EP1950848A1 - Appareil de connexion - Google Patents
Appareil de connexion Download PDFInfo
- Publication number
- EP1950848A1 EP1950848A1 EP07001467A EP07001467A EP1950848A1 EP 1950848 A1 EP1950848 A1 EP 1950848A1 EP 07001467 A EP07001467 A EP 07001467A EP 07001467 A EP07001467 A EP 07001467A EP 1950848 A1 EP1950848 A1 EP 1950848A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- high voltage
- voltage impulse
- connection apparatus
- slot
- pins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002955 isolation Methods 0.000 claims abstract description 36
- 230000001012 protector Effects 0.000 claims abstract description 32
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 230000001052 transient effect Effects 0.000 claims description 33
- 230000001629 suppression Effects 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 8
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000004804 winding Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 101000653679 Homo sapiens Translationally-controlled tumor protein Proteins 0.000 description 2
- ZBZXYUYUUDZCNB-UHFFFAOYSA-N N-cyclohexa-1,3-dien-1-yl-N-phenyl-4-[4-(N-[4-[4-(N-[4-[4-(N-phenylanilino)phenyl]phenyl]anilino)phenyl]phenyl]anilino)phenyl]aniline Chemical compound C1=CCCC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 ZBZXYUYUUDZCNB-UHFFFAOYSA-N 0.000 description 2
- 102100029887 Translationally-controlled tumor protein Human genes 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 102100022644 26S proteasome regulatory subunit 4 Human genes 0.000 description 1
- 102100034682 26S proteasome regulatory subunit 7 Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102100022840 DnaJ homolog subfamily C member 7 Human genes 0.000 description 1
- 101000619137 Homo sapiens 26S proteasome regulatory subunit 4 Proteins 0.000 description 1
- 101001090865 Homo sapiens 26S proteasome regulatory subunit 7 Proteins 0.000 description 1
- 101000903053 Homo sapiens DnaJ homolog subfamily C member 7 Proteins 0.000 description 1
- 101001073409 Homo sapiens Retrotransposon-derived protein PEG10 Proteins 0.000 description 1
- 102100035844 Retrotransposon-derived protein PEG10 Human genes 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/66—Structural association with built-in electrical component
- H01R13/6608—Structural association with built-in electrical component with built-in single component
- H01R13/6633—Structural association with built-in electrical component with built-in single component with inductive component, e.g. transformer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F19/00—Fixed transformers or mutual inductances of the signal type
- H01F19/04—Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
- H01F19/08—Transformers having magnetic bias, e.g. for handling pulses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/66—Structural association with built-in electrical component
- H01R13/6608—Structural association with built-in electrical component with built-in single component
- H01R13/6625—Structural association with built-in electrical component with built-in single component with capacitive component
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/66—Structural association with built-in electrical component
- H01R13/665—Structural association with built-in electrical component with built-in electronic circuit
- H01R13/6658—Structural association with built-in electrical component with built-in electronic circuit on printed circuit board
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/66—Structural association with built-in electrical component
- H01R13/665—Structural association with built-in electrical component with built-in electronic circuit
- H01R13/6666—Structural association with built-in electrical component with built-in electronic circuit with built-in overvoltage protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F19/00—Fixed transformers or mutual inductances of the signal type
- H01F19/04—Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
- H01F19/08—Transformers having magnetic bias, e.g. for handling pulses
- H01F2019/085—Transformer for galvanic isolation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R24/00—Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
- H01R24/60—Contacts spaced along planar side wall transverse to longitudinal axis of engagement
- H01R24/62—Sliding engagements with one side only, e.g. modular jack coupling devices
- H01R24/64—Sliding engagements with one side only, e.g. modular jack coupling devices for high frequency, e.g. RJ 45
Definitions
- the invention relates to a connection apparatus, and more particularly to a connection apparatus with high voltage impulse protection.
- Transient overvoltages may be due to any one of several factors. For example, lightning, electrostatic discharge, or malfunctioning equipment at a remote end of the cable may be responsible.
- Fig. 1 is a schematic diagram of a conventional network connector.
- the network connector 100 provides high voltage impulse protection (also referred to as lightening or surge protection) between signal lines by transient voltage suppressor (TVS) diodes 10A ⁇ 10D and provides high voltage impulse protection between signal lines and a ground terminal by coupling resistors R1 ⁇ R4 and a capacitor CH to the pins TX+, TX-, RX+ and RX-.
- TVS transient voltage suppressor
- the described method has the following disadvantages.
- Energy caused the high voltage impulse may discharge to other components as the resistors have a large volume.
- the volume of the resistors must be sufficiently large.
- isolation glue must be coated on the printed circuit board, reducing yield and increasing time-to-market.
- the currents through the each resistor may also be different due to resistance error in the resistors, such that the resistor with a relative smaller resistance may bear a larger current and thus be damaged.
- Total cost increases with the total number of resistors used.
- the resistors may age due to lightening. Additionally, there is no lightening protection for the secondary coils (TL3 and TL4), and thus, interference with the core of the system by lightening is not preventable.
- Typical integrated circuits are not capable of sustaining high voltage and although the primary coils (TL1 and TL2) isolate most discharged energy, a voltage of several tens of volts is still induced in the secondary coils and the motherboard may be damaged accordingly.
- An exemplary embodiment of a connection apparatus comprises at least one isolation transformer comprising a primary coil and a secondary coil. Each primary coil and secondary coil comprises a first end, a second end and a tap.
- a high voltage impulse protector is disposed between the primary coil of the isolation transformer and a ground terminal for discharging an overcurrent caused by a high voltage to the ground terminal by point discharge when a high voltage impulse event occurs.
- connection apparatus comprises a socket with a slot disposed on a circuit board.
- the slot comprises a plurality of pins and a high voltage impulse protector is disposed between the pins of the slot and a ground terminal for discharging an overcurrent caused by a high voltage to the ground terminal by point discharge when a high voltage impulse event occurs.
- An exemplary embodiment of a high voltage impulse protection method for a connection apparatus comprises a slot disposed on a circuit board, in which the slot has a plurality of pins.
- a high voltage impulse protector is disposed between the pins of the slot and a ground terminal to discharge overcurrent generated by a high voltage impulse to the ground terminal by point discharge when a high voltage impulse event occurs.
- Fig. 1 is a schematic diagram of a conventional network connector
- Fig. 2 shows an embodiment of a connection apparatus
- Fig. 3 is a diagram illustrating high voltage impulse protector and a slot in the connection apparatus
- Fig. 4 is another diagram illustrating the high voltage impulse protector and the slot in the connection apparatus
- Fig. 5 is a diagram illustrating a isolation transformer and a transient voltage suppression unit in the connection apparatus
- Fig. 6 shows another embodiment of a connection apparatus
- Fig. 7 is a diagram showing the connection apparatus shown in Fig. 6 ;
- Figs. 8A and 8B show another embodiment of a connection apparatus.
- the surrounding air may be dissociated to generate gas discharge, known as point discharge, when electric field strength increases acutely.
- the invention utilizes point discharge to discharge energy from high voltage impulse on all pins (connected to the primary coil) to the ground terminal by a capacitor when a high voltage impulse event occurs.
- Fig. 2 shows an embodiment of a connection apparatus.
- a connection apparatus 200 comprises a slot 22, two isolation transformers 24A and 24B, a high voltage impulse protector 26 and two transient voltage suppression units 28A and 28B.
- the connection apparatus 200 can be a network connector but is not limited thereto.
- the slot 22 is coupled between an external network cable (not shown) and the isolation transformers 24A and 24B and comprises a plurality of pins TX+, TX-, RX+ and RX-.
- the slot 22 can be disposed on a circuit board 29 (shown in Fig. 3 ) by dual-in-line package (DIP) technology.
- DIP dual-in-line package
- the isolation transformers 24A and 24B both comprise a primary coil and a secondary coil, in which the primary coil and the secondary coil each has a first end, a second end and a tap.
- the primary coils of the isolation transformers 24A and 24B are coupled to the slot 22 respectively, and the secondary coils of the isolation transformers 24A and 24B are coupled to an external processing circuit (not shown), such as a processing circuit on a local area network (LAN) card or a motherboard, through the connection terminals TD+, TD-, RD+ and RD-.
- LAN local area network
- the first and second ends of the primary coil in the isolation transformer 24A are coupled to the pins TX+ and TX-, and the first and second ends of the primary coil in the isolation transformer 24B are coupled to the pins RX+ and RX-.
- the high voltage impulse protector 26 is disposed between the primary coils of the isolation transformers 24A and 24B and a ground terminal to discharge overcurrent generated by a high voltage impulse the ground terminal by point discharge when a high voltage impulse event occurs.
- the high voltage impulse protector 26 can be a conductive layer CM with a plurality of tips TP aligning with pins of the slot 22 respectively.
- the conductive layer CM does not connect to the pins of the slot 22 directly and provides high voltage impulse protection between signal lines and the ground terminal by point discharge only when a high voltage impulse event occurs.
- the high voltage impulse protector 26 and all pins of the slot 22 are not electrically connected, i.e., they are open-circuit.
- the high voltage impulse protector 26 and the pins of the slot 22 are electrically coupled by point discharge only when a high voltage impulse event occurs.
- the conductive layer CM has a plurality of tips TP separated from pins PN of the slot 22 by a small gap gp, such that the tips TP do not electrically connect directly to the pins PN of the slot 22. Because point discharge is a non-contact design, signals on the pins PN are not affected by aging of the high voltage impulse protector 26 and other elements of the conventional connector can also be prevented.
- Energy induced by high voltage impulse is discharged to the tips TP by the pins PN connected to the primary coil, electric energy is converted to luminous energy for 0.5-10ns, and after partial decay, is discharged to the ground terminal by the capacitor.
- the high voltage impulse protector 26 discharges an overcurrent caused by a high voltage on the pins RX+, RX-, TX- and TX+ to the ground terminal by point discharge when a high voltage impulse event occurs.
- the isolation transformers 24A and 24B and other circuits coupled thereto are protected, against high voltage impulse events.
- the high voltage impulse protector 26 can further comprise a capacitor CH coupled between the conductive layer CM and the ground terminal, buffering energy generated by the high voltage impulse event and extending discharge time such that the generated energy can be decayed and discharged to the ground terminal.
- the conductive layer CM can be a metal layer, such as a copper (Cu) layer but it is not limited thereto.
- the conductive layer CM shown in Fig. 4 is disposed in the circuit board 29 such that the routing on the circuit board 29 can be simplified, but it is also can be disposed on the top surface TS or bottom surface BS of the circuit board 29.
- the pins of the slot 22 can be connected to the circuit board 29 by plugs when the slot 22 is disposed on the circuit board 29 by surface mount device (SMD) technology.
- SMD surface mount device
- the tips of the high voltage impulse protector 26 can be aligned with the plugs respectively but are not electrically connected directly, thus, high voltage impulse protection is provided between signal lines and the ground terminal by point discharge only when a high voltage impulse event occurs.
- transient voltage suppression units 28A is disposed between the taps of the primary coils in the isolation transformer 24A and 24B and the transient voltage suppression units 28B is disposed between the taps of the secondary coils in the isolation transformer 24A and 24B, performing a high voltage impulse protection between signal lines.
- transient voltage suppression units 28A and 28B can serve as a voltage-current limiting element for clamping the voltage and the current, or both, induced at the primary coil, or the secondary coils of the isolation transformer 24A and 24B.
- the transient voltage suppression units 28A and 28B can comprise series-connected or parallel-connected transient voltage suppressor (TVS) diodes, polydiodes, surge absorbers, varistors, zener diodes or combinations thereof but are not limited thereto.
- TVS transient voltage suppressor
- Fig. 5 shows a diagram illustrating the isolation transformers and the transient voltage suppression units.
- the primary coil of the isolation transformer 24A comprises a winding TL1 coupled to the pin TX+, a winding TL2 coupled to the pin TX-, and a tap TPT1 coupled to the transient voltage suppression unit 28A.
- the primary coil of the isolation transformer 24B comprises a winding RL1 coupled to the pin RX+, a winding RL2 coupled to the pin RX-, and a tap RPT1 coupled to the transient voltage suppression unit 28A.
- the secondary coil of the isolation transformer 24A comprises a winding TL3 coupled to the pin TD+, a winding TL4 coupled to the pin TD-, and a tap TPT2 coupled to the transient voltage suppression unit 28B.
- the secondary coil of the isolation transformer 24B comprises a winding RL3 coupled to the pin RD+, a winding RL4 coupled to the pin RD-, and a tap RPT2 coupled to the transient voltage suppression unit 28B.
- the transient voltage suppression unit 28A and 28B can be transient voltage suppressor (TVS) diodes but it is not limited thereto.
- the taps are typically at zero-voltage under normal operation, such that signals on the pins TX+, RX+, RX-, TX-, TD+, RD+, RD- and TD- are not affected by the stray capacitors of the transient voltage suppression units 28A and 28B coupled to the taps.
- the induced currents at the secondary coil can be clamped by the transient voltage suppression unit 28B coupled to the taps TPT2 and TPR2, such that the branch currents on the windings TL3, TL4, RL3 and RL4 can be limited, forming a second-stage high voltage impulse protection.
- the transient voltage suppression units 28A and 28B still can limit branch current on each winding or clamp the voltage difference between two taps even if currents or voltages on the pins may be different, such that the circuit board can be protected from the high voltage impulse event.
- connection apparatus of the invention has the following advantages.
- the discharge path does not couple to signals on the pins, thus, isolation glue is not required, and routing of the circuit board can be simplified. Particularly, because there is no capacitor and resistor coupled to the signals on the pins directly, i.e., the discharge path does not couple signals on the pins, signal decay does not occur.
- the connection apparatus can be applied to all high speed network standards without affecting their transmission.
- each transient voltage impulse suppression unit is disposed between two taps, each transient voltage impulse suppression unit can protect four signal lines and transient voltage impulse suppression units disposed at the secondary coil further provide second-stage protection for a mother board against high voltage impulse events.
- Fig. 6 shows another embodiment of a connection apparatus.
- a connection apparatus 300 comprises a plug 32 and a socket 34.
- Fig. 7 is another diagram of the connection apparatus shown in Fig. 6 .
- the connection apparatus 300 can be a network connector but is not limited thereto.
- the plug 32 is coupled to the socket 34 through a cable 36, and the socket 34 comprises the high voltage impulse protector 26 and the slot 22 shown in Fig. 2 .
- the high voltage impulse protector 26 is disposed between the primary coils of the isolation transformers 24A and 24B and a ground terminal to discharge overcurrent generated by a high voltage to the ground terminal by point discharge when a high voltage impulse event occurs.
- the high voltage impulse protector 26 can be a conductive layer CM with a plurality of tips TP aligning with pins of the slot 22 respectively. Operations of the high voltage impulse protector 26 are similar to those described with reference to Figs. 2 ⁇ 4 , thus, further description thereof is omitted for brevity.
- a connection apparatus 400 comprises a slot 22 and a plug 32, a circuit board (not shown) in a housing 42, in which the circuit board comprises the high voltage impulse protector 26 shown in Fig. 2 .
- the slot 22, the plug 32 and the high voltage impulse protection 26 are electrically coupled by the circuit board, and the high voltage impulse protection 26 is disposed between the pins of the slot 22 and the ground terminal, discharging overcurrent generated by high voltage to the ground terminal by point discharge when a high voltage impulse event occurs.
- the high voltage impulse protector 26 comprises a conductive layer CM with a plurality of tips TP aligning with pins of the slot 22 and a capacitor CH coupled between the conductive layer CM and the ground terminal. Operations of the high voltage impulse protector 26 are similar to those described with reference to Figs. 2 ⁇ 4 , thus, further description thereof is omitted for brevity.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Multimedia (AREA)
- Emergency Protection Circuit Devices (AREA)
- Manufacturing Of Electric Cables (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
- Monitoring And Testing Of Exchanges (AREA)
- Transformers For Measuring Instruments (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES07001467T ES2324497T3 (es) | 2007-01-24 | 2007-01-24 | Aparato de conexion. |
DE602007000726T DE602007000726D1 (de) | 2007-01-24 | 2007-01-24 | Anschlussgerät |
AT07001467T ATE426262T1 (de) | 2007-01-24 | 2007-01-24 | Anschlussgerat |
EP07001467A EP1950848B1 (fr) | 2007-01-24 | 2007-01-24 | Appareil de connexion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07001467A EP1950848B1 (fr) | 2007-01-24 | 2007-01-24 | Appareil de connexion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1950848A1 true EP1950848A1 (fr) | 2008-07-30 |
EP1950848B1 EP1950848B1 (fr) | 2009-03-18 |
Family
ID=37983471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07001467A Not-in-force EP1950848B1 (fr) | 2007-01-24 | 2007-01-24 | Appareil de connexion |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1950848B1 (fr) |
AT (1) | ATE426262T1 (fr) |
DE (1) | DE602007000726D1 (fr) |
ES (1) | ES2324497T3 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194616A2 (fr) * | 2008-12-02 | 2010-06-09 | Moxa Inc. | Dispositif de connecteur RJ45 doté d'une structure à clé pour changer les définitions de broche |
EP2490307A3 (fr) * | 2011-02-18 | 2014-03-19 | ASUS Technology Pte Ltd. | Composant de protection contre les surtensions dans un connecteur |
US20220102046A1 (en) * | 2020-09-27 | 2022-03-31 | Optomedia Technology Inc. | Signal converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020001160A1 (en) * | 2000-04-20 | 2002-01-03 | Reinhold Berberich | Overvoltage protection device |
US6541878B1 (en) * | 2000-07-19 | 2003-04-01 | Cisco Technology, Inc. | Integrated RJ-45 magnetics with phantom power provision |
US20040027779A1 (en) * | 2002-08-09 | 2004-02-12 | Byrne Daniel J. | Electrostatic discharge protection |
US20050164558A1 (en) * | 2002-04-10 | 2005-07-28 | Ferentz Alon Z. | Active local area network connector |
-
2007
- 2007-01-24 ES ES07001467T patent/ES2324497T3/es active Active
- 2007-01-24 DE DE602007000726T patent/DE602007000726D1/de active Active
- 2007-01-24 EP EP07001467A patent/EP1950848B1/fr not_active Not-in-force
- 2007-01-24 AT AT07001467T patent/ATE426262T1/de not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020001160A1 (en) * | 2000-04-20 | 2002-01-03 | Reinhold Berberich | Overvoltage protection device |
US6541878B1 (en) * | 2000-07-19 | 2003-04-01 | Cisco Technology, Inc. | Integrated RJ-45 magnetics with phantom power provision |
US20050164558A1 (en) * | 2002-04-10 | 2005-07-28 | Ferentz Alon Z. | Active local area network connector |
US20040027779A1 (en) * | 2002-08-09 | 2004-02-12 | Byrne Daniel J. | Electrostatic discharge protection |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194616A2 (fr) * | 2008-12-02 | 2010-06-09 | Moxa Inc. | Dispositif de connecteur RJ45 doté d'une structure à clé pour changer les définitions de broche |
EP2194616A3 (fr) * | 2008-12-02 | 2011-05-18 | Moxa Inc. | Dispositif de connecteur RJ45 doté d'une structure à clé pour changer les définitions de broche |
EP2490307A3 (fr) * | 2011-02-18 | 2014-03-19 | ASUS Technology Pte Ltd. | Composant de protection contre les surtensions dans un connecteur |
US20220102046A1 (en) * | 2020-09-27 | 2022-03-31 | Optomedia Technology Inc. | Signal converter |
US11600420B2 (en) * | 2020-09-27 | 2023-03-07 | Optomedia Technology Inc. | Signal converter |
Also Published As
Publication number | Publication date |
---|---|
DE602007000726D1 (de) | 2009-04-30 |
ES2324497T3 (es) | 2009-08-07 |
ATE426262T1 (de) | 2009-04-15 |
EP1950848B1 (fr) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7944668B2 (en) | Connection apparatus with high voltage impulse protection | |
US7808751B2 (en) | Differential electrical surge protection within a LAN magnetics interface circuit | |
EP2239925A1 (fr) | Circuit d'interface et dispositif de communication | |
US20040257743A1 (en) | LAN magnetic interface circuit with passive ESD protection | |
US8693152B2 (en) | Power over ethernet powered device circuit and electrostatic discharge protection circuit thereof | |
EP2003752B1 (fr) | Circuit de protection contre les surtensions, connecteur et appareil électronique | |
US8358492B2 (en) | Surge protection systems and methods for ethernet communication equipment in outside plant environments | |
US7054127B1 (en) | Methods and apparatus to protect against voltage surges | |
EP2773004B1 (fr) | Circuit d'appareil de connexion et son procédé de protection de surtension à haute tension | |
EP1950848B1 (fr) | Appareil de connexion | |
US10819109B2 (en) | Chip protection circuit | |
US8243412B2 (en) | Surge protection systems and methods for outside plant ethernet | |
US8320095B2 (en) | Transformer module with multiple protections | |
US20150029634A1 (en) | Network signal processing circuit | |
US10743406B2 (en) | Galvanic isolation for isolation transformer | |
US8858262B2 (en) | F-connector with integrated surge protection | |
JP2007529189A (ja) | 複数の過渡電圧抑制構成要素を有するコネクタおよびコネクタ内の複数の過渡電圧抑制構成要素 | |
CN215452513U (zh) | 一种具有寿命指示功能的防雷装置 | |
CN211089121U (zh) | 四线以太网电磁脉冲防护装置 | |
CN114221313B (zh) | 一种防护系统及浮地设备 | |
TWI499143B (zh) | 用於連接器的防突波保護線路 | |
CN210927454U (zh) | 一种直流电源接入电路及电路板 | |
KR102311307B1 (ko) | Rf 안테나용 emp 방호 장치 | |
TWM522499U (zh) | 突波防護電路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HUANG, CHIEN-HSIANG Inventor name: UANG, MUH-JIN |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602007000726 Country of ref document: DE Date of ref document: 20090430 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2324497 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090618 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090718 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E005906 Country of ref document: HU |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090618 |
|
26N | No opposition filed |
Effective date: 20091221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602007000726 Country of ref document: DE Representative=s name: CABINET CHAILLOT, FR |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211217 Year of fee payment: 16 Ref country code: GB Payment date: 20211203 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20211216 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20211212 Year of fee payment: 16 Ref country code: DE Payment date: 20211130 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220202 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007000726 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230124 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230125 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230125 |