bei dem NOx in einer Gasmischung aus NOx-haltigem Abgas und Ammoniak auch in Gegenwart von Sauerstoff zu einem grossen Teil zu N2 reduziert wird. Ammoniak kann allerdings wegen seiner toxischen Eigenschaften nicht direkt im Auto mitgeführt und zudosiert werden. Deswegen favorisiert man in der Autoindustrie ein System, bei dem eine harmlose Harnstoff-Wasserlösung im Abgasstrom thermisch zu Ammoniak und CO2 aufgespaltet wird. Die so erzeugte Ammoniakmenge sollte in einem stöchiometrischen Verhältnis zur im Abgas enthaltenen NOx-Menge stehen. Deswegen muss das Dosiersystem relativ genau regel- oder zumindest steuerbar sein und sollte auch kurze Ansprechzeiten aufweisen.Because of new, stricter emission standards, diesel vehicles will also have to be equipped with catalytic converters in the future. In Europe, the new Euro 5 standard will apply from 1 October 2009 and the Euro 6 standard from 2012. In order to comply with the Euro 5 standard, smaller transport vehicles are equipped with emission control systems containing improved catalytic converters. In order to comply with the Euro 6 standard, passenger cars, in particular cars with a diesel engine with exhaust gas purification systems, which contain improved catalysts, have to be equipped. For NOx reduction in oxygen-rich exhaust gas, the usual in gasoline engines 3-way catalyst can not be used. Motors with oxygen-rich exhaust gas are generally diesel engines and lean-burn engines. One possible alternative for oxygen-rich exhaust gases is the SCR catalytic converter (Selective Catalytic Reduction), in which NOx is largely reduced to N 2 in a gas mixture of exhaust gas containing NO x and ammonia, even in the presence of oxygen. However, because of its toxic properties, ammonia can not be carried and added directly to the car. That is why in the automotive industry a system is favored in which a harmless urea-water solution in the exhaust gas stream is thermally decomposed into ammonia and CO 2 . The amount of ammonia thus produced should be in a stoichiometric ratio to the amount of NOx contained in the exhaust gas. Therefore, the dosing system must be relatively precisely regular or at least controllable and should also have short response times.
Die Zudosierung und Mischung der Harnstoff-Wasserlösung in das Abgas ist ein technisches Problem, für das bis heute noch keine zufriedenstellende Lösung gefunden wurde, insbesondere dann, wenn durch die Einbauverhältnisse nur ein beschränktes Platzangebot für das Abgasreinigungssystem verfügbar ist.The metered addition and mixing of the urea-water solution into the exhaust gas is a technical problem for which no satisfactory solution has yet been found, especially if only limited space for the exhaust gas purification system is available due to the installation conditions.
Da während der Fahrt der Motor sehr unterschiedlich belastet wird, variieren auch die Betriebspunkte des Abgassystems von Dieselfahrzeugen stark. Zwischen dem Abgasmassenstrom bei niedrigstem typischem Lastfall und höchster Last kann rund ein Faktor 10 liegen. Je nach Motor- und Fahrzeuggrösse kann bei sehr niedriger Last ein Abgasmassenstrom von maximal 100 kg/h in das Abgasreinigungssystem eingespeist werden. Bei grösster Last erreicht der Abgasmassenstrom mindestens 800 kg/h.Since the engine is loaded very differently while driving, also the operating points of the exhaust system of diesel vehicles vary greatly. There may be around a factor of 10 between the exhaust gas mass flow at the lowest typical load case and the highest load. Depending on the size of the engine and vehicle, an exhaust gas mass flow of up to 100 kg / h can be fed into the exhaust gas cleaning system at very low load. At the highest load, the exhaust gas mass flow reaches at least 800 kg / h.
Die Temperaturen können zwischen 150°C im Kaltstartbetrieb und 700 - 750° während des Abbrandes eines Partikelfilters, welcher dem Abgasreinigungssystem vorgeschaltet ist, variieren. Die Zudosierung der Harnstoff-Wasserlösung, und damit die Umwandlung des NOx im Abgas in N2, wird ab einer Abgastemperatur von 150°C, insbesondere ab einer Abgastemperatur von 200°C aktiviert. Der Massenstrom von Harnstoff-Wasserlösung, der dem Abgas zudosiert werden muss, damit die erforderliche stöchiometrische Mischung von NOx und Ammoniak erzeugt wird, beträgt zwischen 3 und 5 % des Benzinverbrauchs.The temperatures may vary between 150 ° C in cold start mode and 700-750 ° during the burnup of a particulate filter upstream of the exhaust purification system. The metered addition of the urea-water solution, and thus the conversion of the NOx in the exhaust gas in N 2 , is activated from an exhaust gas temperature of 150 ° C, in particular from an exhaust gas temperature of 200 ° C. The mass flow of urea-water solution that has to be added to the exhaust gas to produce the required stoichiometric mixture of NOx and ammonia is between 3 and 5% of the gasoline consumption.
Der durch die Zudosierung und Vermischung der Harnstoff-Wasserlösung zusätzlich generierte Druckverlust ist kritisch, da durch Druckverlust im Abgassystem die Motorleistung reduziert wird, folglich wird der kleinst mögliche Druckverlust angestrebt.The additionally generated by the metering and mixing of the urea-water solution pressure loss is critical because pressure loss in the exhaust system, the engine power is reduced, consequently, the smallest possible pressure loss is sought.
Typische Abgasrohrdurchmesser liegen im Bereich 50 - 100 mm. Der Abstand des Katalysators von der ersten von möglicherweise mehreren Einmischstellen liegt typischerweise zwischen 4 und 10 Rohrdurchmessern.Typical exhaust pipe diameters are in the range 50-100 mm. The distance of the catalyst from the first of possibly several mixing points is typically between 4 and 10 pipe diameters.
Bei der Zersetzung der Harnstoff-Wasserlösung sind verschiedene Reaktionen möglich. Eine Möglichkeit ist der Zerfall in Isocyansäure und Ammoniak. Die Isocyansäure ist sehr instabil und kann verschiedene Reaktionen durchlaufen, wie beispielsweise zu Cyanursäure polymerisieren. Durch Pyrolyse kann der Harnstoff in Biuret (C2H5N3O2) und Ammoniak zerfallen. Ausserdem können bei der Erhitzung des Harnstoffes auch geringe Mengen von Triuret und Melamin entstehen. Die meisten dieser Reaktionsprodukte haben Schmelzpunkte bei sehr hohen Temperaturen, die zum Teil über 300°C liegen, und können deswegen im Betrieb zu Schichtbildung auf Einbauten im Abgasrohr führen und vor allem feine Spalte und Bohrungen verstopfen. Aus diesem Grund darf keine Harnstoff-Wasserlösung in den SCR-Katalysator gelangen, da durch Ablagerungen und Schichtbildung die Wirksamkeit des Katalysators reduziert oder einzelne Kanäle des Katalysators sogar gänzlich verstopft werden könnten. Damit beim Zerfall der Harnstoff-Wasserlösung möglichst wenige unerwünschte Nebenreaktionen ablaufen und dadurch unerwünschte Stoffe entstehen, wurden spezielle Hydrolysekatalysatoren entwickelt, die eine direkte Umsetzung von Harnstoff (CO(NH2)2) und Wasser (H2O) in Ammoniak (NH3) und Kohlendioxid (CO2) bevorzugen. Ein derartiger Hydrolysekatalysator wird im Patent
Bei den meisten bekannten technischen Umsetzungen der Harnstoff-Wasserlösung - Zudosierung wird eine Zerstäubungsdüse verwendet, welche die Harnstoff-Wasserlösung in feine Tröpfchen zerstäubt.In most known technical implementations of the urea-water solution - dosing a sputtering nozzle is used, which atomizes the urea-water solution into fine droplets.
In den Patentschriften
In Patent
Gemäss des Verfahrens der
In Patent
In der Patentanmeldung
Bei zumindest einigen der vorbekannten Lösungen treten folgende Probleme auf: Aus praktischen Gründen wird gewöhnlich eine Einspritzung mittels Einstoffdüse gewählt. Der Begriff Einstoffdüse wird speziell für Zerstäubungsdüsen verwendet, in welchen nur die zu zerstäubende Flüssigkeit durch die Düse gepumpt wird. Bei Zweistoffdüsen wird zusätzlich zur zu zerstäubenden Flüssigkeit auch ein Gas in die Düse gepumpt, wodurch die Zerstäubung verbessert werden kann. Allerdings ist eine Kompressionsvorrichtung für die Komprimierung des Gases erforderlich. Derartige Einstoffdüsen erzeugen typischerweise Tropfenspektren mit einem Sauterdurchmesser von 70 - 90 µm, aber einzelnen grossen Tropfen von bis zu 200 µm. Wegen der vorgängig beschriebenen Verschmutzungs- oder Verstopfungsproblematik muss dafür gesorgt werden, dass keine Tropfen in den Katalysator gelangen können. Die Flugzeit der Tropfen bis zum Katalysator beträgt nur wenige Millisekunden, was nicht ausreichend ist, um grössere Tropfen während der Flugphase zu verdampfen. Aus diesem Grund müssen zumindest die grösseren Tropfen aus dem Abgas abgeschieden werden und in einem Flüssigkeitsfilm verdampfen. Dazu wird ein kombiniertes Misch- und Verdampfungselement eingesetzt. Damit die Tropfen in der Strömung tatsächlich an diesem Element abgeschieden werden, muss die Strömung durch das Element abgelenkt werden. Das bedingt einen gewissen minimalen Druckabfall und damit eine Reduktion der Motorleistung. In der Praxis hat sich der Einsatz von Mischern mit einer Kreuzkanalstruktur gemäss
Aufgabe der Erfindung ist die Vermeidung der Einleitung von Tropfen, die Harnstoff-Wasserlösung enthalten, in einen Katalysator, insbesondere einen SCR-Katalysator. Würden Tropfen der Harnstoff-Wasserlösung in den Katalysator gelangen, hätte dies die Verstopfung des Katalysators zur Folge und somit eine Verschlechterung der katalytischen Wirkung.The object of the invention is to avoid the introduction of drops containing urea-water solution into a catalyst, in particular an SCR catalyst. Would drops of urea-water solution in the Catalyst, this would cause the clogging of the catalyst and thus a deterioration of the catalytic effect.
Diese Aufgabe wird durch ein Abgasreinigungssystem gelöst, welches einen geschlossenen Kanal umfasst, in welchem ein NOx enthaltender Abgasstrom von einer Abgasquelle zu einem Katalysator geleitet wird, wobei stromaufwärts des Katalysators ein Dosierelement zur Einleitung eines flüssigen Reaktionsmittels in den Abgasstrom vorgesehen ist. Stromabwärts des Dosierelements ist ein Verdampfer angeordnet. Der Verdampfer weist im Abgasstrom angeordnete Oberflächen auf, auf welche das flüssige Reaktionsmittel aufgebracht wird und an dessen Oberflächen das flüssige Reaktionsmittel verdampft wird, bevor das verdampfte Reaktionsmittel auf den Katalysator trifft. Die Aufbringung eines flüssigen Reaktionsmittels erfolgt nach einem besonders vorteilhaften Ausführungsbeispiel direkt auf die Oberfläche des Verdampfers. Das Dosierelement ist daher an der Anströmseite des Verdampfers positioniert. Der Verdampfer ist bevorzugt als Filmverdampfer ausgebildet. Im Anschluss an den Verdampfer kann ein Mischer vorgesehen sein, der ein statisches Mischelement umfasst. Der Mischer ist stromabwärts des Verdampfers angeordnet, um eine homogene Verteilung des flüssigen Reaktionsmittels im Abgasstrom herzustellen. Zwischen der Abgasquelle und dem Dosierelement ist ein Partikelfilter angeordnet, um Staub und Partikel abzuscheiden, welche die Funktion des Katalysators beeinträchtigen. Nach einem weiteren Ausführungsbeispiel ist der Filmverdampfer gleichzeitig als Mischer ausgebildet. Nach einem weiteren Ausführungsbeispiel weisen der Verdampfer und/oder der Mischer eine Kreuzkanalstruktur auf, die insbesondere gemäss
Nach einem weiteren Ausführungsbeispiel umfassen die Oberflächen des Verdampfers eine Mehrzahl von Leitelementen, die im wesentlichen entlang der Hauptströmungsrichtung des Abgasstroms angeordnet sind und zumindest teilweise berippt sein können. Die Leitelemente sind sternförmig um ein in einer zentralen Lage des Kanals angeordnetes Leitelement ausgerichtet. Das Leitelement ist insbesondere als ringförmiges Leitelement ausgebildet. Zumindest ein Teil der Oberflächen ist katalytisch wirksam, insbesondere hydrolysekatalytisch wirksam. Zumindest ein Dosierelement ragt in den Kanal. Zur gleichmässigen Verteilung des flüssigen Reaktionsmittels im Kanal kann auch eine Mehrzahl von Dosierelementen in den Kanal ragen. Das Dosierelement enthält eine Zuleitung zur Aufbringung des flüssigen Reaktionsmittels auf die Oberfläche des Verdampfers, wobei es sich insbesondere um ein Rohr mit Dosieröffnungen, durch die das flüssige Reaktionsmittel, das heisst insbesondere eine Harnstoff-Wasserlösung, auf die Oberflächen des Verdampfers geleitet wird. Das Verteilelement ist als eine Kapillare mit einer Austrittsöffnung oder eine Düse ausgebildet. Im Bereich der Austrittsöffnung kann eine Krümmung vorgesehen sein, damit das flüssige Reaktionsmittel sich optimal auf die Oberfläche des Verdampfers verteilen kann. Zur besseren Verteilung des flüssigen Reaktionsmittels speist die Zuleitung eine Mehrzahl von Verteilelementen, sodass die Anzahl der im Kanal angeordneten Einspeispunkte für das flüssigen Reaktionsmittel erhöht wird. Wegen der Verstopfungsgefahr durch ungewünschte Ablagerungen in Leitungen, in denen Harnstoff-Wasserlösung gefördert wird, muss dafür gesorgt werden, dass Leitungen oder enge Spalte, durch die Harnstoff-Wasserlösung fliesst, sich nicht auf Temperaturen über 100 °C erwärmen können. Das kann durch verschiedene Massnahmen erreicht werden, wobei das Dosierelement Mittel umfasst, um das vorzeitige Verdampfen des flüssigen Reaktionsmittels zu verhindern, Das Mittel ist insbesondere als eine thermische Isolierung gegenüber der Abgasströmung ausgebildet, beispielsweise als thermische Isolierung der Wand des Dosierstiftes. Das Mittel kann ein thermoelektrisches Peltierelement zur Kühlung des flüssigen Reaktionsmittels umfassen. Alternativ bewirkt das Mittel eine Temperierung des flüssigen Reaktionsmittels mittels eines Kühlkreislaufes oder durch eine kontinuierliche Rezirkulation eines Teils der Harnstoff-Wasserlösung in einem Kühlmantel. Das Dosierelement kann einen Kühlmittelkanal enthalten, mit einer Kühlmittelleitung zur Zufuhr von Kühlmittel sowie einer Kühlmittelleitung zur Abfuhr von Kühlmittel. Der Kanal kann als zylindrisches Rohr oder Stift ausgebildet sein, in welchem das Verteilelement angeordnet ist, wodurch das Verteilelement allseitig von einem Kühlfluid umströmbar ist. Der Kanal ist U-förmig ausgestaltet und/oder weist eine Trennwand auf. Der Kanal kann auch von zwei konzentrisch ineinander verlaufenden Rohren begrenzt werden, sodass ein Doppelrohr entsteht.According to a further embodiment, the surfaces of the evaporator comprise a plurality of guide elements, which are arranged substantially along the main flow direction of the exhaust gas stream and may be at least partially finned. The guide elements are aligned in a star shape around a guide element arranged in a central position of the channel. The guide element is in particular designed as an annular guide element. At least some of the surfaces are catalytically active, in particular hydrolysis-catalytically active. At least one metering element protrudes into the channel. For uniform distribution of the liquid reactant in the channel, a plurality of metering elements may protrude into the channel. The metering element contains a supply line for applying the liquid reagent to the surface of the evaporator, which is in particular a tube with metering, through which the liquid reagent, that is, in particular a urea-water solution is passed to the surfaces of the evaporator. The distribution element is designed as a capillary with an outlet opening or a nozzle. In the region of the outlet opening, a curvature can be provided so that the liquid reactant can be optimally distributed on the surface of the evaporator. For better distribution of the liquid reactant, the feed line feeds a plurality of distribution elements, so that the number of feed points for the liquid reactant arranged in the channel is increased. Due to the risk of clogging due to unwanted deposits in lines carrying urea-water solution, care must be taken to ensure that lines or narrow gaps through which urea-water solution flows can not reach temperatures above 100 ° C. This can be achieved by various measures, wherein the metering element comprises means to prevent the premature evaporation of the liquid reagent, the means is designed in particular as a thermal insulation against the exhaust gas flow, for example as thermal insulation of the wall of the metering. The Means may comprise a thermoelectric Peltier element for cooling the liquid reagent. Alternatively, the means causes a temperature control of the liquid reactant by means of a cooling circuit or by a continuous recirculation of a portion of the urea-water solution in a cooling jacket. The metering element may include a coolant channel, with a coolant line for the supply of coolant and a coolant line for the removal of coolant. The channel may be formed as a cylindrical tube or pin, in which the distribution element is arranged, whereby the distribution element on all sides by a cooling fluid is flowed around. The channel is U-shaped and / or has a partition wall. The channel can also be bounded by two concentric tubes, creating a double tube.
Das flüssige Reaktionsmittel umfasst insbesondere eine Harnstoff-Wasserlösung.The liquid reactant comprises in particular a urea-water solution.
Besonders bevorzugt kommt ein Abgasreinigungssystem nach einem der vorhergehenden Ausführungsbeispiele in einem Fahrzeug, insbesondere in einem Personenkraftwagen oder einem Transportfahrzeug, welches mit einem Dieselmotor ausgerüstet ist, zur Verwendung. Durch das Vorsehen eines Dosierelements, welches das flüssige Reaktionsmittel als Film oder Rinnsal auf den Verdampfer aufbringt, wird vermieden, dass Tropfen des flüssigen Reaktionsmittels in den Katalysator mitgerissen werden und es in der Folge zu einer Verschmutzung oder einem Verstopfen des Katalysators kommt.Particularly preferably, an exhaust gas purification system according to one of the preceding embodiments is used in a vehicle, in particular in a passenger car or a transport vehicle equipped with a diesel engine. By providing a metering element, which applies the liquid reagent as a film or trickle on the evaporator, it is avoided that drops of the liquid reagent are entrained in the catalyst and as a result comes to a contamination or clogging of the catalyst.
Das Verfahren zur Reinigung von Abgasen, welche NOx enthalten, umfasst die Schritte der Einleitung eines NOx enthaltenden Abgasstroms von einer Abgasquelle in einen Kanal , Aufbringen eines flüssigen Reaktionsmittels auf einen Verdampfer, Verdampfen des flüssigen Reaktionsmittels auf der Oberfläche des Verdampfers, Reaktion des verdampften Reaktionsmittels mit NOx in einem Katalysator. Vor dem Eintritt in den Katalysator erfolgt ein Vermischen des mit dem verdampften Reaktionsmittel beladenen Abgasstroms in einem Mischer.In dem Katalysator wird NOx mit dem in der Gasmischung enthaltenen Ammoniak trotz der Gegenwart von Sauerstoff zu N2 reduziert.The method of purifying exhaust gases containing NOx includes the steps of introducing a NOx containing exhaust stream from an exhaust source into a channel, applying a liquid reactant to an evaporator, evaporating the liquid reactant on the surface of the evaporator, reacting the vaporized reactant NOx in a catalyst. Before entering the catalyst, mixing of the loaded with the vaporized reactant takes place In the catalyst, NO x is reduced with the ammonia contained in the gas mixture despite the presence of oxygen to N 2 .
Nachfolgend wird die Erfindung anhand der Zeichnungen erläutert. Es zeigen:
- Fig. 1
- eine schematische Ansicht des Abgasreinigungssystems
- Fig. 2
- eine erste Ansicht des Dosierelements, des Filmverdampfers, sowie des Mischers im Kanal
- Fig. 3
- eine zweite Ansicht auf das Dosierelement und den Filmverdampfer gemäss Ausführungsbeispiel nach
Fig. 2 - Fig. 4
- eine Anordnung von Dosierelementen und Filmverdampfer nach einem zweiten Ausführungsbeispiel
- Fig. 5
- eine Anordnung eines Filmverdampfers nach einem dritten Ausführungsbeispiel
- Fig. 6
- eine Anordnung eines Filmverdampfers nach einem vierten Ausführungsbeispiel
- Fig. 7
- ein Dosierelement nach einem ersten Ausführungsbeispiel
- Fig. 8
- ein Dosierelement nach einem zweiten Ausführungsbeispiel
- Fig. 9
- ein Dosierelement nach einem dritten Ausführungsbeispiel mit mehreren Varianten
- Fig. 10
- ein Dosierelement nach einem vierten Ausführungsbeispiel mit mehreren Varianten
- Fig. 11
- eine schematische Ansicht einer weiteren Variante des Abgasreinigungssystems
- Fig. 1
- a schematic view of the emission control system
- Fig. 2
- a first view of the metering element, the film evaporator, and the mixer in the channel
- Fig. 3
- a second view of the metering and the film evaporator according to the embodiment according to
Fig. 2 - Fig. 4
- an arrangement of metering and film evaporator according to a second embodiment
- Fig. 5
- an arrangement of a film evaporator according to a third embodiment
- Fig. 6
- an arrangement of a film evaporator according to a fourth embodiment
- Fig. 7
- a metering element according to a first embodiment
- Fig. 8
- a metering element according to a second embodiment
- Fig. 9
- a metering element according to a third embodiment with several variants
- Fig. 10
- a metering element according to a fourth embodiment with several variants
- Fig. 11
- a schematic view of another variant of the emission control system
Mit dem erfindungsgemässen Abgasreinigungssysstem, wie es in
Der Teil des Verdampfers, auf dem der Film fliesst, kann mit einem Hydrolysekatalysator beschichtet werden, der für eine bevorzugte Umwandlung der Harnstoff-Wasserlösung in NH3 und CO2 sorgt.The portion of the evaporator on which the film is flowing may be coated with a hydrolysis catalyst which provides for preferential conversion of the urea-water solution to NH 3 and CO 2 .
In der Darstellung gemäss
Der Film, bzw. das Rinnsal kann auf unterschiedliche Weise erzeugt werden. Einerseits kann Flüssigkeit mittels einer Düse zerstäubt werden oder als Strahl in Richtung des Verdampfers gespritzt werden und auf der Oberfläche des Verdampfers abgeschieden werden. Ein Ausführungsbeispiel für ein Dosierelement mit Verteilelementen 19, die als Düse 30 ausgebildet sind, ist in der
Andererseits kann die Flüssigkeit direkt mittels einer Zuleitung ans Kopfende des Verdampfers geleitet werden und dort ein Film erzeugt werden. Ein Ausführungsbeispiel für ein zugehöriges Dosierelement ist in
Wenn der Verdampfer nur zu einem kleinen Teil durch den Film der Harnstoff-Wasserlösung benetzt wird oder das Strömungsprofil ungleichmässig ist, ist das dort generierte Verhältnis zwischen Ammoniak und NOx nicht über den gesamten Querschnitt des Kanals 14 konstant. In diesem Fall wird dem Filmverdampfer 11 ein geeigneter statischer Mischer 12 nachgeschaltet. Der statische Mischer intensiviert die vorhandene Turbulenz im Kanal 14 und generiert zusätzlich intensive, grosse Wirbel, die die grossräumige Verteilung des Reaktionsmittels, also insbesondere des sich aus der Harnstoff-Wasserlösung bildenden Ammoniaks quer zur Hauptströmungsrichtung unterstützen. Verschiedene Konstruktionen für derartige Mischer kommen in Frage. Besonders günstig bezüglich des Druckverlustes sind statische Mischer, die keine Strömungsablösung bewirken. Ein Beispiel eines Mischers mit besonders günstigem Druckverlust ist in
In allen Fällen muss dabei die Konstruktion so gewählt werden, dass sämtliche Flüssigkeit ausschliesslich auf den Verdampfer gelangt und von dort durch die Strömung keine Tropfen abgerissen werden können. Das bei der Lösung mit der Zerstäubungsdüse sicherzustellen, ist nicht einfach.In all cases, the design must be chosen so that all liquid passes exclusively to the evaporator and from there by the flow no drops can be torn off. Ensuring this with the atomizing nozzle solution is not easy.
Falls die Harnstoff-Wasserlösung mittels einer Leitung direkt zum Verdampfer geleitet wird, sollte diese Leitung gut mittels eines separaten Kreislaufes temperiert werden und zusätzlich evt. isoliert werden, da unter allen Umständen verhindert werden muss, dass die Harnstoff-Wasserlösung schon innerhalb der Dosierelemente verdampft. Zur Kühlung kann z.B. ein Teil des Kühlwasserkreislaufs des Motors abgezweigt und durch diese Leitung zirkuliert werden. Die Dosierung von Harnstoff-Wasserlösung erfolgt nach einem vorteilhaften Ausführungsbeispiel mittels eines als Dosierstift ausgebildeten Dosierelements, der direkt vom Rand des den geschlossenen Kanal ausbildenden Auspuffrohres an den Dosierpunkt auf der Oberfläche eines Leitelements des Filmverdampfers zeigt, wodurch ein Flüssigkeitsfilm auf diese Oberfläche aufgebracht wird. Der Dosierstift umfasst ein konzentrisches Doppelrohr für das Kühlwasser. Das Kühlwasser fliesst im Inneren der Rohre zum Dosierpunkt und wird dort umgelenkt und durch den Spalt zwischen äusserem und innerem Rohr zurückgeführt. Die eigentliche Leitung für die Harnstoff-Wasserlösung kann wegen der geringen Durchsätze als Kapillare innerhalb der gekühlten Leitung realisiert werden. Der Durchsatz lässt sich mittels einer einfachen Pumpe steuern. Um eine gute Vorverteilung des Ammoniaks im Abgaskanal zu bewirken, können auch an mehreren Stellen Rinnsale auf dem Verdampfer generiert werden. Hierfür werden insbesondere mehrere, am Umfang des Kanals verteilte Dosierelemente vorgesehen. Falls die Zuleitung zu den Dosierelementen durch den Motorkühlkreislauf temperiert wird, sollte auch sichergestellt sein, dass dabei keine Probleme mit Verstopfung der Kapillaren für die Dosierung entstehen. Wenn die gesamte Dosierung über eine einzige Pumpe aber ein ganzes Bündel von Kapillaren erfolgen soll, so kann über die Länge der einzelnen Kapillaren der Volumenstrom in den verschiedenen Dosierpunkten gesteuert werden.If the urea-water solution is passed through a line directly to the evaporator, this line should be well tempered by means of a separate circuit and possibly additionally isolated, since under all circumstances it must be prevented that the urea-water solution evaporates already within the metering. For cooling, for example, part of the Cooling water circuit of the engine are diverted and circulated through this line. The metering of urea-water solution takes place according to an advantageous embodiment by means of a dosing formed as a dosing directly from the edge of the closed channel ausbildenden exhaust pipe to the dosing on the surface of a guide element of the film evaporator, whereby a liquid film is applied to this surface. The dosing pin comprises a concentric double tube for the cooling water. The cooling water flows inside the tubes to the dosing point and is deflected there and returned through the gap between the outer and inner tube. The actual line for the urea water solution can be realized as a capillary within the cooled line because of the low flow rates. The throughput can be controlled by a simple pump. In order to bring about a good pre-distribution of the ammonia in the exhaust gas channel, it is also possible to generate rivulets on the evaporator at several points. For this purpose, in particular a plurality of distributed on the circumference of the channel metering elements are provided. If the supply line to the dosing elements is tempered by the engine cooling circuit, it should also be ensured that there are no problems with blockage of the capillaries for dosing. If the entire dosage is to take place via a single pump but an entire bundle of capillaries, the volume flow in the various metering points can be controlled over the length of the individual capillaries.
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08100270A EP1956206B1 (en) | 2007-02-09 | 2008-01-09 | Exhaust gas cleaning system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07102076 | 2007-02-09 | ||
EP08100270A EP1956206B1 (en) | 2007-02-09 | 2008-01-09 | Exhaust gas cleaning system |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1956206A2 true EP1956206A2 (en) | 2008-08-13 |
EP1956206A3 EP1956206A3 (en) | 2008-10-08 |
EP1956206B1 EP1956206B1 (en) | 2010-08-04 |
Family
ID=38180185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08100270A Not-in-force EP1956206B1 (en) | 2007-02-09 | 2008-01-09 | Exhaust gas cleaning system |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080193353A1 (en) |
EP (1) | EP1956206B1 (en) |
JP (1) | JP2008196479A (en) |
KR (1) | KR20080074741A (en) |
CN (1) | CN101306307A (en) |
AT (1) | ATE476590T1 (en) |
DE (1) | DE502008001055D1 (en) |
RU (1) | RU2008105114A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2123879A1 (en) * | 2008-05-19 | 2009-11-25 | Delphi Technologies, Inc. | Deflector for mixing and homogenisize exhaust flow in front of an exhaust gas converter |
CN101658823A (en) * | 2008-08-28 | 2010-03-03 | 通用电气公司 | Surface treatments and coatings for flash atomization |
WO2010142528A1 (en) * | 2009-06-12 | 2010-12-16 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for operating an injection nozzle and corresponding motor vehicle |
WO2011000685A1 (en) | 2009-07-01 | 2011-01-06 | Sulzer Chemtech Ag | Device for cleaning exhaust gases containing nox |
EP2368625A1 (en) | 2010-03-22 | 2011-09-28 | Sulzer Chemtech AG | Method and device for dispersion |
DE102010045072A1 (en) * | 2010-09-10 | 2012-03-15 | Friedrich Boysen Gmbh & Co. Kg | Emission control device for use in e.g. selective catalytic reduction application, has injecting device injecting substance into effluent stream, and multiple nozzles arranged over cross-section of effluent stream |
DE102011008895A1 (en) * | 2011-01-19 | 2012-07-19 | Dif Die Ideenfabrik Gmbh | Exhaust gas treatment device for e.g. cleaning exhaust gases of internal combustion engine of motor car, has rod arranged in device along flow direction prior to feed point and partially transverse to flow direction |
WO2013000640A1 (en) * | 2011-06-28 | 2013-01-03 | Robert Bosch Gmbh | Device and method for introducing a reducing agent into an exhaust train |
WO2014096217A1 (en) * | 2012-12-21 | 2014-06-26 | Alzchem Ag | Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases |
DE102014015750A1 (en) * | 2014-10-23 | 2016-04-28 | Daimler Ag | Cooling arrangement for a vehicle |
DE102016210640A1 (en) | 2016-06-15 | 2017-12-21 | Volkswagen Aktiengesellschaft | Device and method for dosing a reducing agent in the exhaust passage of an internal combustion engine |
EP3364004A4 (en) * | 2015-10-16 | 2018-08-29 | Yanmar Co., Ltd. | Exhaust gas purification device for ship |
DE102017110685A1 (en) * | 2017-05-17 | 2018-11-22 | Man Diesel & Turbo Se | Exhaust after treatment system and internal combustion engine |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101122748B1 (en) * | 2009-04-24 | 2012-03-23 | 호성산업개발(주) | Exhaust gas purifier and method of exhaust gas purification |
US8151556B2 (en) * | 2009-07-21 | 2012-04-10 | Navistar Canada, Inc. | Internal combustion engine exhaust after-treatment system and method |
KR101100851B1 (en) * | 2009-10-29 | 2012-01-02 | 한국전력기술 주식회사 | An Exhaust Gas Denitrifing System having Reducer-mixing and Noise-diminution Structure |
FR2955610B1 (en) * | 2010-01-22 | 2012-01-13 | Peugeot Citroen Automobiles Sa | GAS INJECTION DEVICE AND EXHAUST LINE COMPRISING SUCH A DEVICE |
KR101664494B1 (en) * | 2010-07-08 | 2016-10-13 | 두산인프라코어 주식회사 | Static mixer for mixing urea aqueous solution and engine exhaust gas |
SE535355C2 (en) * | 2010-11-08 | 2012-07-03 | Scania Cv Ab | Exhaust after-treatment device and process for after-treatment of exhaust gases |
DE102010056314A1 (en) * | 2010-12-27 | 2012-06-28 | Friedrich Boysen Gmbh & Co. Kg | Device for distributing fluids in exhaust systems |
JP6007468B2 (en) * | 2011-07-29 | 2016-10-12 | 株式会社Ihi | Denitration equipment |
US8739519B2 (en) * | 2012-04-17 | 2014-06-03 | Ford Global Technologies, Llc | Multi-tiered telescope shaped atomizer |
SE540984C2 (en) | 2013-04-12 | 2019-02-19 | Scania Cv Ab | Method and apparatus for injecting a reducing agent into an internal combustion engine |
KR101461325B1 (en) * | 2013-06-28 | 2014-11-13 | 두산엔진주식회사 | Reducing agent Dosing System of selective catalytic reduction system |
US9915185B2 (en) | 2016-02-17 | 2018-03-13 | Caterpillar Inc. | Injector mounting assembly |
EP3339595B1 (en) * | 2016-12-21 | 2020-04-01 | Perkins Engines Company Limited | Method for selective catalytic reduction system |
US11413571B2 (en) | 2018-08-22 | 2022-08-16 | Exxonmobil Upstream Research Company | Removing impurities from a gas stream |
KR102178733B1 (en) * | 2018-09-28 | 2020-11-13 | 주식회사 포스코 | Alien substance capturing apparatus and electrical steel sheet manufacturing facility having thereof |
US10774718B2 (en) | 2018-10-31 | 2020-09-15 | Caterpillar Inc. | Multi-nozzle design to eliminate downstream mixing devices |
CN110206620B (en) * | 2019-05-06 | 2021-01-15 | 江苏大学 | Self-feedback adjusting baffle type SCR urea mixer |
JP7345405B2 (en) * | 2019-05-30 | 2023-09-15 | 日本碍子株式会社 | Mixer for exhaust gas purification equipment, exhaust gas purification equipment, and exhaust gas purification method |
CN113606020B (en) * | 2021-07-16 | 2022-03-22 | 江苏伟博动力技术有限公司 | Gas-liquid mixer for waste gas purification |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2205371A1 (en) | 1971-04-29 | 1972-11-16 | Gebrüder Sulzer AG, Winterthur (Schweiz) | Mixing device |
EP0487886B1 (en) | 1990-11-29 | 1994-04-13 | MAN Nutzfahrzeuge Aktiengesellschaft | Process and device for selective catalytic NOx reduction in exhaust gases containing oxygen |
DE19539923C1 (en) | 1995-10-26 | 1997-06-26 | Esg Gmbh | Static mixer for e.g. fuel and ammonia-air mixt. |
WO1997036676A1 (en) | 1996-04-02 | 1997-10-09 | Clean Diesel Technologies, Inc. | Method and apparatus for reducing harmful emissions from a diesel engine by urea injection scr |
WO1998022209A1 (en) | 1996-11-20 | 1998-05-28 | Clean Diesel Technologies, Inc. | SELECTIVE CATALYTIC NOx REDUCTION UTILIZING UREA WITHOUT CATALYST FOULING |
WO1998028070A1 (en) | 1996-12-20 | 1998-07-02 | Clean Diesel Technologies, Inc. | Method and apparatus for reducing harmful emissions from a lean-burn engine by urea injection scr |
US5968464A (en) | 1997-05-12 | 1999-10-19 | Clean Diesel Technologies, Inc. | Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction |
US6361754B1 (en) | 1997-03-27 | 2002-03-26 | Clean Diesel Technologies, Inc. | Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction |
WO2004079171A1 (en) | 2003-03-01 | 2004-09-16 | Imi Vision Limited | Improvements in engine emissions |
US6834498B2 (en) | 2002-11-21 | 2004-12-28 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
US7090810B2 (en) | 2000-12-01 | 2006-08-15 | Fuel Tech Inc. | Selective catalytic reduction of nox enabled by sidestream urea decomposition |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4313393C2 (en) * | 1993-04-07 | 2003-06-26 | Siemens Ag | Static mixer |
DE19734627C1 (en) * | 1997-08-09 | 1999-01-14 | Man Nutzfahrzeuge Ag | Device and method for the catalytic NO¶x¶ reduction in oxygen-containing engine exhaust gases |
DE19922959A1 (en) * | 1999-05-19 | 2000-11-23 | Daimler Chrysler Ag | Exhaust gas cleaning system with nitrogen oxide reduction with addition of reducing agent |
DE10207986A1 (en) * | 2002-02-25 | 2003-09-04 | Daimler Chrysler Ag | Emission control system for an internal combustion engine |
JP3822135B2 (en) * | 2002-05-13 | 2006-09-13 | 日本パイオニクス株式会社 | Vaporization supply device |
US20060037539A1 (en) * | 2002-05-29 | 2006-02-23 | Masayuki Toda | Vaporizer, various apparatuses including the same and method of vaporization |
DE10256769B4 (en) * | 2002-12-05 | 2005-10-06 | Zeuna-Stärker GmbH & Co KG | Motor vehicle with a diesel drive motor |
JP4262522B2 (en) * | 2003-05-28 | 2009-05-13 | 株式会社日立ハイテクノロジーズ | Exhaust gas treatment device for engine and exhaust gas treatment method |
DE102004004738A1 (en) * | 2004-01-30 | 2005-08-18 | Robert Bosch Gmbh | Method and device for the after-treatment of an exhaust gas of an internal combustion engine |
DK200500821A (en) * | 2005-06-04 | 2006-12-05 | Topsoe Haldor As | Method and apparatus for injecting a solution into a gas stream |
-
2008
- 2008-01-07 JP JP2008000397A patent/JP2008196479A/en not_active Withdrawn
- 2008-01-09 DE DE502008001055T patent/DE502008001055D1/en active Active
- 2008-01-09 AT AT08100270T patent/ATE476590T1/en active
- 2008-01-09 EP EP08100270A patent/EP1956206B1/en not_active Not-in-force
- 2008-01-17 US US12/009,172 patent/US20080193353A1/en not_active Abandoned
- 2008-01-30 KR KR1020080009629A patent/KR20080074741A/en not_active Application Discontinuation
- 2008-02-03 CN CNA200810005386XA patent/CN101306307A/en active Pending
- 2008-02-08 RU RU2008105114/06A patent/RU2008105114A/en not_active Application Discontinuation
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2205371A1 (en) | 1971-04-29 | 1972-11-16 | Gebrüder Sulzer AG, Winterthur (Schweiz) | Mixing device |
EP0487886B1 (en) | 1990-11-29 | 1994-04-13 | MAN Nutzfahrzeuge Aktiengesellschaft | Process and device for selective catalytic NOx reduction in exhaust gases containing oxygen |
DE19539923C1 (en) | 1995-10-26 | 1997-06-26 | Esg Gmbh | Static mixer for e.g. fuel and ammonia-air mixt. |
WO1997036676A1 (en) | 1996-04-02 | 1997-10-09 | Clean Diesel Technologies, Inc. | Method and apparatus for reducing harmful emissions from a diesel engine by urea injection scr |
WO1998022209A1 (en) | 1996-11-20 | 1998-05-28 | Clean Diesel Technologies, Inc. | SELECTIVE CATALYTIC NOx REDUCTION UTILIZING UREA WITHOUT CATALYST FOULING |
WO1998028070A1 (en) | 1996-12-20 | 1998-07-02 | Clean Diesel Technologies, Inc. | Method and apparatus for reducing harmful emissions from a lean-burn engine by urea injection scr |
US6361754B1 (en) | 1997-03-27 | 2002-03-26 | Clean Diesel Technologies, Inc. | Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction |
US5968464A (en) | 1997-05-12 | 1999-10-19 | Clean Diesel Technologies, Inc. | Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction |
US6203770B1 (en) | 1997-05-12 | 2001-03-20 | Clean Diesel Technologies, Inc. | Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction |
US7090810B2 (en) | 2000-12-01 | 2006-08-15 | Fuel Tech Inc. | Selective catalytic reduction of nox enabled by sidestream urea decomposition |
US6834498B2 (en) | 2002-11-21 | 2004-12-28 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
WO2004079171A1 (en) | 2003-03-01 | 2004-09-16 | Imi Vision Limited | Improvements in engine emissions |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2123879A1 (en) * | 2008-05-19 | 2009-11-25 | Delphi Technologies, Inc. | Deflector for mixing and homogenisize exhaust flow in front of an exhaust gas converter |
US8038952B2 (en) | 2008-08-28 | 2011-10-18 | General Electric Company | Surface treatments and coatings for flash atomization |
CN101658823A (en) * | 2008-08-28 | 2010-03-03 | 通用电气公司 | Surface treatments and coatings for flash atomization |
EP2168688A1 (en) | 2008-08-28 | 2010-03-31 | General Electric Company | Surface treatments and coatings for flash atomization |
CN101658823B (en) * | 2008-08-28 | 2015-05-06 | 通用电气公司 | Surface treatments and coatings for flash atomization |
WO2010142528A1 (en) * | 2009-06-12 | 2010-12-16 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for operating an injection nozzle and corresponding motor vehicle |
WO2011000685A1 (en) | 2009-07-01 | 2011-01-06 | Sulzer Chemtech Ag | Device for cleaning exhaust gases containing nox |
WO2011116840A1 (en) | 2010-03-22 | 2011-09-29 | Sulzer Chemtech Ag | Mixing or dispersing element and process for static mixing or dispersing |
EP2368625A1 (en) | 2010-03-22 | 2011-09-28 | Sulzer Chemtech AG | Method and device for dispersion |
DE102010045072A1 (en) * | 2010-09-10 | 2012-03-15 | Friedrich Boysen Gmbh & Co. Kg | Emission control device for use in e.g. selective catalytic reduction application, has injecting device injecting substance into effluent stream, and multiple nozzles arranged over cross-section of effluent stream |
DE102011008895A1 (en) * | 2011-01-19 | 2012-07-19 | Dif Die Ideenfabrik Gmbh | Exhaust gas treatment device for e.g. cleaning exhaust gases of internal combustion engine of motor car, has rod arranged in device along flow direction prior to feed point and partially transverse to flow direction |
WO2013000640A1 (en) * | 2011-06-28 | 2013-01-03 | Robert Bosch Gmbh | Device and method for introducing a reducing agent into an exhaust train |
WO2014096217A1 (en) * | 2012-12-21 | 2014-06-26 | Alzchem Ag | Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases |
US9687783B2 (en) | 2012-12-21 | 2017-06-27 | Alzchem Ag | Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases |
DE102014015750A1 (en) * | 2014-10-23 | 2016-04-28 | Daimler Ag | Cooling arrangement for a vehicle |
EP3364004A4 (en) * | 2015-10-16 | 2018-08-29 | Yanmar Co., Ltd. | Exhaust gas purification device for ship |
DE102016210640A1 (en) | 2016-06-15 | 2017-12-21 | Volkswagen Aktiengesellschaft | Device and method for dosing a reducing agent in the exhaust passage of an internal combustion engine |
DE102017110685A1 (en) * | 2017-05-17 | 2018-11-22 | Man Diesel & Turbo Se | Exhaust after treatment system and internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN101306307A (en) | 2008-11-19 |
EP1956206B1 (en) | 2010-08-04 |
JP2008196479A (en) | 2008-08-28 |
ATE476590T1 (en) | 2010-08-15 |
EP1956206A3 (en) | 2008-10-08 |
DE502008001055D1 (en) | 2010-09-16 |
US20080193353A1 (en) | 2008-08-14 |
RU2008105114A (en) | 2009-08-20 |
KR20080074741A (en) | 2008-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1956206B1 (en) | Exhaust gas cleaning system | |
EP2691618B1 (en) | Compact exhaust-gas treatment unit with mixing region, and method for mixing an exhaust gas | |
DE102013204189B4 (en) | Mixing system | |
EP0555746B1 (en) | Device for catalytic NOx reduction | |
DE19938854C1 (en) | Apparatus for catalytic reduction of nitrogen oxides-containing exhaust gases from IC engines has diffuser with exhaust gas channels having increasing cross-section in flow direction between mixer and converter | |
EP2700442B1 (en) | Exhaust system with mixing and/or vaporisation device | |
EP1890016B1 (en) | Method for feeding at least one reactant into an exhaust gas flow and device for treating the exhaust gas flow in a combustion engine | |
EP2325452B1 (en) | Device for treating exhaust gases of internal combustion engines | |
EP1969213B1 (en) | Fixture for mounting in an exhaust line of an internal combustion engine | |
EP2456963B1 (en) | Injection nozzle for supplying reducing agent, and device for treating exhaust gases | |
EP1962995B2 (en) | Apparatus for mixing a fluid with a large gas stream, especially for introducing a reducing agent into a flue gas comprising nitrogen oxides | |
EP3470640B1 (en) | Exhaust treatment module | |
EP2570178B1 (en) | Mixing device | |
WO2009098096A1 (en) | Metering device for pollution reduction in exhaust gases | |
WO2015071233A1 (en) | Exhaust gas post treatment system | |
WO2011000685A1 (en) | Device for cleaning exhaust gases containing nox | |
DE102015204294A1 (en) | Compact selective catalytic reduction system for nitrogen oxide reduction in oxygen-rich exhaust gas from internal combustion engines from 500 to 4500 kW | |
EP1191995A1 (en) | Device for impinging a flowing gas with a reactant | |
DE102012014528A1 (en) | Mixing- or evaporation device for exhaust system of internal combustion engine, particularly of motor vehicle, has guide blade that protrudes in direction towards long side wall, where additional guide blade protrudes in acute angle | |
WO2020108991A1 (en) | Exhaust-gas aftertreatment system of compact construction | |
EP2166206B1 (en) | Metering device for metering a reduction agent, in particular for a selective catalytic reduction, into an exhaust gas flow of a combustion engine | |
DE102016014966A1 (en) | Exhaust after-treatment device for a motor vehicle | |
CH697389B1 (en) | Integrated reactor. | |
EP4382733A1 (en) | Exhaust gas treatment assembly | |
DE102006027499A1 (en) | Exhaust gas after-treatment device for cleaning exhaust gas of e.g. diesel engine, of motor vehicle, has exhaust gas line-pipe sections running with small distance to respective exhaust gas after-treatment units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK |
|
17P | Request for examination filed |
Effective date: 20090317 |
|
17Q | First examination report despatched |
Effective date: 20090417 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502008001055 Country of ref document: DE Date of ref document: 20100916 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100804 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101104 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101104 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101204 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101115 |
|
26N | No opposition filed |
Effective date: 20110506 |
|
BERE | Be: lapsed |
Owner name: SULZER CHEMTECH A.G. Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008001055 Country of ref document: DE Effective date: 20110506 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20121205 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100804 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 476590 Country of ref document: AT Kind code of ref document: T Effective date: 20130109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160120 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008001055 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 |