EP1950499A2 - Method for operating a solar thermal array - Google Patents
Method for operating a solar thermal array Download PDFInfo
- Publication number
- EP1950499A2 EP1950499A2 EP08000802A EP08000802A EP1950499A2 EP 1950499 A2 EP1950499 A2 EP 1950499A2 EP 08000802 A EP08000802 A EP 08000802A EP 08000802 A EP08000802 A EP 08000802A EP 1950499 A2 EP1950499 A2 EP 1950499A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- collector
- pump
- value
- delta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000003860 storage Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000002123 temporal effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000012267 brine Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 2
- 101100083446 Danio rerio plekhh1 gene Proteins 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1009—Arrangement or mounting of control or safety devices for water heating systems for central heating
- F24D19/1042—Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy
Definitions
- the invention relates to a method for operating a solar thermal system, in particular in a starting phase.
- a solar thermal system basically consists of solar panels, which capture solar energy and deliver it to a heat transfer medium (water-glycol, water-ethanol), a reservoir and a closed circuit, which transports the heat absorbed in the collector to the storage tank, a regulation that controls the circulation the heat transfer medium, also called brine, controls at corresponding temperature differences from the collector to the memory.
- the brine is heated by the solar radiation in the collector and then fed through the brine circuit to the memory. Subsequently, the solar heat can be used, for example, for hot water preparation, heating support or swimming pool heating.
- the collector type which is relatively widespread in addition to flat-plate collectors, is the vacuum tube collector, in which the absorber surfaces are enclosed in evacuated glass tubes instead of in a housing.
- the advantage here is that the proportion of heat loss through convection is smaller and the tube is optimally adapted to the position of the sun can. The heat is transferred to the coolant, inter alia, by the direct flow of the liquid through the absorber.
- a simple temperature differential controller is sufficient for controlling a small solar system for hot water production.
- the controller uses two temperature sensors to determine when the temperature at the collector outlet is higher than the temperature in the storage tank measured at the height of the solar circuit heat exchanger and then starts the solar circuit circulation pump.
- the solar controllers are set so that a temperature difference of about 5 - 8 K is ensured between the collector and the pump for starting the pump. If this drops to 2 to 3 K, the circulation pump will be shut down by the solar controller.
- this setting of the solar controller problems can occur when starting the system in which the system does not start or shut down too early.
- the pump starts cold liquid enters the collector, which flows through it and leaves it heated again. As a result, the temperature drops rapidly again.
- the invention has for its object to provide a method for a solar thermal system available, with a reliable pump start and operation of the system is made possible in the startup phase.
- FIG. 1 simplified illustrated solar system pumps a pump (3) a heat transfer medium (eg water-glycol, water-ethanol) in a closed circuit between a collector (1) and a memory (2).
- a control (6) controls the circulation of the heat transfer medium at corresponding temperature differences from the collector (1) to the memory (2).
- FIG. 2 shows by way of example a measured temperature profile (b) at the collector sensor (4) after a pump start, in which two measured temperature maxima T max1 and T max2 are shown after mixing a heat transfer medium from the collector T K and the return T R. With (a) the pump speed characteristic is designated.
- a temperature measurement is first carried out by means of a temperature sensor (4) attached to the collector (1) and in the memory (2) by means of a temperature sensor (5) located on the storage bottom.
- the measured values are used to calculate the temperature gradient at the collector sensor (4) and the temperature difference ( ⁇ T) between the collector (1) and storage tank temperature (2).
- the value d actual should only assume positive values.
- the collector temperature (T 1 ) In order for the system to be able to start when the measured collector temperature (T 1 ) is lower than the tank temperature (T 2 ), the collector temperature (T 1 ) must be adjusted. With this approximation, the temperature in the lower temperature range is further given a higher weight.
- the calculated auxiliary variable value d actual is compared with a previously defined setpoint value d setpoint , which is preset in the factory during commissioning as start value d start .
- the later determined target value d set takes into account plant-specific settings during commissioning.
- the pump is put into operation and the calculated auxiliary variable value d actual stored at the time of pump start t 0 .
- the pump runs at least until two temperature maximum values (T max1 , T max2 ) are detected at the collector sensor (4). After the second temperature maximum, the calculation of the temperature difference ( ⁇ T) of the temperatures measured at the collector (1) and in the store (2) takes place.
- the pump continues to run under the condition that the temperature difference .DELTA.T is greater than a predetermined limit .DELTA.T stop , preferably 3 K.
- a control system for a solar system includes a control device for switching on a pump, wherein the control device of temperature sensors, can be controlled.
- the temperature difference between the temperature sensor on the solar collectors and the temperature sensor for the flow temperature is determined. If this temperature difference is greater than a previously entered system-dependent value, the pump is turned on. After a certain period of time, after which a steady flow has settled, the temperature difference between the water flowing back from the collectors and the water leading to the collectors in the supply is determined. Then this temperature difference can either with a fixed temperature value or after Multiplication with the flow rate of the pump can be compared with a previously set power value. If this comparison is negative, the pump is switched off again.
- the starting conditions are regulated by a temperature difference but with the interposition of a waiting time.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Temperature (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zum Betrieb einer solarthermischen Anlage, insbesondere in einer Startphase.The invention relates to a method for operating a solar thermal system, in particular in a starting phase.
Eine solarthermische Anlage besteht grundsätzlich aus Sonnenkollektoren, welche die Sonnenenergie einfangen und an ein Wärmeträgermedium (Wasser-Glykol, Wasser-Ethanol) abgeben, einem Speicher und einem geschlossenen Kreislauf, der die im Kollektor aufgenommene Wärme zum Speicher transportiert, einer Regelung, die die Umwälzung des Wärmeträgermediums, auch Sole genannt, bei entsprechenden Temperaturdifferenzen von dem Kollektor zum Speicher steuert. Die Sole wird durch die Sonnenstrahlung im Kollektor erwärmt und dann über den Solekreislauf dem Speicher zugeführt. Anschließend kann die Sonnenwärme zum Beispiel zur Warmwasserbereitung, Heizungsunterstützung oder Schwimmbaderwärmung genutzt werden.A solar thermal system basically consists of solar panels, which capture solar energy and deliver it to a heat transfer medium (water-glycol, water-ethanol), a reservoir and a closed circuit, which transports the heat absorbed in the collector to the storage tank, a regulation that controls the circulation the heat transfer medium, also called brine, controls at corresponding temperature differences from the collector to the memory. The brine is heated by the solar radiation in the collector and then fed through the brine circuit to the memory. Subsequently, the solar heat can be used, for example, for hot water preparation, heating support or swimming pool heating.
Der neben Flachkollektoren relativ weit verbreitete Kollektortyp ist der Vakuum-Röhrenkollektor, bei dem die Absorberflächen statt in einem Gehäuse in evakuierten Glasröhren eingeschlossen sind. Der Vorteil ist hierbei, dass der Anteil des Wärmeverlustes durch Konvektion kleiner ist und die Röhre dem Sonnenstand optimal angepasst werden können. Die Wärmeabgabe an die Kühlflüssigkeit erfolgt u.a. durch die direkte Durchströmung der Flüssigkeit durch den Absorber.The collector type, which is relatively widespread in addition to flat-plate collectors, is the vacuum tube collector, in which the absorber surfaces are enclosed in evacuated glass tubes instead of in a housing. The advantage here is that the proportion of heat loss through convection is smaller and the tube is optimally adapted to the position of the sun can. The heat is transferred to the coolant, inter alia, by the direct flow of the liquid through the absorber.
Meistens ist ein einfacher Temperaturdifferenzregler für die Regelung einer kleinen Solaranlage zur Warmwasserbereitung ausreichend. Der Regler stellt über zwei Temperaturfühler fest, wann die Temperatur am Kollektoraustritt höher ist als die auf der Höhe des Solarkreis-Wärmetauschers gemessene Temperatur im Speicher und setzt daraufhin die Solarkreis-Umwälzpumpe in Betrieb. Üblicherweise werden die Solarregler so eingestellt, dass eine Temperaturdifferenz von etwa 5 - 8 K zwischen dem Kollektor und dem Speicher für den Pumpenstart gewährleistet ist. Sinkt diese auf 2 bis 3 K ab, wird die Umwälzpumpe durch den Solarregler wieder außer Betrieb genommen. Trotz dieser Einstellung des Solarreglers können Probleme beim Start der Anlage auftreten, in dem die Anlage gar nicht startet oder zu früh abschaltet. So gelangt nach dem Pumpenstart kalte Flüssigkeit in den Kollektor, die diesen durchströmt und erhitzt wieder verlässt. Demzufolge fällt die Temperatur wieder rapide ab. Aufgrund der nun vorliegenden Temperaturdifferenz kann es gemäß dem Stand der Technik zum Abschalten der Pumpe kommen. Läuft die Pumpe weiter, so steigt die Temperatur wieder an, da die heiße Flüssigkeit, welche beim Pumpenstart im Kollektor verweilte, nach dem Durchströmen des Speichers wieder in den Kollektor einströmt. Erst nach einigen Umwälzungen stellt sich ein quasi-stationärer Zustand ein.In most cases, a simple temperature differential controller is sufficient for controlling a small solar system for hot water production. The controller uses two temperature sensors to determine when the temperature at the collector outlet is higher than the temperature in the storage tank measured at the height of the solar circuit heat exchanger and then starts the solar circuit circulation pump. Normally, the solar controllers are set so that a temperature difference of about 5 - 8 K is ensured between the collector and the pump for starting the pump. If this drops to 2 to 3 K, the circulation pump will be shut down by the solar controller. Despite this setting of the solar controller problems can occur when starting the system in which the system does not start or shut down too early. Thus, after the pump starts, cold liquid enters the collector, which flows through it and leaves it heated again. As a result, the temperature drops rapidly again. Due to the present temperature difference may occur according to the prior art for switching off the pump. If the pump continues to run, the temperature rises again because the hot liquid which remained in the collector at the start of the pump flows back into the collector after it has flowed through the reservoir. Only after some upheavals does a quasi-stationary state arise.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren für eine solarthermische Anlage zur Verfügung zu stellen, mit dem ein zuverlässiger Pumpenstart und Betrieb der Anlage in der Startphase ermöglicht wird.The invention has for its object to provide a method for a solar thermal system available, with a reliable pump start and operation of the system is made possible in the startup phase.
Erfindungsgemäß wird dies gemäß den Merkmalen des Anspruchs 1 dadurch erreicht, dass ein Verfahren zum Betrieb einer Solaranlage, insbesondere in einer Startphase, bei der das zur erwärmende Wärmeträgermedium mittels einer Pumpe (3) in einem Kreislauf zwischen einer Speichervorrichtung (2) und mindestens einem Kollektor (1) befördert wird, mit einem Temperatursensor (4) angeordnet am Ausgang des Kollektors (1) in Richtung zum Speicher (2) sowie mit einem Temperatursensor (5) im Speicher (2) mit folgenden Verfahrensschritten zur Verfügung gestellt wird:
- die mittels des Temperatursensors (4) gemessene Temperatur T1 am Kollektor (1) und die mittels des Temperatursensors (5) gemessene Temperatur T2 im Speicher (2) werden erfasst,
- der Temperaturgradient
- die Temperaturdifferenz ΔT zwischen der gemessenen Temperatur T1 am Kollektor (1) und der gemessenen Temperatur T2 im Speicher (2) wird berechnet,
- ein Hilfsgrößenwert dIst für die Pumpe wird in Abhängigkeit von der Temperaturdifferenz ΔT, einer Konstanten und dem Temperaturgradienten
- wenn der berechnete Hilfsgrößenwert dIst größer oder gleich dem vordefinierten Sollwert (dSoll) ist oder die Temperaturdifferenz ΔT einen vorgegebenen Grenzwert ΔTStart überschreitet, wird die Pumpe eingeschaltet und der berechnete Hilfsgrößenwert dIst(t0) zu diesem Zeitpunkt t0 gespeichert,
- die mittels des Temperatursensors (4) gemessene Temperatur T1 am Kollektor (1) wird weiterhin erfasst, wobei durch die Beobachtung des zeitlichen Verlaufs Maxima erkannt werden,
- nach dem Erkennen einer definierten Anzahl von Maxima,
deren Anzahl 2 nicht unterschreiten darf, wird die Pumpe abgeschaltet, wenn die Temperaturdifferenz ΔT kleiner oder gleich einem vorgegebenen Grenzwert ΔTStop ist.
- the temperature T 1 measured at the collector (1) by means of the temperature sensor (4) and the temperature T 2 measured in the memory (2) by means of the temperature sensor (5) are detected,
- the temperature gradient
- the temperature difference ΔT between the measured temperature T 1 at the collector (1) and the measured temperature T 2 in the memory (2) is calculated,
- an auxiliary variable value d is for the pump depending on the temperature difference ΔT, a constant and the temperature gradient
- if the calculated auxiliary variable value d actual is greater than or equal to the predefined setpoint value (d setpoint ) or the temperature difference ΔT exceeds a predefined limit value ΔT start , the pump is switched on and the calculated auxiliary variable value d actual (t 0 ) is stored at this time t 0 ,
- the temperature T 1 measured at the collector (1) by means of the temperature sensor (4) is still detected, whereby maxima are detected by the observation of the time profile,
- after detecting a defined number of maxima whose number may not fall below 2, the pump is turned off when the temperature difference .DELTA.T is less than or equal to a predetermined limit .DELTA.T Stop .
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der abhängigen Ansprüche und der Beschreibung. Die Erfindung wird nun anhand der Figuren näher erläutert. Hierbei zeigen
-
Figur 1 eine schematisch dargestellte Solaranlage, -
einen Temperaturverlauf am Kollektorfühler nach einem Pumpenstart undFigur 2 -
ein Ablaufdiagramm eines möglichen Regelungsvorgangs des Pumpenstarts.Figur 3
-
FIG. 1 a schematically illustrated solar system, -
FIG. 2 a temperature profile at the collector sensor after a pump start and -
FIG. 3 a flow diagram of a possible control process of the pump start.
Bei der in
In
Ein Hilfsgrößenwert dIst für die Pumpe wird mit folgender Formel, bei der C eine Konstante (z.B. 10 K) ist, definiert:
Die Addition der frei gewählten Temperaturkonstante C in der Gleichung 1 hat folgende Bedeutung: der Wert dIst soll nur positive Werte annehmen. Damit die Anlage aber auch starten kann, wenn die gemessene Kollektortemperatur (T1) geringer als die Speichertemperatur (T2) ist, muss die Kollektortemperatur (T1) eine Angleichung bekommen. Mit dieser Angleichung wird weiterhin der Temperatur im unteren Temperaturbereich ein höheres Gewicht verliehen.The addition of the freely chosen temperature constant C in equation 1 has the following meaning: the value d actual should only assume positive values. In order for the system to be able to start when the measured collector temperature (T 1 ) is lower than the tank temperature (T 2 ), the collector temperature (T 1 ) must be adjusted. With this approximation, the temperature in the lower temperature range is further given a higher weight.
Der berechnete Hilfsgrößenwert dIst wird mit einem vorher definierten Soll-Wert dSoll verglichen, der bei der Erstinbetriebnahme werkseitig als Startwert dStart vorgegeben wird. Der später ermittelte Soll-Wert dSoll berücksichtigt anlagenspezifische Einstellungen bei der Inbetriebnahme.The calculated auxiliary variable value d actual is compared with a previously defined setpoint value d setpoint , which is preset in the factory during commissioning as start value d start . The later determined target value d set takes into account plant-specific settings during commissioning.
Wenn dIst >= dSoll ist, wird die Pumpe in Betrieb gesetzt und der berechnete Hilfsgrößenwert dIst zum Zeitpunkt des Pumpenanlaufs t0 gespeichert. Die Pumpe läuft mindestens so lange, bis am Kollektorfühler (4) zwei Temperaturmaxima - Werte (Tmax1, Tmax2) ermittelt werden. Nach dem zweiten Temperaturmaximum erfolgt die Berechnung der Temperaturdifferenz (ΔT) der am Kollektor (1) und im Speicher(2) gemessenen Temperaturen. Eine Anpassung des Soll-Wertes dSoll erfolgt in Abhängigkeit von ΔT vorzugsweise gemäß folgender Tabelle:
Es können auch andere Anpassungsschritte als die in der Tabelle aufgeführten Änderungsschritte Anwendung finden. Eine Änderung des Soll - Wertes findet nicht statt, wenn äußere Einflüsse (z.B. Wasserzapfen oder Strahlungsabfall) auf das System einwirken.You can also use adjustment steps other than the change steps listed in the table. A change in the desired value does not take place when external influences (such as water spills or radiation decay) act on the system.
Anschließend läuft die Pumpe weiter unter der Bedingung, dass die Temperaturdifferenz ΔT größer als einen vorgegebenen Grenzwert ΔTStop, vorzugsweise 3 K, ist.Subsequently, the pump continues to run under the condition that the temperature difference .DELTA.T is greater than a predetermined limit .DELTA.T stop , preferably 3 K.
Sollte der dIst - Wert nicht zu einem Start der Pumpe bzw. der Anlage führen (z.B. wegen Wasserzapfung oder Fehler bei der d-Wert Berechnung) und die Bedingung erfüllt wird, dass ΔT größer als 7 K ist, dann soll die Pumpe auch starten. In diesem Fall findet jedoch keine Adaption des Soll-Wertes dSoll statt.If the d actual value does not lead to a start of the pump or the system (eg due to water tapping or error in the d value calculation) and the condition is satisfied that ΔT is greater than 7 K, then the pump should also start , In this case, however, there is no adaptation of the setpoint value d setpoint .
Aus der
Bei dem erfindungsgemäßen Verfahren ist im Gegensatz zur
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08000802T PL1950499T3 (en) | 2007-01-24 | 2008-01-17 | Method for operating a solar thermal array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0012107A AT504772B1 (en) | 2007-01-24 | 2007-01-24 | METHOD FOR OPERATING A SOLAR THERMAL SYSTEM |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1950499A2 true EP1950499A2 (en) | 2008-07-30 |
EP1950499A3 EP1950499A3 (en) | 2013-12-04 |
EP1950499B1 EP1950499B1 (en) | 2015-11-04 |
Family
ID=39387116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08000802.2A Active EP1950499B1 (en) | 2007-01-24 | 2008-01-17 | Method for operating a solar thermal array |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1950499B1 (en) |
AT (1) | AT504772B1 (en) |
DE (1) | DE102008004863A1 (en) |
ES (1) | ES2557911T3 (en) |
HU (1) | HUE028304T2 (en) |
PL (1) | PL1950499T3 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009017423A1 (en) | 2009-04-15 | 2010-10-21 | Stiebel Eltron Gmbh & Co. Kg | Hot water store loading control process for laminar water storage involves driving second circulation pump on basis of parameter dependent on pump operating point |
EP2876377A1 (en) * | 2013-10-22 | 2015-05-27 | Viessmann Werke GmbH & Co. KG | Method for operating a solar plant |
EP2199690A3 (en) * | 2008-12-09 | 2016-01-13 | Viessmann Werke GmbH & Co. KG | Method and device for regulating a thermal solar assembly |
EP2375174B1 (en) | 2010-04-07 | 2016-06-08 | Wolf GmbH | Heat pump assembly and method for controlling same |
CN109442555A (en) * | 2019-01-04 | 2019-03-08 | 山东博日明能源科技有限公司 | A kind of dual intensity heat storage warming device and application method for solar energy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011119159B3 (en) * | 2011-11-23 | 2013-03-28 | Robert Bosch Gmbh | Method for operating a fluid line device designed as a solar thermal cycle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3835012A1 (en) | 1988-10-14 | 1990-04-19 | Dorfmueller Solaranlagen Gmbh | Method for controlling a solar installation, and control system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4339930A (en) * | 1980-07-03 | 1982-07-20 | The United States Of America As Represented By The Secretary Of The Navy | Control system for solar-assisted heat pump system |
DE9207743U1 (en) * | 1992-06-09 | 1992-11-19 | Schreiber, Ditmar, 6535 Gau-Algesheim | Control device with power adjustment for solar thermal systems |
WO1997034111A1 (en) * | 1996-03-13 | 1997-09-18 | Boehringer Volker | Modulating solar-power regulator |
DE19643530A1 (en) * | 1996-10-23 | 1998-10-29 | Esaa Boehringer Gmbh | Procedure for controlling thermal store of solar plant |
DE19654037C1 (en) * | 1996-12-23 | 1998-07-02 | Solar Diamant Systemtechnik Gm | Solar energy heat generation system |
DE102004039908B3 (en) * | 2004-08-18 | 2005-12-01 | Bbt Thermotechnik Gmbh | Process for switching on a pump comprises acquiring the actual collector temperature whilst the pump is momentarily operated in the pre-phase at the start of the solar arrangement after a detected rise in collector temperature |
-
2007
- 2007-01-24 AT AT0012107A patent/AT504772B1/en not_active IP Right Cessation
-
2008
- 2008-01-17 HU HUE08000802A patent/HUE028304T2/en unknown
- 2008-01-17 EP EP08000802.2A patent/EP1950499B1/en active Active
- 2008-01-17 PL PL08000802T patent/PL1950499T3/en unknown
- 2008-01-17 DE DE102008004863A patent/DE102008004863A1/en not_active Withdrawn
- 2008-01-17 ES ES08000802.2T patent/ES2557911T3/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3835012A1 (en) | 1988-10-14 | 1990-04-19 | Dorfmueller Solaranlagen Gmbh | Method for controlling a solar installation, and control system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2199690A3 (en) * | 2008-12-09 | 2016-01-13 | Viessmann Werke GmbH & Co. KG | Method and device for regulating a thermal solar assembly |
DE102009017423A1 (en) | 2009-04-15 | 2010-10-21 | Stiebel Eltron Gmbh & Co. Kg | Hot water store loading control process for laminar water storage involves driving second circulation pump on basis of parameter dependent on pump operating point |
DE102009017423B4 (en) * | 2009-04-15 | 2020-10-08 | Stiebel Eltron Gmbh & Co. Kg | Method for charge control of a hot water stratified storage tank with a heat pump |
EP2375174B1 (en) | 2010-04-07 | 2016-06-08 | Wolf GmbH | Heat pump assembly and method for controlling same |
EP2876377A1 (en) * | 2013-10-22 | 2015-05-27 | Viessmann Werke GmbH & Co. KG | Method for operating a solar plant |
CN109442555A (en) * | 2019-01-04 | 2019-03-08 | 山东博日明能源科技有限公司 | A kind of dual intensity heat storage warming device and application method for solar energy |
Also Published As
Publication number | Publication date |
---|---|
PL1950499T3 (en) | 2016-04-29 |
AT504772B1 (en) | 2009-04-15 |
DE102008004863A1 (en) | 2008-07-31 |
HUE028304T2 (en) | 2016-12-28 |
EP1950499A3 (en) | 2013-12-04 |
EP1950499B1 (en) | 2015-11-04 |
ES2557911T3 (en) | 2016-01-29 |
AT504772A3 (en) | 2008-12-15 |
AT504772A2 (en) | 2008-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1950499B1 (en) | Method for operating a solar thermal array | |
EP2009359B1 (en) | Method for operating a solar-thermal facility | |
WO1991002199A1 (en) | Process and device for converting solar energy to heat | |
DE19747592B4 (en) | Method for controlling a heating system | |
DE2843929A1 (en) | ARRANGEMENT FOR CONTROLLING THE ROOM TEMPERATURE | |
EP1764563B1 (en) | Solar regulator and method for regulating a solar collector installation | |
WO2012110342A2 (en) | Method for operating a solar-heated waste heat steam generator, and solar-thermal waste heat steam generator | |
EP2375174B1 (en) | Heat pump assembly and method for controlling same | |
DE10257431A1 (en) | Hot water delivery system with heat pump conducts boiling process in water container by operating heat pump unit and circulation pump, stops pump before all water in container boiled up | |
DE19604356C2 (en) | Method and device for obtaining thermal energy from solar energy | |
DE102005034296B3 (en) | Solar operating process for heater involves detecting solar yield from at least one previous time period to set solar yield to be expected | |
EP1729071A2 (en) | Method for operating a heat generator comprising a solar heating installation | |
DE4028501C2 (en) | Procedure for controlling the heating of rooms | |
DE3441912A1 (en) | Method for automatically defrosting an evaporator, acted upon by air, of a heat pump | |
DE2846753C2 (en) | Method and device for switching a circulation pump in a heating system on and off | |
DE4006562A1 (en) | SOLAR COLLECTOR SYSTEM AND METHOD FOR CONTROLLING SUCH A | |
DE102005042495A1 (en) | Operating plant for simultaneous production of electrical, thermal energy with fuel cell heater involves regulator switching on additional heating device when defined negative temperature gradient exceeded in thermal energy storage device | |
DE102009017423A1 (en) | Hot water store loading control process for laminar water storage involves driving second circulation pump on basis of parameter dependent on pump operating point | |
DE3004324A1 (en) | DEVICE FOR CONTROLLING A HEATING SYSTEM WITH AT LEAST ONE DEVICE FOR RECOVERING HEAT FROM AN ABSORBER | |
WO1997034111A1 (en) | Modulating solar-power regulator | |
DE10125672A1 (en) | Method for making hot water available in a building as service water in a hot water tank uses a fuel/solar heater device triggered by a control switch to heat up service water | |
DE102008034374A1 (en) | Method for controlling charging of heat storage tank of thermal solar plant, involves detecting actual solar power of solar collectors at temporal distances by charging control, where heat storage tank is charged by solar collectors | |
DE102004042866B4 (en) | Drainback solar system | |
EP2199690B1 (en) | Method and device for regulating a thermal solar assembly | |
CH681483A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24D 19/10 20060101AFI20131028BHEP |
|
17P | Request for examination filed |
Effective date: 20140512 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ LI |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20140813 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150821 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 759483 Country of ref document: AT Kind code of ref document: T Effective date: 20151115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008013530 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2557911 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160129 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151104 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160304 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160304 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008013530 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160117 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
26N | No opposition filed |
Effective date: 20160805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E028304 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20211230 Year of fee payment: 15 Ref country code: GB Payment date: 20211213 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20211214 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20211230 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20220109 Year of fee payment: 15 Ref country code: AT Payment date: 20211215 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220104 Year of fee payment: 15 Ref country code: ES Payment date: 20220201 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 759483 Country of ref document: AT Kind code of ref document: T Effective date: 20230117 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230117 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230117 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230117 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230118 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231219 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230117 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240129 Year of fee payment: 17 Ref country code: FR Payment date: 20240126 Year of fee payment: 17 |