EP1950499A2 - Method for operating a solar thermal array - Google Patents

Method for operating a solar thermal array Download PDF

Info

Publication number
EP1950499A2
EP1950499A2 EP08000802A EP08000802A EP1950499A2 EP 1950499 A2 EP1950499 A2 EP 1950499A2 EP 08000802 A EP08000802 A EP 08000802A EP 08000802 A EP08000802 A EP 08000802A EP 1950499 A2 EP1950499 A2 EP 1950499A2
Authority
EP
European Patent Office
Prior art keywords
temperature
collector
pump
value
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08000802A
Other languages
German (de)
French (fr)
Other versions
EP1950499A3 (en
EP1950499B1 (en
Inventor
Sascha Severin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Priority to PL08000802T priority Critical patent/PL1950499T3/en
Publication of EP1950499A2 publication Critical patent/EP1950499A2/en
Publication of EP1950499A3 publication Critical patent/EP1950499A3/en
Application granted granted Critical
Publication of EP1950499B1 publication Critical patent/EP1950499B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1042Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy

Definitions

  • the invention relates to a method for operating a solar thermal system, in particular in a starting phase.
  • a solar thermal system basically consists of solar panels, which capture solar energy and deliver it to a heat transfer medium (water-glycol, water-ethanol), a reservoir and a closed circuit, which transports the heat absorbed in the collector to the storage tank, a regulation that controls the circulation the heat transfer medium, also called brine, controls at corresponding temperature differences from the collector to the memory.
  • the brine is heated by the solar radiation in the collector and then fed through the brine circuit to the memory. Subsequently, the solar heat can be used, for example, for hot water preparation, heating support or swimming pool heating.
  • the collector type which is relatively widespread in addition to flat-plate collectors, is the vacuum tube collector, in which the absorber surfaces are enclosed in evacuated glass tubes instead of in a housing.
  • the advantage here is that the proportion of heat loss through convection is smaller and the tube is optimally adapted to the position of the sun can. The heat is transferred to the coolant, inter alia, by the direct flow of the liquid through the absorber.
  • a simple temperature differential controller is sufficient for controlling a small solar system for hot water production.
  • the controller uses two temperature sensors to determine when the temperature at the collector outlet is higher than the temperature in the storage tank measured at the height of the solar circuit heat exchanger and then starts the solar circuit circulation pump.
  • the solar controllers are set so that a temperature difference of about 5 - 8 K is ensured between the collector and the pump for starting the pump. If this drops to 2 to 3 K, the circulation pump will be shut down by the solar controller.
  • this setting of the solar controller problems can occur when starting the system in which the system does not start or shut down too early.
  • the pump starts cold liquid enters the collector, which flows through it and leaves it heated again. As a result, the temperature drops rapidly again.
  • the invention has for its object to provide a method for a solar thermal system available, with a reliable pump start and operation of the system is made possible in the startup phase.
  • FIG. 1 simplified illustrated solar system pumps a pump (3) a heat transfer medium (eg water-glycol, water-ethanol) in a closed circuit between a collector (1) and a memory (2).
  • a control (6) controls the circulation of the heat transfer medium at corresponding temperature differences from the collector (1) to the memory (2).
  • FIG. 2 shows by way of example a measured temperature profile (b) at the collector sensor (4) after a pump start, in which two measured temperature maxima T max1 and T max2 are shown after mixing a heat transfer medium from the collector T K and the return T R. With (a) the pump speed characteristic is designated.
  • a temperature measurement is first carried out by means of a temperature sensor (4) attached to the collector (1) and in the memory (2) by means of a temperature sensor (5) located on the storage bottom.
  • the measured values are used to calculate the temperature gradient at the collector sensor (4) and the temperature difference ( ⁇ T) between the collector (1) and storage tank temperature (2).
  • the value d actual should only assume positive values.
  • the collector temperature (T 1 ) In order for the system to be able to start when the measured collector temperature (T 1 ) is lower than the tank temperature (T 2 ), the collector temperature (T 1 ) must be adjusted. With this approximation, the temperature in the lower temperature range is further given a higher weight.
  • the calculated auxiliary variable value d actual is compared with a previously defined setpoint value d setpoint , which is preset in the factory during commissioning as start value d start .
  • the later determined target value d set takes into account plant-specific settings during commissioning.
  • the pump is put into operation and the calculated auxiliary variable value d actual stored at the time of pump start t 0 .
  • the pump runs at least until two temperature maximum values (T max1 , T max2 ) are detected at the collector sensor (4). After the second temperature maximum, the calculation of the temperature difference ( ⁇ T) of the temperatures measured at the collector (1) and in the store (2) takes place.
  • the pump continues to run under the condition that the temperature difference .DELTA.T is greater than a predetermined limit .DELTA.T stop , preferably 3 K.
  • a control system for a solar system includes a control device for switching on a pump, wherein the control device of temperature sensors, can be controlled.
  • the temperature difference between the temperature sensor on the solar collectors and the temperature sensor for the flow temperature is determined. If this temperature difference is greater than a previously entered system-dependent value, the pump is turned on. After a certain period of time, after which a steady flow has settled, the temperature difference between the water flowing back from the collectors and the water leading to the collectors in the supply is determined. Then this temperature difference can either with a fixed temperature value or after Multiplication with the flow rate of the pump can be compared with a previously set power value. If this comparison is negative, the pump is switched off again.
  • the starting conditions are regulated by a temperature difference but with the interposition of a waiting time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Temperature (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

The method involves determining temperatures at a collector (1) and in a memory (2), respectively, and calculating a temperature difference between the temperatures. An auxiliary quantities value is compared with a predefined reference value. A pump (3) is switched on when the evaluated value is larger or equal to the reference value or the difference exceeds a preset threshold value. A temperature maximum is determined by monitoring a temporal process. The pump is switched off after determining a defined number of maximum, when the difference is smaller and equal to the threshold value.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betrieb einer solarthermischen Anlage, insbesondere in einer Startphase.The invention relates to a method for operating a solar thermal system, in particular in a starting phase.

Eine solarthermische Anlage besteht grundsätzlich aus Sonnenkollektoren, welche die Sonnenenergie einfangen und an ein Wärmeträgermedium (Wasser-Glykol, Wasser-Ethanol) abgeben, einem Speicher und einem geschlossenen Kreislauf, der die im Kollektor aufgenommene Wärme zum Speicher transportiert, einer Regelung, die die Umwälzung des Wärmeträgermediums, auch Sole genannt, bei entsprechenden Temperaturdifferenzen von dem Kollektor zum Speicher steuert. Die Sole wird durch die Sonnenstrahlung im Kollektor erwärmt und dann über den Solekreislauf dem Speicher zugeführt. Anschließend kann die Sonnenwärme zum Beispiel zur Warmwasserbereitung, Heizungsunterstützung oder Schwimmbaderwärmung genutzt werden.A solar thermal system basically consists of solar panels, which capture solar energy and deliver it to a heat transfer medium (water-glycol, water-ethanol), a reservoir and a closed circuit, which transports the heat absorbed in the collector to the storage tank, a regulation that controls the circulation the heat transfer medium, also called brine, controls at corresponding temperature differences from the collector to the memory. The brine is heated by the solar radiation in the collector and then fed through the brine circuit to the memory. Subsequently, the solar heat can be used, for example, for hot water preparation, heating support or swimming pool heating.

Der neben Flachkollektoren relativ weit verbreitete Kollektortyp ist der Vakuum-Röhrenkollektor, bei dem die Absorberflächen statt in einem Gehäuse in evakuierten Glasröhren eingeschlossen sind. Der Vorteil ist hierbei, dass der Anteil des Wärmeverlustes durch Konvektion kleiner ist und die Röhre dem Sonnenstand optimal angepasst werden können. Die Wärmeabgabe an die Kühlflüssigkeit erfolgt u.a. durch die direkte Durchströmung der Flüssigkeit durch den Absorber.The collector type, which is relatively widespread in addition to flat-plate collectors, is the vacuum tube collector, in which the absorber surfaces are enclosed in evacuated glass tubes instead of in a housing. The advantage here is that the proportion of heat loss through convection is smaller and the tube is optimally adapted to the position of the sun can. The heat is transferred to the coolant, inter alia, by the direct flow of the liquid through the absorber.

Meistens ist ein einfacher Temperaturdifferenzregler für die Regelung einer kleinen Solaranlage zur Warmwasserbereitung ausreichend. Der Regler stellt über zwei Temperaturfühler fest, wann die Temperatur am Kollektoraustritt höher ist als die auf der Höhe des Solarkreis-Wärmetauschers gemessene Temperatur im Speicher und setzt daraufhin die Solarkreis-Umwälzpumpe in Betrieb. Üblicherweise werden die Solarregler so eingestellt, dass eine Temperaturdifferenz von etwa 5 - 8 K zwischen dem Kollektor und dem Speicher für den Pumpenstart gewährleistet ist. Sinkt diese auf 2 bis 3 K ab, wird die Umwälzpumpe durch den Solarregler wieder außer Betrieb genommen. Trotz dieser Einstellung des Solarreglers können Probleme beim Start der Anlage auftreten, in dem die Anlage gar nicht startet oder zu früh abschaltet. So gelangt nach dem Pumpenstart kalte Flüssigkeit in den Kollektor, die diesen durchströmt und erhitzt wieder verlässt. Demzufolge fällt die Temperatur wieder rapide ab. Aufgrund der nun vorliegenden Temperaturdifferenz kann es gemäß dem Stand der Technik zum Abschalten der Pumpe kommen. Läuft die Pumpe weiter, so steigt die Temperatur wieder an, da die heiße Flüssigkeit, welche beim Pumpenstart im Kollektor verweilte, nach dem Durchströmen des Speichers wieder in den Kollektor einströmt. Erst nach einigen Umwälzungen stellt sich ein quasi-stationärer Zustand ein.In most cases, a simple temperature differential controller is sufficient for controlling a small solar system for hot water production. The controller uses two temperature sensors to determine when the temperature at the collector outlet is higher than the temperature in the storage tank measured at the height of the solar circuit heat exchanger and then starts the solar circuit circulation pump. Normally, the solar controllers are set so that a temperature difference of about 5 - 8 K is ensured between the collector and the pump for starting the pump. If this drops to 2 to 3 K, the circulation pump will be shut down by the solar controller. Despite this setting of the solar controller problems can occur when starting the system in which the system does not start or shut down too early. Thus, after the pump starts, cold liquid enters the collector, which flows through it and leaves it heated again. As a result, the temperature drops rapidly again. Due to the present temperature difference may occur according to the prior art for switching off the pump. If the pump continues to run, the temperature rises again because the hot liquid which remained in the collector at the start of the pump flows back into the collector after it has flowed through the reservoir. Only after some upheavals does a quasi-stationary state arise.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren für eine solarthermische Anlage zur Verfügung zu stellen, mit dem ein zuverlässiger Pumpenstart und Betrieb der Anlage in der Startphase ermöglicht wird.The invention has for its object to provide a method for a solar thermal system available, with a reliable pump start and operation of the system is made possible in the startup phase.

Erfindungsgemäß wird dies gemäß den Merkmalen des Anspruchs 1 dadurch erreicht, dass ein Verfahren zum Betrieb einer Solaranlage, insbesondere in einer Startphase, bei der das zur erwärmende Wärmeträgermedium mittels einer Pumpe (3) in einem Kreislauf zwischen einer Speichervorrichtung (2) und mindestens einem Kollektor (1) befördert wird, mit einem Temperatursensor (4) angeordnet am Ausgang des Kollektors (1) in Richtung zum Speicher (2) sowie mit einem Temperatursensor (5) im Speicher (2) mit folgenden Verfahrensschritten zur Verfügung gestellt wird:

  • die mittels des Temperatursensors (4) gemessene Temperatur T1 am Kollektor (1) und die mittels des Temperatursensors (5) gemessene Temperatur T2 im Speicher (2) werden erfasst,
  • der Temperaturgradient dT 1 dt
    Figure imgb0001
    am Kollektor (1) wird berechnet,
  • die Temperaturdifferenz ΔT zwischen der gemessenen Temperatur T1 am Kollektor (1) und der gemessenen Temperatur T2 im Speicher (2) wird berechnet,
  • ein Hilfsgrößenwert dIst für die Pumpe wird in Abhängigkeit von der Temperaturdifferenz ΔT, einer Konstanten und dem Temperaturgradienten dT 1 dt
    Figure imgb0002
    berechnet und mit einem vordefinierten Sollwert dSoll verglichen,
  • wenn der berechnete Hilfsgrößenwert dIst größer oder gleich dem vordefinierten Sollwert (dSoll) ist oder die Temperaturdifferenz ΔT einen vorgegebenen Grenzwert ΔTStart überschreitet, wird die Pumpe eingeschaltet und der berechnete Hilfsgrößenwert dIst(t0) zu diesem Zeitpunkt t0 gespeichert,
  • die mittels des Temperatursensors (4) gemessene Temperatur T1 am Kollektor (1) wird weiterhin erfasst, wobei durch die Beobachtung des zeitlichen Verlaufs Maxima erkannt werden,
  • nach dem Erkennen einer definierten Anzahl von Maxima, deren Anzahl 2 nicht unterschreiten darf, wird die Pumpe abgeschaltet, wenn die Temperaturdifferenz ΔT kleiner oder gleich einem vorgegebenen Grenzwert ΔTStop ist.
According to the invention this is achieved according to the features of claim 1, characterized in that a method for operating a solar system, in particular in a starting phase, in which the heat transfer medium to be heated by means of a pump (3) in a circuit between a storage device (2) and at least one collector (1) is conveyed, with a temperature sensor (4) arranged at the output of the collector (1) in the direction of the memory (2) and with a temperature sensor (5) in the memory (2) with the following Procedural steps are provided:
  • the temperature T 1 measured at the collector (1) by means of the temperature sensor (4) and the temperature T 2 measured in the memory (2) by means of the temperature sensor (5) are detected,
  • the temperature gradient dT 1 dt
    Figure imgb0001
    at the collector (1) is calculated
  • the temperature difference ΔT between the measured temperature T 1 at the collector (1) and the measured temperature T 2 in the memory (2) is calculated,
  • an auxiliary variable value d is for the pump depending on the temperature difference ΔT, a constant and the temperature gradient dT 1 dt
    Figure imgb0002
    calculated and compared with a predefined setpoint d set ,
  • if the calculated auxiliary variable value d actual is greater than or equal to the predefined setpoint value (d setpoint ) or the temperature difference ΔT exceeds a predefined limit value ΔT start , the pump is switched on and the calculated auxiliary variable value d actual (t 0 ) is stored at this time t 0 ,
  • the temperature T 1 measured at the collector (1) by means of the temperature sensor (4) is still detected, whereby maxima are detected by the observation of the time profile,
  • after detecting a defined number of maxima whose number may not fall below 2, the pump is turned off when the temperature difference .DELTA.T is less than or equal to a predetermined limit .DELTA.T Stop .

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der abhängigen Ansprüche und der Beschreibung. Die Erfindung wird nun anhand der Figuren näher erläutert. Hierbei zeigen

  • Figur 1 eine schematisch dargestellte Solaranlage,
  • Figur 2 einen Temperaturverlauf am Kollektorfühler nach einem Pumpenstart und
  • Figur 3 ein Ablaufdiagramm eines möglichen Regelungsvorgangs des Pumpenstarts.
Further advantageous embodiments of the invention will become apparent from the features of the dependent claims and the description. The invention will now be explained in more detail with reference to FIGS. Show here
  • FIG. 1 a schematically illustrated solar system,
  • FIG. 2 a temperature profile at the collector sensor after a pump start and
  • FIG. 3 a flow diagram of a possible control process of the pump start.

Bei der in Figur 1 vereinfacht dargestellte Solaranlage pumpt eine Pumpe (3) ein Wärmeträgermedium (z.B. Wasser-Glykol, Wasser-Ethanol) in einem geschlossenen Kreislauf zwischen einem Kollektor (1) und einem Speicher (2). Eine Regelung (6) steuert die Umwälzung des Wärmeträgermediums bei entsprechenden Temperaturdifferenzen von dem Kollektor (1) zum Speicher (2).At the in FIG. 1 simplified illustrated solar system pumps a pump (3) a heat transfer medium (eg water-glycol, water-ethanol) in a closed circuit between a collector (1) and a memory (2). A control (6) controls the circulation of the heat transfer medium at corresponding temperature differences from the collector (1) to the memory (2).

Figur 2 zeigt beispielhaft einen gemessenen Temperaturverlauf (b) am Kollektorfühler (4) nach einem Pumpenstart, bei dem zwei gemessene Temperaturmaxima Tmax1 und Tmax2 nach dem Vermischen eines Wärmeträgermediums aus dem Kollektor TK und dem Rücklauf TR dargestellt sind. Mit (a) ist die Pumpendrehzahlkennlinie bezeichnet. FIG. 2 shows by way of example a measured temperature profile (b) at the collector sensor (4) after a pump start, in which two measured temperature maxima T max1 and T max2 are shown after mixing a heat transfer medium from the collector T K and the return T R. With (a) the pump speed characteristic is designated.

In Figur 3 können die Verfahrensschritte des erfindungsgemäßen Regelungsverfahrens einem Ablaufdiagramm entnommen werden. Demnach erfolgt zunächst eine Temperaturmessung mittels eines am Kollektor (1) angebrachten Temperaturfühlers (4) und im Speicher (2) mittels eines am Speicherboden befindlichen Temperaturfühlers (5). Mit den gemessenen Werten erfolgt eine Berechnung des Temperaturgradienten am Kollektorfühler (4) und der Temperaturdifferenz (ΔT) zwischen der Kollektor- (1) und Speichertemperatur (2).In FIG. 3 the method steps of the control method according to the invention can be taken from a flow chart. Accordingly, a temperature measurement is first carried out by means of a temperature sensor (4) attached to the collector (1) and in the memory (2) by means of a temperature sensor (5) located on the storage bottom. The measured values are used to calculate the temperature gradient at the collector sensor (4) and the temperature difference (ΔT) between the collector (1) and storage tank temperature (2).

Ein Hilfsgrößenwert dIst für die Pumpe wird mit folgender Formel, bei der C eine Konstante (z.B. 10 K) ist, definiert: d 1 st = T 1 - T 2 + C dT 1 dt = Δ T + C dT 1 dt .

Figure imgb0003
An auxiliary variable value d Actual for the pump is defined by the following formula, where C is a constant (eg 10 K): d 1 st = T 1 - T 2 + C dT 1 dt = Δ T + C dT 1 dt ,
Figure imgb0003

Die Addition der frei gewählten Temperaturkonstante C in der Gleichung 1 hat folgende Bedeutung: der Wert dIst soll nur positive Werte annehmen. Damit die Anlage aber auch starten kann, wenn die gemessene Kollektortemperatur (T1) geringer als die Speichertemperatur (T2) ist, muss die Kollektortemperatur (T1) eine Angleichung bekommen. Mit dieser Angleichung wird weiterhin der Temperatur im unteren Temperaturbereich ein höheres Gewicht verliehen.The addition of the freely chosen temperature constant C in equation 1 has the following meaning: the value d actual should only assume positive values. In order for the system to be able to start when the measured collector temperature (T 1 ) is lower than the tank temperature (T 2 ), the collector temperature (T 1 ) must be adjusted. With this approximation, the temperature in the lower temperature range is further given a higher weight.

Der berechnete Hilfsgrößenwert dIst wird mit einem vorher definierten Soll-Wert dSoll verglichen, der bei der Erstinbetriebnahme werkseitig als Startwert dStart vorgegeben wird. Der später ermittelte Soll-Wert dSoll berücksichtigt anlagenspezifische Einstellungen bei der Inbetriebnahme.The calculated auxiliary variable value d actual is compared with a previously defined setpoint value d setpoint , which is preset in the factory during commissioning as start value d start . The later determined target value d set takes into account plant-specific settings during commissioning.

Wenn dIst >= dSoll ist, wird die Pumpe in Betrieb gesetzt und der berechnete Hilfsgrößenwert dIst zum Zeitpunkt des Pumpenanlaufs t0 gespeichert. Die Pumpe läuft mindestens so lange, bis am Kollektorfühler (4) zwei Temperaturmaxima - Werte (Tmax1, Tmax2) ermittelt werden. Nach dem zweiten Temperaturmaximum erfolgt die Berechnung der Temperaturdifferenz (ΔT) der am Kollektor (1) und im Speicher(2) gemessenen Temperaturen. Eine Anpassung des Soll-Wertes dSoll erfolgt in Abhängigkeit von ΔT vorzugsweise gemäß folgender Tabelle: ΔT nach zweitem Änderung des d-Wertes Temperaturmaximum Kleiner als 0 K dSoll = dIst(t0) + 0,2 Zwischen 0 K und 3 K dSoll = dIst(t0) + 0,1 Zwischen 3 K und 7 K dSoll = dIst(t0) Zwischen 7 K und 10 K dSoll = dIst(t0) - 0, 1 Größer als 10 K dSoll = dIst(t0) - 0,2 If d actual > = d setpoint , the pump is put into operation and the calculated auxiliary variable value d actual stored at the time of pump start t 0 . The pump runs at least until two temperature maximum values (T max1 , T max2 ) are detected at the collector sensor (4). After the second temperature maximum, the calculation of the temperature difference (ΔT) of the temperatures measured at the collector (1) and in the store (2) takes place. An adaptation of the setpoint value d setpoint is preferably carried out as a function of ΔT according to the following table: ΔT after second Change of the d value Thermal maximum Less than 0K d Soll = d Ist (t 0 ) + 0,2 Between 0 K and 3 K d Soll = d Ist (t 0 ) + 0,1 Between 3K and 7K d Soll = d Ist (t 0 ) Between 7K and 10K d Soll = d Ist (t 0 ) - 0, 1 Greater than 10K d Soll = d Ist (t 0 ) - 0,2

Es können auch andere Anpassungsschritte als die in der Tabelle aufgeführten Änderungsschritte Anwendung finden. Eine Änderung des Soll - Wertes findet nicht statt, wenn äußere Einflüsse (z.B. Wasserzapfen oder Strahlungsabfall) auf das System einwirken.You can also use adjustment steps other than the change steps listed in the table. A change in the desired value does not take place when external influences (such as water spills or radiation decay) act on the system.

Anschließend läuft die Pumpe weiter unter der Bedingung, dass die Temperaturdifferenz ΔT größer als einen vorgegebenen Grenzwert ΔTStop, vorzugsweise 3 K, ist.Subsequently, the pump continues to run under the condition that the temperature difference .DELTA.T is greater than a predetermined limit .DELTA.T stop , preferably 3 K.

Sollte der dIst - Wert nicht zu einem Start der Pumpe bzw. der Anlage führen (z.B. wegen Wasserzapfung oder Fehler bei der d-Wert Berechnung) und die Bedingung erfüllt wird, dass ΔT größer als 7 K ist, dann soll die Pumpe auch starten. In diesem Fall findet jedoch keine Adaption des Soll-Wertes dSoll statt.If the d actual value does not lead to a start of the pump or the system (eg due to water tapping or error in the d value calculation) and the condition is satisfied that ΔT is greater than 7 K, then the pump should also start , In this case, however, there is no adaptation of the setpoint value d setpoint .

Aus der DE 38 35 012 ist u.a. eine Steuerungsanlage für eine Solaranlage bekannt. Diese Steuerungsanlage enthält eine Steuereinrichtung zum Einschalten einer Pumpe, wobei die Steuereinrichtung von Temperaturfühlern, ansteuerbar ist. Die Temperaturdifferenz zwischen dem Temperaturfühler an den Solarkollektoren und dem Temperaturfühler für die Vorlauftemperatur wird bestimmt. Ist diese Temperaturdifferenz größer als ein vorher eingegebener anlagenabhängiger Wert, so wird die Pumpe eingeschaltet. Nach einer gewissen Zeit, nach der sich eine gleichmäßige Strömung eingestellt hat, wird die Temperaturdifferenz zwischen dem von den Kollektoren zurückströmenden Wasser und dem zu den Kollektoren führenden Wasser im Vorlauf bestimmt. Dann kann diese Temperaturdifferenz entweder mit einem fest eingestellten Temperaturwert oder nach Multiplikation mit der Förderleistung der Pumpe mit einem vorher eingestellten Leistungswert verglichen werden. Fällt dieser Vergleich negativ aus, wird die Pumpe wieder ausgeschaltet. Bei der hier beschriebenen Regelung werden die Startbedingungen auch über eine Temperaturdifferenz jedoch unter Zwischenschaltung einer Wartezeit geregelt.From the DE 38 35 012 Among other things, a control system for a solar system is known. This control system includes a control device for switching on a pump, wherein the control device of temperature sensors, can be controlled. The temperature difference between the temperature sensor on the solar collectors and the temperature sensor for the flow temperature is determined. If this temperature difference is greater than a previously entered system-dependent value, the pump is turned on. After a certain period of time, after which a steady flow has settled, the temperature difference between the water flowing back from the collectors and the water leading to the collectors in the supply is determined. Then this temperature difference can either with a fixed temperature value or after Multiplication with the flow rate of the pump can be compared with a previously set power value. If this comparison is negative, the pump is switched off again. In the scheme described here, the starting conditions are regulated by a temperature difference but with the interposition of a waiting time.

Bei dem erfindungsgemäßen Verfahren ist im Gegensatz zur DE 38 35 012 keine Wartezeit vorgesehen. Es werden kontinuierlich Temperaturminima und Temperaturmaxima am Kollektorfühler (4) bzw. die Temperaturdifferenz zwischen der Temperatur gemessen am Kollektor und im Speicher bestimmt. Somit wird ein zuverlässiger Pumpenstart und Betrieb der Anlage in der Anfangsphase sichergestellt.In the method according to the invention is in contrast to DE 38 35 012 no waiting time provided. There are continuously determined temperature minima and temperature maxima at the collector sensor (4) or the temperature difference between the temperature measured at the collector and in the memory. Thus, a reliable pump start and operation of the system is ensured in the initial phase.

Claims (3)

Verfahren zum Betrieb einer Solaranlage, insbesondere in einer Startphase, bei der das zur erwärmende Wärmeträgermedium mittels einer Pumpe (3) in einem Kreislauf zwischen einer Speichervorrichtung (2) und mindestens einem Kollektor (1) befördert wird, mit einem Temperatursensor (4) am Ausgang des Kollektors (1) in Richtung zum Speicher (2) sowie einem Temperatursensor (5) im Speicher (2) mit folgenden Verfahrensschritten: - die mittels des Temperatursensors (4) gemessene Temperatur T1 am Kollektor (1) und die mittels des Temperatursensors (5) gemessene Temperatur T2 im Speicher (2) werden erfasst, - der Temperaturgradient dT 1 dt
Figure imgb0004
am Kollektor (1) wird berechnet,
- die Temperaturdifferenz ΔT zwischen der gemessenen Temperatur T1 am Kollektor (1) und Temperatur T2 im Speicher (2) wird berechnet, - ein Hilfsgrößenwert dIst für die Pumpe (3) wird in Abhängigkeit von der Temperaturdifferenz ΔT, einer Konstanten und dem Temperaturgradienten dT 1 dt
Figure imgb0005
berechnet und mit einem vordefinierten Sollwert dSoll verglichen,
- wenn der berechnete Hilfsgrößenwert dIst größer oder gleich dem vordefinierten Sollwert (dSoll) ist oder die Temperaturdifferenz ΔT einen vorgegebenen Grenzwert ΔTStart überschreitet, wird die Pumpe (3) eingeschaltet und der berechnete Hilfsgrößenwert dIst(t0) zu diesem Zeitpunkt t0 gespeichert, - die mittels des Temperatursensors (4) gemessene Temperatur T1 am Kollektor (1) wird weiterhin erfasst, wobei durch die Beobachtung des zeitlichen Verlaufs Maxima erkannt werden, - nach dem Erkennen einer definierten Anzahl von Maxima, deren Anzahl 2 nicht unterschreiten darf, wird die Pumpe (3) abgeschaltet, wenn die Temperaturdifferenz ΔT kleiner oder gleich einem vorgegebenen Grenzwert ΔTStop ist.
Method for operating a solar system, in particular in a starting phase, in which the heat transfer medium to be heated by means of a pump (3) in a circuit between a storage device (2) and at least one collector (1) is transported, with a temperature sensor (4) at the output of the collector (1) in the direction of the store (2) and a temperature sensor (5) in the store (2) with the following method steps: the temperature T 1 measured at the collector (1) by means of the temperature sensor (4) and the temperature T 2 measured in the memory (2) by means of the temperature sensor (5) are detected, - the temperature gradient dT 1 dt
Figure imgb0004
at the collector (1) is calculated
the temperature difference ΔT between the measured temperature T 1 at the collector (1) and temperature T 2 in the accumulator (2) is calculated, an auxiliary variable value d actual for the pump (3) becomes dependent on the temperature difference ΔT, a constant and the temperature gradient dT 1 dt
Figure imgb0005
calculated and compared with a predefined setpoint d set ,
- If the calculated auxiliary value d Ist is greater than or equal to the predefined setpoint (d Soll ) or the temperature difference .DELTA.T exceeds a predetermined threshold .DELTA.T start , the pump (3) is turned on and the calculated auxiliary variable value d Ist (t 0 ) at this time t 0 saved, the temperature T 1 measured at the collector (1) by means of the temperature sensor (4) is further detected, whereby maxima are detected by the observation of the time course, - After detecting a defined number of maxima whose number may not fall below 2, the pump (3) is turned off when the temperature difference .DELTA.T is less than or equal to a predetermined limit .DELTA.T Stop .
Verfahren zum Betrieb einer Solaranlage nach Anspruch 1, dadurch gekennzeichnet, dass nach dem Erkennen einer definierten Anzahl von Maxima, deren Anzahl 2 nicht unterschreiten darf, der vordefinierte Sollwert (dSoll) in Abhängigkeit der aktuellen Temperaturdifferenz ΔT und des Hilfsgrößenwerts dIst(t0) zum Zeitpunkt t0 des letzten Pumpenstarts neu berechnet wird.Method for operating a solar system according to claim 1, characterized in that after the detection of a defined number of maxima whose number may not fall below 2, the predefined setpoint (d setpoint ) as a function of the current temperature difference .DELTA.T and the auxiliary variable value d actual (t 0 ) is recalculated at time t 0 of the last pump start. Verfahren zum Betrieb einer Solaranlage nach Anspruch 1, dadurch gekennzeichnet, dass der Sollwert (dSoll) bei der Erstinbetriebnahme durch einen werksseitig vorgegebenen Wert (dStart) vorgegeben wird.Method for operating a solar system according to claim 1, characterized in that the desired value (d setpoint ) during initial commissioning by a factory default value (d start ) is specified.
EP08000802.2A 2007-01-24 2008-01-17 Method for operating a solar thermal array Active EP1950499B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08000802T PL1950499T3 (en) 2007-01-24 2008-01-17 Method for operating a solar thermal array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0012107A AT504772B1 (en) 2007-01-24 2007-01-24 METHOD FOR OPERATING A SOLAR THERMAL SYSTEM

Publications (3)

Publication Number Publication Date
EP1950499A2 true EP1950499A2 (en) 2008-07-30
EP1950499A3 EP1950499A3 (en) 2013-12-04
EP1950499B1 EP1950499B1 (en) 2015-11-04

Family

ID=39387116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08000802.2A Active EP1950499B1 (en) 2007-01-24 2008-01-17 Method for operating a solar thermal array

Country Status (6)

Country Link
EP (1) EP1950499B1 (en)
AT (1) AT504772B1 (en)
DE (1) DE102008004863A1 (en)
ES (1) ES2557911T3 (en)
HU (1) HUE028304T2 (en)
PL (1) PL1950499T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017423A1 (en) 2009-04-15 2010-10-21 Stiebel Eltron Gmbh & Co. Kg Hot water store loading control process for laminar water storage involves driving second circulation pump on basis of parameter dependent on pump operating point
EP2876377A1 (en) * 2013-10-22 2015-05-27 Viessmann Werke GmbH & Co. KG Method for operating a solar plant
EP2199690A3 (en) * 2008-12-09 2016-01-13 Viessmann Werke GmbH & Co. KG Method and device for regulating a thermal solar assembly
EP2375174B1 (en) 2010-04-07 2016-06-08 Wolf GmbH Heat pump assembly and method for controlling same
CN109442555A (en) * 2019-01-04 2019-03-08 山东博日明能源科技有限公司 A kind of dual intensity heat storage warming device and application method for solar energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119159B3 (en) * 2011-11-23 2013-03-28 Robert Bosch Gmbh Method for operating a fluid line device designed as a solar thermal cycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835012A1 (en) 1988-10-14 1990-04-19 Dorfmueller Solaranlagen Gmbh Method for controlling a solar installation, and control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339930A (en) * 1980-07-03 1982-07-20 The United States Of America As Represented By The Secretary Of The Navy Control system for solar-assisted heat pump system
DE9207743U1 (en) * 1992-06-09 1992-11-19 Schreiber, Ditmar, 6535 Gau-Algesheim Control device with power adjustment for solar thermal systems
WO1997034111A1 (en) * 1996-03-13 1997-09-18 Boehringer Volker Modulating solar-power regulator
DE19643530A1 (en) * 1996-10-23 1998-10-29 Esaa Boehringer Gmbh Procedure for controlling thermal store of solar plant
DE19654037C1 (en) * 1996-12-23 1998-07-02 Solar Diamant Systemtechnik Gm Solar energy heat generation system
DE102004039908B3 (en) * 2004-08-18 2005-12-01 Bbt Thermotechnik Gmbh Process for switching on a pump comprises acquiring the actual collector temperature whilst the pump is momentarily operated in the pre-phase at the start of the solar arrangement after a detected rise in collector temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835012A1 (en) 1988-10-14 1990-04-19 Dorfmueller Solaranlagen Gmbh Method for controlling a solar installation, and control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199690A3 (en) * 2008-12-09 2016-01-13 Viessmann Werke GmbH & Co. KG Method and device for regulating a thermal solar assembly
DE102009017423A1 (en) 2009-04-15 2010-10-21 Stiebel Eltron Gmbh & Co. Kg Hot water store loading control process for laminar water storage involves driving second circulation pump on basis of parameter dependent on pump operating point
DE102009017423B4 (en) * 2009-04-15 2020-10-08 Stiebel Eltron Gmbh & Co. Kg Method for charge control of a hot water stratified storage tank with a heat pump
EP2375174B1 (en) 2010-04-07 2016-06-08 Wolf GmbH Heat pump assembly and method for controlling same
EP2876377A1 (en) * 2013-10-22 2015-05-27 Viessmann Werke GmbH & Co. KG Method for operating a solar plant
CN109442555A (en) * 2019-01-04 2019-03-08 山东博日明能源科技有限公司 A kind of dual intensity heat storage warming device and application method for solar energy

Also Published As

Publication number Publication date
PL1950499T3 (en) 2016-04-29
AT504772B1 (en) 2009-04-15
DE102008004863A1 (en) 2008-07-31
HUE028304T2 (en) 2016-12-28
EP1950499A3 (en) 2013-12-04
EP1950499B1 (en) 2015-11-04
ES2557911T3 (en) 2016-01-29
AT504772A3 (en) 2008-12-15
AT504772A2 (en) 2008-08-15

Similar Documents

Publication Publication Date Title
EP1950499B1 (en) Method for operating a solar thermal array
EP2009359B1 (en) Method for operating a solar-thermal facility
WO1991002199A1 (en) Process and device for converting solar energy to heat
DE19747592B4 (en) Method for controlling a heating system
DE2843929A1 (en) ARRANGEMENT FOR CONTROLLING THE ROOM TEMPERATURE
EP1764563B1 (en) Solar regulator and method for regulating a solar collector installation
WO2012110342A2 (en) Method for operating a solar-heated waste heat steam generator, and solar-thermal waste heat steam generator
EP2375174B1 (en) Heat pump assembly and method for controlling same
DE10257431A1 (en) Hot water delivery system with heat pump conducts boiling process in water container by operating heat pump unit and circulation pump, stops pump before all water in container boiled up
DE19604356C2 (en) Method and device for obtaining thermal energy from solar energy
DE102005034296B3 (en) Solar operating process for heater involves detecting solar yield from at least one previous time period to set solar yield to be expected
EP1729071A2 (en) Method for operating a heat generator comprising a solar heating installation
DE4028501C2 (en) Procedure for controlling the heating of rooms
DE3441912A1 (en) Method for automatically defrosting an evaporator, acted upon by air, of a heat pump
DE2846753C2 (en) Method and device for switching a circulation pump in a heating system on and off
DE4006562A1 (en) SOLAR COLLECTOR SYSTEM AND METHOD FOR CONTROLLING SUCH A
DE102005042495A1 (en) Operating plant for simultaneous production of electrical, thermal energy with fuel cell heater involves regulator switching on additional heating device when defined negative temperature gradient exceeded in thermal energy storage device
DE102009017423A1 (en) Hot water store loading control process for laminar water storage involves driving second circulation pump on basis of parameter dependent on pump operating point
DE3004324A1 (en) DEVICE FOR CONTROLLING A HEATING SYSTEM WITH AT LEAST ONE DEVICE FOR RECOVERING HEAT FROM AN ABSORBER
WO1997034111A1 (en) Modulating solar-power regulator
DE10125672A1 (en) Method for making hot water available in a building as service water in a hot water tank uses a fuel/solar heater device triggered by a control switch to heat up service water
DE102008034374A1 (en) Method for controlling charging of heat storage tank of thermal solar plant, involves detecting actual solar power of solar collectors at temporal distances by charging control, where heat storage tank is charged by solar collectors
DE102004042866B4 (en) Drainback solar system
EP2199690B1 (en) Method and device for regulating a thermal solar assembly
CH681483A5 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/10 20060101AFI20131028BHEP

17P Request for examination filed

Effective date: 20140512

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20140813

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 759483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013530

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2557911

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160129

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160304

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013530

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

26N No opposition filed

Effective date: 20160805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E028304

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20211230

Year of fee payment: 15

Ref country code: GB

Payment date: 20211213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20211214

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211230

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20220109

Year of fee payment: 15

Ref country code: AT

Payment date: 20211215

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220104

Year of fee payment: 15

Ref country code: ES

Payment date: 20220201

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 759483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230118

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240129

Year of fee payment: 17

Ref country code: FR

Payment date: 20240126

Year of fee payment: 17