EP1954921B1 - Lagerzustandsüberwachung - Google Patents

Lagerzustandsüberwachung Download PDF

Info

Publication number
EP1954921B1
EP1954921B1 EP06825402A EP06825402A EP1954921B1 EP 1954921 B1 EP1954921 B1 EP 1954921B1 EP 06825402 A EP06825402 A EP 06825402A EP 06825402 A EP06825402 A EP 06825402A EP 1954921 B1 EP1954921 B1 EP 1954921B1
Authority
EP
European Patent Office
Prior art keywords
rotor
turbocharger
rotation
establishing
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06825402A
Other languages
English (en)
French (fr)
Other versions
EP1954921A1 (de
Inventor
Christopher Greentree
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP1954921A1 publication Critical patent/EP1954921A1/de
Application granted granted Critical
Publication of EP1954921B1 publication Critical patent/EP1954921B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/40Type of control system
    • F05D2270/42Type of control system passive or reactive, e.g. using large wind vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Definitions

  • the present invention relates generally to turbomachinery and, more particularly, to apparatus and methods of monitoring the condition of turbocharger bearings.
  • Turbochargers may be used with internal combustion engines to increase the available power from a given size of engine.
  • turbochargers experience a wide array of operating conditions, through a wide array of parameters such as operating speed, temperature, engine backpressure, oil pressure, oil quality, and the like.
  • operating speed a wide array of operating conditions
  • temperature a wide array of parameters
  • oil pressure a wide array of parameters
  • oil quality a wide array of parameters
  • Bearing wear significantly affects the turbocharger's service life. Bearing wear can be exacerbated by a variety of conditions, including fuel or particulate contaminants in oil used to lubricate the turbocharger, excessive rotor speeds, and excessive operating temperatures. When bearing wear exceeds an acceptable level, compressor or turbine blades may come in to contact with their respective housings, leading to catastrophic failure. Such failures can lead to failure of the related internal combustion engine, oil discharges - either externally or into other systems, and possibly even engine fires. It is therefore preferable to anticipate turbocharger failure accurately before it occurs, thus allowing repair or replacement before catastrophic failure.
  • the present invention provides a monitor as defined in Claim 1.
  • the monitor may include the features of any one or more of dependent Claims 2 to 5.
  • the present invention also provides a turbocharger as defined in Claim 6.
  • the present invention also provides an engine as defined in Claim 7.
  • the engine may include the features of any one or more of dependent Claims 8 to 10.
  • the present invention solves some or all of the needs mentioned above, providing a turbocharger bearing wear monitor that can provide information on the condition of a turbocharger.
  • a turbocharger monitor under the present invention is configured for use with a turbocharger having a rotor and a housing, the rotor being configured to rotate on one or more bearings about an axis of rotation with respect to the housing.
  • the turbocharger monitor features a sensor adapted and positioned with respect to the housing so as to sense rotor movement information, including both rotor rotation information and rotor displacement information.
  • the rotor rotation information pertains to rotation about the axis of rotation, such that a rotor rotational speed may be calculated from the rotor rotation information.
  • the rotor displacement information pertains to displacement from the axis of rotation, such that rotor displacement from the axis of rotation may be calculated from the rotor displacement information, and used to estimate the condition of the bearing.
  • the turbocharger monitor further features a controller configured to receive the rotor movement information from the blade sensor, and to establish indicators of rotor rotation speed and bearing condition from the rotor movement information.
  • FIG. 1 is a first embodiment of an internal combustion engine system including a turbocharger.
  • FIG. 2 is a cutaway perspective view of the turbocharger depicted in FIG. 1 , including a sensor.
  • FIG. 3 is a partial cross-sectional view of a compressor of the turbocharger depicted in FIG. 2 .
  • FIG. 4 is a graphical representation of an unconditioned analog signal from the sensor depicted in FIG. 2 .
  • FIG. 5 is a partial cross-sectional view of a compressor from a second embodiment of an internal combustion engine system including a turbocharger.
  • Typical embodiments of the present invention reside in a bearing monitor system configured to monitor the health (i.e., the wear and degradation) of turbocharger bearings.
  • Preferred embodiments of the invention are assemblies that assess the off-axis movement of a turbocharger rotor. As such, the monitors of this invention are designed to provide an indication of needed turbocharger service based on actual bearing wear.
  • a turbocharger 101 includes a turbocharger housing, a rotor configured to rotate within the turbochargers housing along an axis of rotor rotation 103, axial bearings and journal bearings.
  • the turbocharger housing includes a turbine housing 105, a compressor housing 107, and a bearing housing 109 that connects the turbine housing to the compressor housing.
  • the rotor includes a turbine wheel 111 located substantially within the turbine housing, a compressor wheel 113 located substantially within the compressor housing, and a shaft 115 extending along the axis of rotor rotation, through the bearing housing, to connect the turbine wheel to the compressor wheel.
  • the journal bearings are at two locations within the bearing housing, and are configured to restrict the shaft (and thus the rotor) from rotating or translating off the axis of rotor rotation.
  • the axial bearing (not shown) is within the bearing housing, and is configured to restrict the shaft from translating along the axis of rotor rotation.
  • the turbine housing 105 and turbine wheel 111 form a turbine configured to circumferentially receive a high-pressure exhaust gas stream 121 from an exhaust manifold 123 of an internal combustion engine 125.
  • the turbine wheel (and thus the rotor) is driven in rotation around the axis of rotor rotation 103 by the high-pressure exhaust gas stream, which becomes a lower-pressure exhaust gas stream 127 and is axially released into an exhaust system (not shown).
  • the compressor housing 107 and compressor wheel 113 form a compressor.
  • the compressor wheel being driven in rotation by the exhaust-gas driven turbine wheel 111, is configured to compress axially received ambient air 131 into a pressurized air stream 133 that is ejected circumferentially from the compressor.
  • the pressurized air stream is characterized by an increased temperature, over that of the ambient air, due to the compression process, but may be channeled through a convectively cooled charge air cooler 135 configured to dissipate heat from the pressurized air stream, and thereby increase its density.
  • the resulting cooled and pressurized air stream 137 is channeled into an intake manifold 139 on the internal combustion engine.
  • the internal combustion engine is provided with an engine control units (ECU) 151 configured to conduct typical ECU functions. These functions may include known turbocharger control functions, such as controlling the operation of a turbocharger wastegate.
  • ECU engine control units
  • the compressor wheel 113 includes a plurality of blades 201 (i.e., impellers) that define an inducer 203 (i.e., a typically circular intake end of the combined set of blades) and an exducer 205 (i.e., a typically annular output end of the combined set of blades).
  • a plurality of blades 201 i.e., impellers
  • an inducer 203 i.e., a typically circular intake end of the combined set of blades
  • an exducer 205 i.e., a typically annular output end of the combined set of blades
  • the compressor housing and compressor wheel form an air passageway, including an inlet passage 207 leading axially into the inducer from an ambient air source, an impeller passage 209 leading from the inducer to the exducer and substantially conforming to this space within which the compressor wheel impellers rotate, a diffuser 211 leading radially outward from the exducer, and a volute 213 extending around (and include communication with) the diffuser.
  • the volute is in a scroll shape, and forms an outlet passage 215 through which the pressurized air stream is ejected circumferentially (i.e., normal to the circumference of the scroll at the exit) as the pressurized air stream 133.
  • the compressor housing may further form a ported shroud 231 defining a shroud passageway 233 that includes one or more ports 235 opening through an impeller passage wall 237 into the impeller passage 209 between the inducer 203 and the exducer 205, and a substantially annular opening 239 into the inlet passage.
  • the ported shroud thus creates a second passageway connecting the inlet passage to the impeller passage, wherein the second passageway does not extend through the inducer.
  • a turbocharger monitor of the first embodiment includes a sensor 251 adapted and positioned with respect to the compressor housing 107 so as to sense rotor movement information.
  • the sensor includes a sensor element 253, and a sensor housing 255 forming an electrical connector 257.
  • the sensor element is positioned to extend through the impeller passage wall 237 proximate the compressor wheel such that through a sensing surface 259, it detects the passage of an outer-edge portion 261 of each passing detectable blade (i.e., each blade for which the outer-edge portion can pass within the sensor's operable range). To detect passage, the sensor detects blade proximity.
  • each blade substantially conforms to the impeller passage wall as the rotor rotates, and in this embodiment, it extends in a direction substantially parallel to the axis of rotor rotation.
  • the sensor element is oriented to detect blade distance in a direction substantially normal to the axis of rotor rotation in this embodiment.
  • the blade sensor is primarily sensitive to rotor translation, rotation or bending that causes the compressor wheel to translate in a radial direction.
  • the sensed rotor movement information includes both rotor rotation information and rotor displacement information. More particularly, the rotor rotation information pertains to a measurement of rotor rotation (e.g., a measurement of rotational displacement or a measurement of rotational velocity) about its axis of rotation, and the rotor displacement information pertains to a measurement of rotor displacement off of its axis of rotation (e.g., a measurement of off-axis rotation or a measurement of off-axis translation).
  • a measurement of rotor rotation e.g., a measurement of rotational displacement or a measurement of rotational velocity
  • the turbocharger monitor of the first embodiment further includes a controller configured to receive the sensed rotor movement information from the sensor. It is further configured to establish indicators of rotor rotational speed and bearing condition from the rotor movement information, and thus functions both as a turbocharger speed sensor and a bearing wear monitor.
  • the controller may be part of the ECU 151 (as depicted), or may be a separate control unit that is preferably connected to ECU, such as by a digital communications link.
  • the controller receives the sensed rotor movement information via a cable (153) that connects the controller to the electrical connector 257 of the blade sensor 251.
  • the controller receives an unconditioned signal from the sensor in an analog format.
  • the senor could include an internal or external signal processing system configured to send a conditioned signal to the controller.
  • the turbocharger could be configured with an electric actuator configured to control operation of the turbocharger, such as by operating a wastegate or variable geometry vanes within the turbocharger.
  • the electric actuator could be configured to receive blade proximity information in analog format from the sensor, and to provide the blade proximity information to the engine control unit in a digital format.
  • the sensed rotor movement information may be in the form of a series of voltage spikes, as depicted in the graph of FIG. 4 , showing hypothetical blade sensor signal results over a short period of time.
  • Each depicted voltage spike represents the distance between the sensor and a passing impeller-passage-wall edge 261 of a blade 201.
  • the number of voltage spikes over a given period of time, or the time period between voltage spikes provides rotor rotation information. This information, when used with known information on the number of blades on the compressor wheel that can pass within the operable range of the blade sensor, can be used to calculate the rotational speed of the rotor around the axis of rotor rotation 103.
  • the voltage level of each voltage spike may vary sinusoidally between a minimum voltage level 301 from a minimum-level voltage spike 303 to a maximum voltage level 305 from a maximum-level voltage spike 307.
  • the difference between the minimum voltage level and the maximum voltage level provides information on the variation of blade distance from the sensor, and thus rotor displacement information.
  • This information when used with comparable baseline variation information taken at a time when the journal bearings were known to be healthy (i.e., when the level of bearing wear is known to be minimal), can be used to calculate a journal-bearing condition parameter, such as one establishing a level of bearing wear.
  • the ECU 151 is configured such that, when this journal-bearing condition parameter exceeds a preestablished level (e.g., a bearing wear limit), the ECU will take one or more actions to notify operators of the internal combustion engine 125, and/or to directly protect the internal combustion engine and its operators from possible dangers that can occur when a turbocharger fails due to warn bearings.
  • a preestablished level e.g., a bearing wear limit
  • one such action is for the controller (e.g., the ECU) to send a signal to the engine operators by illuminating a warning light on a control panel.
  • Another possible such action is for the controller to reduce the rate of compressor wheel rotation (i.e., the rate of rotor rotation), such as by causing a wastegate to be opened, and yet another possible such action is for the controller to reduce the operating rate of the internal combustion engine, such as by restricting fuel flow to one or more of its combustion chambers.
  • different actions may be taken at different blade-distance variation thresholds. For example, a warning light may be illuminated at a first threshold, and compressor wheel rotation may be reduced at a second threshold.
  • the controller is preferably configured such that the rotor displacement information is developed and compared only under certain consistent, preestablished conditions. More particularly, the controller is initially provided with a set of exactly one, two or perhaps more, operating conditions under which rotor displacement information will be developed. During a time period in which bearing wear is known to be minimal, blade distance variation is sensed at each of the operating conditions. Then, at subsequent times when the turbocharger is experiencing one of the preestablished operating conditions, the sensor senses blade distance variation information, and the controller calculates the journal bearing condition parameter.
  • An operating condition may be determined by one or more measurable parameters. Such parameters may include the rotational speed of the turbocharger, and the temperature and/or pressure of the oil. In order to have frequent monitoring of the bearings, it may be desirable to select a commonly occurring condition as the operating conditions. Additionally, it may be preferable for the operating condition to be at a rotational frequency at which critical vibrational modes of the rotor (e.g., lower frequency modes characterized by large off-axis movement of the compressor and/or turbine wheels) could be excited.
  • critical vibrational modes of the rotor e.g., lower frequency modes characterized by large off-axis movement of the compressor and/or turbine wheels
  • the controller may be further configured to track information pertaining to the journal bearing condition parameter, and to report this information when so requested during a diagnostic procedure.
  • a second embodiment of the invention is configured similar to the first, except for the position, orientation and design of the blade sensor.
  • This embodiment includes a blade sensor 401 having a sensor element 403 positioned such that, through a sensing surface 405, it detects the passage of an outer-edge portion 407 of each detectable blade 409.
  • the sensor element is oriented to detect blade distance in a direction substantially normal to the direction in which the outer edge extends.
  • the outer-edge portion extends in a direction substantially between being normal to, and being parallel to, the axis of rotor rotation (e.g., angled between 30 and 60 degrees from the axis), such that the blade sensor is sensitive to rotor translation, rotation or bending that causes the compressor wheel to translate in a radial and/or an axial direction.
  • sensors may be configured with sensors positioned and oriented to sense rotor movement, with respect to the turbocharger housing, at other locations on the rotor.
  • a sensor could be positioned to sense the movement of any given portion of the turbine wheel or the shaft.
  • more cost-efficient designs can be developed by locating the sensor at the compressor end of the rotor, so as to avoid the high-temperature conditions at the turbine end of the rotor.
  • more accurate data will be developed if the sensor is positioned so as to avoid vibrational nodes of the rotor for potentially critical modes of vibration.
  • GMR giant magnetoresistive
  • AMR anisotropic magnetoresistive
  • VR variable reluctance
  • eddy current sensors e.g., a sensor directed at portions of the rotor other than the compressor wheel (e.g., the turbine wheel or the shaft).
  • the invention comprises apparatus and methods for designing and for producing related bearing monitor systems, as well as the apparatus and methods of the bearing monitor system itself. Additionally, various embodiments of the invention are envisioned to include turbochargers that incorporate portions of the present bearing monitor system, internal combustion engines that incorporate turbochargers and the present bearing monitor system, and vehicles that incorporate such internal combustion engines. Alternate variations of these embodiments could comprise other types of turbine-related devices that incorporate a bearing monitor system. In short, the above disclosed features can be combined in a wide variety of configurations within the anticipated scope of the invention.

Claims (10)

  1. Turboladerüberwachungsvorrichtung zur Verwendung mit einem Turbolader, der einen Rotor und ein Gehäuse aufweist, wobei der Rotor dazu konfiguriert ist, sich auf einem Lager um eine Drehachse bezüglich des Gehäuses zu drehen, wobei die Turboladerüberwachungsvorrichtung einen Rotorsensor 251, der dazu ausgeführt und bezüglich des Gehäuses so positioniert ist, dass er den Rotor erfasst, und dazu konfiguriert ist, ein Signal zu erzeugen, das Rotorbewegungsinformationen, die Rotordrehungsinformationen enthalten, darstellt, wobei sich die Rotordrehungsinformationen auf eine Drehung um die Drehachse 103 beziehen, und ein Mittel zur Erstellung einer Anzeige der Rotordrehzahl aus dem Signal enthält, dadurch gekennzeichnet, dass
    der Rotorsensor 251 so ausgeführt und bezüglich des Gehäuses positioniert ist, dass die Rotordrehungsinformationen Rotorverschiebungsinformationen enthalten, wobei sich die Rotorverschiebungsinformationen auf die Rotorverschiebung von der Achsdrehung beziehen; und
    das Erstellungsmittel weiterhin dazu konfiguriert ist, eine Anzeige des Lagerverschleißes aus dem Signal zu erstellen.
  2. Turboladerüberwachungsvorrichtung nach Anspruch 1, wobei das Erstellungsmittel dazu konfiguriert ist, die Anzeige des Lagerverschleißes auf Grundlage eines Vergleichs der erfassten Rotorverschiebungsinformationen mit zuvor erstellten Grundrotorverschiebungsinformationen zu erstellen.
  3. Turboladerüberwachungsvorrichtung nach Anspruch 2, wobei das Erstellungsmittel dazu konfiguriert ist, die zuvor erstellten Grundrotorverschiebungsinformationen zu einem Zeitpunkt zu messen und zu speichern, als das Ausmaß des Lagerverschleißes minimal war.
  4. Turboladerüberwachungsvorrichtung nach Anspruch 1, wobei das Erstellungsmittel dazu konfiguriert ist, ein Signal zu senden, wenn die Lagerverschleißanzeige eine Lagerverschleißschwelle passiert.
  5. Turboladerüberwachungsvorrichtung nach Anspruch 1, wobei das Erstellungsmittel weiterhin dazu konfiguriert ist, ein Warnlicht anzustellen, wenn die Lagerverschleißanzeige eine erste Lagerverschleißschwelle passiert, und die Rotordrehzahl zu verringern, wenn die Lagerverschleißanzeige eine zweite Lagerverschleißschwelle passiert.
  6. Turbolader, der Folgendes umfasst:
    ein Turbinengehäuse 105, das eine abgasgetriebene Turbine enthält;
    ein Kompressorgehäuse 107, das ein Kompressorrad 113 enthält, das dazu konfiguriert ist, durch die Turbine bezüglich des Kompressorgehäuses in Drehung versetzt zu werden, wobei das Kompressorrad mehrere Kompressorschaufeln 201 enthält; und
    die Turboladerüberwachungsvorrichtung nach Anspruch 1, wobei der Rotorsensor dazu ausgeführt und bezüglich des Gehäuses positioniert ist, die Nähe der Schaufeln des Kompressorrades zu erfassen.
  7. Verbrennungsmotor, der Folgendes umfasst:
    den Turbolader nach Anspruch 6;
    einen eine Brennkammer mit brennbarem Kraftstoff definierenden Block;
    einen Einlasskrümmer 139, der zur Aufnahme von Druckluft von dem Turboladerkompressor ausgeführt ist, die mit Kraftstoff vermischt und in der Brennkammer verbrannt werden soll; und
    einen Auslasskrümmer 123, der zum Antrieb der Turboladerturbine mit verbrannten Gasen, die von der Brennkammer abgelassen worden sind, ausgeführt ist.
  8. Verbrennungsmotor nach Anspruch 7, weiterhin mit einer Motorsteuereinheit 151, die dazu ausgeführt ist, als Erstellungsmittel zu dienen, wobei das Erstellungsmittel ein nicht bearbeitetes Signal von dem Rotorsensor erhält.
  9. Verbrennungsmotor nach Anspruch 8, wobei das Erstellungsmittel weiterhin dazu konfiguriert ist, ein Warnlicht anzustellen, wenn die Schaufelabstandsänderung eine erste Schwelle überschreitet und wenn die Schaufelabstandsänderung eine zweite Schwelle überschreitet, um Kraftstoffstrom zur Brennkammer zu drosseln und/oder die Geschwindigkeit der Kompressorraddrehung zu reduzieren.
  10. Verbrennungsmotor nach Anspruch 7, weiterhin mit:
    einer Motorsteuereinheit 151, die dazu ausgeführt ist, als Erstellungsmittel zu dienen; und
    einem elektrisches Stellglied, das dazu konfiguriert ist, den Betrieb des Turboladers zu steuern und digital mit der Motorsteuereinheit zu kommunizieren;
    wobei das elektrische Stellglied dazu konfiguriert ist, die Schaufelproximitätsinformationen in einem analogen Format vom Rotorsensor zu empfangen; und
    wobei das elektrische Stellglied dazu konfiguriert ist, die Schaufelproximitätsinformationen in einem digitalen Format der Motorsteuerung zuzuführen.
EP06825402A 2005-10-11 2006-10-04 Lagerzustandsüberwachung Expired - Fee Related EP1954921B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/247,871 US7631498B2 (en) 2005-10-11 2005-10-11 Bearing health monitor
PCT/US2006/038657 WO2007044342A1 (en) 2005-10-11 2006-10-04 Bearing health monitor

Publications (2)

Publication Number Publication Date
EP1954921A1 EP1954921A1 (de) 2008-08-13
EP1954921B1 true EP1954921B1 (de) 2009-06-03

Family

ID=37649548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06825402A Expired - Fee Related EP1954921B1 (de) 2005-10-11 2006-10-04 Lagerzustandsüberwachung

Country Status (5)

Country Link
US (2) US7631498B2 (de)
EP (1) EP1954921B1 (de)
CN (1) CN101326343B (de)
DE (1) DE602006007167D1 (de)
WO (1) WO2007044342A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006060650A1 (de) * 2006-12-21 2008-06-26 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zur berührungslosen Schaufelschwingungsmessung
DE102007017823B4 (de) * 2007-04-16 2019-10-02 Continental Automotive Gmbh Turbolader mit einer Einrichtung zum Feststellen einer Fehlfunktion des Turboladers und ein Verfahren zum Feststellen einer solchen Fehlfunktion
US20090193896A1 (en) * 2008-01-31 2009-08-06 Lawrence M Rose Turbocharger rotational speed sensor
US20100292937A1 (en) * 2009-05-18 2010-11-18 Diaa Hosny Turbocharger bearing health monitor
DK178172B1 (en) * 2010-05-07 2015-07-20 Man Diesel & Turbo Deutschland Improved monitoring of wear of bearings in a large two stroke diesel engine
WO2011146048A1 (en) * 2010-05-18 2011-11-24 Navistar Canada, Inc. Turbo-charger bearing monitor
US9574570B2 (en) 2010-11-03 2017-02-21 Hamilton Sundstard Corporation Shaft speed and vibration sensor apparatus
GB2487250B (en) * 2011-01-25 2017-04-26 Cummins Ltd Compressor
US9046050B2 (en) * 2011-09-15 2015-06-02 General Electric Company Shaft imbalance detection system
EP2594946A1 (de) * 2011-11-18 2013-05-22 Hamilton Sundstrand Corporation Wellengeschwindigkeits- und Schwingungsmessgerät
CN104126108A (zh) * 2011-12-21 2014-10-29 Skf公司 采用以百分比模式的报警设备监视轴承的健康状况的方法
DE102012200091A1 (de) * 2012-01-04 2013-07-04 Robert Bosch Gmbh Sensorvorrichtung zur berührungslosen Erfassung einer Rotationseigenschaft eines drehbaren Gegenstandes
DE102012200092A1 (de) 2012-01-04 2013-07-04 Robert Bosch Gmbh Sensorvorrichtung zur berührungslosen Erfassung einer Rotationseigenschaft eines drehbaren Gegenstandes
DE112013000587T5 (de) * 2012-02-17 2014-10-23 Borgwarner Inc. Positionssensorplatzierung für elektrisch unterstützten Turbolader
CN102692180B (zh) * 2012-05-30 2014-08-13 中国船舶重工集团公司第七0四研究所 轴系热态对中装置及其方法
DE102012209415B4 (de) * 2012-06-04 2023-11-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Stellgebers für eine abgasgetriebene Aufladeeinrichtung
DE102012222202A1 (de) * 2012-12-04 2014-06-05 Robert Bosch Gmbh Verfahren zur Überwachung einer Rotation eines Verdichterrades
US9670929B2 (en) * 2013-01-15 2017-06-06 General Electric Company Methods and system for detecting turbocharger degradation
US9574965B2 (en) 2014-06-24 2017-02-21 General Electric Company System and method of determining bearing health in a rotating machine
US9880527B2 (en) * 2014-06-30 2018-01-30 General Electric Company Multivariable feedforward control
US20150159349A1 (en) * 2015-02-16 2015-06-11 Caterpillar Inc. Lubricant testing assembly
CN107843429B (zh) * 2016-09-19 2021-08-31 舍弗勒技术股份两合公司 轴承状态监测控制方法及控制装置、监测设备、监测方法
RU2667205C1 (ru) * 2017-04-18 2018-09-17 Открытое акционерное общество холдинговая компания "Коломенский завод" Двигатель с управляемой системой турбонаддува
US10712235B2 (en) * 2017-04-24 2020-07-14 Energy Recovery, Inc. System and method for monitoring operating condition in a hydraulic turbocharger
US10309417B2 (en) 2017-05-12 2019-06-04 Borgwarner Inc. Turbocharger having improved ported shroud compressor housing
US10316859B2 (en) 2017-05-12 2019-06-11 Borgwarner Inc. Turbocharger having improved ported shroud compressor housing
US10825262B2 (en) 2018-02-06 2020-11-03 General Electric Company Systems and methods for bearing health monitoring in power plants
US11434814B2 (en) 2019-01-02 2022-09-06 Caterpillar Inc. Turbocharger shaft wobble sensor
GB2585043B (en) 2019-06-25 2021-12-22 Perkins Engines Co Ltd Method and apparatus for predicting turbocharger failure modes
CN113007030B (zh) * 2019-12-19 2023-05-05 新疆金风科技股份有限公司 塔架、成型方法、风力发电机组以及防护罩
CN111238355B (zh) * 2020-02-14 2021-09-03 中国航发沈阳发动机研究所 一种发动机高压涡轮转子轴向位移测量方法
CN111608744B (zh) * 2020-07-03 2022-05-10 神华神东电力有限责任公司 汽轮机轴承温度保护方法、装置及电子设备
US11408359B2 (en) 2020-08-31 2022-08-09 Garrett Transportation I Inc. System for turbocharger performance monitoring and adaptation
US11732670B2 (en) 2021-11-12 2023-08-22 Garrett Transportation I Inc. System and method for on-line recalibration of control systems
US11946410B1 (en) 2023-06-30 2024-04-02 Caterpillar Inc. Variable geometry turbocharger assessment

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220244A (en) * 1963-09-06 1965-11-30 Cooper Bessemer Corp Thrust bearing wear sensing device
DE2447515A1 (de) * 1973-10-08 1975-04-24 Apv Co Ltd Drehmaschine
US4046003A (en) * 1976-05-07 1977-09-06 United Technologies Corporation Engine turbocharger diagnostics
US4264259A (en) * 1979-09-06 1981-04-28 Rite-Hite Corporation Releasable locking device
GB2064675B (en) * 1979-11-17 1983-10-05 Craig M D Detecting bearing wear
US4439728A (en) * 1981-12-16 1984-03-27 Rca Corporation Motion sensor utilizing eddy currents
US4488325A (en) * 1982-04-12 1984-12-18 Kelley Company Inc. Truck locking device
US4518917A (en) * 1982-08-31 1985-05-21 Westinghouse Electric Corp. Plural sensor apparatus for monitoring turbine blading with undesired component elimination
US4520674A (en) * 1983-11-14 1985-06-04 Technology For Energy Corporation Vibration monitoring device
US4560315A (en) * 1984-07-11 1985-12-24 Rite-Hite Corporation Vehicle restraint
US4924180A (en) * 1987-12-18 1990-05-08 Liquiflo Equipment Company Apparatus for detecting bearing shaft wear utilizing rotatable magnet means
US4964777A (en) * 1988-04-11 1990-10-23 Eriks Holding N.V. Truck restraining device
US4953110A (en) * 1988-06-07 1990-08-28 Globe Turbocharger Specialties, Inc. Turbocharger control system
JPH0726669B2 (ja) * 1988-09-09 1995-03-29 日立工機株式会社 回転体の不つりあい検出方法
US5101165A (en) * 1990-05-29 1992-03-31 General Electric Company Electrical capacitance clearanceometer
US5096359A (en) * 1990-06-20 1992-03-17 The Serco Corporation Vehicle restraint actuator
US5336996A (en) * 1992-08-21 1994-08-09 The Duriron Company, Inc. Hall effect monitoring of wear of bearing supporting a rotor within a stationary housing
US5408225A (en) * 1992-10-09 1995-04-18 Stadelhofer; Eugene Misalignment sensing probe and switch
US5508609A (en) * 1993-06-30 1996-04-16 Simmonds Precision Product Inc. Monitoring apparatus for detecting axial position and axial alignment of a rotating shaft
US5696444A (en) * 1994-03-04 1997-12-09 Crane Co. Monitoring system for detecting axial and radial movement of a rotating body independent of rotational position
US5866824A (en) * 1997-01-24 1999-02-02 American Meter Company Gas turbine meter
US5865543A (en) * 1997-03-21 1999-02-02 Maclean; James K. Bearing failure detection apparatus
US6377876B1 (en) * 1998-12-17 2002-04-23 General Electric Company Locomotive diagnostic system
GB9912112D0 (en) * 1999-05-25 1999-07-28 Rolls Royce Plc Monitoring of bearing performance
US6594619B1 (en) * 1999-08-02 2003-07-15 Hood Technology Corporation Apparatus and method for predicting failures of spinning disks in turbo-machinery
US6785635B2 (en) * 1999-08-02 2004-08-31 Hood Technology Corporation Apparatus and method for predicting failures of spinning disks in turbo-machinery
US6513386B2 (en) * 1999-10-22 2003-02-04 Skf Condition Monitoring Digital vibration coupling stud
US6163254A (en) * 1999-11-23 2000-12-19 Caterpillar Inc. Method of avoiding low cycle fatigue failure of turbochargers
DE10019324C1 (de) * 2000-04-19 2001-07-26 Skf Gmbh Verfahren und Vorrichtung zum Überwachen einer Lageranordnung
US6711952B2 (en) * 2001-10-05 2004-03-30 General Electric Company Method and system for monitoring bearings
US7582359B2 (en) * 2002-09-23 2009-09-01 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
US20050017709A1 (en) * 2003-07-25 2005-01-27 Honeywell International Inc. Magnetoresistive turbocharger compressor wheel speed sensor
JP2005201146A (ja) * 2004-01-15 2005-07-28 Denso Corp 過給装置のポジション検出装置
US8096184B2 (en) * 2004-06-30 2012-01-17 Siemens Energy, Inc. Turbine blade for monitoring blade vibration
US8591188B2 (en) * 2005-04-26 2013-11-26 General Electric Company Displacement sensor system and method of operation
US7333913B2 (en) * 2005-06-27 2008-02-19 General Electric Company Clearance measurement system and method of operation
US7455495B2 (en) * 2005-08-16 2008-11-25 United Technologies Corporation Systems and methods for monitoring thermal growth and controlling clearances, and maintaining health of turbo machinery applications
US20100292937A1 (en) * 2009-05-18 2010-11-18 Diaa Hosny Turbocharger bearing health monitor

Also Published As

Publication number Publication date
US8146358B2 (en) 2012-04-03
US7631498B2 (en) 2009-12-15
CN101326343B (zh) 2011-04-06
US20070079613A1 (en) 2007-04-12
CN101326343A (zh) 2008-12-17
EP1954921A1 (de) 2008-08-13
WO2007044342A1 (en) 2007-04-19
US20090266073A1 (en) 2009-10-29
DE602006007167D1 (de) 2009-07-16

Similar Documents

Publication Publication Date Title
EP1954921B1 (de) Lagerzustandsüberwachung
CA2487911C (en) Method and apparatus for detecting rub in a turbomachine
US7207769B2 (en) Gas turbine
US8701477B2 (en) Methods and systems for diagnosing a turbocharger
US8850878B2 (en) Methods and systems for diagnosing a turbocharger
AU2016202396B2 (en) System and method for diagnosing a turbocharger of an internal combustion engine based on the lubricating oil pressure signal
EP2728142A1 (de) Turbolader mit Lagerzustandsüberwachung
US6871499B1 (en) Oil pressure detector for electric assisted turbocharger
WO2005064136A1 (en) Compressor surge protector for electric assisted turbocharger
US20170184472A1 (en) Sensor arrangement and measurement method for a turbomachine
EP1233148A2 (de) Turbinenmantelring und dessen Bearbeitungsweise
CN102057263A (zh) 用于探测流体中能力变化的方法和装置以及涡轮机
US8206078B2 (en) System and method for monitoring radial motion of a rotating shaft of a turbocharger
US10047627B2 (en) Methods and system for a turbocharger
US11002181B2 (en) Method and system for determining a characteristic of a rotating machine
CN113833532A (zh) 涡轮发动机密封和方法
US20240159161A1 (en) Temperature measurement system and temperature measurement method
EP4332359A1 (de) Pumpgrenzdistanzerkennung für einen turbolader
KR20160009578A (ko) 케이싱 마모 표시기를 포함하는 터빈 엔진
US20240026799A1 (en) Seal assemblies for turbine engines having wear detection features
JP2024051767A (ja) コンプレッサ羽根車の余寿命評価方法
WO2024035537A1 (en) Gas turbine engine with turbine vane carrier cooling flow path
JP2020008004A (ja) クリアランス計測システム
JPH09317486A (ja) 排気タービン過給機の異常検知装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080924

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006007167

Country of ref document: DE

Date of ref document: 20090716

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151030

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006007167

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161004

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004