EP1945116A1 - Spinal prosthesis - Google Patents
Spinal prosthesisInfo
- Publication number
- EP1945116A1 EP1945116A1 EP06796155A EP06796155A EP1945116A1 EP 1945116 A1 EP1945116 A1 EP 1945116A1 EP 06796155 A EP06796155 A EP 06796155A EP 06796155 A EP06796155 A EP 06796155A EP 1945116 A1 EP1945116 A1 EP 1945116A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spinal
- attachment member
- connector element
- prosthesis according
- interface portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 description 6
- 230000004927 fusion Effects 0.000 description 5
- 239000007943 implant Substances 0.000 description 3
- 208000008035 Back Pain Diseases 0.000 description 2
- 206010033425 Pain in extremity Diseases 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000002684 laminectomy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 206010041591 Spinal osteoarthritis Diseases 0.000 description 1
- 208000007103 Spondylolisthesis Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- -1 but not limited to Substances 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 208000005198 spinal stenosis Diseases 0.000 description 1
- 208000005801 spondylosis Diseases 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7043—Screws or hooks combined with longitudinal elements which do not contact vertebrae with a longitudinal element fixed to one or more transverse elements which connect multiple screws or hooks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7023—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a pivot joint
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7025—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a sliding joint
Definitions
- the present invention is generally related to apparatus and methods for spinal prostheses.
- the present invention seeks to provide a novel spinal prosthesis, as is described more in detail hereinbelow.
- the prostheses disclosed herein are particularly advantageous for the posterior portion of the spine, but the invention is not limited to the posterior portion of the spine.
- a spinal prosthesis including a first spinal attachment member attachable to a first posterior portion of a spinal structure, a second spinal attachment member attachable to a second posterior portion of the spinal structure, the first and second posterior portions being adjacent superiorly-inferiorly to one another, and a connector element attached to the first spinal attachment member, wherein the second spinal attachment member includes an interface portion that passes through an elongate aperture formed in the connector element so as to permit rotational and translational movement of the second spinal attachment member with respect to the connector element.
- the spinal prosthesis can include one or more of the following features.
- the interface portion may pass through the elongate aperture so as to permit rotational movement of the second spinal attachment member with respect to the connector element about at least two different rotational axes (which may be mutually orthogonal).
- the first spinal attachment member may be rotatably received in a bore formed in the connector element.
- the elongate aperture may define limits of movement of the second spinal attachment member with respect to the connector element.
- the elongate aperture may be elongate along a first axis and have end faces that face in opposite directions along a second axis, and the interface portion may have abutments spaced from the end faces of the elongate aperture, wherein the abutments define limits of movement of the interface portion.
- the end faces and the abutments may have curved contours that mate with each other. For example, the end faces may have concave contours and the abutments may have convex contours.
- the connector element and the interface portion may have different hardness.
- the first and second spinal attachment members may include elongate members with pedicle screws near ends thereof.
- the elongate members of the first spinal attachment member are not collinear with the connector element and extend away from the connector element at an angle different than that of the elongate members of the second spinal attachment member extending from the connector element.
- FIGs. IA and IB are simplified pictorial illustrations of a spinal prosthesis, constructed in accordance with an embodiment of the present invention, in two different rotational orientations about a first rotational axis;
- Fig. 2 is a pictorial illustration of the spinal prosthesis of Figs. IA and IB, showing rotational movement about a second rotational axis;
- Figs. 3A and 3B are simplified front and partially sectional side view illustrations, respectively, of a spinal prosthesis, constructed and operative in accordance with another embodiment of the present invention.
- FIG. IA illustrates a spinal prosthesis 10, constructed and operative in accordance with an embodiment of the present invention.
- Spinal prosthesis 10 may include a first spinal attachment member 12 attachable to a first posterior portion 14 (Fig. 2) of a spinal structure (e.g., the pedicles of the L4 vertebra, shown simplistically in broken lines).
- Spinal prosthesis 10 may further include second spinal attachment member 16 attachable to a second posterior portion 18 (Fig. 2) of the spinal structure (e.g., the pedicles of the L5 vertebra, shown simplistically in broken lines).
- the first and second posterior portions 14 and 18 may be adjacent superiorly-inferiorly to one another (as in the example given above, L4 and L5).
- first and second spinal attachment members 12 and 16 may serve as cephalad and caudal attachment members, respectively.
- first and second spinal attachment members 12 and 16 include elongate members (e.g., rods of any cross-sectional shape, such as circular or prismatic) that can be connected to the spinal structure with pedicle screws 19 (e.g., with polyaxial heads).
- pedicle screws 19 e.g., with polyaxial heads.
- a laminectomy including the removal of the spinous process between the adjacent vertebrae may be performed prior to attachment of the pedicle screws 19 to adjacent vertebrae such as, for example, L4 and L5 of the lumbar vertebrae.
- a connector element 20 may be provided for assembling with the first and second spinal attachment members 12 and 16, respectively.
- Connector element 20 may be formed with a bore 22 into which first spinal attachment member 12 may be fixedly attached.
- Second spinal attachment member 16 may include an interface portion 24 that passes through an elongate aperture 26 formed in connector element 20. Second spinal attachment member 16 can rotate and translate with respect to connector element 20, as will be explained hereinbelow. The interface portion 24 may be rotatingly assembled on second spinal attachment member 16, and thus may act as a roller bearing.
- the elongate aperture 26 may be elongate along a first axis 28 and may have end faces 30 that face in opposite directions along a second axis 32, which may be orthogonal to axis 28.
- Interface portion 24 may have abutments 34 spaced from the end faces 30 of elongate aperture 26.
- End faces 30 and abutments 34 may have curved contours that mate with each other.
- end faces 30 may have concave contours (as seen best in Figs. IA and IB) and abutments 34 may have convex contours (as seen best in Fig. 2).
- First and second spinal attachment members 12 and 16 and connecting element 20 may be fashioned from any suitable medically safe material, such as but not limited to, cobalt chrome, stainless steel, or titanium.
- Interface portion 24 may be made of these materials, or alternatively may be made of an elastomeric material, such as polyurethane or natural or synthetic rubber. Thus, connector element 20 and interface portion 24 may have different hardness.
- the elongate members of the first spinal attachment member 12 are not collinear with connector element 20 and extend away from connector element 20 at an angle different than that of the elongate members of the second spinal attachment member 16 extending from connector element 20.
- Fig. IA illustrates spinal prosthesis 10 in an orientation wherein interface portion 24 is at the bottom ("bottom” in the sense of the drawing) of elongate aperture 26 along a reference axis 40. Due to the elongate shape of aperture 26, interface portion 24 and connector element 20 are free to move relative to one another so that interface portion 24 is situated at the top ("top” in the sense of the drawing) of elongate aperture 26, as seen in Fig. IB.
- rotational movement through angle ⁇
- the elongate aperture 26 defines the limits of rotational movement about rotational axis 42.
- abutments 34 are preferably not tightly received in end faces 30 but rather permit side-to-side motion (in the sense of Fig. 2), as indicated by arrows 43, such as from axis 28 to another reference axis 44.
- the abutments 34 define the limits of the translational movement.
- additional rotational movement of second spinal attachment member 16 with respect to connector element 20 is possible about a second rotational axis 46 (through angle ⁇ ), which may be orthogonal to rotational axis 42.
- Figs. 3A and 3B illustrate a spinal prosthesis 50, constructed and operative in accordance with another embodiment of the present invention. Similar to spinal prosthesis 10, spinal prosthesis 50 may include a first spinal attachment member 52 attachable to a first posterior portion of a spinal structure (e.g., the pedicles of the L4 vertebra, not shown in Figs. 3A and 3B, but as shown in Fig.
- first and second spinal attachment members 52 and 54 may serve as cephalad and caudal attachment members, respectively.
- the second spinal attachment member 54 may have a bent configuration as shown in Fig. 3A.
- a connector element 56 may be provided for assembling with the first and second spinal attachment members 52 and 54, respectively.
- Connector element 56 may be formed with a bore 58 through which first spinal attachment member 52 passes.
- First spinal attachment member 52 can rotate about the center of bore 58.
- Second spinal attachment member 54 may include an interface portion 60 that passes through an elongate aperture 62 formed in connector element 56.
- Second spinal attachment member 54 can rotate and translate, resulting in relative freedom of movement in all directions, with respect to connector element 56, as explained similarly hereinabove for the embodiments of Figs. IA and IB.
- the interface portion 60 may be rotatingly assembled on second spinal attachment member 54, and thus may act as a roller bearing.
- connector element 56 may serve as a single central articulating element positioned at a central portion of first and second spinal attachment members 52 and 54.
- Spinal prosthesis 10 or 50 may be constructed of several parts assembled prior to or during the surgical procedure, or may be a unitary implant consisting of all elements mentioned above.
- An advantage of a unitary implant is that it enables a relatively rapid procedure and does not require accurate adjustments in the operating room, which is most advantageous for the implant recipient.
- a typical procedure may consist of a posterior incision into the area adjacent to the affected vertebrae, a laminectomy, insertion of pedicle screws (or even reuse of pedicle screws from another procedure such as fusion) and the implantation of spinal prosthesis 10 or 50 by the pedicle screws to pedicles or other available bone structure.
- the freedom of movement of second spinal attachment member 16 or 54 with respect to connector element 20 or 56 may simplify the implantation procedure, and may also enable a predetermined range of movement of the two adjacent vertebrae in relationship to each other, in contrast to spinal fusion, for example.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72487605P | 2005-10-11 | 2005-10-11 | |
US75429605P | 2005-12-29 | 2005-12-29 | |
US11/349,956 US7604652B2 (en) | 2005-10-11 | 2006-02-09 | Spinal prosthesis |
PCT/IL2006/001164 WO2007043044A1 (en) | 2005-10-11 | 2006-10-05 | Spinal prosthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1945116A1 true EP1945116A1 (en) | 2008-07-23 |
EP1945116B1 EP1945116B1 (en) | 2016-11-30 |
Family
ID=37654914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06796155.7A Active EP1945116B1 (en) | 2005-10-11 | 2006-10-05 | Spinal prosthesis |
Country Status (5)
Country | Link |
---|---|
US (1) | US7604652B2 (en) |
EP (1) | EP1945116B1 (en) |
CA (1) | CA2625308A1 (en) |
ES (1) | ES2616979T3 (en) |
WO (1) | WO2007043044A1 (en) |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6068630A (en) | 1997-01-02 | 2000-05-30 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US7959652B2 (en) | 2005-04-18 | 2011-06-14 | Kyphon Sarl | Interspinous process implant having deployable wings and method of implantation |
US20080039859A1 (en) * | 1997-01-02 | 2008-02-14 | Zucherman James F | Spine distraction implant and method |
US20080086212A1 (en) | 1997-01-02 | 2008-04-10 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US8048117B2 (en) | 2003-05-22 | 2011-11-01 | Kyphon Sarl | Interspinous process implant and method of implantation |
US8070778B2 (en) | 2003-05-22 | 2011-12-06 | Kyphon Sarl | Interspinous process implant with slide-in distraction piece and method of implantation |
US7931674B2 (en) | 2005-03-21 | 2011-04-26 | Kyphon Sarl | Interspinous process implant having deployable wing and method of implantation |
US7549999B2 (en) | 2003-05-22 | 2009-06-23 | Kyphon Sarl | Interspinous process distraction implant and method of implantation |
US8147548B2 (en) | 2005-03-21 | 2012-04-03 | Kyphon Sarl | Interspinous process implant having a thread-shaped wing and method of implantation |
US7909853B2 (en) | 2004-09-23 | 2011-03-22 | Kyphon Sarl | Interspinous process implant including a binder and method of implantation |
US8221463B2 (en) | 2002-10-29 | 2012-07-17 | Kyphon Sarl | Interspinous process implants and methods of use |
US8926700B2 (en) | 2003-12-10 | 2015-01-06 | Gmedelware 2 LLC | Spinal facet joint implant |
US8333789B2 (en) | 2007-01-10 | 2012-12-18 | Gmedelaware 2 Llc | Facet joint replacement |
US8562649B2 (en) | 2004-02-17 | 2013-10-22 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US7507242B2 (en) | 2004-06-02 | 2009-03-24 | Facet Solutions | Surgical measurement and resection framework |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US7998174B2 (en) | 2005-02-17 | 2011-08-16 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7993342B2 (en) * | 2005-02-17 | 2011-08-09 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8057513B2 (en) | 2005-02-17 | 2011-11-15 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8157841B2 (en) | 2005-02-17 | 2012-04-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8034080B2 (en) | 2005-02-17 | 2011-10-11 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8038698B2 (en) | 2005-02-17 | 2011-10-18 | Kphon Sarl | Percutaneous spinal implants and methods |
US8096994B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8007521B2 (en) | 2005-02-17 | 2011-08-30 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8100943B2 (en) | 2005-02-17 | 2012-01-24 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7927354B2 (en) | 2005-02-17 | 2011-04-19 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7988709B2 (en) | 2005-02-17 | 2011-08-02 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8097018B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8029549B2 (en) * | 2005-02-17 | 2011-10-04 | Kyphon Sarl | Percutaneous spinal implants and methods |
US20070276493A1 (en) | 2005-02-17 | 2007-11-29 | Malandain Hugues F | Percutaneous spinal implants and methods |
US8096995B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8029567B2 (en) | 2005-02-17 | 2011-10-04 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8066742B2 (en) | 2005-03-31 | 2011-11-29 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US8034079B2 (en) | 2005-04-12 | 2011-10-11 | Warsaw Orthopedic, Inc. | Implants and methods for posterior dynamic stabilization of a spinal motion segment |
US7727233B2 (en) | 2005-04-29 | 2010-06-01 | Warsaw Orthopedic, Inc. | Spinous process stabilization devices and methods |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
EP2384711B1 (en) * | 2005-09-27 | 2014-02-26 | Paradigm Spine, LLC. | Interspinous vertebral stabilization devices |
US8083795B2 (en) | 2006-01-18 | 2011-12-27 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of manufacturing same |
US8262698B2 (en) | 2006-03-16 | 2012-09-11 | Warsaw Orthopedic, Inc. | Expandable device for insertion between anatomical structures and a procedure utilizing same |
US8118844B2 (en) | 2006-04-24 | 2012-02-21 | Warsaw Orthopedic, Inc. | Expandable device for insertion between anatomical structures and a procedure utilizing same |
US8105357B2 (en) | 2006-04-28 | 2012-01-31 | Warsaw Orthopedic, Inc. | Interspinous process brace |
US8048118B2 (en) | 2006-04-28 | 2011-11-01 | Warsaw Orthopedic, Inc. | Adjustable interspinous process brace |
US20070270823A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-chamber expandable interspinous process brace |
US8252031B2 (en) | 2006-04-28 | 2012-08-28 | Warsaw Orthopedic, Inc. | Molding device for an expandable interspinous process implant |
US8048119B2 (en) | 2006-07-20 | 2011-11-01 | Warsaw Orthopedic, Inc. | Apparatus for insertion between anatomical structures and a procedure utilizing same |
US20080086115A1 (en) | 2006-09-07 | 2008-04-10 | Warsaw Orthopedic, Inc. | Intercostal spacer device and method for use in correcting a spinal deformity |
US8097019B2 (en) | 2006-10-24 | 2012-01-17 | Kyphon Sarl | Systems and methods for in situ assembly of an interspinous process distraction implant |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
FR2908035B1 (en) | 2006-11-08 | 2009-05-01 | Jean Taylor | INTEREPINE IMPLANT |
US8740941B2 (en) * | 2006-11-10 | 2014-06-03 | Lanx, Inc. | Pedicle based spinal stabilization with adjacent vertebral body support |
US20080114358A1 (en) * | 2006-11-13 | 2008-05-15 | Warsaw Orthopedic, Inc. | Intervertebral Prosthetic Assembly for Spinal Stabilization and Method of Implanting Same |
US7879104B2 (en) | 2006-11-15 | 2011-02-01 | Warsaw Orthopedic, Inc. | Spinal implant system |
US7955392B2 (en) | 2006-12-14 | 2011-06-07 | Warsaw Orthopedic, Inc. | Interspinous process devices and methods |
US8840646B2 (en) * | 2007-05-10 | 2014-09-23 | Warsaw Orthopedic, Inc. | Spinous process implants and methods |
US20080294199A1 (en) * | 2007-05-25 | 2008-11-27 | Andrew Kohm | Spinous process implants and methods of using the same |
US8105358B2 (en) | 2008-02-04 | 2012-01-31 | Kyphon Sarl | Medical implants and methods |
US8114136B2 (en) | 2008-03-18 | 2012-02-14 | Warsaw Orthopedic, Inc. | Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment |
US8177811B2 (en) * | 2008-07-25 | 2012-05-15 | Clariance | Joint prosthesis for total lumbar arthroplasty by posterior approach |
US8114131B2 (en) | 2008-11-05 | 2012-02-14 | Kyphon Sarl | Extension limiting devices and methods of use for the spine |
US8372117B2 (en) | 2009-06-05 | 2013-02-12 | Kyphon Sarl | Multi-level interspinous implants and methods of use |
US8157842B2 (en) | 2009-06-12 | 2012-04-17 | Kyphon Sarl | Interspinous implant and methods of use |
US9901455B2 (en) | 2009-11-25 | 2018-02-27 | Nathan C. Moskowitz | Total artificial spino-laminar prosthetic replacement |
US8317831B2 (en) | 2010-01-13 | 2012-11-27 | Kyphon Sarl | Interspinous process spacer diagnostic balloon catheter and methods of use |
US8114132B2 (en) | 2010-01-13 | 2012-02-14 | Kyphon Sarl | Dynamic interspinous process device |
US8147526B2 (en) | 2010-02-26 | 2012-04-03 | Kyphon Sarl | Interspinous process spacer diagnostic parallel balloon catheter and methods of use |
US8814908B2 (en) | 2010-07-26 | 2014-08-26 | Warsaw Orthopedic, Inc. | Injectable flexible interspinous process device system |
US8562650B2 (en) | 2011-03-01 | 2013-10-22 | Warsaw Orthopedic, Inc. | Percutaneous spinous process fusion plate assembly and method |
US8591548B2 (en) | 2011-03-31 | 2013-11-26 | Warsaw Orthopedic, Inc. | Spinous process fusion plate assembly |
US8591549B2 (en) | 2011-04-08 | 2013-11-26 | Warsaw Orthopedic, Inc. | Variable durometer lumbar-sacral implant |
WO2013177314A1 (en) * | 2012-05-22 | 2013-11-28 | The Regents Of The University Of California | A method and device for restabilization with axial rotation of the atlantoaxial junction |
US9232966B2 (en) * | 2012-09-24 | 2016-01-12 | Refai Technologies, Llc | Articulating spinal rod system |
US9936982B2 (en) | 2012-11-26 | 2018-04-10 | Spinefrontier, Inc | System and method for translateral linking of bilateral spinal fixation rods |
US9717541B2 (en) | 2015-04-13 | 2017-08-01 | DePuy Synthes Products, Inc. | Lamina implants and methods for spinal decompression |
WO2017125837A2 (en) * | 2016-01-18 | 2017-07-27 | Premia Spine Ltd. | Fusion rod insertion in percutaneous fusion surgery |
US10265103B2 (en) | 2016-08-18 | 2019-04-23 | Premia Spine Ltd. | Spinal prosthesis with adjustable support element |
WO2019003048A1 (en) * | 2017-06-25 | 2019-01-03 | Premia Spine Ltd. | Multi-level vertebral implant system |
US11076891B2 (en) | 2019-06-23 | 2021-08-03 | Premia Spine Ltd. | Bi-directional motion spinal implant |
EP3979932B1 (en) * | 2019-06-23 | 2024-04-17 | Premia Spine Ltd. | Bi-directional motion spinal implant |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH633174A5 (en) | 1978-06-28 | 1982-11-30 | Synthes Ag | Fixator for fixing bone or bone fragments, especially vertebrae |
US4836196A (en) | 1988-01-11 | 1989-06-06 | Acromed Corporation | Surgically implantable spinal correction system |
CH674709A5 (en) | 1988-04-27 | 1990-07-13 | Sulzer Ag | |
FR2712481B1 (en) * | 1993-11-18 | 1996-01-12 | Graf Henry | Improvements to flexible inter-vertebral stabilizers. |
EP1364621B1 (en) | 1997-02-26 | 2004-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Device for positioning and fixing bone and/or bone fragments |
EP1743585B1 (en) * | 1999-03-30 | 2007-12-05 | Howmedica Osteonics Corp. | Apparatus for spinal stabilization |
ATE336952T1 (en) * | 1999-12-01 | 2006-09-15 | Henry Graf | DEVICE FOR INTERVERBEL STABILIZATION |
US7294129B2 (en) * | 2005-02-18 | 2007-11-13 | Ebi, L.P. | Spinal fixation device and associated method |
JP2008534063A (en) * | 2005-03-22 | 2008-08-28 | アーカス・オーソペディクス・インコーポレーテッド | Minimally invasive spinal recovery system, apparatus, method and kit |
WO2006102268A2 (en) * | 2005-03-24 | 2006-09-28 | Accelerated Innovation, Llc | Method and apparatus for bone stabilization |
-
2006
- 2006-02-09 US US11/349,956 patent/US7604652B2/en active Active
- 2006-10-05 CA CA002625308A patent/CA2625308A1/en not_active Abandoned
- 2006-10-05 EP EP06796155.7A patent/EP1945116B1/en active Active
- 2006-10-05 ES ES06796155.7T patent/ES2616979T3/en active Active
- 2006-10-05 WO PCT/IL2006/001164 patent/WO2007043044A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2007043044A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20070093816A1 (en) | 2007-04-26 |
ES2616979T3 (en) | 2017-06-15 |
CA2625308A1 (en) | 2007-04-19 |
US7604652B2 (en) | 2009-10-20 |
EP1945116B1 (en) | 2016-11-30 |
WO2007043044A1 (en) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7604652B2 (en) | Spinal prosthesis | |
CA2803178C (en) | Spinal stabilization system | |
US7351261B2 (en) | Multi-joint implant | |
AU2005206822B2 (en) | Pedicle screw constructs for spine fixation systems | |
US7491238B2 (en) | Adjustable spinal prosthesis | |
US8298267B2 (en) | Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method | |
US20070198091A1 (en) | Facet joint prosthesis | |
US20070233068A1 (en) | Intervertebral prosthetic assembly for spinal stabilization and method of implanting same | |
KR20070029645A (en) | Polyaxial adjustment of facet joint prostheses | |
EP1933736B1 (en) | Flexure limiter for spinal prosthesis | |
EP3015084B1 (en) | Spinal fixation member | |
US20110218571A1 (en) | Articulated intervertebral surgical implant to encourage certain intervertebral movements | |
EP2881054B1 (en) | Spinal stabilization system including shaped spinal rod | |
US20070162004A1 (en) | Device for the lateral stabilization of the spine | |
US7947063B2 (en) | Posterior-medial facet support assembly | |
EP3787535A1 (en) | Polyaxial lateral offset connector | |
AU2015203073B2 (en) | Spinal stabilization system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080508 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PREMIA SPINE LTD. |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140910 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160504 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 849072 Country of ref document: AT Kind code of ref document: T Effective date: 20161215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006051086 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602006051086 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DR. ALEXANDER MILLER, LL.M. RECHTSANWALT (D), CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170330 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2616979 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006051086 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
26N | No opposition filed |
Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171005 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 849072 Country of ref document: AT Kind code of ref document: T Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20061005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170330 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231028 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231102 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231004 Year of fee payment: 18 Ref country code: SE Payment date: 20231010 Year of fee payment: 18 Ref country code: IT Payment date: 20231030 Year of fee payment: 18 Ref country code: FR Payment date: 20231024 Year of fee payment: 18 Ref country code: DE Payment date: 20231024 Year of fee payment: 18 Ref country code: CH Payment date: 20231102 Year of fee payment: 18 Ref country code: AT Payment date: 20231030 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231017 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240902 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240902 Year of fee payment: 19 |