EP1942175A1 - Additive Composition - Google Patents

Additive Composition Download PDF

Info

Publication number
EP1942175A1
EP1942175A1 EP07119920A EP07119920A EP1942175A1 EP 1942175 A1 EP1942175 A1 EP 1942175A1 EP 07119920 A EP07119920 A EP 07119920A EP 07119920 A EP07119920 A EP 07119920A EP 1942175 A1 EP1942175 A1 EP 1942175A1
Authority
EP
European Patent Office
Prior art keywords
acid
conductivity
fuel oil
reaction
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07119920A
Other languages
German (de)
French (fr)
Other versions
EP1942175B1 (en
Inventor
Dr. Angela Priscilla Breakspear
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP20070119920 priority Critical patent/EP1942175B1/en
Publication of EP1942175A1 publication Critical patent/EP1942175A1/en
Application granted granted Critical
Publication of EP1942175B1 publication Critical patent/EP1942175B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/189Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups

Definitions

  • This invention relates to additive compositions, and to their use to improve the characteristics of fuel oils, especially middle distillate fuels such as diesel fuels, kerosene and jet fuel.
  • a fuel oil composition with a sulphur level below 0.05% by weight is referred to herein as a low-sulphur fuel.
  • Such low-sulphur fuels may contain an additive to enhance their lubricity.
  • additives are of several types.
  • WO 94/17160 there is disclosed a low sulphur fuel comprising a carboxylic acid ester to enhance lubricity, more especially an ester in which the acid moiety contains from 2 to 50 carbon atoms and the alcohol moiety contains one or more carbon atoms.
  • a mixture of a dimer acid, for example, the dimer of linoleic acid, and a partially esterified polyhydric alcohol is described for the same purpose.
  • U.S. Patent No. 3287273 the use of an optionally hydrogenated dimer acid glycol ester is described.
  • lubricity enhancers or anti-wear agents as they are also termed, include a sulphurized dioleyl norbornene ester (EP-A-99595 ), castor oil ( U.S. Patent No. 4375360 and EP-A-605857 ) and, in methanol-containing fuels, a variety of alcohols and acids having from 6 to 30 carbon atoms, acid and alcohol ethoxylates, mono- and di-esters, polyol esters, and olefin-carboxylic acid copolymers and vinyl alcohol polymers (also U.S. Patent No. 4375360 ).
  • EP-A-99595 sulphurized dioleyl norbornene ester
  • castor oil U.S. Patent No. 4375360 and EP-A-605857
  • methanol-containing fuels a variety of alcohols and acids having from 6 to 30 carbon atoms, acid and alcohol ethoxylates, mono- and di-esters, polyol esters, and
  • EP 0 798 364 A1 describes the use of a salt formed by the reaction between a carboxylic acid and an aliphatic amine to improve inter alia, the lubricity of a diesel fuel.
  • the amines used have hydrocarbyl groups of between 2 and 50 carbon atoms, preferably between 8 and 20 carbon atoms, with amines such as oleyl amine being exemplified.
  • US 6,277,158 describes a concentrate containing n-butlyamine oleate as a friction modifier for addition to motor gasoline.
  • US2002/0095858 relates to fuel oil compositions containing an additive formed by the reaction of a mono- or dicarboxylic acid of 6 to 50 carbon atoms with an amine having at least one branched alkyl substituent. These additives are shown to be effective lubricity enhancers for the fuel.
  • a suitable additive may be formed by the reaction of N, N-dibutylamine with an acid mixture consisting of 70% fatty acids and 30% resin-based acids.
  • a further consequence of refining processes employed to reduce diesel fuel sulphur and aromatic contents is a reduction in the electrical conductivity of the fuel.
  • the insulating properties of low sulphur fuels represent a potential hazard to refiners, distributors and customers due to the potential for static charge accumulation and discharge.
  • Static charges can occur during pumping and especially filtration of the fuel, the release of this charge accumulation as a spark constituting a significant risk in highly flammable environments.
  • Such risks are minimised during fuel processing and handling through appropriate earthing of fuel lines and tanks combined with the use of anti-static additives.
  • These anti-static additives do not prevent the accumulation of static charges but enhance their release to the earthed fuel lines and vessels thereby controlling the risk of sparking. A number of such additives are in common usage and are available commercially.
  • EP 1 328 609 describes combinations of either a hydrocarbyl monoamine or an N-hydrocarbyl-substituted poly(alkyleneamine) with either a fatty acid containing 8 to 24 carbon atoms or an ester thereof with an alcohol or polyol of up to 8 carbon atoms.
  • the present invention is based on the observation of a negative interaction between certain lubricity improving additives and certain conductivity improving additives, and the discovery of combinations of species where this negative interaction is minimised.
  • the present invention provides an additive composition comprising a lubricity enhancer and a conductivity-improving additive; wherein the lubricity enhancer comprises a salt formed by the reaction of a carboxylic acid with di-n-butylamine; and wherein the conductivity improving additive comprises the combination of:
  • the combination of the lubricity enhancer and the conductivity-improving additive according to the present invention is able to provide both good lubricity and good conductivity to a fuel oil composition. This is in contrast to combinations of the lubricity enhancer with other conductivity-improving additives where a significant loss in conductivity performance has been observed.
  • the use of the term 'salt' to describe the product formed by the reaction of the carboxylic acid and the amine should not be taken to mean that the reaction necessarily forms a pure salt. It is presently believed that the reaction does form a salt and thus that the reaction product contains such as salt however, due to the complexity of the reaction, it is likely that other species will also be present.
  • the term 'salt' should thus be taken to include not only the pure salt species, but also the mixture of species formed during the reaction of the carboxylic acid and the amine.
  • each R' is independently a hydrocarbon group of between 2 and 45 carbon atoms, and x is an integer between 1 and 4, are suitable.
  • R' is a hydrocarbon group of 8 to 24 carbon atoms, more preferably, 12 to 20 carbon atoms.
  • x is 1 or 2, more preferably, x is 1.
  • y is 1, in which case the acid has a single R' group.
  • the acid may be a dimer, trimer or higher oligomer acid, in which case y will be greater than 1 for example 2, 3 or 4 or more.
  • R' is suitably an alkyl or alkenyl group which may be linear or branched.
  • carboxylic acids which may be used in the present invention include: lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, neodecanoic acid, arachic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melissic acid, caproleic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, coconut oil fatty acid, soy bean fatty acid, tall oil fatty acid, sunflower oil fatty acid, fish oil fatty acid, rapeseed oil fatty acid, tallow oil fatty acid and palm oil fatty acid.
  • the carboxylic acid comprises tall oil fatty acid (TOFA). It has been found that TOFA with a saturate content of less than 5% by weight is especially suitable. As is known in the art, TOFA contains small but variable amounts of rosin acids and isomers thereof. Preferably, TOFA with an abietic acid content of less than 5% by weight, for example, less than 2% by weight, is used.
  • TOFA tall oil fatty acid
  • the carboxylic acid comprises rapeseed oil fatty acid.
  • the carboxylic acid comprises soy bean fatty acid.
  • the carboxylic acid comprises sunflower oil fatty acid.
  • aromatic carboxylic acids and their alkyl derivatives as well as aromatic hydroxy acids and their alkyl derivatives.
  • Illustrative examples include benzoic acid, salicylic acid and acids derived from such species.
  • the carboxylic acid has an iodine value of at least 80g/100g, more preferably at least 100 g/100g, for example, at least 130 g/100g or at least 150 g/100g.
  • the salt may conveniently be produced by mixing the carboxylic acid with the amine.
  • the order in which one component is added to the other is not important.
  • the molar ratio of the amount of acid to the amount of amine is suitably from 10:1 to 1:10, preferably from 10:1 to 1:2, more preferably from 2:1 to 1:2, for example, around 1:l. In an embodiment, a molar ratio of 1.1:1 to 1:1.1 has been found to be suitable.
  • the reaction may be conducted at room temperature, but is preferably heated gently, for example to 40°C.
  • Component (a) is a condensate species derived from an alkyl ester of p-hydroxybenzoic acid.
  • H ydroxy B enzoate- F ormaldehyde C ondensates are the subject of the present Applicant's co-pending application EP 1 640 438 A and are referred to herein as HBFC.
  • the at least one ester of p-hydroxybenzoic acid comprises; (i) a straight or branched chain C 1 - C 7 alkyl ester of p-hydroxybenzoic acid; (ii) a branched chain C 8 - C 16 alkyl ester of p-hydroxybenzoic acid, or; (iii) a mixture of long chain C 8 - C 18 alkyl esters of p-hydroxybenzoic acid, at least one of said alkyls being branched.
  • the alkyl in (i) is ethyl or n-butyl.
  • the branched alkyl group in (ii) is 2-ethylhexyl or isodecyl.
  • the molar ratio of the branched ester to the other ester is in the range of 5:1 to 1:5.
  • Condensates of mixed esters may be used, for example mixed ester condensates of n-octyl and 2-ethylhexyl esters of p-hydroxybenzoic acid may be prepared.
  • the ratio of the esters in the mixed condensates may be varied as required.
  • a mixed ester condensate where the molar ratio of 2-ethylhexyl ester to n-octyl ester is 3:1 has been found to be useful.
  • Mixed ester condensates of more than two ester monomers may also be prepared.
  • the number average molecular weight of the polymeric condensation products is suitably in the range of 500 to 5000, preferably 1000 to 3000, more preferably 1000 to 2000 Mn.
  • comonomers may be added to the reaction mixture of aldehyde and alkyl ester or mixture of alkyl esters.
  • the comonomers are aromatic compounds that are sufficiently reactive to take part in the condensation reaction.
  • alkylated, arylated and acylated benzenes such as toluene, xylene, mesitylene, biphenyls and acetophenone.
  • Other comonomers include hydroxy aromatic compounds such as p-hydroxybenzoic acid, acid derivatives of p-hydroxyaromatic acids such as amides and salts, other hydroxyaromatic acids, alkylphenols, naphthols, phenylphenols, acetamidophenols, alkoxyphenols and o-alkylated, o-arylated and o-acylated phenols.
  • the hydroxy compounds should be either di- or mono- functional with regard to the condensation reaction.
  • hydroxy compounds that are di-functional should be substituted in the para- position whilst those that are mono-functional can be substituted in any position, e.g. 2,4-di-t-butylphenol - these will only incorporate at the end of a polymer chain.
  • HBFC may be prepared by the reaction between one or more aldehydes or ketones or reactive equivalents with esters of p-hydroxybenzoic acid.
  • reactive equivalent means a material that generates an aldehyde under the conditions of the condensation reaction or a material that undergoes the required condensation reaction to produce moieties equivalent to those produced by an aldehyde.
  • Typical reactive equivalents include oligomers or polymers of the aldehyde, acetals or aldehyde solutions.
  • the aldehyde may be a mono- or di- aldehyde and may contain other functional groups, such as -COOH, and these could be capable of post-reactions in the product.
  • the aldehyde or ketone or reactive equivalent preferably contains 1-8 carbon atoms, particularly preferred are formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde, most preferred is formaldehyde.
  • Formaldehyde could be in the form of paraformaldehyde, trioxan or formalin.
  • HBFC may be prepared by reacting 1 molecular equivalent (M.E.) of the esters of p-hydroxybenzoic acid with about 0.5-2 M.E. of the aldehyde, preferably 0.7-1.3 M.E. and more preferably 0.8-1.2 M.E. of the aldehyde.
  • the reaction is preferably conducted in the presence of a basic or acidic catalyst, more preferably an acidic catalyst, such as p-toluenesulphonic acid.
  • the reaction is conveniently conducted in an inert solvent, such as Exxsol D60 (a non-aromatic, hydrocarbon solvent, having a boiling point of ⁇ 200°C), the water produced in the reaction being removed by azeotropic distillation.
  • the reaction is typically run at a temperature of 90-200°C, preferably 100-160°C, and may be run under reduced pressure.
  • the HBFC can be prepared in a 2-step process whereby the esters of p-hydroxybenzoic acid are first prepared in the same reaction vessel that is used for the subsequent condensation reaction.
  • the ester is prepared from the appropriate alcohol and p-hydroxybenzoic acid in an inert solvent using an acid catalyst such as p-toluenesulphonic acid, continuously removing water produced in the reaction.
  • Formaldehyde is then added and the condensation reaction conducted as described above to give the desired HBFC.
  • the solvent is a hydrocarbon solvent, such as an aromatic hydrocarbon solvent.
  • hydrocarbon solvents include petroleum fractions such as naphtha, kerosene, diesel and heater oil; aromatic hydrocarbons such as aromatic fractions, e.g. those sold under the ⁇ SOLVESSO' tradename; alcohols and/or esters; and paraffinic hydrocarbons such as hexane and pentane and isoparaffins.
  • the additive concentrate may also contain further additives as required.
  • Such further additives include, for example the following: detergents, antioxidants (to avoid fuel degradation), corrosion inhibitors, dehazers, demulsifiers, metal deactivators, antifoaming agents, cetane improvers, co-solvents, package compatibilisers, reodourants, additives to improve the regeneration of particulate traps, middle distillate cold flow improvers and other lubricity additives.
  • copolymers, terpolymers and polymers of acrylic acid or methacrylic acid or a derivative thereof may be branched or linear.
  • Suitable copolymers, terpolymers or polymers of acrylic acid or methacrylic acid or derivatives thereof are those polymers of ethylenically unsaturated monomers such as methacrylic or acrylic acid esters of alcohols having about 1 to 40 carbon atoms, such as methylacrylate, ethylacrylate, n-propylacrylate, lauryl acrylate, stearyl acrylate, methylmethacrylate, ethylmethacrylate, n-propylmethacrylate, lauryl methacrylate, stearyl methacrylate, isodecylmethacrylate, 2-ethylhexylmethacrylate and the like.
  • copolymers, terpolymers and polymers may have number average molecular weights (Mn) of 1,000 to 10,000,000 and preferably the molecular weight range is from about 5,000 to 1,000,000, most preferably 5,000 to 100,000.
  • Mn number average molecular weights
  • a mixture of copolymers, terpolymers and polymers of acrylic acid or methacrylic acid may also be used.
  • the acrylate or methacrylate monomer or derivative thereof is copolymerized with a nitrogen-containing, amine-containing or amide-containing monomer, or includes nitrogen-containing, amine-containing or amide-containing branches.
  • a nitrogen-containing, amine-containing or amide-containing monomer or includes nitrogen-containing, amine-containing or amide-containing branches.
  • This may be achieved by providing the polymer with sites suitable for grafting, and then nitrogen-containing, amine-containing or amide-containing branches, either monomers or macromonomers, are grafted onto the main chain. Transesterification reactions or amidation reactions may also be employed to produce the same products.
  • the copolymer, terpolymer or polymer will contain 0.01 to 5 wt.% nitrogen, more preferably 0.02 to 1 wt.% nitrogen, even more preferably 0.04 to 0.15 wt.% nitrogen.
  • amine-containing monomers include: the basic amino substituted olefins such as p-(2-diethylaminoethyl) styrene; basic nitrogen-containing heterocycles having a polymerizable ethylenically unsaturated substituent, such as the vinyl pyridines or the vinyl pyrrolidones; esters of amino alcohols with unsaturated carboxylic acids such as dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, tertiary butylaminoethyl methacrylate or dimethylaminopropyl methacrylate; amides of diamines with unsaturated carboxylic acids, such as dimethylaminopropyl methacrylamide; amides of polyamines with unsaturated carboxylic acids, examples of such polyamines being ethylene diamine (EDA), diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene
  • a copolymer of a methacrylate ester of a C 8 -C 14 alcohol with a methacrylate ester of an N,N-dialkylaminoalkyl alcohol, such as N,N dimethyl-2-aminoethanol is particularly preferred.
  • the present invention provides a fuel oil composition comprising a major proportion of a fuel oil and a minor proportion of an additive composition according to the first aspect.
  • the fuel oil composition has a conductivity which is at least 50%, preferably at least 60% of the conductivity of an equivalent fuel oil composition containing the same quantity of the conductivity-improving additive, in the absence of the lubricity enhancer.
  • the only difference between the fuel composition of the invention and the 'equivalent' fuel oil composition is the absence of the lubricity enhancer.
  • the percentage of conductivity retained is to be determined using identical measurement conditions, e.g. temperature, measuring apparatus, sample age etc.
  • the fuel oil is e.g., a petroleum-based fuel oil, especially a middle distillate fuel oil.
  • distillate fuel oils generally boil within the range of from 110°C to 500°C, e.g. 150°C to 400°C.
  • the fuel oil may comprise atmospheric distillate or vacuum distillate, cracked gas oil, or a blend in any proportion of straight run and thermally and/or refinery streams such as catalytically cracked and hydro-cracked distillates.
  • the most common petroleum distillate fuels are kerosene, jet fuels, diesel fuels, heating oils and heavy fuel oils.
  • the heating oil may be a straight atmospheric distillate, or it may contain minor amounts, e.g. up to 35 wt %, of vacuum gas oil or cracked gas oil or of both.
  • Fischer-Tropsch fuels also known as FT fuels
  • FT fuels include those described as gas-to-liquid (GTL) fuels, biomass-to-liquid (BTL) fuels and coal conversion fuels.
  • GTL gas-to-liquid
  • BTL biomass-to-liquid
  • coal conversion fuels coal conversion fuels.
  • syngas (CO + H 2 ) is first generated and then converted to normal paraffins by a Fischer-Tropsch process.
  • the normal paraffins may then be modified by processes such as catalytic cracking/reforming or isomerisation, hydrocracking and hydroisomerisation to yield a variety of hydrocarbons such as iso-paraffins, cyclo-paraffins and aromatic compounds.
  • the resulting FT fuel can be used as such or in combination with other fuel components and fuel types such as those mentioned in this specification.
  • fuels derived from plant or animal sources such as FAME. These may be used alone or in combination with other types of fuel.
  • the fuel oil has a sulphur content of at most 0.05% by weight, more preferably of at most 0.035% by weight, especially of at most 0.015%.
  • Fuels with even lower levels of sulphur are also suitable such as, fuels with less than 50ppm sulphur by weight, preferably less than 20 ppm, for example 10ppm or less.
  • the present invention provides the use of an additive composition according to the first aspect to improve the lubricity of a fuel oil having a sulphur content of at most 0.05% by weight, preferably at most 0.035% by weight, especially of at most 0.015%.
  • the salt is present in the fuel oil at level of between 5 and 1000ppm by weight based on the weight of the fuel oil, more preferably between 10 and 500ppm, even more preferably between 10 and 250ppm, especially between 10 and 150ppm, for example, between 50 and 150ppm.
  • the ratio of the amount of component (a) to the amount of component (b) in the additive composition is between 9:1 to 1:9, more preferably between 6:1 to 1:6, for example between 4:1 to 1:4, 3:1 to 1:3, 2:1 to 1:2 or 1:1 based on the molar amounts of active ingredient.
  • the total amount of (a) and (b) present in the fuel oil is between 0.1 and 10,000ppm of active ingredient by weight based on the weight of the fuel oil, preferably between 1 and 500ppm, more preferably between 1 and 100ppm, for example, between 3 and 50ppm.
  • FTIR analysis of the reaction product showed a reduction in the strong carboxylic acid peak at 1710cm -1 compared to the starting acid, and a corresponding appearance of carboxylate antisymmetric and symmetric stretches at 1553 and 1399 cm -1 as well as the appearance of a broad range of peaks 2300-2600cm -1 assignable to ammonium species. This was a clear indication of the formation of a salt.
  • the flash-point of the reaction product was 67°C.
  • Example 1 was repeated using a Tall oil fatty acid with a saturate content of ca. 2% and a rosin acid content of ca. 0.8%, (TOFA-2).
  • a mixture of p-hydroxybenzoic acid (1110g), isodecanol (1397g), Exxsol D60 (670g, a non-aromatic, hydrocarbon solvent, bp ⁇ 200°C), and p-toluenesulphonic acid (43g) was heated to 160°C over 1.5 hours, slowly reducing the pressure to ⁇ 200mbar.
  • the water produced in the reaction was continuously removed using a Dean and Stark apparatus. Heating was continued for a total of 4.5 hours and the vacuum released.
  • the reaction mixture was then cooled to ⁇ 80°C and then to it was added 95% paraformaldehyde (216g). The mixture was kept at 80-85°C for 2 hours and then heated to 135°C.
  • Paraformaldehyde (228g) was then added and the mixture kept at 80-85°C for 2 hours followed by an hour at 95-100°C. It was then heated to 135°C and the pressure was gradually reduced to ⁇ 120mbar. Water produced in the reaction was continuously removed using a Dean and Stark apparatus. Heating was continued for a total of 5 hours. Solvesso 150 (900g) and 2,4-di-t-butylphenol (500g) were then added to the mixture as diluents to give the final product, which had a Mn of 1150 and a Mw of 1400.
  • Fuel samples were prepared containing the conductivity-improving additives alone and containing both the conductivity-improving additives and the lubricity enhancer of Example 2 at 200ppm by weight. Results are given in Table 3 below. Each sample was tested as soon as it was prepared and again after standing for 7 and 14 days. Fuel 1 was used. The results are given as the percentage loss in measured conductivity between the sample containing only the conductivity-improving additive and the sample containing both the conductivity-improving additive and the lubricity enhancer.
  • Conductivity improving additive A1 was within the scope of the present invention being a 7:3 molar ratio of the HBFC of Example 3 and the copolymer of Example 9, where the amine content of the copolymer was 15%.
  • Conductivity improving additives C1, C2 and C3 were used for comparative purposes and were respectively;
  • Stadis ® 425 which are products of the Octel Corporation, and AS-2010 available from DBM Chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

An additive composition comprises a lubricity enhancer and a conductivity-improving additive. The lubricity enhancer comprises a salt formed by the reaction of a carboxylic acid with di-n-butylamine and the conductivity improving additive comprises the combination of:
(a) a polymeric condensation product formed by the reaction of an aliphatic aldehyde or ketone, or a reactive equivalent, with at least one ester of p-hydroxybenzoic acid with,
(b) a copolymer, terpolymer or polymer of acrylic acid or methacrylic acid or a derivative thereof.

Description

  • This invention relates to additive compositions, and to their use to improve the characteristics of fuel oils, especially middle distillate fuels such as diesel fuels, kerosene and jet fuel.
  • Environmental concerns have led to a need for fuels with reduced sulphur content, especially diesel fuel, heating oil and kerosene. However, the refining processes that produce fuels with low sulphur contents also result in a product of lower viscosity and a lower content of other components in the fuel that contribute to its lubricity, for example, polycyclic aromatics and polar compounds. Furthermore, sulphur-containing compounds in general are regarded as providing some anti-wear properties and a result of the reduction in their proportions, together with the reduction in proportions of other components providing lubricity, has been an increase in the number of reported problems in fuel pumps in diesel engines. The problems are caused by wear in, for example, cam plates, plungers, rollers, spindles and drive shafts, which may result in sudden pump failures relatively early in the life of the engine.
  • The problems may be expected to become worse in future because, in order to meet stricter requirements on exhaust emissions generally, higher pressure fuel systems, including in-line pumps, rotary pumps, common-rail pumps and unit injector systems, are being introduced, these being expected to have more stringent lubricity requirements than present equipment, at the same time as lower sulphur levels in fuels become more widely required.
  • Historically, the typical sulphur content in a diesel fuel was below 0.5% by weight. In Europe maximum sulphur levels have been reduced from 0.20% to 0.05% and in Sweden grades of fuel with levels below 0.005% (Class 2) and 0.001% (Class 1) are in use. A fuel oil composition with a sulphur level below 0.05% by weight is referred to herein as a low-sulphur fuel.
  • Such low-sulphur fuels may contain an additive to enhance their lubricity. These additives are of several types. In WO 94/17160 , there is disclosed a low sulphur fuel comprising a carboxylic acid ester to enhance lubricity, more especially an ester in which the acid moiety contains from 2 to 50 carbon atoms and the alcohol moiety contains one or more carbon atoms. In U.S. Patent No. 3273981 , a mixture of a dimer acid, for example, the dimer of linoleic acid, and a partially esterified polyhydric alcohol is described for the same purpose. In U.S. Patent No. 3287273 , the use of an optionally hydrogenated dimer acid glycol ester is described. Other materials used as lubricity enhancers, or anti-wear agents as they are also termed, include a sulphurized dioleyl norbornene ester ( EP-A-99595 ), castor oil ( U.S. Patent No. 4375360 and EP-A-605857 ) and, in methanol-containing fuels, a variety of alcohols and acids having from 6 to 30 carbon atoms, acid and alcohol ethoxylates, mono- and di-esters, polyol esters, and olefin-carboxylic acid copolymers and vinyl alcohol polymers (also U.S. Patent No. 4375360 ).
  • EP 0 798 364 A1 describes the use of a salt formed by the reaction between a carboxylic acid and an aliphatic amine to improve inter alia, the lubricity of a diesel fuel. The amines used have hydrocarbyl groups of between 2 and 50 carbon atoms, preferably between 8 and 20 carbon atoms, with amines such as oleyl amine being exemplified.
  • US 6,277,158 describes a concentrate containing n-butlyamine oleate as a friction modifier for addition to motor gasoline.
  • US2002/0095858 relates to fuel oil compositions containing an additive formed by the reaction of a mono- or dicarboxylic acid of 6 to 50 carbon atoms with an amine having at least one branched alkyl substituent. These additives are shown to be effective lubricity enhancers for the fuel.
  • US 2002/0014034 describes the use of additives to improve the lubricity of a fuel oil. A suitable additive may be formed by the reaction of N, N-dibutylamine with an acid mixture consisting of 70% fatty acids and 30% resin-based acids.
  • A further consequence of refining processes employed to reduce diesel fuel sulphur and aromatic contents is a reduction in the electrical conductivity of the fuel. The insulating properties of low sulphur fuels represent a potential hazard to refiners, distributors and customers due to the potential for static charge accumulation and discharge. Static charges can occur during pumping and especially filtration of the fuel, the release of this charge accumulation as a spark constituting a significant risk in highly flammable environments. Such risks are minimised during fuel processing and handling through appropriate earthing of fuel lines and tanks combined with the use of anti-static additives. These anti-static additives do not prevent the accumulation of static charges but enhance their release to the earthed fuel lines and vessels thereby controlling the risk of sparking. A number of such additives are in common usage and are available commercially.
  • It is thus desirable to be able to improve both the lubricity and conductivity of low sulphur content fuels.
  • EP 1 328 609 describes combinations of either a hydrocarbyl monoamine or an N-hydrocarbyl-substituted poly(alkyleneamine) with either a fatty acid containing 8 to 24 carbon atoms or an ester thereof with an alcohol or polyol of up to 8 carbon atoms.
  • The present invention is based on the observation of a negative interaction between certain lubricity improving additives and certain conductivity improving additives, and the discovery of combinations of species where this negative interaction is minimised.
  • Thus in accordance with a first aspect, the present invention provides an additive composition comprising a lubricity enhancer and a conductivity-improving additive; wherein the lubricity enhancer comprises a salt formed by the reaction of a carboxylic acid with di-n-butylamine; and wherein the conductivity improving additive comprises the combination of:
    1. (a) a polymeric condensation product formed by the reaction of an aliphatic aldehyde or ketone, or a reactive equivalent, with at least one ester of p-hydroxybenzoic acid with,
    2. (b) a copolymer, terpolymer or polymer of acrylic acid or methacrylic acid or a derivative thereof.
  • The combination of the lubricity enhancer and the conductivity-improving additive according to the present invention is able to provide both good lubricity and good conductivity to a fuel oil composition. This is in contrast to combinations of the lubricity enhancer with other conductivity-improving additives where a significant loss in conductivity performance has been observed.
  • In this specification, the use of the term 'salt' to describe the product formed by the reaction of the carboxylic acid and the amine should not be taken to mean that the reaction necessarily forms a pure salt. It is presently believed that the reaction does form a salt and thus that the reaction product contains such as salt however, due to the complexity of the reaction, it is likely that other species will also be present. The term 'salt' should thus be taken to include not only the pure salt species, but also the mixture of species formed during the reaction of the carboxylic acid and the amine.
  • As carboxylic acid, those corresponding to the formula [R'(COOH)x]y , where each R' is independently a hydrocarbon group of between 2 and 45 carbon atoms, and x is an integer between 1 and 4, are suitable. Preferably, R' is a hydrocarbon group of 8 to 24 carbon atoms, more preferably, 12 to 20 carbon atoms. Preferably, x is 1 or 2, more preferably, x is 1. Preferably, y is 1, in which case the acid has a single R' group. Alternatively, the acid may be a dimer, trimer or higher oligomer acid, in which case y will be greater than 1 for example 2, 3 or 4 or more. R' is suitably an alkyl or alkenyl group which may be linear or branched. Examples of carboxylic acids which may be used in the present invention include: lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, neodecanoic acid, arachic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melissic acid, caproleic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, coconut oil fatty acid, soy bean fatty acid, tall oil fatty acid, sunflower oil fatty acid, fish oil fatty acid, rapeseed oil fatty acid, tallow oil fatty acid and palm oil fatty acid. Mixtures of two or more acids in any proportion are also suitable. Also suitable are the anhydrides of carboxylic acids, their derivatives and mixtures thereof. In a preferred embodiment, the carboxylic acid comprises tall oil fatty acid (TOFA). It has been found that TOFA with a saturate content of less than 5% by weight is especially suitable. As is known in the art, TOFA contains small but variable amounts of rosin acids and isomers thereof. Preferably, TOFA with an abietic acid content of less than 5% by weight, for example, less than 2% by weight, is used.
  • In another preferred embodiment, the carboxylic acid comprises rapeseed oil fatty acid.
  • In another preferred embodiment, the carboxylic acid comprises soy bean fatty acid.
  • In another preferred embodiment, the carboxylic acid comprises sunflower oil fatty acid.
  • Also suitable are aromatic carboxylic acids and their alkyl derivatives as well as aromatic hydroxy acids and their alkyl derivatives. Illustrative examples include benzoic acid, salicylic acid and acids derived from such species.
  • Preferably, the carboxylic acid has an iodine value of at least 80g/100g, more preferably at least 100 g/100g, for example, at least 130 g/100g or at least 150 g/100g.
  • Particularly preferred embodiments of the present invention are thus where the lubricity enhancer comprises a salt formed by the reaction of:
    • Tall oil fatty acid with di-n-butylamine,
    • Rapeseed oil fatty acid with di-n-butylamine,
    • Soy bean fatty acid with di-n-butylamine, and
    • Sunflower oil fatty acid with di-n-butylamine.
  • The salt may conveniently be produced by mixing the carboxylic acid with the amine. The order in which one component is added to the other is not important. The molar ratio of the amount of acid to the amount of amine is suitably from 10:1 to 1:10, preferably from 10:1 to 1:2, more preferably from 2:1 to 1:2, for example, around 1:l. In an embodiment, a molar ratio of 1.1:1 to 1:1.1 has been found to be suitable. The reaction may be conducted at room temperature, but is preferably heated gently, for example to 40°C.
  • These salts are the subject of the present Applicant's co-pending application EP 05270062.2 where in addition to providing good lubricity to fuel oil compositions they were found to display particularly good low temperature properties.
  • Component (a)
  • Component (a) is a condensate species derived from an alkyl ester of p-hydroxybenzoic acid. These HydroxyBenzoate-Formaldehyde Condensates are the subject of the present Applicant's co-pending application EP 1 640 438 A and are referred to herein as HBFC.
  • Preferably, the at least one ester of p-hydroxybenzoic acid comprises; (i) a straight or branched chain C1 - C7 alkyl ester of p-hydroxybenzoic acid; (ii) a branched chain C8 - C16 alkyl ester of p-hydroxybenzoic acid, or; (iii) a mixture of long chain C8- C18 alkyl esters of p-hydroxybenzoic acid, at least one of said alkyls being branched.
  • Preferably, the alkyl in (i) is ethyl or n-butyl.
  • Preferably, the branched alkyl group in (ii) is 2-ethylhexyl or isodecyl.
  • Conveniently, the molar ratio of the branched ester to the other ester is in the range of 5:1 to 1:5.
  • Condensates of mixed esters may be used, for example mixed ester condensates of n-octyl and 2-ethylhexyl esters of p-hydroxybenzoic acid may be prepared. The ratio of the esters in the mixed condensates may be varied as required. A mixed ester condensate where the molar ratio of 2-ethylhexyl ester to n-octyl ester is 3:1 has been found to be useful. Mixed ester condensates of more than two ester monomers may also be prepared.
  • The number average molecular weight of the polymeric condensation products is suitably in the range of 500 to 5000, preferably 1000 to 3000, more preferably 1000 to 2000 Mn.
  • Other comonomers may be added to the reaction mixture of aldehyde and alkyl ester or mixture of alkyl esters. Some of the polymers described above, for example, that are based on the 2-ethylhexyl ester, are too viscous to be handled conveniently at temperatures they would be used commercially, i.e. ambient to 60°C, unless diluted with a large proportion of solvent. This problem can be overcome by replacing up to 33 mole % of the p-hydroxybenzoic ester or ester mixture used in the condensation reaction with other comonomers in order to modify the physical properties of the polymers whilst still retaining activity. The comonomers are aromatic compounds that are sufficiently reactive to take part in the condensation reaction. They include alkylated, arylated and acylated benzenes such as toluene, xylene, mesitylene, biphenyls and acetophenone. Other comonomers include hydroxy aromatic compounds such as p-hydroxybenzoic acid, acid derivatives of p-hydroxyaromatic acids such as amides and salts, other hydroxyaromatic acids, alkylphenols, naphthols, phenylphenols, acetamidophenols, alkoxyphenols and o-alkylated, o-arylated and o-acylated phenols. The hydroxy compounds should be either di- or mono- functional with regard to the condensation reaction. The hydroxy compounds that are di-functional should be substituted in the para- position whilst those that are mono-functional can be substituted in any position, e.g. 2,4-di-t-butylphenol - these will only incorporate at the end of a polymer chain.
  • HBFC may be prepared by the reaction between one or more aldehydes or ketones or reactive equivalents with esters of p-hydroxybenzoic acid. The term "reactive equivalent" means a material that generates an aldehyde under the conditions of the condensation reaction or a material that undergoes the required condensation reaction to produce moieties equivalent to those produced by an aldehyde. Typical reactive equivalents include oligomers or polymers of the aldehyde, acetals or aldehyde solutions.
  • The aldehyde may be a mono- or di- aldehyde and may contain other functional groups, such as -COOH, and these could be capable of post-reactions in the product. The aldehyde or ketone or reactive equivalent preferably contains 1-8 carbon atoms, particularly preferred are formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde, most preferred is formaldehyde. Formaldehyde could be in the form of paraformaldehyde, trioxan or formalin.
  • HBFC may be prepared by reacting 1 molecular equivalent (M.E.) of the esters of p-hydroxybenzoic acid with about 0.5-2 M.E. of the aldehyde, preferably 0.7-1.3 M.E. and more preferably 0.8-1.2 M.E. of the aldehyde. The reaction is preferably conducted in the presence of a basic or acidic catalyst, more preferably an acidic catalyst, such as p-toluenesulphonic acid. The reaction is conveniently conducted in an inert solvent, such as Exxsol D60 (a non-aromatic, hydrocarbon solvent, having a boiling point of ~200°C), the water produced in the reaction being removed by azeotropic distillation. The reaction is typically run at a temperature of 90-200°C, preferably 100-160°C, and may be run under reduced pressure.
  • Conveniently, the HBFC can be prepared in a 2-step process whereby the esters of p-hydroxybenzoic acid are first prepared in the same reaction vessel that is used for the subsequent condensation reaction. Thus, the ester is prepared from the appropriate alcohol and p-hydroxybenzoic acid in an inert solvent using an acid catalyst such as p-toluenesulphonic acid, continuously removing water produced in the reaction. Formaldehyde is then added and the condensation reaction conducted as described above to give the desired HBFC.
  • Preferably, the solvent is a hydrocarbon solvent, such as an aromatic hydrocarbon solvent. Examples of hydrocarbon solvents include petroleum fractions such as naphtha, kerosene, diesel and heater oil; aromatic hydrocarbons such as aromatic fractions, e.g. those sold under the `SOLVESSO' tradename; alcohols and/or esters; and paraffinic hydrocarbons such as hexane and pentane and isoparaffins. The additive concentrate may also contain further additives as required. Such further additives are known in the art and include, for example the following: detergents, antioxidants (to avoid fuel degradation), corrosion inhibitors, dehazers, demulsifiers, metal deactivators, antifoaming agents, cetane improvers, co-solvents, package compatibilisers, reodourants, additives to improve the regeneration of particulate traps, middle distillate cold flow improvers and other lubricity additives.
  • Component (b)
  • The copolymers, terpolymers and polymers of acrylic acid or methacrylic acid or a derivative thereof may be branched or linear. Suitable copolymers, terpolymers or polymers of acrylic acid or methacrylic acid or derivatives thereof are those polymers of ethylenically unsaturated monomers such as methacrylic or acrylic acid esters of alcohols having about 1 to 40 carbon atoms, such as methylacrylate, ethylacrylate, n-propylacrylate, lauryl acrylate, stearyl acrylate, methylmethacrylate, ethylmethacrylate, n-propylmethacrylate, lauryl methacrylate, stearyl methacrylate, isodecylmethacrylate, 2-ethylhexylmethacrylate and the like. These copolymers, terpolymers and polymers may have number average molecular weights (Mn) of 1,000 to 10,000,000 and preferably the molecular weight range is from about 5,000 to 1,000,000, most preferably 5,000 to 100,000. A mixture of copolymers, terpolymers and polymers of acrylic acid or methacrylic acid may also be used.
  • In a preferred embodiment, the acrylate or methacrylate monomer or derivative thereof is copolymerized with a nitrogen-containing, amine-containing or amide-containing monomer, or includes nitrogen-containing, amine-containing or amide-containing branches. This may be achieved by providing the polymer with sites suitable for grafting, and then nitrogen-containing, amine-containing or amide-containing branches, either monomers or macromonomers, are grafted onto the main chain. Transesterification reactions or amidation reactions may also be employed to produce the same products. Preferably, the copolymer, terpolymer or polymer will contain 0.01 to 5 wt.% nitrogen, more preferably 0.02 to 1 wt.% nitrogen, even more preferably 0.04 to 0.15 wt.% nitrogen.
  • Examples of amine-containing monomers include: the basic amino substituted olefins such as p-(2-diethylaminoethyl) styrene; basic nitrogen-containing heterocycles having a polymerizable ethylenically unsaturated substituent, such as the vinyl pyridines or the vinyl pyrrolidones; esters of amino alcohols with unsaturated carboxylic acids such as dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, tertiary butylaminoethyl methacrylate or dimethylaminopropyl methacrylate; amides of diamines with unsaturated carboxylic acids, such as dimethylaminopropyl methacrylamide; amides of polyamines with unsaturated carboxylic acids, examples of such polyamines being ethylene diamine (EDA), diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine (PEHA), and higher polyamines, PAM (N = 7,8) and Heavy Polyamine (N>8); morpholine derivatives of unsaturated carboxylic acids, such as N-(aminopropyl)morpholine derivatives; and polymerizable unsaturated basic amines such as allyl amine.
  • Particularly preferred is a copolymer of a methacrylate ester of a C8-C14 alcohol with a methacrylate ester of an N,N-dialkylaminoalkyl alcohol, such as N,N dimethyl-2-aminoethanol.
  • In accordance with a second aspect, the present invention provides a fuel oil composition comprising a major proportion of a fuel oil and a minor proportion of an additive composition according to the first aspect.
  • As discussed above, it has been observed that there is a negative interaction between certain lubricity improving additives and certain conductivity improving additives. The present invention minimises this negative interaction. Accordingly, in a preferred embodiment of the second aspect, the fuel oil composition has a conductivity which is at least 50%, preferably at least 60% of the conductivity of an equivalent fuel oil composition containing the same quantity of the conductivity-improving additive, in the absence of the lubricity enhancer. In the context of this preferred embodiment it will be understood that the only difference between the fuel composition of the invention and the 'equivalent' fuel oil composition is the absence of the lubricity enhancer. It will also be understood that the percentage of conductivity retained is to be determined using identical measurement conditions, e.g. temperature, measuring apparatus, sample age etc.
  • Preferably, the fuel oil is e.g., a petroleum-based fuel oil, especially a middle distillate fuel oil. Such distillate fuel oils generally boil within the range of from 110°C to 500°C, e.g. 150°C to 400°C. The fuel oil may comprise atmospheric distillate or vacuum distillate, cracked gas oil, or a blend in any proportion of straight run and thermally and/or refinery streams such as catalytically cracked and hydro-cracked distillates. The most common petroleum distillate fuels are kerosene, jet fuels, diesel fuels, heating oils and heavy fuel oils. The heating oil may be a straight atmospheric distillate, or it may contain minor amounts, e.g. up to 35 wt %, of vacuum gas oil or cracked gas oil or of both.
  • Other examples of fuel oils include Fischer-Tropsch fuels. Fischer-Tropsch fuels, also known as FT fuels, include those described as gas-to-liquid (GTL) fuels, biomass-to-liquid (BTL) fuels and coal conversion fuels. To make such fuels, syngas (CO + H2) is first generated and then converted to normal paraffins by a Fischer-Tropsch process. The normal paraffins may then be modified by processes such as catalytic cracking/reforming or isomerisation, hydrocracking and hydroisomerisation to yield a variety of hydrocarbons such as iso-paraffins, cyclo-paraffins and aromatic compounds. The resulting FT fuel can be used as such or in combination with other fuel components and fuel types such as those mentioned in this specification. Also suitable are fuels derived from plant or animal sources such as FAME. These may be used alone or in combination with other types of fuel.
  • Preferably, the fuel oil has a sulphur content of at most 0.05% by weight, more preferably of at most 0.035% by weight, especially of at most 0.015%. Fuels with even lower levels of sulphur are also suitable such as, fuels with less than 50ppm sulphur by weight, preferably less than 20 ppm, for example 10ppm or less.
  • In accordance with a third aspect, the present invention provides the use of an additive composition according to the first aspect to improve the lubricity of a fuel oil having a sulphur content of at most 0.05% by weight, preferably at most 0.035% by weight, especially of at most 0.015%.
  • Treat rates
  • Preferably, the salt is present in the fuel oil at level of between 5 and 1000ppm by weight based on the weight of the fuel oil, more preferably between 10 and 500ppm, even more preferably between 10 and 250ppm, especially between 10 and 150ppm, for example, between 50 and 150ppm.
  • Preferably, the ratio of the amount of component (a) to the amount of component (b) in the additive composition is between 9:1 to 1:9, more preferably between 6:1 to 1:6, for example between 4:1 to 1:4, 3:1 to 1:3, 2:1 to 1:2 or 1:1 based on the molar amounts of active ingredient.
  • Suitably, the total amount of (a) and (b) present in the fuel oil is between 0.1 and 10,000ppm of active ingredient by weight based on the weight of the fuel oil, preferably between 1 and 500ppm, more preferably between 1 and 100ppm, for example, between 3 and 50ppm.
  • The invention will now be described by way of example only.
  • Preparation of the lubricity enhancer Example 1
  • Tall oil fatty acid, with a saturate content of ca. 2% and a rosin acid content of ca. 1.8%, (TOFA-1) (50.0g, 173mmoles) was added to a beaker with stirring. Di-n-butylamine (22.36g, 173mmoles) was then added to the beaker. An exotherm of ca. 38.3°C was measured indicating that the two components reacted. FTIR analysis of the reaction product showed a reduction in the strong carboxylic acid peak at 1710cm-1 compared to the starting acid, and a corresponding appearance of carboxylate antisymmetric and symmetric stretches at 1553 and 1399 cm-1 as well as the appearance of a broad range of peaks 2300-2600cm-1 assignable to ammonium species. This was a clear indication of the formation of a salt. The flash-point of the reaction product was 67°C.
  • Example 2
  • Example 1 was repeated using a Tall oil fatty acid with a saturate content of ca. 2% and a rosin acid content of ca. 0.8%, (TOFA-2).
  • HFRR testing
  • The salts prepared in Examples 1- 4 above were tested in two low-sulphur diesel fuels (details given in Table 1) using the High Frequency Reciprocating Rig (HFRR) test in accordance with BS EN ISO 12156-1 (2000). Results are given in Table 2. The HFRR value for untreated Fuel 1 was 664 µm, and that for untreated Fuel 2 was 518 µm. Table 1
    Fuel 1 Fuel 2
    Specification Unit
    Density kg/m3 811.1 858.4
    Kv (40°C) cSt 1.942 2.883
    Kv (20°C) cSt 2.843 4.597
    Cetane No. 58.1 41.9
    Sulphur wt% <0.0005 0.0428
    Distillation characteristics
    IBP °C 175.0 187.3
    10% °C 206.1 219.2
    50% °C 235.2 270.4
    95% °C 279.1 333.6
    FBP °C 291.8 347.3
    Table 2
    Example Treat rate/ppm HFRR in Fuel 1/µm HFRR in Fuel 2/µm
    1 50 646 385
    100 469 377
    150 438 -
    2 50 648 -
    100 608 -
    150 522 -
    200 433 -
    3 50 666 425
    100 451 329
    4 50 654 -
    100 614 -
    150 525 -
    200 477 -
    250 414 -
    300 400 -
  • Preparation of Component (a)
  • The following synthetic schemes relate to the preparation of some HBFC compounds which may be used in the present invention. It will be understood that these examples are given merely to illustrate possible preparative routes and as such are not intended to be limiting in any way. The skilled man will be aware of other synthetic methods and will be able to extend the teachings to the preparation of other compounds, which whilst not explicitly described herein, will nonetheless be suitable for use in the present invention.
  • Example 3
  • A mixture of p-hydroxybenzoic acid (1110g), isodecanol (1397g), Exxsol D60 (670g, a non-aromatic, hydrocarbon solvent, bp ~200°C), and p-toluenesulphonic acid (43g) was heated to 160°C over 1.5 hours, slowly reducing the pressure to ~200mbar. The water produced in the reaction was continuously removed using a Dean and Stark apparatus. Heating was continued for a total of 4.5 hours and the vacuum released. The reaction mixture was then cooled to ~80°C and then to it was added 95% paraformaldehyde (216g). The mixture was kept at 80-85°C for 2 hours and then heated to 135°C. The pressure was gradually reduced to -120mbar and the water produced in the reaction was continuously removed using a Dean and Stark apparatus. Heating was continued for 5 hours and then Solvesso 150 (1500g) was added to dilute the mixture and give a product having a Mn of 1800 and a Mw of 2400.
  • Example 4
  • A mixture of p-hydroxybenzoic acid (1109g), 2-ethylhexanol (862g), n-octanol (288g), p-toluenesulphonic acid (43g) and Exxsol D60 (670g) heated to ~157°C over -30 mins, slowly reducing the pressure to ~240mbar. Water produced in the reaction was continuously removed using a Dean and Stark apparatus. Heating was continued for a total of 3.5 hours then the vacuum was released and the mixture cooled to ~80°C.
  • 95% Paraformaldehyde (228g) was then added and the mixture kept at 80-85°C for 2 hours followed by an hour at 95-100°C. It was then heated to 135°C and the pressure was gradually reduced to ~120mbar. Water produced in the reaction was continuously removed using a Dean and Stark apparatus. Heating was continued for a total of 5 hours. Solvesso 150 (900g) and 2,4-di-t-butylphenol (500g) were then added to the mixture as diluents to give the final product, which had a Mn of 1150 and a Mw of 1400.
  • Example 5
    • (i) A mixture of p-hydroxybenzoic acid (213g), 2-ethylhexanol (220g), xylene (200ml) and p-toluenesulphonic acid (2g) was refluxed at ~155°C for 10 hours and the water produced in the reaction was continuously removed using a Dean and Stark apparatus. The mixture was then evaporated under reduced pressure to give 393g of product, i.e. 2-ethylhexyl p-hydroxybenzoate.
    • (ii) A mixture of the above product (39.7g), 95% paraformaldehyde (4.55g), p-toluenesulphonic acid (0.35g) and heptane (60ml) was heated at 80-85°C for 2 hours. It was then refluxed at ~115°C for 9 hours and the water produced in the reaction was continuously removed using a Dean and Stark apparatus. Toluene (60ml) was then added as a diluent to give the product, which had a Mn of 1300 and a Mw of 1750.
    Example 6
  • A mixture consisting of 2-ethylhexyl p-hydroxybenzoate (41.1g, as produced in Example 7), xylene (8.7g), 95% paraformaldehyde (5.2g), p-toluenesulphonic acid (0.4g) and octane (50ml) was heated to 80-85°C for 2 hours then refluxed at ~135°C for 4.5 hours, continuously removing the water produced in the reaction using a Dean and Stark apparatus. Toluene (40ml) was then added to dilute the product, which had a Mn of 1000 and a Mw of 1300.
  • Example 7
  • A mixture of 2-ethylhexyl p-hydroxybenzoate (37.3g, as produced in Example 7), 2,4-di-t-butylphenol (7.7g), 95% paraformaldehyde (5.65g), 0.45g p-toluenesulphonic acid and octane (25g) was heated to 80-85°C for 2 hours then refluxed at ~135°C for 5 hours. The water produced in the reaction was continuously removed using a Dean and Stark apparatus. Solvesso 150 (27g) was then added to dilute the product, which had a Mn of 1250 and a Mw of 2000.
  • Component (b) Example 8
  • A high molecular weight (ca. 300,000) polymethacrylate containing ca. 4 wt% of dimethylaminoethylmethacrylate monomers.
  • Example 9
  • Isodecyl methacrylate dimethylaminoethylmethacrylate copolymers of ~20,000 molecular weight where the content of the aminic monomer was 1.5, 2.5 , 5.0 or 15 wt%.
  • Conductivity Testing
  • Conductivity testing was carried out using an Emcee Digital Conductivity Meter (Model 1152), which has a calibrated range of 0-390 pSm-1. The instrument is self calibrating and zeroing and was used in accordance with the user manual. All conductivity measurements were performed at room temperature on 250-300 ml of fuel in a 300 ml, tall glass beaker. The conductivity measurements were made within 2 hours of placing the fuel into the beaker, dosing it with the respective additives and mixing.
  • Fuel samples were prepared containing the conductivity-improving additives alone and containing both the conductivity-improving additives and the lubricity enhancer of Example 2 at 200ppm by weight. Results are given in Table 3 below. Each sample was tested as soon as it was prepared and again after standing for 7 and 14 days. Fuel 1 was used. The results are given as the percentage loss in measured conductivity between the sample containing only the conductivity-improving additive and the sample containing both the conductivity-improving additive and the lubricity enhancer. Table 3
    Conductivity additive Treat rate / wppm % loss after 0 days % loss after 7 days % loss after 14 days
    A1 6 28 31 36
    12 25 29 29
    24 11 29 17
    C1 1 64 69 76
    2 73 78 83
    3 78 83 85
    C2 1 59 64 80
    2 67 70 68
    3 66 73 81
    C3 1 54 73 77
    2 62 67 79
    3 58 66 77
  • Conductivity improving additive A1 was within the scope of the present invention being a 7:3 molar ratio of the HBFC of Example 3 and the copolymer of Example 9, where the amine content of the copolymer was 15%. Conductivity improving additives C1, C2 and C3 were used for comparative purposes and were respectively; Stadis® 450, Stadis® 425 which are products of the Octel Corporation, and AS-2010 available from DBM Chemicals.
  • It is clear from the data presented that a large negative interaction on fuel conductivity occurs with combinations of the lubricity enhancer and conductivity-improving additives C1, C2 and C3. On average, these combinations lose 70% or more of the conductivity they have in the absence of the lubricity enhancer. Contrastingly, conductivity-improving additive A1 is much less affected by the presence of the lubricity enhancer.

Claims (8)

  1. An additive composition comprising a lubricity enhancer and a conductivity-improving additive; wherein the lubricity enhancer comprises a salt formed by the reaction of a carboxylic acid with di-n-butylamine; and wherein the conductivity improving additive comprises the combination of:
    (a) a polymeric condensation product formed by the reaction of an aliphatic aldehyde or ketone, or a reactive equivalent, with at least one ester of p-hydroxybenzoic acid with,
    (b) a copolymer, terpolymer or polymer of acrylic acid or methacrylic acid or a derivative thereof.
  2. An additive composition according to claim 1, wherein the carboxylic acid comprises a fatty acid or a mixture of fatty acids, preferably tall oil fatty acid, rape seed oil fatty acid, soy bean fatty acid or sunflower oil fatty acid.
  3. An additive composition according to claim 1 or claim 2, wherein the at least one ester of p-hydroxybenzoic acid comprises; (i) a straight or branched chain C1 - C7 alkyl ester of p-hydroxybenzoic acid; (ii) a branched chain C8- C16 alkyl ester of p-hydroxybenzoic acid, or; (iii) a mixture of long chain C8 - C18 alkyl esters of p-hydroxybenzoic acid, at least one of said alkyls being branched.
  4. An additive composition according to any preceding claim, wherein the copolymer, terpolymer or polymer of acrylic acid or methacrylic acid or a derivative thereof is copolymerized with a nitrogen-containing, amine-containing or amide-containing monomer; or includes nitrogen-containing, amine-containing or amide-containing branches.
  5. A fuel oil composition comprising a major proportion of a fuel oil and a minor proportion of an additive composition according to any preceding claim.
  6. A fuel oil composition according to claim 5, wherein the fuel oil comprises a middle distillate fuel oil having a sulphur content of at most 0.05% by weight.
  7. A fuel oil composition according to claim 5 or claim 6, having a conductivity which is at least 50%, preferably at least 60% of the conductivity of an equivalent fuel oil composition containing the same quantity of the conductivity-improving additive, in the absence of the lubricity enhancer.
  8. The use of an additive composition according to any of claims 1 to 4 to improve the lubricity of a fuel oil having a sulphur content of at most 0.05% by weight.
EP20070119920 2006-12-13 2007-11-02 Additive Composition Not-in-force EP1942175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070119920 EP1942175B1 (en) 2006-12-13 2007-11-02 Additive Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06126043 2006-12-13
EP20070119920 EP1942175B1 (en) 2006-12-13 2007-11-02 Additive Composition

Publications (2)

Publication Number Publication Date
EP1942175A1 true EP1942175A1 (en) 2008-07-09
EP1942175B1 EP1942175B1 (en) 2012-09-26

Family

ID=39472988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070119920 Not-in-force EP1942175B1 (en) 2006-12-13 2007-11-02 Additive Composition

Country Status (1)

Country Link
EP (1) EP1942175B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0956328B2 (en) 1996-10-11 2010-07-07 Infineum USA L.P. Fuel compositions with lubricity additives

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088064A2 (en) * 2000-03-16 2001-11-22 The Lubrizol Corporation Anti-static lubricity additive for ultra-low sulfur diesel fuels
US20020095858A1 (en) * 2000-11-24 2002-07-25 Matthias Krull Enhanced lubricity fuel oil compositions comprising salts of fatty acids with short chain oil-soluble amines
EP1640438A1 (en) * 2004-09-17 2006-03-29 Infineum International Limited Improvements in Fuel Oils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088064A2 (en) * 2000-03-16 2001-11-22 The Lubrizol Corporation Anti-static lubricity additive for ultra-low sulfur diesel fuels
US20020095858A1 (en) * 2000-11-24 2002-07-25 Matthias Krull Enhanced lubricity fuel oil compositions comprising salts of fatty acids with short chain oil-soluble amines
EP1640438A1 (en) * 2004-09-17 2006-03-29 Infineum International Limited Improvements in Fuel Oils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0956328B2 (en) 1996-10-11 2010-07-07 Infineum USA L.P. Fuel compositions with lubricity additives

Also Published As

Publication number Publication date
EP1942175B1 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US8690969B2 (en) Fuel oils
KR101646796B1 (en) Fuel composition with enhanced low temperature properties
JP4753592B2 (en) Conductivity improving additive for fuel oil composition
CA2613952C (en) Additive composition
EP2171021B1 (en) Use of a conductivity improver in a hydrocarbon composition
JP4828098B2 (en) Fuel oil composition
WO2007053787A1 (en) Fuel additive concentrate composition and fuel composition and method thereof
CN114846124A (en) Wax anti-settling additive composition for diesel fuel
EP1640438B1 (en) Improvements in Fuel Oils
EP1942175B1 (en) Additive Composition
JP2004352993A (en) Fuel oil composition
US20070074449A1 (en) Additive concentrate
EP1502938B1 (en) Fuel oil composition
EP1042434B1 (en) Polyisobutene substituted succinimides
EP1812534A1 (en) Additive and fuel compositions containing detergent and fluidizer and method thereof
EP3093332B1 (en) Improvements to additive compositions and to fuel oils
EP3093333B1 (en) Improvements to additive compositions and to fuel oils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20080910

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 577070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007025680

Country of ref document: DE

Effective date: 20121122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 577070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20130627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007025680

Country of ref document: DE

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131025

Year of fee payment: 7

Ref country code: DE

Payment date: 20131129

Year of fee payment: 7

Ref country code: GB

Payment date: 20131028

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131126

Year of fee payment: 7

Ref country code: NL

Payment date: 20131112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20131202

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007025680

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141102