EP1955305B1 - Dispositif et procede de mise a jour dynamique des zones de vol prohibees dans un aeronef - Google Patents

Dispositif et procede de mise a jour dynamique des zones de vol prohibees dans un aeronef Download PDF

Info

Publication number
EP1955305B1
EP1955305B1 EP06819822A EP06819822A EP1955305B1 EP 1955305 B1 EP1955305 B1 EP 1955305B1 EP 06819822 A EP06819822 A EP 06819822A EP 06819822 A EP06819822 A EP 06819822A EP 1955305 B1 EP1955305 B1 EP 1955305B1
Authority
EP
European Patent Office
Prior art keywords
aircraft
areas
access
prohibited
dynamically updating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06819822A
Other languages
German (de)
English (en)
Other versions
EP1955305A1 (fr
Inventor
Xavier Louis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1955305A1 publication Critical patent/EP1955305A1/fr
Application granted granted Critical
Publication of EP1955305B1 publication Critical patent/EP1955305B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones

Definitions

  • the present invention relates to a device and a method for changing the prohibited zones to an aircraft. It applies in the field of aeronautics. For example, in the context of avionics and embedded systems, it applies to systems intended to avoid the planet, such as the systems known by their Anglo-Saxon name of "Terrain Awareness and Warning Systems", that we will call TAWS systems later.
  • TAWS systems and global avoidance systems are systems on board aircraft designed to mitigate any control or flight errors that could cause an aircraft to collide with the ground or with is commonly referred to in aeronautics by the Anglo-Saxon expression "Man Made Structure", which will be called MMS thereafter.
  • MMS are human ground constructions that constitute a potential obstacle to air traffic because of their size, especially when the aircraft are in the process of taking off or descending to an aerodrome.
  • broadcast antennas, power lines or skyscrapers can be mentioned for example broadcast antennas, power lines or skyscrapers.
  • TAWS systems have a connection to a triangulation positioning system such as "Global Positioning System” for example, or a connection with radio navigation equipment on the ground and on board allowing them to know their position in three dimensions. They deduce their position in latitude and longitude as well as their altitude in relation to the sea level. They also have a digital terrain model fed by a terrain database allowing, for any position of the space characterized by a latitude and longitude, to know the altitude of the terrain relative to the sea level. By comparing the altitude of the aircraft with the altitude of the relief, these systems deduce the distance of the aircraft from the ground, inform the flight crew and possibly raise audible or visual alerts in cases of imminent risk of collision with the ground.
  • a triangulation positioning system such as "Global Positioning System” for example
  • radio navigation equipment on the ground and on board
  • a connection with radio navigation equipment on the ground and on board allowing them to know their position in three dimensions. They deduce their position in latitude and longitude as well as their altitude in relation
  • These systems also include a means of storing MMS, which are described by their position in latitude and longitude, their altitude relative to the consistent sea level of the on-board digital terrain model and finally by their height.
  • MMS is associated with a radius and an uncertainty sometimes expressed in kilometers, these two parameters being supposed to translate the lack of precision as for the location and the scale of the obstacle.
  • Such a representation of obstacles is only suitable for occasional obstacles, of the type of an antenna, a pylon or an isolated tower, but absolutely not to volume obstacles, such as sets of skyscrapers, except to introduce very large safety distances by increasing the radius and uncertainty to encompass these obstacles.
  • the object of the invention is in particular to offer a generic solution to anti-collision problems with all types of ground obstacles, whatever their dimensions.
  • the subject of the invention is a method of changing the prohibited zones to an aircraft. It comprises a phase of definition of the geometry of the zones with restricted access and their conditions of access which depend on the aircraft, a phase of characterization of the the aircraft with respect to the conditions of access to the zones and a phase of determining the zones to which the aircraft does not have access.
  • access to the zones can be conditioned by the type of aircraft or its operational flight situation.
  • the invention also relates to a system for changing prohibited areas to an aircraft. It comprises means for storing the restricted access zones described by their geometry and their access conditions which depend on the aircraft, a module for characterizing the aircraft with respect to the conditions of access to the zones and a determination module. areas to which the aircraft does not have access.
  • access to the zones can be conditioned by the type of aircraft or its operational flight situation.
  • Prohibited zones may be provided to a flight system raising an audible or visual alert when a prohibited zone is going to be penetrated or to an autopilot system making it impossible for the aircraft to enter these areas.
  • the main advantages of the invention are that it offers a great deal of flexibility since it is adaptable to all types of aircraft, allowing, for example, the fitting of protection zones of an obstacle according to the type of aircraft to which they address themselves.
  • This flexibility makes the invention an excellent basis for defining a new standard of shareable areas for the entire aviation community, be it civilian, military, commercial or recreational, and well beyond the scope of the protection of ground obstacles. It allows a dynamic update of the prohibited areas to an aircraft according to the evolution of its operational situation throughout the flight, thus totally breaking with the frozen nature of the old areas.
  • it is easy to implement on existing embedded systems. In the future, it will even exploit a function currently under study and will be very difficult to use, to take control of the pilot in certain exceptional critical situations.
  • protecting voluminal obstacles on the ground by areas whose geometry is described in three dimensions is a simple way to take into account the reliefs of the ground.
  • the figure 1 illustrates by a synoptic the possible phases of the method according to the invention.
  • the first step is to describe portions of the airspace, each in the form of a list of points in latitude, longitude and height above the terrain.
  • the list of points in latitude and longitude determines a two-dimensional polygon, the height above the relief determines a three-dimensional area, whose base is the previously defined polygon, sheet-shaped area of varying thickness over the relief.
  • the second step is to establish criteria to be met by aircraft to be allowed to enter the zones.
  • a set of skyscrapers can be included in a first area accessible to any aircraft, regardless of its type.
  • This area which is forbidden to any aircraft, can itself be included in a second, larger area accessible only to helicopters.
  • This area accessible to helicopters can itself be included in a third area larger still and accessible only to helicopters and light aircraft.
  • the method according to the invention also comprises a phase 2 characterizing the aircraft with respect to the conditions of access to the zones.
  • a phase 2 characterizing the aircraft with respect to the conditions of access to the zones.
  • this can consist of the flight crew to declare any particular operational situation, such as declaring the failure reports or setting their transponder on the "hijacked" code as soon as they suspect an imminent diversion.
  • it may be for the ground control personnel to designate any aircraft with suspicious behavior from the ground, for example, radio silence, where the ground systems send this suspicion information to the on-board systems via an existing wireless data link. . All this introduces a real dynamic.
  • the method according to the invention finally comprises a phase 3 of determining the areas to which the aircraft does not have access. It is, on characterization of an aircraft with respect to the conditions of access to the zones, to update the access authorizations of the aircraft to each zone.
  • the airspace is divided into restricted areas so as to no longer authorize a hijacked flight in particular areas, for example already existing military zones.
  • the military zones have a very low density of population and almost no air traffic outside the military maneuvers. They therefore have all the security conditions required to handle this situation as serenely as possible. And at the same time, non-military areas are prohibited from diverted flights.
  • the autopilot system can easily prevent the aircraft from entering prohibited areas protecting human infrastructure and direct the aircraft to a secure military area. But we can also consider other situations in which the autopilot system takes control of the pilot over the restricted areas of the invention. For example, again using the example of the three zones encompassing the building complex, autopilot could prevent the aircraft from overriding the prohibition to enter the third zone.
  • FWC Fluorescence Warning Computer
  • the handling of the device may be preceded by an alert and then a notification to the pilot by the "Flight Warning Computer", which will be called FWC later, which is a system dedicated to lifting alerts.
  • FWC Light Warning Computer
  • hijackers with a good knowledge of the control procedures could seize a device without any external sign being given. So even if they are not directed to an area immediately military security, at least they can not approach human infrastructure with a high population density. It thus becomes technically impossible to approach potential targets for a terrorist attack with an aircraft that the size makes likely to cause significant damage if used as a projectile.
  • the figure 2 illustrates by a block diagram an exemplary TAWS system architecture implementing the method according to the invention.
  • It includes a database of restricted areas which describes each zone in terms of geographical location at latitudes, longitudes and height above the terrain, and in terms of access conditions depending on the aircraft. Ideally, the description of these zones can follow a standard recognized by the various actors of the aeronautics, whether civil or military. Ideally also, authorized distributors can provide up-to-date versions of these standardized zone databases, depending on the builds and demolitions of MMS.
  • the exemplary TAWS system also comprises a function 21 for determining the prohibited zones.
  • This function first makes a request for zones to the database 20, at takeoff, for example, to have the generic division of the airspace into restricted zones. Then from the aircraft-specific data known by a database 26 for example, advantageously the aircraft type, this function 21 determines a first list of areas prohibited to the aircraft in particular and in which the latter It is not allowed to penetrate, this as soon as it takes off. Then, each time it receives a message that can modify this list, the function 21 reconsiders the prohibited zones to the aircraft taking into account the new situation. Advantageously, it can receive any message indicating an exceptional operational situation.
  • LRU failure report of the "Built-in Test Equipment” type, which will be called a BITE report later, issued by a "Line Replaceable Unit” 24 providing a safety function, which is will call LRU later.
  • the LRU are hardware and software modules in drawers such as computers, sensors or actuators, easily replaceable if necessary. They have a function of maintenance of a type known by its Anglo-Saxon designation BITE function.
  • This BITE function allows LRUs to perform diagnostics on their internal operating state and issue reports that are called by extension BITE reports.
  • the function 21 may receive trouble reports entered manually on a "Multipurpose Control Display Unit" 22, which will be called MCDU thereafter.
  • An MCDU is an integrated screen and keyboard device quite common in avionics.
  • the function 21 can receive all the codes sent by the transponder 23 or other equipment, in order to identify the possible transmission of the code "hijacked", even if it is very brief. All these messages reflect an event likely to modify the zones specifically prohibited to the aircraft.
  • the function 21 for example sends the prohibited zones to a display module of the type of a "Terrain Hazard Display” 25, which is a standard graphic display device in avionics offering two-dimensional zone visualization functions. Thus the pilot is informed graphically and in real time of the areas he must avoid.
  • the function 21 also sends the prohibited zones to another sub-function 29 of the TAWS which, knowing the position of the apparatus permanently, is able to raise sound alerts when a prohibited zone is about to be penetrated. through a FWC 30 and an "Aircraft Audio System" 28, which is a standard avionics sound emission device.
  • the function 21 sends the prohibited zones to another sub-function 31 of the TAWS which, also constantly knowing the position of the apparatus, proposes avoidance trajectories when a forbidden zone is penetrated. It sends the avoidance trajectories to a flight system 27 which may for example have an autopilot function.
  • the autopilot function may, under certain extreme conditions and when the zones authorized to the aircraft are limited to military zones for example, take the authority of the pilot to direct the aircraft in one of the areas in question.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

La présente invention concerne un dispositif et un procédé de mise à jour dynamique des zones de vol prohibées, à bord d'un aéronef en vol. Le procéd est caractérisé en ce qu' il comporte une phase de définition de la géométri des zones à accès restreint et de leurs conditions d' accès qui dépendent de l'aéronef, une phase de caractérisation de l'aéronef par rapport aux conditions d' accès aux zones et une phase de détermination des zones auxquelles l'aéronef n'a pas accès. Application : aéronautique.

Description

  • La présente invention concerne un dispositif et un procédé de changement des zones prohibées à un aéronef. Elle s'applique dans le domaine de l'aéronautique. Par exemple, dans le cadre de l'avionique et des systèmes embarqués, elle s'applique aux systèmes destinés à éviter la planète, comme les systèmes connus sous leur dénomination anglo-saxonne de « Terrain Awareness and Warning Systems », que l'on appellera systèmes TAWS par la suite.
  • Les systèmes TAWS et les systèmes d'évitement de la planète en général sont des systèmes embarqués à bord des aéronefs qui visent à pallier d'éventuelles erreurs de contrôle ou de pilotage pouvant amener un aéronef à entrer en collision avec le sol ou avec ce qui est couramment désigné en aéronautique par l'expression anglo-saxonne de « Man Made Structure », que l'on appellera MMS par la suite. Les MMS sont des constructions humaines au sol constituant un obstacle potentiel au trafic aérien de par leur envergure, notamment lorsque les avions sont en phase de décollage ou de descente vers un aérodrome. Parmi ces obstacles, peuvent être cités par exemple les antennes de radio-diffusion, les lignes à haute tension ou encore les gratte-ciel.
  • C'est essentiellement le contrôle aérien qui assure le respect des distances de sécurité entre l'aéronef et le sol et qui signale les MMS, même si l'équipage dispose également de cartes papier ou numérisées lui fournissant les informations sur les procédures d'approche ou de décollage et sur les menaces, MMS ou autres, qu'il peut rencontrer. Le contrôleur d'approche donne des consignes de montée ou de descente au pilote par radio, qui exécute les consignes de manière totalement assistée. Mais l'exécution de ces consignes est entièrement assujettie à la volonté ou à la disponibilité du pilote. Dans le cas où le pilote n'est plus en mesure de recevoir ou d'exécuter les consignes du contrôleur, s'il y a détournement par des pirates de l'air par exemple, il n'y a aucun système à bord pouvant se substituer au contrôleur et au pilote. En effet, même si des instruments de bord permettent de mesurer avec plus ou moins de précision l'altitude de l'appareil, en se basant sur une mesure de pression et l'application d'un gradient à partir d'une pression de référence, connaître avec précision la distance avec le sol est beaucoup plus complexe. Cela nécessite notamment d'avoir une connaissance détaillée du relief, des infrastructures humaines en surface, et d'être à même de les exploiter rapidement au vu de la quantité énorme d'information que cela représente. C'est le rôle des systèmes d'évitement de la planète, de plus en plus répandus, comme les systèmes TAWS.
  • Par exemple, les systèmes TAWS actuels disposent d'une connexion à un système de positionnement par triangulation du type « Global Positionning System » par exemple, ou d'une connexion avec des équipements de radio-navigation au sol et à bord leur permettant de connaître leur position en trois dimensions. Ils en déduisent leur position en latitude et longitude ainsi que leur altitude par rapport au niveau de la mer. Ils disposent également d'un modèle numérique de terrain alimenté par une base de données terrain permettant, pour toute position de l'espace caractérisée par une latitude et une longitude, de connaître l'altitude du relief par rapport au niveau de la mer. En comparant l'altitude de l'aéronef à l'altitude du relief, ces systèmes déduisent la distance de l'aéronef par rapport au sol, en informent le personnel de pilotage et éventuellement lèvent des alertes sonores ou visuelles dans les cas de risque imminent de collision avec le sol. Ces systèmes comportent également un moyen de stockage des MMS, qui sont décrits par leur position en latitude et longitude, par leur altitude par rapport au niveau de la mer cohérente du modèle numérique de terrain embarqué et enfin par leur hauteur. Chaque MMS est associé à un rayon et à une incertitude parfois exprimés en kilomètres, ces deux paramètres étant sensés traduire le manque de précision quant à la localisation et l'envergure de l'obstacle. Une telle représentation des obstacles n'est adaptée qu'à des obstacles ponctuels, du type d'une antenne, d'un pylône ou d'une tour isolée, mais absolument pas à des obstacles volumiques, comme des ensembles de gratte-ciel, sauf à introduire des distances de sécurité très importantes par augmentation du rayon et de l'incertitude pour englober ces obstacles.
  • Or les besoins actuels tendent vers la précision dans la définition des obstacles, allant jusqu'à exiger de pouvoir tenir compte d'obstacles volumiques de grande envergure distincts mais proches et d'adapter la distance de sécurité dans certaines situations. Par exemple, une concentration de gratte-ciel peut être interdite de survol et d'approche à tout trafic d'avion de ligne à une distance importante. Mais le vol des aéronefs légers peut être autorisé à distance moyenne. Les hélicoptères peuvent être autorisés à se poser sur des infrastructures à proximité directe des gratte-ciel, ils doivent par conséquent pouvoir s'approcher à distance très courte. Par exemple encore, certains équipements qui tombent en panne peuvent rendre un appareil moins fiable ou moins sûr. Lui interdire la proximité de certains obstacles dont l'approche nécessiterait l'utilisation des équipements en panne est une mesure qui va dans le sens de la sécurité du vol. Par exemple encore, il est préférable d'empêcher l'approche de MMS à forte concentration de population comme les gratte-ciel à un avion détourné par des pirates de l'air.
  • Les systèmes TAWS actuels et la façon de modéliser les MMS qu'ils mettent en oeuvre ne permettent pas un tel niveau de précision et de souplesse. Ainsi, des obstacles d'assez faible envergure génèrent un vaste secteur de vol interdit à tous. Des aéronefs ne présentant aucune contre-indication à l'approche de certains obstacles s'en voient définitivement interdire l'approche ou au contraire des aéronefs dont l'approche d'un obstacle présente un réel danger s'en voient laisser le libre survol.
  • Les systèmes décrit dans la demande internationale WO2004/025600 (page 14 ligne 11 à page 15 ligne 3) et dans la demande française FR2830360 (page 1 ligne 33 à page 2 ligne 19) présentent notamment de tels inconvénients.
  • L'invention a notamment pour but d'offrir une solution générique aux problèmes d'anti-collision avec tous les types d'obstacles au sol, quelles que soient leurs dimensions. A cet effet, l'invention a pour objet un procédé de changement des zones prohibées à un aéronef. Il comporte une phase de définition de la géométrie des zones à accès restreint et de leurs conditions d'accès qui dépendent de l'aéronef, une phase de caractérisation de l'aéronef par rapport aux conditions d'accès aux zones et une phase de détermination des zones auxquelles l'aéronef n'a pas accès.
  • Avantageusement, l'accès aux zones peut être conditionné par le type d'aéronef ou sa situation opérationnelle de vol.
  • L'invention a également pour objet un système de changement des zones prohibées à un aéronef. Il comporte un moyen de stockage des zones à accès restreint décrites par leur géométrie et leurs conditions d'accès qui dépendent de l'aéronef, un module de caractérisation de l'aéronef par rapport aux conditions d'accès aux zones et un module de détermination des zones auxquelles l'aéronef n'a pas accès.
  • Avantageusement, l'accès aux zones peut être conditionné par le type d'aéronef ou sa situation opérationnelle de vol.
  • Les zones prohibées peuvent être fournies à un système de vol levant une alerte sonore ou visuelle quand une zone prohibée va être pénétrée ou à un système de pilotage automatique rendant impossible la pénétration de ces zones par l'aéronef.
  • L'invention a encore pour principaux avantages qu'elle offre beaucoup de souplesse puisqu'elle est adaptable à tous les types d'aéronef, permettant par exemple d'emboîter des zones de protection d'un obstacle en fonction du type d'aéronef auquel elles s'adressent. Cette souplesse fait de l'invention une excellente base à la définition d'un nouveau standard de zones partageable par toute la communauté de l'aéronautique, qu'elle soit civile, militaire, commerciale ou de loisir, et dépassant largement le cadre de la protection des obstacles au sol. Elle permet une mise à jour dynamique des zones prohibées à un aéronef en fonction de l'évolution de sa situation opérationnelle tout au long du vol, rompant ainsi totalement avec le caractère figé des anciennes zones. De plus, elle est facile à mettre en oeuvre sur les systèmes embarqués existants. A l'avenir, elle permettra même d'exploiter une fonction actuellement à l'étude et qui sera très délicate à utiliser, consistant à prendre la main sur le pilote dans certaines situations critiques exceptionnelles. Enfin, protéger les obstacles volumiques au sol par des zones dont la géométrie est décrite en trois dimensions est une façon simple de prendre en compte les reliefs du terrain.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
    • la figure 1, par un synoptique les phases successives du procédé selon l'invention ;
    • la figure 2, par un synoptique un exemple d'architecture de système TAWS mettant en oeuvre le procédé selon l'invention.
  • La figure 1 illustre par un synoptique les phases possibles du procédé selon l'invention.
  • Il comporte tout d'abord une première phase 1 de définition de la géométrie des zones à accès restreint et de leurs conditions d'accès qui dépendent de l'aéronef. Il s'agit dans un premier temps de décrire des portions de l'espace aérien, chacune sous la forme d'une liste de points en latitude, longitude et hauteur au-dessus du relief. La liste de points en latitude et longitude détermine un polygone à deux dimensions, la hauteur au-dessus du relief détermine une zone à trois dimensions, dont la base est le polygone précédemment défini, zone en forme de nappe d'épaisseur variable par-dessus le relief. Il s'agit dans un deuxième temps d'établir des critères auxquels devront satisfaire les aéronefs pour être autorisés à pénétrer les zones. Avantageusement, il peut être envisagé de ne donner accès à une zone qu'à certains types d'aéronefs, en fonction de leurs performances et de leur manoeuvrabilité par exemple. Il peut être envisagé de n'autoriser l'accès à une zone qu'aux aéronefs ne présentant aucun symptôme de panne ou de défaillance d'un équipement de sécurité. Il peut être envisagé encore de n'autoriser l'accès à une zone qu'aux aéronefs n'ayant donné aucun signe laissant à penser que le vol pourrait faire l'objet d'un détournement, par exemple n'ayant jamais émis le code « hijacked » avec leur transpondeur durant le vol.
  • Cette façon de décrire des zones à accès réglementé amène notamment une grande souplesse. Elle permet en effet de les emboîter les unes dans les autres et ainsi d'adapter la distance de sécurité au type d'aéronef. Par exemple, un ensemble de gratte-ciel peut se voir englobé dans une première zone accessible à aucun aéronef, quel que soit son type. Cette zone interdite à tout aéronef peut elle-même être englobée dans une deuxième zone plus vaste accessible uniquement aux hélicoptères. Cette zone accessible aux hélicoptères peut elle-même être englobée dans une troisième zone plus vaste encore et accessible uniquement aux hélicoptères et aux avions légers.
  • Ainsi, les avions de lignes se voient interdire l'accès à la troisième zone, à grande distance des gratte-ciel, cette zone ne pouvant être pénétrée que par les avions légers et les hélicoptères. Puis, les avions légers se voient interdire l'accès à la deuxième zone, à distance moyenne des gratte-ciel, cette zone ne pouvant être pénétrée que par les hélicoptères. Enfin, les hélicoptères se voient interdire l'accès à la première zone, à proximité immédiate des gratte-ciel, cette zone ne pouvant être pénétrée par aucun aéronef.
  • Le procédé selon l'invention comporte également une phase 2 de caractérisation de l'aéronef par rapport aux conditions d'accès aux zones. Il s'agit, pour chacun des critères auxquels doit satisfaire un aéronef pour être autorisé à pénétrer une zone, de déterminer l'état de l'aéronef vis-à-vis de ce critère. Avantageusement, cela peut consister pour le personnel de bord à déclarer toute situation opérationnelle particulière, comme déclarer les rapports de panne ou régler leur transpondeur sur le code « hijacked » dès qu'ils soupçonnent un détournement imminent. Ou encore cela peut consister pour le personnel de contrôle au sol à désigner tout avion ayant un comportement suspect vu du sol, le silence radio par exemple, les systèmes au sol envoyant alors cette information de suspicion aux systèmes embarqués par une liaison de données hertzienne existante. Tout cela introduit une véritable dynamique. En effet, en reprenant l'exemple précédent des trois zones emboîtées, il peut être envisagé une quatrième zone englobant encore plus largement la troisième zone et qui n'est accessible qu'aux aéronefs ne présentant aucun symptôme de panne ni ne présentant aucun signe de détournement possible. Ainsi, un aéronef qui en temps normal peut approcher les gratte-ciel jusqu'à la troisième zone, la deuxième zone, voire la première zone selon son type, peut se voir dynamiquement assigner pendant le vol une distance de sécurité par rapport aux gratte-ciel bien plus grande, suite à un rapport de panne ou une suspicion de détournement.
  • Le procédé selon l'invention comporte enfin une phase 3 de détermination des zones auxquelles l'aéronef n'a pas accès. Il s'agit, sur caractérisation d'un aéronef par rapport aux conditions d'accès aux zones, de mettre à jour les autorisations d'accès de l'aéronef à chacune des zones. Dans le cas extrême du détournement, il peut être imaginé que l'espace aérien est découpé en zones restreintes de manière à ne plus autoriser un vol détourné que dans des zones bien particulières, par exemple les zones militaires déjà existantes. En effet les zones militaires présentent une très faible densité de population et un trafic aérien quasi nul en dehors des manoeuvres militaires. Elles présentent donc toutes les conditions de sécurité requises pour gérer le plus sereinement possible ce genre de situation, Et parallèlement les zones non militaires deviennent interdite aux vols détournés. Dans ce cas il est également souhaitable de coupler le système d'évitement de la planète, que ce soit un système TAWS ou autre, au système de pilotage automatique afin qu'il prenne la main d'autorité sur le pilote, ce qui sera très prochainement possible. En se basant sur les nouvelles zones interdites ou autorisées aux avions détournés, le système de pilotage automatique peut facilement empêcher l'avion d'entrer dans les zones prohibées protégeant des infrastructures humaines et diriger l'avion vers une zone militaire sécurisée. Mais on peut également envisager d'autres situations dans lesquelles le système de pilotage automatique prend la main d'autorité sur le pilote en se basant sur les zones restreintes selon l'invention. Par exemple, toujours en reprenant l'exemple des trois zones englobant l'ensemble d'immeuble, le pilotage automatique pourrait empêcher l'avion d'outrepasser l'interdiction de pénétrer la troisième zone. Dans ce cas la prise en main de l'appareil peut être précédée d'une alerte puis d'une notification au pilote par le « Flight Warning Computer », qu'on appellera FWC par la suite, qui est un système dédié à la levée des alertes. En effet, des pirates de l'air connaissant très bien les procédures de contrôle pourraient s'emparer d'un appareil sans qu'aucun signe extérieur n'en soit donné. Ainsi, même s'ils ne sont pas dirigés immédiatement vers une zone militaire sécurisée, au moins ils ne peuvent approcher les infrastructures humaines à forte densité de population. Il devient ainsi techniquement impossible de s'approcher des cibles potentielles à une attaque terroriste avec un aéronef que la taille rend susceptible de provoquer des dégâts importants s'il était utilisé comme projectile.
  • La figure 2 illustre par un synoptique un exemple d'architecture de système TAWS mettant en oeuvre le procédé selon l'invention.
  • Il comporte une base de données 20 des zones à accès restreint qui décrit chaque zone en terme de situation géographique en latitudes, longitudes et hauteur au-dessus du terrain, et en terme de conditions d'accès en fonction de l'aéronef. Idéalement, la description de ces zones peut suivre un standard reconnu par les différents acteurs de l'aéronautique, qu'il soit civil ou militaire. Idéalement également, des distributeurs agréés peuvent mettre à disposition des versions à jour de ces bases de données de zones standardisées, en fonction des constructions et des démolitions de MMS.
  • L'exemple de système TAWS selon l'invention comporte également une fonction 21 de détermination des zones prohibées. Cette fonction fait tout d'abord une requête de zones à la base de données 20, au décollage par exemple, pour avoir le découpage générique de l'espace aérien en zones restreintes. Puis à partir des données spécifiques à l'aéronef connues par une base de données 26 par exemple, avantageusement le type d'aéronef, cette fonction 21 détermine une première liste de zones interdites à l'aéronef en particulier et dans lesquelles celui-ci n'est pas autorisé à pénétrer, ceci dès son décollage. Puis, à chaque fois qu'elle reçoit un message susceptible de modifier cette liste, la fonction 21 reconsidère les zones prohibées à l'aéronef en tenant compte de la nouvelle situation. Avantageusement, elle peut recevoir tout message indiquant une situation opérationnelle exceptionnelle. Par exemple, ce peut être un rapport de panne du type « Built-in Test Equipment », que l'on appellera rapport BITE par la suite, émis par un « Line Replaceable Unit » 24 assurant une fonction de sécurité, que l'on appellera LRU par la suite. Les LRU sont des modules matériels et logiciels en tiroirs de type calculateurs, capteurs ou actionneurs, remplaçables aisément si nécessaire. Ils comportent une fonction de maintenance d'un type connu par sa désignation anglo-saxonne de fonction BITE. Cette fonction BITE permet aux LRU de réaliser des diagnostics sur leur état interne de fonctionnement et d'émettre des comptes-rendus que l'on appelle par extension des rapports BITE. Par exemple encore la fonction 21 peut recevoir des rapports de panne introduits manuellement sur un « Multi purpose Control Display Unit » 22, que l'on appellera MCDU par la suite. Un MCDU est un dispositif intégré d'écran et de clavier assez répandu en avionique. Il a pour principale caractéristique d'offrir des services très génériques d'affichage et de saisie de caractères alphanumériques. Ainsi il est facilement adaptable à diverses applications nouvelles et notamment à la mise en oeuvre de l'invention, par exemple l'introduction de rapports de panne lorsque celles-ci ne font pas l'objet d'un diagnostic automatique du type rapport BITE émis par un LRU. Par exemple enfin la fonction 21 peut recevoir tous les codes envoyés par le transpondeur 23 ou un autre équipement, afin de repérer l'émission possible du code « hijacked », même si elle est très brève. Tous ces messages traduisent un événement susceptible de modifier les zones interdites spécifiquement à l'aéronef.
  • La fonction 21 envoie par exemple les zones prohibées à un module d'affichage du type d'un « Terrain Hazard Display » 25, qui est un dispositif d'affichage graphique standard en avionique offrant des fonctions de visualisation de zones en deux dimensions. Ainsi le pilote se voit informé graphiquement et en temps réel des zones qu'il doit éviter. Avantageusement, la fonction 21 envoie également les zones prohibées à une autre sous fonction 29 du TAWS qui, connaissant en permanence la position de l'appareil, est apte à lever des alertes sonores lorsqu'une zone interdite est sur le point d'être pénétrée grâce à un FWC 30 et à un « Aircraft Audio system » 28, qui est un dispositif d'émission sonore standard en avionique. Avantageusement là encore, la fonction 21 envoie les zones prohibées à une autre sous fonction 31 du TAWS qui, connaissant également en permanence la position de l'appareil, propose des trajectoires d'évitement lorsqu'une zone interdite est pénétrée. Elle envoie les trajectoires d'évitement à un système de vol 27 qui peut par exemple avoir une fonction de pilote automatique. La fonction de pilote automatique peut, dans certaines conditions extrêmes et lorsque les zones autorisées à l'aéronef se limitent aux zones militaires par exemple, prendre la main d'autorité sur le pilote pour diriger l'appareil dans l'une des zones en question.
  • L'exemple de réalisation de dispositif décrit précédemment s'inscrit dans le cadre d'un système TAWS. Mais il faut bien comprendre que tout système d'évitement de la planète peut implémenter le procédé selon l'invention.

Claims (12)

  1. Procédé de mise à jour dynamique des zones prohibées à un aéronef en vol, comportant :
    - une phase de définition de la géométrie des zones à accès restreint et de leurs conditions d'accès qui dépendent de l'aéronef (1) ;
    le procédé étant caractérisé en ce qu'il comporte:
    - une phase de caractérisation du statut de l'aéronef par rapport aux conditions d'accès aux zones (2) ;
    - une phase de détermination des zones auxquelles l'aéronef n'a pas accès (3) ;
    la phase de caractérisation du statut de l'aéronef et la phase de détermination des zones auxquelles l'aéronef n'a pas accès étant déclanchées dès qu'un événement est susceptible de modifier le statut de l'aéronef vis-à-vis des conditions d'accès à une zone.
  2. Procédé de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 1 caractérisé en ce que l'accès aux zones est conditionné par le type d'aéronef.
  3. Procédé de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 1 ou 2 caractérisé en ce que l'accès aux zones est conditionné par les performances ou la manoeuvrabilité de l'aéronef.
  4. Procédé de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 1, 2 ou 3 caractérisé en ce que l'accès aux zones est conditionné par la situation opérationnelle de vol de l'aéronef.
  5. Procédé de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 1, 2, 3 ou 4 caractérisé en ce que l'accès aux zones est conditionné par l'émission avec le transpondeur du code de détournement.
  6. Procédé de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 1, 2, 3, 4 ou 5 caractérisé en ce que des obstacles au sol sont englobés dans une première zone accessible à aucun aéronef, la première zone étant elle-même englobée dans une deuxième zone accessible uniquement aux hélicoptères, la deuxième zone étant elle-même englobée dans une troisième zone accessible uniquement aux avions légers, la troisième zone étant elle-même englobée dans une quatrième zone accessible uniquement aux avions ne présentant aucun symptôme de panne ou de détournement.
  7. Système embarqué à bord d'un aéronef de mise à jour dynamique en vol des zones prohibées à l'aéronef comportant :
    - un moyen de stockage des zones à accès restreint (20) décrites par leur géométrie et leurs conditions d'accès qui dépendent de l'aéronef ;
    le système étant caractérisé en ce qu'il comporte:
    - un module de caractérisation du statut de l'aéronef (22, 23, 24) par rapport aux conditions d'accès aux zones ;
    - un module de détermination des zones auxquelles l'aéronef n'a pas accès (21) ;
    le module de caractérisation du statut de l'aéronef et le module de détermination des zones auxquelles l'aéronef n'a pas accès étant activés dès qu'un événement est susceptible de modifier le statut de l'aéronef vis-à-vis des conditions d'accès à une zone.
  8. Système de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 7 caractérisé en ce que l'accès aux zones est conditionné par le type d'aéronef.
  9. Système de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 7 ou 8 caractérisé en ce que l'accès aux zones est conditionné par les performances ou la manoeuvrabilité de l'aéronef.
  10. Système de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 7, 8 ou 9 caractérisé en ce que l'accès aux zones est conditionné par la situation opérationnelle de vol de l'aéronef.
  11. Système de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 7, 8, 9 ou 10 caractérisé en ce qu'il comporte un système de vol (29) levant une alerte sonore ou visuelle quand une zone prohibée est pénétrée.
  12. Système de mise à jour dynamique des zones prohibées à un aéronef selon la revendication 7, 8, 9, 10 ou 11 caractérisé en ce qu'il comporte un système de vol (27) empêchant la pénétration d'une zone prohibée en prenant le contrôle de l'aéronef.
EP06819822A 2005-12-02 2006-11-29 Dispositif et procede de mise a jour dynamique des zones de vol prohibees dans un aeronef Active EP1955305B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512259A FR2894365B1 (fr) 2005-12-02 2005-12-02 Dispositif et procede de changement des zones prohibees a un aeronef
PCT/EP2006/069034 WO2007063070A1 (fr) 2005-12-02 2006-11-29 Dispositif et procede de mise a jour dynamique des zones de vol prohibees dans un aeronef

Publications (2)

Publication Number Publication Date
EP1955305A1 EP1955305A1 (fr) 2008-08-13
EP1955305B1 true EP1955305B1 (fr) 2012-04-18

Family

ID=36674018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819822A Active EP1955305B1 (fr) 2005-12-02 2006-11-29 Dispositif et procede de mise a jour dynamique des zones de vol prohibees dans un aeronef

Country Status (4)

Country Link
US (1) US20090012661A1 (fr)
EP (1) EP1955305B1 (fr)
FR (1) FR2894365B1 (fr)
WO (1) WO2007063070A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
US7667647B2 (en) * 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US20100079342A1 (en) * 1999-03-05 2010-04-01 Smith Alexander E Multilateration enhancements for noise and operations management
US7782256B2 (en) * 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US7908077B2 (en) * 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7777675B2 (en) * 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7570214B2 (en) 1999-03-05 2009-08-04 Era Systems, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surviellance
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
EP2286182B1 (fr) 2008-05-14 2018-07-25 Elbit Systems Ltd. Commutation d'enveloppe de protection à balayage vers l'avant de système d'avertissement et d'alarme d'impact
RU2552951C2 (ru) 2009-01-09 2015-06-10 Форвард Фарма А/С Фармацевтический состав, содержащий один или более эфиров фумаровой кислоты в разлагаемой матрице
US20130092791A1 (en) * 2011-10-18 2013-04-18 General Electric Company Method for a noise abatement procedure for an aircraft
US8768615B2 (en) * 2012-04-09 2014-07-01 The Boeing Company Nautical license identification system
JP6133506B2 (ja) 2014-04-17 2017-05-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行制限区域に対する飛行制御
JP6459014B2 (ja) 2015-03-31 2019-01-30 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd ジオフェンシング装置
CN107409051B (zh) 2015-03-31 2021-02-26 深圳市大疆创新科技有限公司 用于生成飞行管制的认证系统和方法
CN113031654B (zh) * 2015-03-31 2024-05-28 深圳市大疆创新科技有限公司 申请、批准在限制区域中操作飞行器的方法、设备和系统
CN107430402B (zh) * 2015-03-31 2021-01-01 深圳市大疆创新科技有限公司 用于对地理围栏设备进行标识和认证的系统和方法
CN104914434B (zh) * 2015-06-09 2017-03-29 长安大学 一种巡航直升机机载雷达检测预警高压电线的方法
CN106371452B (zh) * 2015-07-24 2020-08-25 深圳市道通智能航空技术有限公司 一种飞行器限飞区域信息的获取、共享方法、装置及系统
US10657830B2 (en) 2016-03-28 2020-05-19 International Business Machines Corporation Operation of an aerial drone inside an exclusion zone
US20190147747A1 (en) * 2016-05-11 2019-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Remote Control of an Unmanned Aerial Vehicle
US9947233B2 (en) 2016-07-12 2018-04-17 At&T Intellectual Property I, L.P. Method and system to improve safety concerning drones
CN106970640B (zh) * 2017-03-21 2020-10-13 北京小米移动软件有限公司 无人机的禁飞控制方法和装置
WO2019033433A1 (fr) * 2017-08-18 2019-02-21 Lenovo (Beijing) Limited Procédé et appareil d'interdiction de cellule
JP6652620B2 (ja) * 2018-10-18 2020-02-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機を操作するシステム
US11119485B1 (en) * 2020-10-07 2021-09-14 Accenture Global Solutions Limited Drone operational advisory engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195609B1 (en) * 1993-09-07 2001-02-27 Harold Robert Pilley Method and system for the control and management of an airport
WO1992006442A1 (fr) * 1990-10-09 1992-04-16 Pilley Harold R Systeme de gestion/direction d'un aeroport
US5867804A (en) * 1993-09-07 1999-02-02 Harold R. Pilley Method and system for the control and management of a three dimensional space envelope
FR2749675B1 (fr) * 1996-06-07 1998-08-28 Sextant Avionique Procede de pilotage d'un aerodyne pour l'evitement vertical d'une zone
US6133867A (en) * 1998-01-02 2000-10-17 Eberwine; David Brent Integrated air traffic management and collision avoidance system
AUPR772001A0 (en) * 2001-09-17 2001-10-11 Kenny, Craig Anthony Aircraft avoidance system for preventing entry into an exclusion zone
US20030055540A1 (en) * 2001-09-20 2003-03-20 Hansen James K. Anti-terrorism aircraft flight control system
US7177763B2 (en) * 2001-09-25 2007-02-13 Werner Keber Method and device for preventing unpermitted approach of airplanes to objects on the ground which are to be protected
FR2830360A1 (fr) * 2001-09-28 2003-04-04 Claude Wullschelger Procede et dispositif empechant la prise de controle d'un appareil de navigation aerienne par un tiers
US6943701B2 (en) * 2002-06-06 2005-09-13 Advanced American Enterprises, Llc Vehicular safety system and method
US20070055434A1 (en) * 2002-09-12 2007-03-08 Kohlmann Henry G Automatic control system for controllin a vehicle on demand
FR2848662B1 (fr) * 2002-12-17 2005-03-04 Thales Sa Dispositif d'affichage pour equipement anticollision terrain embarque a bord d'aeronef
FR2854964B1 (fr) * 2003-05-16 2007-08-03 Thales Sa Systeme de protection automatique du vol pour aeronef
FR2892192B1 (fr) * 2005-10-14 2008-01-25 Thales Sa Procede d'aide a la navigation pour aeronef en situation d'urgence
US7818099B2 (en) * 2006-08-24 2010-10-19 Honeywell International Inc. System and method for alerting a user of an aircraft of a possible entrance into a selected airspace

Also Published As

Publication number Publication date
WO2007063070A1 (fr) 2007-06-07
US20090012661A1 (en) 2009-01-08
FR2894365B1 (fr) 2008-01-11
FR2894365A1 (fr) 2007-06-08
EP1955305A1 (fr) 2008-08-13

Similar Documents

Publication Publication Date Title
EP1955305B1 (fr) Dispositif et procede de mise a jour dynamique des zones de vol prohibees dans un aeronef
CA2464791C (fr) Dispositif d'affichage dans un cockpit d'aeronef d'informations concernant le trafic environnant
FR3025920A1 (fr) Procede de calcul temps reel d'une trajectoire planifiee, notamment de plan de vol, combinant une mission, et systeme de gestion d'une telle trajectoire
FR2923623A1 (fr) Systeme de securisation d'un plan de vol pour aeronef
EP3489929B1 (fr) Système électronique de télé-pilotage de drones, procédé et programme d'ordinateur associés
FR2932895A1 (fr) Procede et systeme d'aide a la navigation aerienne permettant de maintenir des marges verticales
EP1625454A1 (fr) Systeme de protection automatique du vol pour aeronef
FR2939558A1 (fr) Procede de modelisation meteorologique pour le calcul d'un plan de vol d'aeronef
FR2848662A1 (fr) Dispositif d'affichage pour equipement anticollision terrain embarque a bord d'aeronef
FR2982590A1 (fr) Systeme de detection et de notification d'obstacle
EP1719095A1 (fr) Procede automatique de transmission des alertes de surveillance d'un aeronef vers le sol
FR2897449A1 (fr) Procede de vol autonome
FR2975486A1 (fr) Dispositif et procede de construction de route aerienne pour atteindre une destination
FR2935524A1 (fr) Dispositif et procede de surveillance de la localisation des aeronefs au sol
FR2893747A1 (fr) Systeme, assiste par satellite, d'alerte de collisions et de gestion du trafic de vehicules, tels que des aeronefs
US11824985B2 (en) Blockchain-based hybrid authentication
FR2913799A1 (fr) Procede de routage des clairances numeriques atc optimisant leur prise en compte a bord d'un aeronef
FR3014575A1 (fr) Dispositif et procede d'aide a la reconfiguration d'un aeronef, aeronef comportant un tel dispositif et produit programme d'ordinateur associe
FR3072816A1 (fr) Procede de determination de point(s) limite (s) de decision relative au declenchement d'une manoeuvre d'evitement par un aeronef, dispositif et programme d'ordinateur associes
EP1926003B1 (fr) Systèmes et procédés pour la diffusion d'un avis d'aéroport inconnu
EP4014218A1 (fr) Agrégation de données pour navigation de véhicule aérien sans pilote (uav)
EP4078559A1 (fr) Gestion de l'encombrement spatial autour de la trajectoire d'un vehicule
FR3081596A1 (fr) Procede de sauvegarde automatique en vol de la trajectoire d'un avion a commandes de vol electriques
EP4068244A1 (fr) Procédé d'assistance au pilotage d'aéronefs
EP4068245A1 (fr) Dispositif d'assistance au pilotage d'aéronefs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20091208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006028980

Country of ref document: DE

Effective date: 20120614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006028980

Country of ref document: DE

Effective date: 20130121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006028980

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231024

Year of fee payment: 18