EP1941281A1 - Method for screening a proteasome activity modulating agent and means for carrying out said method - Google Patents

Method for screening a proteasome activity modulating agent and means for carrying out said method

Info

Publication number
EP1941281A1
EP1941281A1 EP06820318A EP06820318A EP1941281A1 EP 1941281 A1 EP1941281 A1 EP 1941281A1 EP 06820318 A EP06820318 A EP 06820318A EP 06820318 A EP06820318 A EP 06820318A EP 1941281 A1 EP1941281 A1 EP 1941281A1
Authority
EP
European Patent Office
Prior art keywords
protein
waf1
polypeptide
yeast cells
cip1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06820318A
Other languages
German (de)
French (fr)
Inventor
Cécile BOUGERET
Jean-François BRIAND
Patrick Zarzov
Dominique Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytomics Systems
Original Assignee
Cytomics Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytomics Systems filed Critical Cytomics Systems
Publication of EP1941281A1 publication Critical patent/EP1941281A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4738Cell cycle regulated proteins, e.g. cyclin, CDC, INK-CCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to the field of the screening of biologically active agents capable of modulating the proteolytic activity of the proteasome, in particular of agents of therapeutic interest intended to prevent or treat cancers, inflammatory syndromes, bacterial or fungal infections , muscle wasting or neurodegenerative diseases.
  • the ubiquitin proteasome pathway Within human cells, the concentration of any protein results from the balance between its rate of synthesis and its rate of degradation.
  • the ubiquitin-proteasome pathway is the primary mechanism of protein degradation in human cells.
  • the degradation of proteins by the ubiquitin-proteasome pathway is a biological process that is very precisely regulated and controlled over time. In the vast majority of cases, this process involves two major successive steps: (i) the labeling of the proteins to be degraded by the covalent addition of a ubiquitin polymer and (ii) the destruction by the proteasome of the proteins thus labeled, which will be cleaved into small inactive peptides (Glickman and Ciechanover, 2002).
  • proteins which are destroyed by the proteasome without being modified by the addition of a ubiquitin polymer.
  • peptide sequences have been identified that lead to proteasome degradation of the proteins that contain it (such as the peptide motif FAT10, Hipp et al., 2005) without ubiquitin intervention.
  • the ubiquitin-proteasome pathway plays a fundamental role in a very large number of biological processes. Indeed, the mechanisms of degradation of proteins by the proteasome are involved in important cellular mechanisms such as the repair of DNA, the control of gene expression, regulation of cell cycle progression, quality control of neosynthesized proteins, apoptosis or immune response (Glickman and Ciechanover, 2002).
  • the ubiquitin-proteasome domain therefore offers significant potential for the development of new drugs.
  • the proteasome present in human cells is a very large multi-protein complex (> 2.4 MDa) found in the cytoplasm and nucleus of human cells.
  • the biochemical purifications of the proteasome present in human cells as well as the purifications of proteasomes made from other species of eukaryotic organisms, including yeasts, have shown that in all eukaryotic organisms, the purified forms of the proteasome include 2 major subunits, a proteolytic core called proteasome 2OS, and a 19S regulatory complex that binds to both ends of the 2OS proteasome (Coux et al., 1996, Glickman and Coux, 2001).
  • the 2OS proteasome is a hollow cylinder particle, composed of 28 subunits, distributed in 4 heptameric rings.
  • the peptidase activities are present on the inner surface of the cylinder and influence allosterically.
  • Three proteolytic activities (“trypsin-, chymotrypsin- and caspase-like") have been associated with the 2OS proteasome and contribute to the destruction of proteins as inactive peptides of 3 to 20 amino acids.
  • the 26S proteasome includes the regulatory complex 19S.
  • This 19S regulator complex of 0.7 MDa comprises about 20 subunits, and can be dissociated into 2 major subdomains, a "lid” required for ubiquitinated protein recognition, and a base that binds to the 2OS proteasome.
  • This base comprises 6 assembled ATPases in the form of rings, the hydrolysis of ATP is indeed necessary, not only for the active degradation of the ubiquitinated proteins, but also for the unfolding and linearization steps of these proteins, steps which precede the proteolytic degradation of these proteins.
  • Regulatory cap subunits are involved in the recognition of multi-ubiquitinated proteins while others participate in the de-ubiquitination steps necessary to unfold the proteins to be degraded.
  • the cellular proteasome comprises many proteins closely associated with the 2OS and 19S proteasome, strongly suggesting that the structural complexity of the cellular proteasome is greater than that of the 26S proteasome.
  • proteins are, for example, PA200 human proteins (whose homologue in yeast is the 240 kDa BImIO protein (Schmidt et al., 2005), or the PA28 ⁇ or PA28 ⁇ activators (Wojcik et al., 1998; Ustrell et al.
  • proteins that transfer ubiquitinated proteins to the proteasome proteins that regulate ubiquitinated protein recognition by the proteasome, or enzymes such as the Hul5 enzyme (Leggett et al., 2002), which are involved in the extension of polyubiquitin chains and serve to increase the rate of transfer of proteins to the peptidase sites. degradation of more than 80% of cellular proteins.
  • proteasome degradation by the proteasome is a biological process that is fundamental to the survival of cancer cells. Indeed, Numerous studies have clearly shown that many types of malignant cells are more sensitive to proteasome inhibitors than normal cells. Tests conducted with proteasome inhibitors, carried out either in vitro or in vivo, on different models of cancer cells have demonstrated that this class of molecules has particular properties that make them attractive candidates for developing new anti-cancer therapeutic weapons. . Ultimately, inhibition of proteasome activity induces apoptosis, increases the sensitivity of cancer cells to conventional chemotherapy and radiotherapy. Similarly, it has been observed that inhibition of the proteasome substantially reduces resistance to chemotherapy and radiotherapy (Adams 2004, Burger and Seth 2004).
  • proteasome inhibition has been implicated as a mechanism by which proteasome inhibition affects the growth and survival of tumor cells.
  • the inhibition of the proteasome blocks the activation of the NF- ⁇ B cellular regulator whose aberrant activation is a characteristic of several blood cancers. Characterization of proteasome inhibitors has shown that they induce apoptosis (Pei et al., 2003), kill tumor cells (Beverly et al., 1999), increase sensitivity to radiation (Adams and Anderson, 2001), and overcome drug resistance (Hideshima et al., 2001).
  • proteasome inhibition has been shown to block anti-apoptotic signals that are triggered by radiotherapy or chemotherapy.
  • proteasome inhibitors may result from their rapid proliferation which is associated with dysfunction of one or more "checkpoint" mechanisms. These alterations result in the rapid accumulation in malignant cells of a large number of defective proteins, and this much more markedly than in normal cells. This rapid and important accumulation of mutant proteins, and / or misfolding is most likely to significantly increase the dependence of malignant cells on an active proteasome and, therefore, make them very sensitive to proteasome inhibitors (Adams, 2004).
  • Proteasome inhibitors can be synthetic or natural.
  • Bortezomib a boronic derivative of a dipeptide
  • Bortezomib is the first proteasome inhibitor to have been tested in clinical trials.
  • Bortezomib is marketed under the name of Velcade ® .
  • Bortezomib inhibits with great specificity one of the 3 proteolytic activities of the proteasome 2OS, ("chymotrypsin-like” activity). Its action induces apoptosis and its effects seem to be exerted as well by the activation of pro-apoptotic pathways as by the suppression of anti-apoptotic pathways (Hideshima et al., 2001, Beverly et al., 1999).
  • proteasome inhibitors which are known are catalytic inhibitors of the proteasome which can explain their toxicity and it would be interesting to develop non-catalytic inhibitors of the proteasome.
  • non-catalytic inhibitors could be active by inhibiting the activity of 19S regulatory complexes and associated proteins that are necessary for the functioning of the cellular proteasome (ie, as it exists in cells).
  • a method has been developed for screening agents of therapeutic interest, which are selected for their specificity of action on the cellular proteasome.
  • This screening process is carried out in cellulo and, unlike existing biochemical tests, makes it possible to identify catalytic or non-catalytic inhibitors of the cellular proteasome.
  • the applicant has shown that, surprisingly, it is possible to mimic, in yeast cells, the proteasome-dependent, but independent of prior ubiquitination-dependent, degradation process of the human cellular regulator p2i WAF1 / c ' P1 by the proteasome, a process that takes place naturally in human cells.
  • the P 21 WAF1 / C ⁇ p1 protein is a regulator of the dividing cycle of human cells that belongs to the family of "Cyclin Dependent Kinases" inhibitors, Cdk.
  • the main function of the P 21 WAF1 / C ⁇ p1 protein is to regulate the activity of Cdk2 / cyclin complexes, the activation of which controls the progression of the cell cycle.
  • the p2i protein WAF1 / Cip1 is also known to regulate DNA synthesis by interacting with the PCNA factor (proliferating cell nuclear antigen), a subunit of DNA polymerase ⁇ essential for chromosomal replication.
  • the p2i protein WAF1 / C ⁇ p1 is a poorly structured, highly unstable protein (Kriwacki et al., 1996).
  • the former depends on ubiquitination and involves SCP Skp2 ubiquitin ligase. This pathway is particularly induced during irradiation of cells with UV rays (Bendjennat et al 2003, Bomstein et al., 2003).
  • the second pathway does not require the ubiquitination of p21 WAF1 / C
  • This second degradation pathway which does not imply the ubiquitination of p2i WAF1 / CIP1, seems to imply in Mammalian cells the Mdm2 protein that would activate the degradation of p2i WAF1 / CIP1 by promoting its physical interaction with the proteasome (Zhang et al. al., 2004).
  • the ubiquitin ligase function of Mdm2 is not involved in this mechanism.
  • yeast cells do not express orthologous protein or similar to the human Md m2 protein, it is therefore completely surprising that the applicant has shown that it is nevertheless possible to mime in yeast cells.
  • degradation of the human p2i protein WAF1 / C ⁇ p1 by the proteasome according to a proteasome degradation pathway which is not dependent on a ubiquitination step of the p2i protein WAF1 / C ⁇ p1 , prior to its degradation.
  • the invention relates to an in cellulo method for screening agents that modulate the activity of the proteasome, said method comprising the following steps: a) contacting a candidate agent to be tested with recombinant yeast cells that express in their nucleus a fusion protein comprising: (i) a p21 polypeptide selected from the polypeptide P 21 WAF1 / Cip1 and the polypeptide p21 [6KR] WAF1 / Cip1 ; and (ii) at least one detectable protein.
  • step (b) quantifying said first detectable protein in the yeast cells at the end of at least a predetermined period of time after contacting the candidate agent with said cells; c) comparing the value obtained in step (b) with a control value obtained when step (a) is performed in the absence of the candidate agent.
  • the process of the invention consists of a process which is carried out in cellulo, since the degradation of the target protein p2i WAF1 / CIP1 or p21 [6KR] WAF1 / CIP1 is carried out and visualized in yeast cells and not by reactions performed in a cell-free system.
  • yeast cells which express a fusion protein comprising a mutant form of the p2i protein WAF1 / C ⁇ p1 in which the 6 lysine residues of the wild-type p21 protein have been substituted are used. by arginine residues.
  • This mutant form of the p21 w protein AFi / c i P i is designated P 21 [6KR] WAF1 / Cip1 .
  • the degradation of the derivative p21 [6KR] WAF1 / Cip1 is therefore, because of the absence of ubiquitination sites in its amino acid sequence, exclusively and directly dependent on the proteolytic activity of the proteasome, and independent of a stage of ubiquitination.
  • the degradation of the fusion protein is complete, the polypeptides corresponding to the p21 protein ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ) and to the detectable protein are both degraded.
  • the total degradation of the p21 fusion protein ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ), observed in the yeast cells, makes it possible to measure the amount of fusion protein present in the yeast by quantifying the signal generated by the detectable protein included in said fusion protein.
  • the above method enables one skilled in the art to determine whether a candidate agent to be tested is capable of modifying the rate of degradation, or the degree of degradation, of the p21 protein (p21 WAF1 / C ⁇ p1 or p21 [6KR] WAF1 / Cip1 ) by the proteasome in yeast cells expressing the normal or mutated human p21 protein (p2i WAF1 / C ⁇ p1 or p21 [6KR] WAF1 / Cip1 ).
  • the inventive cellulo screening method in that it implements an artificial and humanized system for degradation of a target fusion protein in yeast cells, allows screening of agents which act specifically on the activity of the cellular proteasome, as it exists in all its complexity in the cell, including in the absence of a prior step of ubiquitination of the target protein in the cell.
  • an agent that "modulates" proteasome activity includes, respectively, (i) an agent that inhibits or blocks proteasome activity, particularly that inhibits or blocks the activity of the proteasome independent of the proteasome.
  • a step of ubiquitination prior to the degradation of the target protein and (ii) an agent that activates or increases the activity of the proteasome, in particular that activates or increases the activity of the proteasome independent of a ubiquitination step prior to the degradation of the target protein.
  • agents capable of inhibiting the rate or degree of intracellular degradation of the p 2i polypeptide WAF1 / CiP1 or the polypeptide p21 [6KR] WAF1 / Cip1 by the proteasome yeast cells are agents of therapeutic interest capable of inhibiting or blocking the proliferation of tumor cells, to inhibit or block the activation of the expression of various genes involved in inflammation, autoimmune pathologies or cancers, to disrupt mechanisms for controlling cell death (apoptosis ).
  • the above cellulo screening method may comprise an additional step (d) of positively selecting the inhibitory candidate agents for which the amount of detectable protein measured in step (b) is greater than the control value of comparison.
  • the method of the invention also makes it possible to identify agents capable of increasing the rate or degree of degradation of the p 2i polypeptide WAF1 / CiP1 or of the p21 [6KR] WAF1 / Cip1 polypeptide by the proteasome of yeast cells.
  • Such activating agents because they will also activate the proteasome activity in human cells, are agents of therapeutic interest capable of inducing or increasing the activation of the expression of various genes involved in inflammation, autoimmune diseases or cancers.
  • the in vitro screening method of the invention makes it possible to screen pro-inflammatory agents.
  • Some of the pro-inflammatory agents selected according to the method are likely to be of therapeutic interest when used at low dose or when administered for a short time, for example as inducing agents of an early immune response. , such as inducing a nonspecific resistance reaction to infection or such as activating antigen-presenting cells, for initiating an antigen-specific immune response, that it is either humoral or cell-mediated.
  • Certain other pro-inflammatory agents selected according to the in vitro screening method of the invention may consist of known active ingredients, in particular active drug ingredients, of which one adverse proinflammatory effect is identified, and for which particular precautions for use with respect to human health should be observed.
  • the screening method according to the invention may comprise an additional step (d) which consists in positively selecting the activating candidate agents for which the amount of detectable protein measured in step (b) is less than to the comparison control value.
  • the agent modulating the activity of the proteasome can be of any kind.
  • the agent may be any organic or inorganic compound, and may be either a naturally occurring agent or an agent produced, at least in part, by chemical or biological synthesis.
  • Said agent may in particular be a peptide or a protein.
  • Said agent also includes any molecule already known to have a biological effect, including a therapeutic effect, or conversely a toxic effect demonstrated or suspected for the body.
  • the fusion protein comprising the p2i polypeptide WAF1 / c ' P1 or
  • said fusion protein is recognized and undergoes proteolysis which is carried out by the proteasome. Quantification of the detectable protein contained in the yeast cell, at a given moment, makes it possible to determine the degree of degradation of said p21 fusion protein WAF1 / Cip1- detectable protein or p21 [6KR] WAF1 / Cip1- detectable protein, to this moment.
  • a polypeptide P2i WAF1 / C ⁇ p1 according to the invention consists of a polypeptide having at least 90% amino acid identity with the polypeptide p 2i WAF1 / CIP1 sequence SEQ ID N 0 1.
  • a polypeptide p 2i WAF1 / CIP1 according to invention can consist in the p 2i WAF1 / CiP1 polypeptide of sequence SEQ ID N 0 1.
  • a p21 polypeptide [6KR] WAF1 / Cip1 according to the invention consists of a polypeptide having at least 90% amino acid identity with the polypeptide p21 [6KR] WAF1 / Cip1 sequence SEQ ID N 0 2.
  • a polypeptide p21 [6KR] WAF1 / C ⁇ p1 according to the invention may consist of the p21 [6KR] WAF1 / Cip1 polypeptide of sequence SEQ ID N 0 2.
  • nucleotide sequence may be used to denote either a polynucleotide or a nucleic acid.
  • nucleotide sequence encompasses the genetic material itself and is therefore not restricted to information about its sequence.
  • nucleic acid include RNA, DNA or cDNA sequences, or hybrid RNA / DNA sequences of more than one nucleotide, regardless of in the single-stranded form or in the form of duplex.
  • nucleotide refers to natural nucleotides (A, T, G, C and U).
  • a first polynucleotide is considered to be "complementary" to a second polynucleotide when each base of the first nucleotide is paired with the complementary base of the second polynucleotide whose orientation is reversed.
  • the complementary “bases” are A and T (or A and U), and C and G.
  • a first nucleic acid having at least 90% identity with a second reference nucleic acid will have at least 90%, preferably at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 98%, 98.3% 98.6%, 99%, 99%, 6% nucleotide identity with said second reference nucleic acid.
  • a first polypeptide having at least 90% identity with a second reference polypeptide will have at least 90%, preferably at least 91%, 92%, 93%, 94%, 95%, 96% 97%, 97.5%, 98%, 98.3% 98.6%, 99%, 99.6% amino acid identity with said second reference polypeptide.
  • the "percent identity" between two nucleic acid sequences or between two polypeptide sequences in the sense of the present invention is determined by comparing the two optimally aligned sequences through a comparison window.
  • the part of the nucleotide or amino acid sequence in the comparison window may thus comprise additions or deletions (for example "gaps") relative to the reference sequence (which does not include these additions or deletions) so as to obtain an optimal alignment between the two sequences.
  • the percent identity is calculated by determining the number of positions at which an identical nucleotide base, or identical amino acid residue, is observed for the two compared sequences, and then dividing the number of positions at which there is identity between the two nucleic bases, or between the two amino acid residues, by the total number of positions in the comparison window, then multiplying the result by one hundred in order to obtain the percentage nucleotide identity of the two sequences between them, or the percentage amino acid identity of the two sequences between them ..
  • the sensitivity of the screening method described above is increased when, prior to contacting the yeast cells with the agent to be tested, the expression of the target p21 protein is stopped in yeast cells, that is to say either the p21 fusion protein WAF1 / Cip1-detectable protein or the p21 [6KR] fusion protein WAF1 / Cip1- detectable protein.
  • step (a) itself comprises the following steps: (ai) culturing yeast cells which express in their nucleus said fusion protein comprising the p21 polypeptide and at least one detectable protein;
  • step (a3) contacting the yeast cells obtained at the end of step (a2) with the candidate agent to be tested.
  • Stopping the expression of the detectable protein p21 WAF1 / Cip1- protein protein at a chosen time can be easily achieved by those skilled in the art, using, to transform the yeast cells, a cassette of wherein the polynucleotide encoding said fusion protein is under the control of a promoter functional in yeast cells and whose activation, or conversely repression, is induced by an inducing agent.
  • a promoter functional in yeast cells whose activation, or conversely repression, is induced by an inducing agent.
  • Many inducible promoters active in yeast cells are known to those skilled in the art, some of which are described later in the description, including in the examples.
  • the detectable protein-p21 fusion protein is rapidly recognized and degraded by the proteasome in yeast cells.
  • the optimum conditions for carrying out the screening method according to the invention are the conditions under which an intracellular accumulation of a large quantity of the detectable protein p21-protein which is expressed in the yeast cells is induced.
  • the greater the intracellular quantity of detectable p21-protein fusion protein is large at the beginning of step a) the more the variations in the amount of this fusion protein can be measured accurately, in step b) of the method .
  • yeast strains having several copies of a polynucleotide comprising (i) a strong repressible promoter, (ii) a nucleic acid encoding the detectable p21-protein fusion protein.
  • the presence of several copies of the polynucleotide coding of interest makes it possible to obtain a strong detection signal for the detectable protein in step a) of the method.
  • yeast cells in which the copy or copies of the polynucleotide encoding the detectable p21-protein fusion protein are (are) integrated into the chromosome are used.
  • This advantageous embodiment allows the intracellular accumulation of the detectable p21 protein-protein at a high level in all cultured yeast cells for the implementation of the method.
  • This embodiment of the screening method of the invention is an advantage over the use of plasmid-transformed yeast cells in each of which one or more copies of the polynucleotide encoding the detectable p21-protein fusion protein is ( are) inserted.
  • the yeast cells which express the detectable p21-protein fusion protein consist of cells containing one or more recombinant vectors, in particular one or more recombinant plasmids, in which at least one copy of the polynucleotide encoding the protein is inserted. detectable protein fusion, it may happen that the transmission of said recombinant vectors of interest is not carried out homogeneously, with successive generations of yeast cells. In some cases, the level of intracellular expression of the detectable protein p21-proteine protein would be heterogeneous within the set of cells. cultured yeast, which would be likely to reduce the sensitivity of the screening method of the invention.
  • the detectable protein that is included in the detectable p21-protein fusion protein can be of any kind, since its presence, can be specifically detected in yeast cells before its proteolysis, and that the presence of forms proteolysed proteins of the detectable protein, in particular peptide fragments produced by proteolysis of said detectable protein, are not detected by the specific detection means which is chosen.
  • the proteolytic activity of the proteasome is monitored, according to the method of the invention, by measuring its effect on the stability of the detectable protein p21-protein fusion. Thanks to the expression in yeast cells of the factor p21 in the form of a fusion protein, the degradation of the p21-containing fusion protein can be monitored in real time, by detecting the unproteolysed detectable protein.
  • the detectable protein p21-protein fusion protein comprises a mutant form of the p2i polypeptide WAF1 / C ⁇ p1 in which the 6 lysine residues of the p21 protein have been substituted by arginine residues, which is designated p21 [6KR] WAF1 / C ⁇ p1 .
  • the stability of the detectable protein p21 [6KR] WAF1 / Cip1- protein protein depends exclusively on the proteolytic activity of the proteasome and does not imply its prior ubiquitination.
  • the detectable protein fused to p21 p21 w AF1 / c i P i or P 21 [6KR] WAF1 / Cip1
  • degradation of the fusion protein can be followed by techniques known per se, including fluorescence measurement with the aid of a flow cytometer, a microplate reader or a fluorimeter, or by means of a fluorescence microscope, or by colorimetric, enzymatic or immunological.
  • the detectable protein may be chosen from an antigen, a fluorescent protein or a protein having an enzymatic activity.
  • the detectable protein when the detectable protein consists of an antigen, it can be any type of antigen, since antibodies specific for this antigen are already accessible or, alternatively, they can be prepared, according to any technique for obtaining antibodies, especially for polyclonal or monoclonal antibodies, well known to those skilled in the art.
  • the detectable protein consists of a small antigen, which is not likely to interfere with the recognition of the p21 protein ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ) by the proteasome.
  • amines of length there may be used the antigen HA sequence [NH 2 - YPYDVPDYA-COOH] SEQ ID 0 7, or a sequence of FLAG antigen [NH 2 -DYKDDDDK-COOH] SEQ ID 0 8 (monomer FLAG ) or sequence [NH 2 -MDYKDHDGDYKDHDIDYKDDDDK-COOH] SEQ ID NO 9 0 (FLAG trimer) in this case, is used to quantify the detectable protein in step (b) of the method, an antibody that specifically recognizes the antigen included in the fusion protein, this antibody being labeled directly or indirectly.
  • step (b) when the first detectable protein is an antigen, said first detectable protein is quantified by detecting complexes formed between said protein and recognizing antibodies.
  • the detectable protein consists of an intrinsically fluorescent protein, it is especially chosen from the mAG protein, the GFP protein or one of its derivatives, the YFP protein or one of its derivatives, and the dsRED protein.
  • the intrinsically fluorescent protein may also be selected from auto-fluorescent proteins originating from various organisms, other than Aequorea Victoria.
  • the intrinsically fluorescent protein may be chosen from the following proteins: the CopGFP protein originating from Pontellina plumata, and described by DA Shagin et al.
  • the mAG protein also called "monomeric Azami- Green" originating from the coral of Galaxeidae, will be used; and described by Karasawa et al. (Karasawa et al., J. Biol Chem 2003 278: 34167-34171).
  • the detectable protein consists of an intrinsically fluorescent protein
  • the detectable protein is quantified in step (b) of the method by measuring the fluorescence signal that is emitted by the p21-fluorescent protein fusion protein using any adapted device.
  • the detectable protein is a fluorescent protein
  • said detectable protein is quantified by measuring the fluorescence signal emitted by said protein.
  • the detectable protein consists of a protein with enzymatic activity
  • said detectable protein is chosen in particular from luciferase and ⁇ -lactamase.
  • the detectable protein is quantified in step (b) of the process by measuring the amount of compound (s) produced by the conversion of the substrate by the enzyme.
  • the product of the enzymatic activity is colored, the measurement can be performed by colorimetry.
  • the product of the enzymatic activity is fluorescent, the intensity of the fluorescence signal emitted by said product is measured using any suitable fluorescence measuring device.
  • step (b) when the first detectable protein is a protein having an enzymatic activity, said detectable protein is quantified by measuring the amount of substrate transformed by said protein.
  • the protein comprising the P 21 WAF1 / C ⁇ p1 polypeptide consists of the amino acid sequence protein SEQ ID No. 3, which may be encoded by the nucleic acid of sequence SEQ ID No. 5.
  • the protein of SEQ ID NO : 3 sequence consists, from the 2 -terminal NH end to the COOH-terminal end, respectively in (i) the sequence of the detectable mAG protein ranging from the amino acid in position 1 to the at the amino acid at position 226, (ii) a first spacer peptide ranging from amino acid at position 227 to the amino acid at position 228 and (iii) the polypeptide P 21 WAF1 / Cip1 ranging from amino acid in position 229 to the amino acid in position 392.
  • the nucleic acid of sequence SEQ ID No. 5 consists, from the 5 'end to the 3' end, respectively in (i) the coding sequence the detectable mAG protein ranging from the nucleotide at position 1 to the nucleotide at position 678, (ii) the sequence coding for a spacer peptide ranging from the nucleotide at position 679 to the nucleotide at position 684 and (iii) the sequence coding for the p2i polypeptide WAF1 / CIP1 ranging from the nucleotide at position 685 to the nucleotide at position 1179 (cod we stop included).
  • the protein comprising the p21 [6KR] WAF1 / C ⁇ p1 polypeptide consists of the amino acid sequence protein SEQ ID N 0 4, which can be encoded by the nucleic acid of sequence SEQ ID N 0 6.
  • the protein of sequence SEQ ID NO : 4 consists, from the 2- terminal NH end to the COOH-terminal end, respectively in (i) the sequence of the detectable mAG protein ranging from the amino acid in the 1-position.
  • 6 consists, from the 5 'end to the 3' end, respectively in (i) the sequence encoding the detectable mAG protein from the nucleotide at position 1 to the nucleotide at position 678, (ii) the sequence coding for a spacer peptide ranging from the nucleotide at position 679 to the nucleotide at position 684 and (iii) the sequence coding for the polypeptide p21 [6KR] WAF1 / Cip1 ranging from the nucleotide at position 685 to the nucleotide at position 1179 (stop codon included).
  • the screening method according to the invention is characterized in that the recombinant yeast cells are transformed with a polynucleotide which comprises:
  • an open reading frame encoding (i) the fusion protein comprising the p21 polypeptide ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1) and (ii) a detectable protein, and (b) a regulatory sequence functional in yeast cells that directs the expression of said open reading frame;
  • the above polynucleotide may consist of the nucleic acid of sequence SEQ ID No. 5 or the nucleic acid of sequence SEQ ID No. 6.
  • Nucleic acids, expression vectors and transformed yeast cells preferred according to the invention.
  • Nucleic acids have been synthesized according to the invention, which, when introduced into yeast cells, cause the expression of the detectable protein p21-protein fusion protein, that is to say nucleic acids encoding the protein of the invention.
  • Each of the synthesized nucleic acids comprises a coding sequence, which is also referred to as an "open reading frame” or "ORF” which encodes the p21 fusion protein - detectable protein of interest.
  • Illustrative examples of the nucleic acids according to the invention are the nucleic acids of sequence SEQ ID N 0 5 (p21 WAF1 / Cip1 detectable -protein) and SEQ ID N 0 6 (p21 [6KR] WAF1 / Cip1 detectable -protein), including the structure has been described previously in the description.
  • Each of the nucleic acids also comprises a regulatory sequence comprising a promoter functional in yeast cells.
  • the functional promoter in yeast cells consists of a repressible promoter, that is to say a functional promoter in yeast cells and which is sensitive to the action of an inducing agent.
  • the inducing agent When the inducing agent is added to the culture medium of the yeast cells, it induces the repression or the blocking of the expression of the sequence encoding the protein of interest placed under its control.
  • This repressible promoter is advantageously chosen from the promoters CUP1, GAL1, GAL10,
  • the promoter sequence of the GAL1 gene of the yeast S. cerevisiae which can be used according to the invention may consist of that described by Johnston and Davis (Mol., C. Biol. (1984) 4: 1440-1448).
  • the promoter sequence of the S. cerevisiae yeast MET3 gene that can be used according to the invention may consist of that described by Cherest et al. (Gen. Gen. Genet (1987) 210 (2): 307-313).
  • the promoter sequence of the S. cerevisiae yeast MET25 gene that can be used according to the invention may consist of that described in Kerjan et al. (Nucleic Acids Res (1986) 14 (20): 7861-7871).
  • the promoter sequence of the S. cerevisiae yeast PHO5 gene that can be used according to the invention can consist of that described by Feldmann et al. (EMBO J. (1994) 13 (24): 5795-5809).
  • the promoter sequence of the THI4 gene of S. cerevisiae yeast, which can be used according to the invention may consist of that described by Skala et al., Yeast (1995) 14: 1421-1427.
  • the promoter sequence of the CUP1 gene of S. cerevisiae yeast which can be used according to the invention may consist of that described by Karin et al. (PNAS (1984) 81 (2): 337-341).
  • the nucleic acid or polynucleotide that encodes the detectable p21-protein fusion protein comprises the GAL1 regulatory sequence.
  • This sequence activates expression of the open reading frame encoding the p21 polypeptide fusion protein when the yeast cells are cultured in the presence of galactose.
  • this sequence represses the expression of the open reading frame encoding the fusion protein comprising the p21 polypeptide when the yeast cells are cultured in the presence of glucose.
  • the expression of the fusion protein comprising the p21 polypeptide is carried out temporarily during the screening test.
  • the expression of the protein containing p21 is specifically stopped (in an experiment known to those skilled in the art under the name of "promoter shut off") before to expose the cells to the molecules to be screened.
  • This termination of the expression is obtained by the addition in the culture medium of a molecule that can repress the activity of the promoter controlling the expression of the p21-detectable protein fusion protein, or else by eliminating the presence, in the culture medium, of an agent or a molecule required for the activation of said promoter.
  • the detectable protein p21-protein fusion protein when expressed under the control of the GAL1 gene promoter, then the expression of this promoter is repressed by adding glucose to the final concentration of 2% in the culture medium. Stopping the neosynthesis of the fusion protein comprising p21 makes it possible to measure its stability in real time, for example by determining the fluorescence of the yeast cells over time after stopping synthesis, in the wherein said fusion protein contains a detectable intrinsically fluorescent protein, such as mAG or a GFP-derived protein.
  • a detectable intrinsically fluorescent protein such as mAG or a GFP-derived protein.
  • the invention also relates to a functional expression cassette in yeast cells comprising a polynucleotide which comprises an open reading frame encoding the fusion protein comprising the p21 polypeptide and at least one detectable protein, and a regulatory sequence functional in yeast cells that directs the expression of said open reading frame.
  • a functional expression cassette in yeast cells comprising a polynucleotide which comprises an open reading frame encoding the fusion protein comprising the p21 polypeptide and at least one detectable protein, and a regulatory sequence functional in yeast cells that directs the expression of said open reading frame.
  • Such an expression cassette may be characterized in that the p21 polypeptide is chosen from the p2i WAF1 / Cip1 polypeptide and the p21 [6KR] WAF1 / Cip1 polypeptide.
  • Such an expression cassette may in particular be characterized in that the p21 polypeptide is selected from the polypeptide P2i WAF1 / C ⁇ p1 sequence SEQ ID N 0 1 and the p21 polypeptide [6KR] WAF1 / Cip1 sequence SEQ ID N 0 2.
  • Such expression cassette may in particular comprise or consist of the nucleic acid of sequence SEQ ID No. 5 according to the invention, which encodes the mAG- P 21 WAF1 / Cip1 fusion protein of sequence SEQ ID No. 3.
  • Such an expression cassette may also comprise or consist of the nucleic acid of sequence SEQ ID N 0 6 according to the invention, which encodes the fusion protein MAG- p21 [6KR] WAF1 / Cip1 sequence SEQ ID N 0 4
  • the regulatory sequence comprises a repressible promoter functional in yeast cells, and which is sensitive to the action of an inducing agent, such as a chosen promoter. among the promoters CUP1, GAU, GAUO, MET3, MET25, PHO5, and THI4 of the yeast Saccharomyces cerevisiae.
  • the recombinant yeast cells possess the nucleic acid or the polynucleotide comprising the sequence coding for the p21-proteine fusion protein detectable in a form integrated in their genome, such as this is illustrated in the examples
  • the yeast cells are transformed with the nucleic acid or the polynucleotide comprising the sequence coding for the detectable p21 protein-protein which is in a non-integrated form in the chromosomes, for example in the form of functional vectors in yeast cells and which carry at least one origin of functional replication in yeast cells.
  • yeast cells which have good membrane permeability, including good membrane permeability for the agents to be tested by the method.
  • yeast cells which have good membrane permeability for the "inducing" compounds against which said repressible promoters are sensitive.
  • yeast strains whose genome comprises one to several mutations which increase the permeability to the products to be tested, such as mutations inactivating the PDR1 and PDR3, two genes encoding transcriptional factors that in yeast control the expression of transporters inserted into the plasma membrane (Vidal et al., 1999, Nourani et al., 1997).
  • Transformation of yeast cells with exogenous DNA is preferably carried out using techniques known to those skilled in the art, in particular the technique described by Schiestl et al. (1989).
  • the constructs of the various yeast strains were made using genetic techniques (cross, sporulation dissection of asci and phenotypic analysis of spores) known and described in particular by Sherman et al. (1979) and reverse genetics techniques described in particular by Rothstein (1991).
  • the yeasts are preferably converted by plasmids constructed according to conventional molecular biology techniques, in particular according to the protocols described by Sambrook et al. (1989) and Ausubel et al. (1990-2004).
  • a first vector according to the invention is the vector pCSYAQ6-p21wt which is described in the examples, and which was used for the construction of the yeast strain CYS343.
  • a second vector according to the invention is the vector pCSYAQ6-p21 [6KR] which is described in the examples, and which was used for the construction of the yeast strain CYS344.
  • the present invention also relates to a recombinant yeast strain comprising, in an integrated form in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 polypeptide (p2i WAF1 / c ' P1 or p21 [6KR] WAF1 / Cip1 ) and at least one detectable protein, and (b) a regulatory sequence functional in yeast cells that directs the expression of said open reading frame.
  • a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 polypeptide (p2i WAF1 / c ' P1 or p21 [6KR] WAF1 / Cip1 ) and at least one detectable protein, and (b) a regulatory sequence functional in yeast cells that directs the expression of said open reading frame.
  • a recombinant yeast strain according to the invention may consist of a recombinant yeast strain comprising, in an integrated form in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 w AFi polypeptide / c i P i of sequence SEQ ID N 0 1 and at least one detectable protein, and (b) a regulatory sequence functional in yeast cells which directs the expression of said open reading frame.
  • a recombinant yeast strain according to the invention may consist of a recombinant yeast strain comprising, in a form integrated in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 [6KR polypeptide ] WAF1 / Cip1 of sequence SEQ ID N 0 2 and at least one protein detectable, and (b) a functional regulatory sequence in yeast cells that directs the expression of said open reading frame.
  • the invention relates to a recombinant yeast strain according to the above definition, which consists of the yeast strain CYS343, which expresses the fusion protein comprising the P 2i polypeptide WAF1 / CiP1 and the detectable protein mAG. , ie the fusion protein of sequence SEQ ID N 0 3.
  • the invention relates to a recombinant yeast strain according to the above definition, which consists of the yeast strain CYS344, which expresses the fusion protein comprising the p21 [6KR] WAF1 / Cip1 polypeptide and the protein detectable mAG, ie the fusion protein sequence SEQ ID N 0 4.
  • the invention also relates to a kit or kit for screening agents that modulate the activity of the proteasome, characterized in that it comprises an expression vector comprising an expression cassette encoding the fusion protein comprising the p21 polypeptide
  • the invention also relates to a kit or kit for screening agents that modulate the activity of the proteasome, characterized in that it comprises recombinant yeast cells comprising, in a form inserted in their genome, an expression cassette. encoding the fusion protein comprising the p21 polypeptide (P21 WAF1 / C
  • the kit or kit above comprises recombinant yeast cells of the yeast strain CYS343 or recombinant yeast cells of the yeast strain CYS344.
  • the screening method according to the invention makes it possible to visualize the activity of the proteasome vis-à-vis a human target protein in yeast cells, and more precisely with respect to a target protein p21, c either the target protein consisting of a fusion protein comprising the human p2i protein WAF1 / C ⁇ p1 fused to a detectable protein, or the mutated protein p21 [6KR] WAF1 / Cip1 fused to a detectable protein.
  • This method is particularly advantageous for screening molecules or agents capable of acting on the pathologies associated with a excessive or insufficient degradation of cellular proteins, such as certain cancers, inflammatory and immune syndromes, fungal, bacterial and viral infections or certain diseases of the central nervous system.
  • the main advantages of the screening method of the invention include the following: the simplicity of implementation: the activity of the proteasome as it exists in the cells is simply visualized thanks to the controlled expression of the wild or human factor mutant p 2 ⁇
  • WAFI / c ⁇ pi j are expressed as fusion hybrid protein with an intrinsically fluorescent protein, such as GFP or mAG, proteasome activity with respect to the p2i factor WAF1 / c ' P1 or p21 [6KR] WAF1 / Cip1 is directly measured by the quantification of the fluorescence emitted by the hybrid protein, likewise when the factor p 2i WAF1 / CiP1 or factor p21 [6KR] WAF1 / Cip1 is expressed as a fusion protein with a protein such as luciferase, proteasome activity against p2i factor WAF1 / Cip1 or factor p21 [6KR] WAF1 / Cip1 is directly measured by the quantification of the luminescence emitted by the hybrid protein in the presence of a substrate such as fluorescein, the adequacy with a therapeutic context: the activity of the proteasome is monitored according to a functional test carried out in whole cells.
  • the screening method according to the invention is specific because it is based on the expression, in an organism heterologous to the human organism, of the human protein p21.
  • the molecules selected by the screening method of the invention will be specific for the activity of the proteasome, and therefore will not be selected molecules because, for example, of their ability to interfere with one of the many signaling pathways inducing the degradation of p2i factor WAF1 / c ' P1 in human cells.
  • the degradation of P 21 WAF1 / Ci e 1 or p21 [6KR] WAF1 / Cip1 by the proteasome is induced by a completely artificial metabolic pathway and fully reproducible, such as, for example, the addition of glucose to block the activity of the GAL1 promoter, when p21 w AF1 / c i P i or P 21 [6KR] WAF1 / Cip1 is expressed under the control of this promoter.
  • the use of the p21 [6KR] WAF1 / CiP1 protein, of which the 6 lysine residues of the native p2i protein WAF1 / C ⁇ p1 were substituted with arginine residues, suppressing the internal sites of ubiquitination, further ensures that the molecules selected according to The invention does not interfere with the other components of the ubiquitin-proteasome pathway such as ubiquitin ligases, ubiquitin conjugation enzymes and ubiquitin activating enzyme.
  • yeast is a fast-growing and high-yielding microorganism.
  • the screening method of the invention is preferably carried out by culturing the yeast cells in a complete culture medium, in which the growth of the yeast cells is particularly rapid and the yield is particularly high, which makes it possible to obtain a large amount of recombinant yeast cells for the simultaneous realization of a large number of screening tests.
  • yeast is a microorganism whose culture, storage and characterization are inexpensive
  • the automation of the screening method of the invention the yeast is a microorganism whose culture, carried out in a low volume of medium, at low temperature, in a conventional atmosphere, in the air, is particularly suitable for automation (robotization) screening methods.
  • the screening methods according to the invention are particularly useful for selecting and characterizing active agents such as anti-cancer agents, anti-inflammatory agents, anti-viral agents, agents against fungal infections, bacterial agents or agents against diseases of the central nervous system. .
  • FIG. 1 represents the maps of the recombinant plasmids encoding a detectable p21-protein fusion protein.
  • Figure 1A is a schematic of plasmid pCSYAQ6-p21 comprising an expression cassette encoding the mAG-p21 fusion protein.
  • Figure 1B is a schematic of plasmid pCSYAQ6-p21-6KR comprising an expression cassette encoding the mAG-p21 [6KR] fusion protein.
  • Figure 2 shows the nucleotide sequence and amino acid sequence of the p21 [6KR] WAF1 / Cip1 protein.
  • Figure 3 depicts immunoblotting ("Western Blotting") images illustrating the degradation of fusion proteins comprising p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 fused with mAG, in the presence or absence of a proteasome inhibitory agent, compound MG132.
  • the results are illustrated for the following recombinant yeast strains: CYS343 ( Figure 2A) and CYS344 ( Figure 2B).
  • Figure 4 illustrates the results of epifluorescence microscopy analysis, degradation of mAG-p21 [6KR] WAF1 / Cip1 fusion protein in yeast cells of recombinant strain CYS344.
  • Figure 3A illustrates the epifluorescence results obtained with cells of the CYS344 strain cultured in the presence of glucose and at time 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after stopping. the induction of the expression of the protein fusion.
  • FIG. 3B illustrates the epifluorescence results obtained with cells of the CYS344 strain cultured in the presence of glucose and at the time of 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after stopping induction of expression of the fusion protein.
  • FIG. 5 illustrates the quantification, by flow cytometry of the yeast cells of each of the strains CYS343 and CYS344, of the fluorescence signal emitted by these cells during the culture time, respectively (i) during the induction of the production. of the fusion protein in the presence of galactose and (ii) in the presence of glucose after stopping the production of the fusion protein.
  • the yeast cells were cultured in the presence or in the absence of the proteasome inhibitor MG 132.
  • FIG. 4A illustrates flow cytometry quantification (FACS) of the fluorescence emitted by the mAG-p21 fusion protein WAF1 / Cip1 produced by strain CYS343, in the presence and absence of the MG132 proteasome inhibitor.
  • FIG. 4B illustrates flow cytometry quantification (FACS) of the fluorescence emitted by the mAG-p21 [6KR] WAF1 / Cip1 fusion protein produced by the CYS344 strain, in the presence and absence of the MG132 proteasome inhibitor.
  • FACS flow cytometry quantification
  • the sequence of the p2i protein Waf1 / C ⁇ p1 is that deposited in the EMBL databank, accession number BC001935.1
  • the sequence of the p21 [6KR] Waf1 / Cip1 protein is that deposited in the EMBL databank, BC001935.1 accession number whose
  • Galaxeidae encoding the fluorescent protein hereinafter referred to as mAG is that deposited at GenBankTM / EBI Data Bank with accession number AB108447.
  • the sequence of the plasmid pRS306 is that deposited in the EMBL database, identifier "PRS306" accession number U03438.
  • the promoter sequence of the S. cerevisiae yeast GAL1 gene used in the following descriptions is fully included in the sequence deposited in the EMBL databank, identifier "SCGAL10", accession number K02115.
  • the promoter sequence of the GAL1 gene of the yeast S. cerevisiae which can be used according to the invention may consist of that described by Johnston and Davis (Mol., C. Biol., (1984) 4 (8): 1440-1448). ).
  • the promoter sequence of the S. cerevisiae yeast MET3 gene that can be used according to the invention may consist of that described by Cherest et al. (Gen. Gen. Genet (1987) 210 (2): 307-313).
  • the promoter sequence of the S. cerevisiae yeast MET25 gene that can be used according to the invention may consist of that described in Kerjan et al. (Nucleic Acids Res (1986) 14 (20): 7861-7871).
  • S. cerevisiae which may be used according to the invention may consist of that described by Feldmann et al. (EMBO J. (1994) 13 (24): 5795-5809).
  • the promoter sequence of the THI4 gene of yeast S. cerevisiae which can be used according to the invention may consist of that described by Skala et al., Yeast (1995) 14: 1421-1427.
  • the promoter sequence of the CUP1 gene of S. cerevisiae yeast which can be used according to the invention may consist of that described by Karin et al. (PNAS (1984) 81 (2): 337-341).
  • the following plasmids allow the expression in yeast Saccharomyces cerevisiae of derivatives of the human protein p21 w AFi / c i P i or of
  • a fragment of 614 base pairs (bp) corresponding to the promoter of the GAL1 gene (pGAL1) of the yeast Saccharomyces cerevisiae was amplified by Polymerase Chain Reaction (PCR) from genomic DNA of a wild strain of S. cerevisiae X2180.
  • oligonucleotides (i) "pGAL1 (Asp) Forw” sequence ⁇ '-GCTGGGTACCTTAATAATCATATTACATGGCATTA-S '[SEQ ID N 0 10], and (ii) "pGAL1 (Xho) Rev” sequence ⁇ -CGACCTCGAGTATAGTTTTTTCTCCTTGACGTTAA-S 'SEQ ID NO : 11].
  • the fragment obtained was digested with the restriction enzymes Asp7 'and XhoI and inserted into the shuttle plasmid S.cerevisiae-E.coli pRS306 previously digested with the enzymes ⁇ sp7181 and Xho1, producing the vector pRS306-pGAL1.
  • a 340 base pair (bp) fragment corresponding to the terminator of the ADH1 gene (tADH1) of the yeast Saccharomyces cerevisiae was amplified by Polymerase Chain Reaction (PCR) from genomic DNA of a wild strain of S. cerevisiae X2180. -1A, using the following oligonucleotides: (i) "TermADH1 (NotIBstXI) 5 '" of sequence 5'-
  • the gene coding for the p2i protein WAF1 / C ⁇ p1 was purified from the plasmid pPCR-Script-p21WAF1 / Cip1 [wt] by digestion with the restriction enzymes EcoR ⁇ and ⁇ / ofl.
  • the fragment was cloned into the plasmid pCSYAQ ⁇ prepared by digestion with restriction enzymes EcoR1 and ⁇ / ofl.
  • the product vector was named pCSYAQ6-p21 [wt], which is shown in Figure 1 A.
  • the gene coding for the p21 [6KR] WAF1 / Cip1 protein was purified from the plasmid pPCR-Script-p21WAF1 / Cip1 [6KR] by enzyme digestion. of restriction EcoR ⁇ and ⁇ / ofl.
  • the fragment was cloned into plasmid pCSYAQ6 prepared by digestion with restriction enzymes EcoR1 and ⁇ / ofl.
  • the product vector was named pCSYAQ ⁇ -p21 [6KR], the scheme of which is shown in Figure 1B.
  • the plasmid pCSYAQ6-p21 [wt]. described above was linearized using the Sfu1 enzyme.
  • the Sfu1 enzyme cleaves plasmid pCSYAQ6-p211 [wt] at a unique position located in the URA3 gene sequence.
  • the linearized plasmid pCSYAQ6-p21 [wt] integrates with the URA3 locus located on the left arm of chromosome 5 of the yeast Saccharomyces cerevisiae.
  • the plasmid pCSYAQ6-p21 [6KR] described above was linearized using the enzyme SM.
  • the Sfu1 enzyme cleaves plasmid pCSYAQ6-p21 [6KR] at a unique position localized in the URA3 gene sequence.
  • the linearized plasmid pCSYAQ6-p21 [6KR] integrates with the URA3 locus located on the left arm of chromosome 5 of the yeast Saccharomyces cerevisiae.
  • Yeast strains CYS343 and CYS344 were obtained as described above, according to the general protocol described by Rohthstein (1991). The respective genotypes of the yeast strains according to the invention are shown in Table 1 below.
  • Table 1 Genotype of Saccharomyces cerevisiae yeast strains constructed for the purposes of the present invention.
  • EXAMPLE 2 Nucleotide and Protein Sequences of the Mutant Form of the Human Factor p21 r6KR1 WAF1 / Cip1 Expressed in Yeast Cells
  • amino acid sequence coding for the fusion protein comprising the p21 [6KR] WAF1 / C ⁇ p1 protein consists of the polypeptide of sequence SEQ ID N 0 4 which may be encoded by the polynucleotide of sequence SEQ ID N 0 6, of which Codon identity has been specifically adapted to optimal expression in yeast cells.
  • Example 3 Degradation cellular proteasome human factors P21 WAF1 / CJ P 1 and r6KR1 p21 WAF1 / Cip1 expressed in yeast (immunoblot results) The degradation, by the proteasome of the recombinant yeast cells of strains CYS343 and CYS344, of fusion proteins comprising p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 fused with mAG, was followed by an immunoblot technique , in the presence or absence of a proteasome inhibitory agent, the compound Mg132.
  • a proteasome inhibitory agent the compound Mg132.
  • the cells were cultured in a minimum medium in the presence of galactose as carbon source for 120 minutes.
  • Figure 3 shows the results obtained with the recombinant yeast strain CYS344.
  • the total proteins are prepared before the addition of galactose (0), 60 and 120 minutes after the addition of galactose (+ galactose 0, 60, 120) and 30, 60 and 120 minutes (+ glucose, 30, 60, 120 ) after the addition of glucose.
  • Figure 3B shows the results obtained with the recombinant yeast strain CYS343.
  • the total proteins are prepared before the addition of galactose (0), 60 and 120 minutes after the addition of galactose (+ galactose 0, 60, 120) and 30, 60, 120 and 150 minutes (+ glucose, 30, 60 , 120, 150) after the addition of glucose.
  • MG132 The presence of MG132 in the culture is indicated "+ MG132" in FIG. 3.
  • a control of the quantity of proteins deposited in each well is carried out by analyzing the same proteins using antibodies recognizing Lysyl-tRNA-synthase. yeast (indicated
  • FIG. 3A illustrates the degradation of the mAG-p21 [6KR] WAF1 / Cip1 fusion protein in which the 6 Lysine residues of the p2i factor WAF1 / C ⁇ p1 have been replaced by Arginine residues.
  • FIG. 3B illustrate, by a Western blotting biochemical analysis, the degradation of the mAG-p21 [wt] WAF1 / Cip1 fusion protein in yeast cells.
  • FIG. 3A and FIG. 3B it is observed that the culture of the cells in the presence of glucose (indicated “+ Glucose” in FIG. 3), since the production of the fusion protein is no longer induced, makes it possible to visualize degradation of the fusion protein by the proteasome.
  • FIG. 3A and FIG. 3B it is observed that the culture of the cells in the presence of glucose and of a proteasome inhibitor, compound MG132 (indicated “+ Glucose + 50 ⁇ M MG132" in FIG.
  • Example 4 illustrates the results of an epifluorescence microscope analysis, the degradation of the mAG-p21 [6KR] WAF1 / C ⁇ p1 fusion protein in yeast cells of the recombinant strain CYS344.
  • the yeast cells of strain CYS344 were cultured in a minimum medium in the presence of galactose as carbon source for 120 minutes.
  • the cells are observed under an epifluorescence microscope (Nikon Eclipse fluorescence microscope equipped with an Omega filter
  • FIG. 4A illustrates the epifluorescence results obtained with the cells of the CYS344 strain cultured in the presence of glucose and at the time 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after the stopping of induction of expression of the fusion protein.
  • FIG. 4B illustrates the epifluorescence results obtained with the cells of the CYS344 strain cultured in the presence of glucose and at the time 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after stopping induction of expression of the fusion protein.
  • the left column represents the fluorescence microscopy images making it possible to locate in the cells the expression of the mAG-p21 [6KR] WAF1 / Cip1 fusion protein.
  • the right column represents a visualization of the same cells in visible light.
  • FIG. 4A there is a progressive reduction of the fluorescence signal with the duration of culture, as and when the progression of degradation of the fusion protein by the proteasome (left column), while the cell density in the observed field is identical (right column).
  • FIG. 4B a maintenance of the intensity of the fluorescence signal is observed with the culture time (left column), whereas the cell density in the observed field is identical (right column), which illustrates the blocking degradation activity of the fusion protein by the proteasome, a blockade that is induced by the MG132 inhibitor.
  • Example 5 illustrates a quantification, by flow cytometry of the yeast cells of each of the strains CYS343 and CYS344, of the fluorescence signal emitted by these cells, during the culture time, respectively (i) during the induction of the production of the fusion protein in the presence of galactose and (ii) in the presence of glucose after stopping the production of the fusion protein.
  • the yeast cells were cultured in the presence or absence of the MG 132 proteasome inhibitor.
  • Figure 5A illustrates flow cytometric quantification (FACS) of the fluorescence emitted by the mAG-p2i fusion protein WAF1 / c ' P1 produced by strain CYS343, in the presence and absence of the proteasome inhibitor MG132.
  • FACS flow cytometric quantification
  • FIG. 5B illustrates flow cytometric quantification (FACS) of the fluorescence emitted by the mAG-p21 [6KR] WAF1 / Cip1 fusion protein produced by the CYS344 strain, in the presence and absence of the proteasome inhibitor MG 132. .
  • FACS flow cytometric quantification
  • the fluorescence emitted by the cells was quantified using a FacsCalibur flow cytometer (Beckton-Dickinson), just before the addition of galactose (10), 1 and 2 hours after the addition of galactose (11 and 12) and 1, 2 and 3 hours (D1, D2 and D3) after the addition of glucose.
  • the presence of Mg132 in the culture is indicated "+ MG132". Fluorescence is reported in arbitrary units
  • Figures 5A and 5B show that the fusion protein is actively produced by the yeast strains CYS343 and CYS344, when the cells are cultured in the presence of galactose (time lo, M h, I2h / D ⁇ ).
  • FIGS. 5A and 5B show that the fusion protein, which has accumulated in the cells in the presence of galactose, is progressively degraded during the culture time in the absence of galactose and in the presence of glucose, in the presence of glucose. absence of compound MG132 (time D1 h, D2h, D3h).
  • FIGS. 5A and 5B show that, in the presence of the proteasome inhibitor MG132, the degradation of the fusion protein is strongly inhibited (Time D1 h, D2h, D3h).
  • EXAMPLE 6 Localization, in Yeast Cells, of the Fusion Proteins mAG-p2ir6KR1 WAF1 / Cip1
  • Example 6 the localization, in the yeast cells of strain CYS344, of the protein mAG-p21 [6KR] WAF1 / Cip1 was determined .
  • Yeast cells of strain CYS344 comprising a polynucleotide allowing the expression of the mAG-p21 [6KR] WAF1 / Cip1 fusion protein under the control of the GAL1 promoter were cultured in the presence of 2% galactose for 2 hours and were then observed by fluorescence microscopy.
  • the position of the nucleus was revealed by using a specific color indicator of the nucleus, the Hoescht 333-42. Visible light microscopy and fluorescence microscopy were taken to stain the DNA of the cell nuclei with the Hoechst 333-42 stain (not shown). Visible light microscopy and fluorescence microscopy (not shown) were superimposed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The invention relates to an in cellulo method for screening a proteasome activity modulating agent consisting a) in bringing a testable candidate agent into contact with recombinant yeast cells expressing in the core thereof a fusion protein comprising (i) a p21 polypeptide selected from p21<SUP>WAF1/Cip1 </SUP>and p21[6KR]<SUP>WAF1/Cip1</SUP> polypeptides and (ii) at least one type of detectable protein, b) in quantifying said first detectable protein in the yeast cells at the end of at least one predetermined time interval after bringing the candidate agent into contact with the yeast cells, and c) in comparing the value obtained at the stage (b) with a control value obtained when the stage (a) is performed in the absence of the candidate agent.

Description

Procédé de criblage d'agents modulant l'activité du protéasome et moyens destinés à la mise en œuvre dudit procédé Method for screening agents that modulate proteasome activity and means for implementing said method
DOMAINE DE L'INVENTIONFIELD OF THE INVENTION
La présente invention se rapporte au domaine du criblage d'agents biologiquement actifs capables de moduler l'activité protéolytique du protéasome, en particulier d'agents d'intérêt thérapeutique destinés à prévenir ou traiter des cancers, des syndromes inflammatoires, des infections bactériennes ou fongiques, les cachexies musculaires ou des maladies neuro-dégénératives.The present invention relates to the field of the screening of biologically active agents capable of modulating the proteolytic activity of the proteasome, in particular of agents of therapeutic interest intended to prevent or treat cancers, inflammatory syndromes, bacterial or fungal infections , muscle wasting or neurodegenerative diseases.
ART ANTERIEURPRIOR ART
La voie ubiquitine protéasome Au sein des cellules humaines, la concentration de toute protéine résulte de l'équilibre entre sa vitesse de synthèse et sa vitesse de dégradation. La voie ubiquitine-protéasome constitue le mécanisme principal de dégradation des protéines chez les cellules humaines. La dégradation des protéines par la voie ubiquitine-protéasome est un processus biologique très précisément régulé et contrôlé dans le temps. Ce processus comprend dans la grande majorité des cas, deux grandes étapes successives : (i) le marquage des protéines devant être dégradées par l'ajout covalent d'un polymère ubiquitine et (ii) la destruction par le protéasome des protéines ainsi étiquetées, qui vont être clivées en petits peptides inactifs (Glickman and Ciechanover, 2002). On connaît un certains nombre de protéines qui sont détruites par le protéasome sans être modifiées par l'ajout d'un polymère d'ubiquitine. De même, des séquences peptidiques ont été identifiées qui conduisent à la dégradation par le protéasome des protéines qui le contiennent, (comme le motif peptidique FAT10, Hipp et al., 2005) sans intervention de l'ubiquitine.The ubiquitin proteasome pathway Within human cells, the concentration of any protein results from the balance between its rate of synthesis and its rate of degradation. The ubiquitin-proteasome pathway is the primary mechanism of protein degradation in human cells. The degradation of proteins by the ubiquitin-proteasome pathway is a biological process that is very precisely regulated and controlled over time. In the vast majority of cases, this process involves two major successive steps: (i) the labeling of the proteins to be degraded by the covalent addition of a ubiquitin polymer and (ii) the destruction by the proteasome of the proteins thus labeled, which will be cleaved into small inactive peptides (Glickman and Ciechanover, 2002). A number of proteins are known which are destroyed by the proteasome without being modified by the addition of a ubiquitin polymer. Similarly, peptide sequences have been identified that lead to proteasome degradation of the proteins that contain it (such as the peptide motif FAT10, Hipp et al., 2005) without ubiquitin intervention.
La voie ubiquitine-protéasome joue un rôle fondamental dans un très grand nombre de processus biologiques. En effet, les mécanismes de dégradation des protéines par le protéasome sont impliqués dans des mécanismes cellulaires importants tels que la réparation de l'ADN, le contrôle de l'expression des gènes, la régulation de la progression du cycle cellulaire, le contrôle de la qualité des protéines néosynthétisées, l'apoptose ou la réponse immunitaire (Glickman and Ciechanover, 2002).The ubiquitin-proteasome pathway plays a fundamental role in a very large number of biological processes. Indeed, the mechanisms of degradation of proteins by the proteasome are involved in important cellular mechanisms such as the repair of DNA, the control of gene expression, regulation of cell cycle progression, quality control of neosynthesized proteins, apoptosis or immune response (Glickman and Ciechanover, 2002).
Des dysfonctionnements de la voie ubiquitine-protéasome provoquant la dégradation anormale de protéines régulatrices sont connus pour être à l'origine de, ou étroitement impliqués dans, plusieurs maladies génétiques et de nombreuses pathologies comme les cancersMalfunctions of the ubiquitin-proteasome pathway causing the abnormal degradation of regulatory proteins are known to be at the origin of, or closely involved in, several genetic diseases and many pathologies such as cancers
(colorectal, lymphomes...), les syndromes inflammatoires, les maladies neurodégénératives comme la maladie de Parkinson ou l'atrophie musculaire (cachexie). Le détournement de la voie ubiquitine- protéasome par des virus et des bactéries pathogènes (induisant la dégradation pathologique de protéines humaines) est à la base de plusieurs stratégies d'infection.(colorectal, lymphoma ...), inflammatory syndromes, neurodegenerative diseases such as Parkinson's disease or muscular atrophy (cachexia). The diversion of the ubiquitin-proteasome pathway by viruses and pathogenic bacteria (inducing the pathological degradation of human proteins) is at the root of several infection strategies.
Le domaine ubiquitine-protéasome offre donc un potentiel important pour le développement de nouveaux médicaments.The ubiquitin-proteasome domain therefore offers significant potential for the development of new drugs.
Le protéasomeThe proteasome
Le protéasome présent dans les cellules humaines est un complexe multi-protéique de très grande taille (> 2,4 MDa) qui est retrouvé dans le cytoplasme et le noyau des cellules humaines. Les purifications biochimiques du protéasome présent dans les cellules humaines ainsi que les purifications des protéasomes réalisés à partir d'autres espèces d'organismes eucaryotes, y compris les levures, ont montré que dans tous les organismes eucaryotes, les formes purifiées du protéasome comprennent 2 grandes sous-unités, un cœur protéolytique appelé protéasome 2OS et un complexe régulateur 19S qui se lie à chacune des deux extrémités du protéasome 2OS (Coux et al., 1996 ; Glickman et Coux, 2001). Le protéasome 2OS est une particule en forme de cylindre creux, composée de 28 sous-unités, distribuées en 4 anneaux heptamériques. Les activités peptidases sont présentes à la surface interne du cylindre et s'influencent de manière allostérique. Trois activités protéolytiques (« trypsin-, chymotrypsin- and caspase-like ») ont été associées au protéasome 2OS et concourent à la destruction des protéines en peptides inactifs de 3 à 20 acides aminés. Outre le protéasome 2OS, le protéasome 26S comprend le complexe régulateur 19S. Ce complexe régulateur 19S de 0,7 MDa comprend 20 sous-unités environ, et peut être dissocié en 2 grands sous domaines, un « couvercle » requis pour la reconnaissance des protéines ubiquitinées et une base qui assure la liaison avec le protéasome 2OS. Cette base comprend 6 ATPases assemblées sous forme d'anneaux, l'hydrolyse de l'ATP est en effet nécessaire, non seulement pour la dégradation active des protéines ubiquitinées, mais également pour les étapes de dépliement et de linéarisation de ces protéines, étapes qui précèdent la dégradation protéolytique de ces protéines. Des sous unités de la coiffe régulatrices sont impliquées dans la reconnaissance des protéines multi- ubiquitinées alors que d'autres participent aux étapes de déubiquitiination nécessaires au dépliement des protéines devant être dégradées.The proteasome present in human cells is a very large multi-protein complex (> 2.4 MDa) found in the cytoplasm and nucleus of human cells. The biochemical purifications of the proteasome present in human cells as well as the purifications of proteasomes made from other species of eukaryotic organisms, including yeasts, have shown that in all eukaryotic organisms, the purified forms of the proteasome include 2 major subunits, a proteolytic core called proteasome 2OS, and a 19S regulatory complex that binds to both ends of the 2OS proteasome (Coux et al., 1996, Glickman and Coux, 2001). The 2OS proteasome is a hollow cylinder particle, composed of 28 subunits, distributed in 4 heptameric rings. The peptidase activities are present on the inner surface of the cylinder and influence allosterically. Three proteolytic activities ("trypsin-, chymotrypsin- and caspase-like") have been associated with the 2OS proteasome and contribute to the destruction of proteins as inactive peptides of 3 to 20 amino acids. In addition to the 2OS proteasome, the 26S proteasome includes the regulatory complex 19S. This 19S regulator complex of 0.7 MDa comprises about 20 subunits, and can be dissociated into 2 major subdomains, a "lid" required for ubiquitinated protein recognition, and a base that binds to the 2OS proteasome. This base comprises 6 assembled ATPases in the form of rings, the hydrolysis of ATP is indeed necessary, not only for the active degradation of the ubiquitinated proteins, but also for the unfolding and linearization steps of these proteins, steps which precede the proteolytic degradation of these proteins. Regulatory cap subunits are involved in the recognition of multi-ubiquitinated proteins while others participate in the de-ubiquitination steps necessary to unfold the proteins to be degraded.
Des études plus récentes, employant notamment des techniques d'immuno-purification, ont montré que le protéasome cellulaire comprend de nombreuses protéines associées étroitement au protéasome 2OS et 19S suggérant fortement que la complexité structurale du protéasome cellulaire est supérieure à celle du protéasome 26S. De telles protéines sont par exemple les protéines humaines PA200 (dont l'homologue chez la levure est la protéine BImIO de 240 kDa (Schmidt et al., 2005), ou les activateurs PA28αβ ou PA28αγ (Wojcik et al. ,1998; Ustrell et al. 2002). Les rôles fonctionnels de ces protéines ne sont pas encore entièrement compris, mais ils pourraient s'agir de protéines qui assurent le transfert des protéines ubiquitinées vers le protéasome, de protéines régulant la reconnaissance des protéines ubiquitinées par le protéasome ou d'enzymes comme l'enzyme Hul5 (Leggett et al., 2002), qui sont impliquées dans l'allongement des chaînes de polyubiquitine et serviraient à accroître la vitesse de transfert des protéines vers les sites peptidasiques. On estime que le protéasome cellulaire est responsable de la dégradation de plus de 80% des protéines cellulaires.More recent studies, including immuno-purification techniques, have shown that the cellular proteasome comprises many proteins closely associated with the 2OS and 19S proteasome, strongly suggesting that the structural complexity of the cellular proteasome is greater than that of the 26S proteasome. Such proteins are, for example, PA200 human proteins (whose homologue in yeast is the 240 kDa BImIO protein (Schmidt et al., 2005), or the PA28αβ or PA28αγ activators (Wojcik et al., 1998; Ustrell et al. The functional roles of these proteins are not yet fully understood, but they could be proteins that transfer ubiquitinated proteins to the proteasome, proteins that regulate ubiquitinated protein recognition by the proteasome, or enzymes such as the Hul5 enzyme (Leggett et al., 2002), which are involved in the extension of polyubiquitin chains and serve to increase the rate of transfer of proteins to the peptidase sites. degradation of more than 80% of cellular proteins.
Protéasome et cancerProteome and cancer
II a été récemment mis en évidence que la dégradation des protéines par le protéasome constitue un procédé biologique qui est fondamental pour la survie des cellules cancéreuses. En effet, de nombreuses études ont clairement démontré que de nombreux types de cellules malignes sont plus sensibles aux inhibiteurs du protéasome que les cellules normales. Des essais menés avec des inhibiteurs du protéasome, réalisés soit in vitro, soit in vivo, sur différents modèles de cellules cancéreuses ont démontré que cette classe de molécules possède des propriétés particulières qui en font des candidats attractifs pour développer de nouvelles armes thérapeutiques anti-cancer. Ultimement, l'inhibition de l'activité du protéasome induit l'apoptose, accroît la sensibilité des cellules cancéreuses aux chimiothérapies classiques ainsi qu'aux radiothérapies. De la même façon, il a été observé que l'inhibition du protéasome diminue sensiblement la résistance aux chimiothérapies et aux radiothérapies (Adams, 2004 ; Burger et Seth, 2004).It has recently been demonstrated that protein degradation by the proteasome is a biological process that is fundamental to the survival of cancer cells. Indeed, Numerous studies have clearly shown that many types of malignant cells are more sensitive to proteasome inhibitors than normal cells. Tests conducted with proteasome inhibitors, carried out either in vitro or in vivo, on different models of cancer cells have demonstrated that this class of molecules has particular properties that make them attractive candidates for developing new anti-cancer therapeutic weapons. . Ultimately, inhibition of proteasome activity induces apoptosis, increases the sensitivity of cancer cells to conventional chemotherapy and radiotherapy. Similarly, it has been observed that inhibition of the proteasome substantially reduces resistance to chemotherapy and radiotherapy (Adams 2004, Burger and Seth 2004).
L'inhibition de la dégradation de régulateurs important du cycle et de l'homéostasie cellulaire tels que les protéines p21 , p27 et p53 a été impliquée en tant que mécanisme par lequel l'inhibition du protéasome affecte la croissance et la survie des cellules tumorales. De façon importante, il a été également montré que l'inhibition du protéasome bloque l'activation du régulateur cellulaire NF-κB dont l'activation aberrante est une caractéristique de plusieurs cancers du sang. La caractérisation d'inhibiteurs du protéasome a montré que ces derniers induisaient l'apoptose (Pei et al., 2003), tuaient les cellules tumorales (Beverly et al. 1999), augmentaient la sensibilité aux radiations (Adams et Anderson, 2001 ) et permettaient de surmonter la résistance aux drogues (Hideshima et al., 2001 ). De plus, il a été démontré que l'inhibition du protéasome bloque les signaux anti-apoptotiques qui sont déclenchés lors de radiothérapies ou de chimiothérapies.Inhibition of regulatory degradation of important cycle and cellular homeostasis such as p21, p27 and p53 proteins has been implicated as a mechanism by which proteasome inhibition affects the growth and survival of tumor cells. Importantly, it has also been shown that the inhibition of the proteasome blocks the activation of the NF-κB cellular regulator whose aberrant activation is a characteristic of several blood cancers. Characterization of proteasome inhibitors has shown that they induce apoptosis (Pei et al., 2003), kill tumor cells (Beverly et al., 1999), increase sensitivity to radiation (Adams and Anderson, 2001), and overcome drug resistance (Hideshima et al., 2001). In addition, proteasome inhibition has been shown to block anti-apoptotic signals that are triggered by radiotherapy or chemotherapy.
Il faut également souligner que la sensibilité spécifique des cellules malignes vis-à-vis des inhibiteurs du protéasome pourrait résulter de leur prolifération rapide qui est associée à des dysfonctionnement d'un ou plusieurs mécanismes de « check-point ». Ces altérations ont pour conséquence l'accumulation rapide chez les cellules malignes d'un grand nombre de protéines défectueuses, et ceci de manière beaucoup plus marquée que chez des cellules normales. Cette accumulation rapide et importante de protéines mutantes, et/ou mal repliées est très certainement susceptible d'accroître de manière très significative la dépendance des cellules malignes vis-à-vis d'un protéasome actif et par conséquent, les rendre très sensibles aux inhibiteurs du protéasome (Adams, 2004). Les inhibiteurs du protéasome peuvent être synthétiques ou naturels. 5 grandes familles d'inhibiteurs sont décrites à ce jour : les aldéhydes peptidiques, les peptides vinyl sulfones, les dérivés boroniques de peptides, les dérivés epoxicétones de peptides et les β- lactones. A ce jour cependant, seuls deux composés ont été développés jusqu'aux stades cliniques suite à la démonstration de leur propriété anti- néoplastiques ; le bortezomib (anciennement PS-341 ) développé par la société Millennium (Cambridge, MA, U.S.A.) et le composé NPI-0052 développé par la société Nereus (San Diego, CA, U.S.A.)It should also be noted that the specific sensitivity of malignant cells to proteasome inhibitors may result from their rapid proliferation which is associated with dysfunction of one or more "checkpoint" mechanisms. These alterations result in the rapid accumulation in malignant cells of a large number of defective proteins, and this much more markedly than in normal cells. This rapid and important accumulation of mutant proteins, and / or misfolding is most likely to significantly increase the dependence of malignant cells on an active proteasome and, therefore, make them very sensitive to proteasome inhibitors (Adams, 2004). Proteasome inhibitors can be synthetic or natural. Five major families of inhibitors have been described to date: peptide aldehydes, vinyl sulfone peptides, boronic peptide derivatives, peptide epoxicetone derivatives and β-lactones. To date, however, only two compounds have been developed to clinical stages following the demonstration of their anti-neoplastic properties; bortezomib (formerly PS-341) developed by the company Millennium (Cambridge, MA, USA) and the compound NPI-0052 developed by the company Nereus (San Diego, CA, USA)
Le Bortezomib, un dérivé boronique d'un dipeptide, a démontré une réelle efficacité contre un large spectre de lignées cancéreuses, incluant des lignées de cancer du colon, des lignées malignes issues du système nerveux central, des lignées de cancer de la prostate et du sein. Le Bortezomib est le premier inhibiteur du protéasome à avoir été testé en essais cliniques. Les résultats positifs des essais de phase II et de phase III réalisés chez des patients atteints de myélomes et dont les deux premières thérapies avaient échouées, ont démontré l'efficacité du bortezomib et ont conduit à l'approbation de la mise sur le marché du bortezomib par le FDA en 2003 pour le traitement des myélomes réfractaires aux thérapies classiques. Le Bortezomib est commercialisé sous le nom de Velcade®.Bortezomib, a boronic derivative of a dipeptide, has been shown to be effective against a broad spectrum of cancer lines, including colon cancer lines, central nervous system malignancies, prostate cancer lines, and prostate cancer. breast. Bortezomib is the first proteasome inhibitor to have been tested in clinical trials. The positive results of phase II and phase III trials in patients with myeloma who failed the first two therapies, demonstrated the efficacy of bortezomib and led to the approval of the marketing of bortezomib by the FDA in 2003 for the treatment of myeloma refractory to conventional therapies. Bortezomib is marketed under the name of Velcade ® .
Le Bortezomib inhibe avec une grande spécificité une des 3 activités protéolytiques du protéasome 2OS, (l'activité « chymotrypsin- like »). Son action induit l'apoptose et ses effets semblent s'exercer aussi bien par l'activation de voies pro-apoptotiques que par la répression de voies anti-apoptotiques (Hideshima et al., 2001 ; Beverly et al., 1999).Bortezomib inhibits with great specificity one of the 3 proteolytic activities of the proteasome 2OS, ("chymotrypsin-like" activity). Its action induces apoptosis and its effects seem to be exerted as well by the activation of pro-apoptotic pathways as by the suppression of anti-apoptotic pathways (Hideshima et al., 2001, Beverly et al., 1999).
L'apparition de cellules résistantes au Velcade® ainsi que la toxicité élevée de ce composé qui limite son application fait qu'il existe un besoin pour le développement de nouveaux inhibiteurs du protéasome. En particulier, les inhibiteurs du protéasome qui sont connus sont des inhibiteurs catalytiques du protéasome ce qui peut expliquer leur toxicité et il serait intéressant de pouvoir développer des inhibiteurs non catalytiques du protéasome. De tels inhibiteurs non catalytiques pourraient être actifs en inhibant l'activité des complexes régulateurs 19S et des protéines associées qui sont nécessaires au fonctionnement du protéasome cellulaire (ie, tel qu'il existe dans les cellules). Il est important de noter que les inhibiteurs qui sont connus et développés à ce jour ont été identifiés grâce à des tests biochimiques in vitro qui rapportent l'activité protéolytique du protéasome purifié vis-à-vis de substrats non naturels tels que des peptides qui diffusent librement dans le cylindre catalytique 2OS. De tels tests ne rapportent donc pas l'activité du protéasome cellulaires car ils ne font notamment pas appel aux fonctions des complexes régulateurs associés au protéasome 2OS. De manière générale, il existe un besoin d'identifier des composés thérapeutiques qui sont capables d'induire la destruction des cellules malignes.The appearance of Velcade®-resistant cells and the high toxicity of this compound which limits its application makes it necessary to develop new proteasome inhibitors. In particular, proteasome inhibitors which are known are catalytic inhibitors of the proteasome which can explain their toxicity and it would be interesting to develop non-catalytic inhibitors of the proteasome. Such non-catalytic inhibitors could be active by inhibiting the activity of 19S regulatory complexes and associated proteins that are necessary for the functioning of the cellular proteasome (ie, as it exists in cells). It is important to note that the inhibitors that are known and developed to date have been identified through in vitro biochemical tests that report the proteolytic activity of the purified proteasome against non-natural substrates such as peptides that diffuse freely in the catalytic cylinder 2OS. Such tests therefore do not report the activity of the cellular proteasome since they do not make use in particular of the functions of the regulatory complexes associated with the proteasome 2OS. In general, there is a need to identify therapeutic compounds that are capable of inducing the destruction of malignant cells.
DESCRIPTION DE L'INVENTIONDESCRIPTION OF THE INVENTION
Selon l'invention, on a mis au point un procédé de criblage d'agents d'intérêt thérapeutique, qui sont sélectionnés pour leur spécificité d'action sur le protéasome cellulaire. Ce procédé de criblage est réalisé in cellulo et permet, à la différence des tests biochimiques existants, d'identifier des inhibiteurs catalytiques ou non catalytiques du protéasome cellulaire.According to the invention, a method has been developed for screening agents of therapeutic interest, which are selected for their specificity of action on the cellular proteasome. This screening process is carried out in cellulo and, unlike existing biochemical tests, makes it possible to identify catalytic or non-catalytic inhibitors of the cellular proteasome.
Le demandeur a montré que, de manière surprenante, il était possible de mimer, dans des cellules de levure, le processus de dégradation, dépendant du protéasome mais indépendant d'une ubiquitination préalable, du régulateur cellulaire humain p2iWAF1/c'P1 par le protéasome, processus qui a lieu naturellement dans les cellules humaines. La protéine P21WAF1/Cιp1 est un régulateur du cycle de division des cellules humaines qui appartient à la famille des inhibiteurs des « Cyclin Dépendent Kinases », Cdk. La protéine P21WAF1/Cιp1 a pour principale fonction de réguler l'activité des complexes Cdk2/cycline, dont l'activation contrôle la progression du cycle cellulaire. La protéine p2iWAF1/Cιp1 est également connue pour réguler la synthèse d'ADN en interagissant avec le facteur PCNA (proliferating cell nuclear antigen), une sous-unité de l'ADN-polymérase δ essentielle à la réplication chromosomique. La protéine p2iWAF1/Cιp1 est une protéine peu structurée, très instable (Kriwacki et al., 1996). Il existe deux voies de dégradation de la protéine p2iWAF1/c'P1. La première dépend de l'ubiquitination et implique l'ubiquitine ligase SCFSkp2. Cette voie est notamment induite lors d'une irradiation des cellules par des rayons UV (Bendjennat et al. 2003 ; Bomstein et al., 2003). La seconde voie ne requiert pas l'ubiquitination de p21 WAF1/C|P1 mais est néanmoins dépendante de l'activité du protéasome. Cette seconde voie de dégradation qui n'implique pas l'ubiquitination de p2iWAF1/Cιp1 semble, dans les cellules de mammifère, impliquer la protéine Mdm2 qui activerait la dégradation de p2iWAF1/Cιp1 en favorisant son interaction physique avec le protéasome (Zhang et al., 2004). La fonction ubiquitine ligase de Mdm2 n'est pas impliquée dans ce mécanisme.The applicant has shown that, surprisingly, it is possible to mimic, in yeast cells, the proteasome-dependent, but independent of prior ubiquitination-dependent, degradation process of the human cellular regulator p2i WAF1 / c ' P1 by the proteasome, a process that takes place naturally in human cells. The P 21 WAF1 / Cιp1 protein is a regulator of the dividing cycle of human cells that belongs to the family of "Cyclin Dependent Kinases" inhibitors, Cdk. The main function of the P 21 WAF1 / Cιp1 protein is to regulate the activity of Cdk2 / cyclin complexes, the activation of which controls the progression of the cell cycle. The p2i protein WAF1 / Cip1 is also known to regulate DNA synthesis by interacting with the PCNA factor (proliferating cell nuclear antigen), a subunit of DNA polymerase δ essential for chromosomal replication. The p2i protein WAF1 / Cιp1 is a poorly structured, highly unstable protein (Kriwacki et al., 1996). There are two degradation pathways of the p2i protein WAF1 / c ' P1 . The former depends on ubiquitination and involves SCP Skp2 ubiquitin ligase. This pathway is particularly induced during irradiation of cells with UV rays (Bendjennat et al 2003, Bomstein et al., 2003). The second pathway does not require the ubiquitination of p21 WAF1 / C | P 1 but is nevertheless dependent on the activity of the proteasome. This second degradation pathway, which does not imply the ubiquitination of p2i WAF1 / CIP1, seems to imply in Mammalian cells the Mdm2 protein that would activate the degradation of p2i WAF1 / CIP1 by promoting its physical interaction with the proteasome (Zhang et al. al., 2004). The ubiquitin ligase function of Mdm2 is not involved in this mechanism.
Du fait que les cellules de levure n'expriment pas de protéine orthologue ou similaire à la protéine Md m2 humaine, c'est donc de manière totalement surprenante que le demandeur a montré qu'il était néanmoins possible de mimer, dans des cellules de levure, la dégradation de la protéine p2iWAF1/Cιp1 humaine par le protéasome, selon une voie de dégradation par le protéasome qui n'est pas dépendante d'une étape d'ubiquitination de la protéine p2iWAF1/Cιp1, préalable à sa dégradation.Since the yeast cells do not express orthologous protein or similar to the human Md m2 protein, it is therefore completely surprising that the applicant has shown that it is nevertheless possible to mime in yeast cells. degradation of the human p2i protein WAF1 / Cιp1 by the proteasome, according to a proteasome degradation pathway which is not dependent on a ubiquitination step of the p2i protein WAF1 / Cιp1 , prior to its degradation.
L'invention a pour objet un procédé in cellulo pour le criblage d'agents modulant l'activité du protéasome, ledit procédé comprenant les étapes suivantes : a) mettre en contact un agent candidat à tester avec des cellules de levure recombinantes qui expriment dans leur noyau une protéine de fusion comprenant : (i) un polypeptide p21 choisi parmi le polypeptide P21WAF1/Cip1 et le polypeptide p21[6KR]WAF1/Cip1 ;et (ii) au moins une protéine détectable. b) quantifier ladite première protéine détectable dans les cellules de levure, à la fin d'au moins une période de temps prédéterminée après la mise en contact de l'agent candidat avec lesdites cellules ; c) comparer la valeur obtenue à l'étape (b) avec une valeur témoin obtenue lorsque l'étape (a) est réalisée en l'absence de l'agent candidat.The invention relates to an in cellulo method for screening agents that modulate the activity of the proteasome, said method comprising the following steps: a) contacting a candidate agent to be tested with recombinant yeast cells that express in their nucleus a fusion protein comprising: (i) a p21 polypeptide selected from the polypeptide P 21 WAF1 / Cip1 and the polypeptide p21 [6KR] WAF1 / Cip1 ; and (ii) at least one detectable protein. b) quantifying said first detectable protein in the yeast cells at the end of at least a predetermined period of time after contacting the candidate agent with said cells; c) comparing the value obtained in step (b) with a control value obtained when step (a) is performed in the absence of the candidate agent.
Le procédé de l'invention consiste en un procédé qui est réalisé in cellulo, du fait que la dégradation de la protéine cible p2iWAF1/Cιp1 ou p21 [6KR]WAF1/Cip1 est réalisée et visualisée dans des cellules de levures et non par des réactions réalisées dans un système acellulaire.The process of the invention consists of a process which is carried out in cellulo, since the degradation of the target protein p2i WAF1 / CIP1 or p21 [6KR] WAF1 / CIP1 is carried out and visualized in yeast cells and not by reactions performed in a cell-free system.
Dans certains modes de réalisation du procédé de criblage ci- dessus, on utilise des cellules de levure qui expriment une protéine de fusion comprenant une forme mutante de la protéine p2iWAF1/Cιp1 chez laquelle les 6 résidus lysine de la protéine p21 sauvage ont été substitués par des résidus arginine. Cette forme mutante de la protéine p21wAFi/ci P i est désignée P21[6KR]WAF1/Cip1. Ces substitutions d'acides aminés suppriment tous les sites potentiels d'ubiquitination sur la protéine. La dégradation du dérivé p21[6KR]WAF1/Cip1 est donc, du fait de l'absence de sites d'ubiquitination dans sa séquence d'acides aminés, exclusivement et directement dépendante de l'activité protéolytique du protéasome, et indépendante d'une étape d'ubiquitination.In some embodiments of the above screening method, yeast cells which express a fusion protein comprising a mutant form of the p2i protein WAF1 / Cιp1 in which the 6 lysine residues of the wild-type p21 protein have been substituted are used. by arginine residues. This mutant form of the p21 w protein AFi / c i P i is designated P 21 [6KR] WAF1 / Cip1 . These amino acid substitutions suppress all potential ubiquitination sites on the protein. The degradation of the derivative p21 [6KR] WAF1 / Cip1 is therefore, because of the absence of ubiquitination sites in its amino acid sequence, exclusively and directly dependent on the proteolytic activity of the proteasome, and independent of a stage of ubiquitination.
Enfin, on a également montré que, dans des cellules de levure, la dégradation du polypeptide p21 (p2iWAF1/CiP1 ou p21[6KR]WAF1/Cip1) par le protéasome a lieu, même lorsque le polypeptide p21 (p2iWAF1/c'P1 ou p21 [6KR]WAF1/Cip1) est fusionné à une protéine détectable et notamment à une protéine auto-fluorescente. De façon surprenante, dans les cellules de levure, la dégradation de la protéine fusion est totale, les polypeptides correspondant à la protéine p21 (p2iWAF1/CiP1 ou p21 [6KR]WAF1/Cip1) et à la protéine détectable sont tous les deux dégradés. Ces résultats sont surprenants car des expériences antérieures de biochimie, réalisées in vitro, avaient démontré que lorsqu'une protéine fusion composée de p2<|WAFi/cιpi fusjonnQe Q une protéine auto-fluorescente est mise en présence de protéasome 26S ou 2OS, alors seule la partie P21WAF1/Cip1 est dégradée, la partie correspondant à la partie auto-fluorescente étant libérée sous une forme stable non dégradée (Liu et al., 2003).Finally, it has also been shown that, in yeast cells, the degradation of the p21 polypeptide ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ) by the proteasome takes place, even when the p21 polypeptide (p2i WAF1 / c P1 or p21 [6KR] WAF1 / Cip1 ) is fused to a detectable protein and in particular to a self-fluorescent protein. Surprisingly, in the yeast cells, the degradation of the fusion protein is complete, the polypeptides corresponding to the p21 protein ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ) and to the detectable protein are both degraded. These results are surprising because previous experiments in biochemistry, performed in vitro, had demonstrated that when a fusion protein composed of p2 < | WAFI / c ιpi f us j onn Q e Q an autofluorescent protein is in the presence of the 26S proteasome or 2OS, then only the part P21 WAF1 / Cip1 is degraded, the portion corresponding to the auto-fluorescent moiety being released under a stable non-degraded form (Liu et al., 2003).
La dégradation totale de la protéine de fusion p21 (p2iWAF1/CiP1 ou p21 [6KR]WAF1/Cip1), observée dans les cellules de levure, permet de mesurer la quantité de protéine de fusion présente dans les cellules de levure en quantifiant le signal généré par la protéine détectable comprise dans ladite protéine de fusion.The total degradation of the p21 fusion protein ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ), observed in the yeast cells, makes it possible to measure the amount of fusion protein present in the yeast by quantifying the signal generated by the detectable protein included in said fusion protein.
Le procédé ci-dessus permet à l'homme du métier de déterminer si un agent candidat à tester est capable de modifier la vitesse de dégradation, ou le degré de dégradation, de la protéine p21 (p21WAF1/Cιp1 ou p21 [6KR]WAF1/Cip1) par le protéasome dans les cellules de levure exprimant la protéine p21 humaine normale ou mutée (p2iWAF1/Cιp1 ou p21 [6KR]WAF1/Cip1).The above method enables one skilled in the art to determine whether a candidate agent to be tested is capable of modifying the rate of degradation, or the degree of degradation, of the p21 protein (p21 WAF1 / Cιp1 or p21 [6KR] WAF1 / Cip1 ) by the proteasome in yeast cells expressing the normal or mutated human p21 protein (p2i WAF1 / Cιp1 or p21 [6KR] WAF1 / Cip1 ).
Le procédé de criblage in cellulo ci-dessus, du fait qu'il met en œuvre un système artificiel et humanisé de dégradation d'une protéine de fusion cible dans des cellules de levure, permet un criblage d'agents qui agissent de manière spécifique sur l'activité du protéasome cellulaire, telle qu'elle existe dans toute sa complexité dans la cellule, y compris en l'absence d'une étape préalable d'ubiquitination de la protéine cible dans la cellule.The inventive cellulo screening method, in that it implements an artificial and humanized system for degradation of a target fusion protein in yeast cells, allows screening of agents which act specifically on the activity of the cellular proteasome, as it exists in all its complexity in the cell, including in the absence of a prior step of ubiquitination of the target protein in the cell.
De plus, grâce au procédé ci-dessus, on a mis au point un test physiologique de criblage d'agents actifs sur le protéasome, en construisant chez la levure une voie métabolique de dégradation protéique mimant la voie de dégradation par le protéasome du facteur régulateur p2iWAF1/c'P1 humain. Ainsi, du point de vue de la voie métabolique de dégradation des protéines qui est visée, le procédé de l'invention est réalisé dans des conditions physiologiques très proches des conditions physiologiques de dégradation des protéines par le protéasome humain. Aux fins de la présente description, un agent qui « module » l'activité du protéasome englobe, respectivement, (i) un agent qui inhibe ou bloque l'activité du protéasome, en particulier qui inhibe ou bloque l'activité du protéasome indépendante d'une étape d'ubiquitination préalable à la dégradation de la protéine cible, et (ii) un agent qui active ou augmente l'activité du protéasome, en particulier qui active ou augmente l'activité du protéasome indépendante d'une étape d'ubiquitination préalable à la dégradation de la protéine cible.In addition, by means of the above method, a physiological test for the screening of active agents on the proteasome has been developed, by constructing in yeast a metabolic pathway of protein degradation mimicking the pathway of degradation by the proteasome of the regulatory factor. p2i WAF1 / c ' P1 human. Thus, from the point of view of the metabolic pathway of protein degradation that is targeted, the method of the invention is carried out under physiological conditions very close to the physiological conditions of degradation of proteins by the human proteasome. For purposes of this disclosure, an agent that "modulates" proteasome activity includes, respectively, (i) an agent that inhibits or blocks proteasome activity, particularly that inhibits or blocks the activity of the proteasome independent of the proteasome. a step of ubiquitination prior to the degradation of the target protein, and (ii) an agent that activates or increases the activity of the proteasome, in particular that activates or increases the activity of the proteasome independent of a ubiquitination step prior to the degradation of the target protein.
Grâce au procédé ci-dessus, on peut identifier les agents capables d'inhiber la vitesse ou le degré de dégradation intracellulaire du polypeptide p2iWAF1/CiP1 ou du polypeptide p21[6KR]WAF1/Cip1 par le protéasome des cellules de levure. De tels agents inhibiteurs, qui peuvent être identifiés grâce au procédé de l'invention, du fait qu'ils vont inhiber également l'activité du protéasome dans les cellules humaines, constituent des agents d'intérêt thérapeutique susceptibles d'inhiber ou de bloquer la prolifération de cellules tumorales, d'inhiber ou bloquer l'activation de l'expression de divers gènes impliqués dans l'inflammation, des pathologies d'auto-immunité ou encore des cancers, de perturber des mécanismes de contrôle de la mort cellulaire (apoptose). Ainsi, le procédé de criblage in cellulo ci-dessus peut comprendre une étape additionnelle (d) qui consiste à sélectionner positivement les agents candidats inhibiteurs pour lesquels la quantité de protéine détectable mesurée à l'étape (b) est supérieure à la valeur témoin de comparaison. Le procédé de l'invention permet aussi d'identifier des agents capables d'augmenter la vitesse ou le degré de dégradation du polypeptide p2iWAF1/CiP1 ou du polypeptide p21[6KR]WAF1/Cip1 par le protéasome des cellules de levure. De tels agents activateurs, du fait qu'ils vont activer également l'activité du protéasome dans les cellules humaines, constituent des agents d'intérêt thérapeutique susceptibles d'induire ou d'augmenter l'activation de l'expression de divers gènes impliqués dans l'inflammation, des pathologies d'auto-immunité ou des cancers. Ainsi, selon ce second aspect, le procédé de criblage in cellulo de l'invention permet de cribler des agents pro-inflammatoires. Certains des agents pro-inflammatoires sélectionnés selon le procédé sont susceptibles de revêtir un intérêt thérapeutique lorsqu'ils sont utilisés à faible dose ou lorsqu'ils sont administrés pendant une courte durée, par exemple en tant qu'agents inducteurs d'une réponse immune précoce, telle que l'induction d'une réaction de résistance non spécifique à l'infection ou encore telle que l'activation des cellules présentatrices de l'antigène, pour l'initiation d'une réponse immunitaire spécifique d'un antigène, qu'elle soit à médiation humorale ou à médiation cellulaire. Certains autres agents pro-inflammatoires sélectionnés selon le procédé de criblage in vitro de l'invention peuvent consister en des principes actifs connus, notamment des principes actifs de médicament, dont un effet pro-inflammatoire indésirable est identifié, et pour lesquels des précautions d'emploi particulières vis-à-vis de la santé humaine devront être observées. De manière similaire, certains des agents sélectionnés selon le procédé sont susceptibles d'avoir des activités pro-apoptotiques. Ainsi, selon un autre aspect, le procédé de criblage selon l'invention peut comprendre une étape additionnelle (d) qui consiste à sélectionner positivement les agents candidats activateurs, pour lesquels la quantité de protéine détectable mesurée à l'étape (b) est inférieure à la valeur témoin de comparaison. Comme on l'aura compris, l'agent modulant l'activité du protéasome peut être de toute nature. Ledit agent peut être tout composé organique ou minéral, et peut être soit un agent d'origine naturelle, soit un agent produit, au moins en partie, par synthèse chimique ou biologique. Ledit agent peut être notamment un peptide ou protéine. Ledit agent englobe aussi toute molécule déjà connue pour posséder un effet biologique, notamment un effet thérapeutique, ou à l'inverse un effet toxique démontré ou suspecté pour l'organisme.By the above method, agents capable of inhibiting the rate or degree of intracellular degradation of the p 2i polypeptide WAF1 / CiP1 or the polypeptide p21 [6KR] WAF1 / Cip1 by the proteasome yeast cells. Such inhibitory agents, which can be identified by the method of the invention, because they will also inhibit the activity of the proteasome in human cells, are agents of therapeutic interest capable of inhibiting or blocking the proliferation of tumor cells, to inhibit or block the activation of the expression of various genes involved in inflammation, autoimmune pathologies or cancers, to disrupt mechanisms for controlling cell death (apoptosis ). Thus, the above cellulo screening method may comprise an additional step (d) of positively selecting the inhibitory candidate agents for which the amount of detectable protein measured in step (b) is greater than the control value of comparison. The method of the invention also makes it possible to identify agents capable of increasing the rate or degree of degradation of the p 2i polypeptide WAF1 / CiP1 or of the p21 [6KR] WAF1 / Cip1 polypeptide by the proteasome of yeast cells. Such activating agents, because they will also activate the proteasome activity in human cells, are agents of therapeutic interest capable of inducing or increasing the activation of the expression of various genes involved in inflammation, autoimmune diseases or cancers. Thus, according to this second aspect, the in vitro screening method of the invention makes it possible to screen pro-inflammatory agents. Some of the pro-inflammatory agents selected according to the method are likely to be of therapeutic interest when used at low dose or when administered for a short time, for example as inducing agents of an early immune response. , such as inducing a nonspecific resistance reaction to infection or such as activating antigen-presenting cells, for initiating an antigen-specific immune response, that it is either humoral or cell-mediated. Certain other pro-inflammatory agents selected according to the in vitro screening method of the invention may consist of known active ingredients, in particular active drug ingredients, of which one adverse proinflammatory effect is identified, and for which particular precautions for use with respect to human health should be observed. Similarly, some of the agents selected according to the method are likely to have pro-apoptotic activities. Thus, according to another aspect, the screening method according to the invention may comprise an additional step (d) which consists in positively selecting the activating candidate agents for which the amount of detectable protein measured in step (b) is less than to the comparison control value. As will be understood, the agent modulating the activity of the proteasome can be of any kind. The agent may be any organic or inorganic compound, and may be either a naturally occurring agent or an agent produced, at least in part, by chemical or biological synthesis. Said agent may in particular be a peptide or a protein. Said agent also includes any molecule already known to have a biological effect, including a therapeutic effect, or conversely a toxic effect demonstrated or suspected for the body.
Dans le procédé de l'invention, une fois que la protéine de fusion, comprenant le polypeptide p2iWAF1/c'P1 ou |e polypeptide p21 [6KR]WAF1/Cip1 fusionné à une protéine détectable, est exprimée dans les cellules de levure, la dite protéine de fusion est reconnue et subit une protéolyse qui est effectuée par le protéasome. La quantification de la protéine détectable contenue dans la cellule de levure, à un instant donné, permet de déterminer le degré de dégradation de ladite protéine de fusion p21WAF1/Cip1-protéine détectable ou p21 [6KR]WAF1/Cip1 -protéine détectable, à cet instant donné.In the method of the invention, once the fusion protein, comprising the p2i polypeptide WAF1 / c ' P1 or | The p21 [6KR] WAF1 / Cip1 polypeptide fused to a detectable protein is expressed in yeast cells, said fusion protein is recognized and undergoes proteolysis which is carried out by the proteasome. Quantification of the detectable protein contained in the yeast cell, at a given moment, makes it possible to determine the degree of degradation of said p21 fusion protein WAF1 / Cip1- detectable protein or p21 [6KR] WAF1 / Cip1- detectable protein, to this moment.
Un polypeptide p2iWAF1/Cιp1 selon l'invention consiste en un polypeptide possédant au moins 90% d'identité en acides aminés avec le polypeptide p2iWAF1/CiP1 de séquence SEQ ID N0 1. Un polypeptide p2iWAF1/CiP1 selon l'invention peut consister en le polypeptide p2iWAF1/CiP1 de séquence SEQ ID N0 1.A polypeptide P2i WAF1 / Cιp1 according to the invention consists of a polypeptide having at least 90% amino acid identity with the polypeptide p 2i WAF1 / CIP1 sequence SEQ ID N 0 1. a polypeptide p 2i WAF1 / CIP1 according to invention can consist in the p 2i WAF1 / CiP1 polypeptide of sequence SEQ ID N 0 1.
Un polypeptide p21 [6KR]WAF1/Cip1 selon l'invention consiste en un polypeptide possédant au moins 90% d'identité en acides aminés avec le polypeptide p21[6KR]WAF1/Cip1 de séquence SEQ ID N0 2. Un polypeptide p21 [6KR]WAF1/Cιp1 selon l'invention peut consister en le polypeptide p21 [6KR]WAF1/Cip1 de séquence SEQ ID N0 2.A p21 polypeptide [6KR] WAF1 / Cip1 according to the invention consists of a polypeptide having at least 90% amino acid identity with the polypeptide p21 [6KR] WAF1 / Cip1 sequence SEQ ID N 0 2. a polypeptide p21 [6KR] WAF1 / Cιp1 according to the invention may consist of the p21 [6KR] WAF1 / Cip1 polypeptide of sequence SEQ ID N 0 2.
Aux fins de la présente description, l'expression " séquence nucléotidique " peut être employée pour désigner indifféremment un polynucléotide ou un acide nucléique. L'expression " séquence nucléotidique " englobe le matériel génétique lui-même et n'est donc pas restreinte à l'information concernant sa séquence.For purposes of this disclosure, the term "nucleotide sequence" may be used to denote either a polynucleotide or a nucleic acid. The term "nucleotide sequence" encompasses the genetic material itself and is therefore not restricted to information about its sequence.
Les termes " acide nucléique ", " polynucléotide ", " oligonucléotide " ou encore " séquence nucléotidique " englobent des séquences d'ARN, d'ADN, d'ADNc ou encore des séquences hybrides ARN/ADN de plus d'un nucléotide, indifféremment sous la forme simple brin ou sous la forme de duplex.The terms "nucleic acid", "polynucleotide", "oligonucleotide" or "nucleotide sequence" include RNA, DNA or cDNA sequences, or hybrid RNA / DNA sequences of more than one nucleotide, regardless of in the single-stranded form or in the form of duplex.
Le terme " nucléotide " désigne les nucléotides naturels (A, T, G, C et U). Aux fins de la présente invention, un premier polynucléotide est considéré comme étant " complémentaire " d'un second polynucléotide lorsque chaque base du premier nucléotide est appariée à la base complémentaire du second polynucléotide dont l'orientation est inversée. Les « bases », complémentaires sont A et T (ou A et U), et C et G. Selon l'invention, un premier acide nucléique ayant au moins 90 % d'identité avec un second acide nucléique de référence, possédera au moins 90 %, de préférence au moins 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99%, 99,6% d'identité en nucléotides avec ledit second acide nucléique de référence. Selon l'invention, un premier polypeptide ayant au moins 90 % d'identité avec un second polypeptide de référence, possédera au moins 90 %, de préférence au moins 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99%, 99,6% d'identité en acides aminés avec ledit second polypeptide de référence. Le « pourcentage d'identité » entre deux séquences d'acide nucléique ou entre deux séquences de polypeptide, au sens de la présente invention, est déterminé en comparant les deux séquences alignées de manière optimale, à travers une fenêtre de comparaison.The term "nucleotide" refers to natural nucleotides (A, T, G, C and U). For purposes of the present invention, a first polynucleotide is considered to be "complementary" to a second polynucleotide when each base of the first nucleotide is paired with the complementary base of the second polynucleotide whose orientation is reversed. The complementary "bases" are A and T (or A and U), and C and G. According to the invention, a first nucleic acid having at least 90% identity with a second reference nucleic acid, will have at least 90%, preferably at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 98%, 98.3% 98.6%, 99%, 99%, 6% nucleotide identity with said second reference nucleic acid. According to the invention, a first polypeptide having at least 90% identity with a second reference polypeptide, will have at least 90%, preferably at least 91%, 92%, 93%, 94%, 95%, 96% 97%, 97.5%, 98%, 98.3% 98.6%, 99%, 99.6% amino acid identity with said second reference polypeptide. The "percent identity" between two nucleic acid sequences or between two polypeptide sequences in the sense of the present invention is determined by comparing the two optimally aligned sequences through a comparison window.
La partie de la séquence nucléotidique ou d'acides aminés dans la fenêtre de comparaison peut ainsi comprendre des additions ou des délétions (par exemple des « gaps ») par rapport à la séquence de référence (qui ne comprend pas ces additions ou ces délétions) de manière à obtenir un alignement optimal entre les deux séquences.The part of the nucleotide or amino acid sequence in the comparison window may thus comprise additions or deletions (for example "gaps") relative to the reference sequence (which does not include these additions or deletions) so as to obtain an optimal alignment between the two sequences.
Le pourcentage d'identité est calculé en déterminant le nombre de positions auxquelles une base nucléique identique, ou un résidu d'acide aminé identique, est observé pour les deux séquences comparées, puis en divisant le nombre de positions auxquelles il y a identité entre les deux bases nucléiques, ou entre les deux résidus d'acides aminés, par le nombre total de positions dans la fenêtre de comparaison, puis en multipliant le résultat par cent afin d'obtenir le pourcentage d'identité en nucléotides des deux séquences entre elles, ou le pourcentage d'identité en acides aminés des deux séquences entre elles..The percent identity is calculated by determining the number of positions at which an identical nucleotide base, or identical amino acid residue, is observed for the two compared sequences, and then dividing the number of positions at which there is identity between the two nucleic bases, or between the two amino acid residues, by the total number of positions in the comparison window, then multiplying the result by one hundred in order to obtain the percentage nucleotide identity of the two sequences between them, or the percentage amino acid identity of the two sequences between them ..
L'alignement optimal des séquences pour la comparaison peut être réalisé de manière informatique à l'aide d'algorithmes connus. De manière tout à fait préférée, le pourcentage d'identité de séquence est déterminé à l'aide du logiciel CLUSTAL W (version 1.82) les paramètres étant fixés comme suit : (1 ) CPU MODE = ClustalW mp ; (2) ALIGNMENT = « full » ; (3) OUTPUT FORMAT = « aln w/numbers » ; (4) OUTPUT ORDER = « aligned » ; (5) COLOR ALIGNMENT = « no » ; (6) KTUP (word size) = « default » ; (7) WINDOW LENGTH = « default » ; (8) SCORE TYPE = « percent » ; (9) TOPDIAG = « default » ; (10) PAIRGAP = « default » ; (11 ) PHYLOGENETIC TREE/TREE TYPE = « none » ; (12) MATRIX = « default » ; (13) GAP OPEN = « default » ; (14) END GAPS = « default » ; (15) GAP EXTENSION = « default » ; (16) GAP DISTANCES = « default » ; (17) TREE TYPE = « cladogram » et (18) TREE GRAP DISTANCES = « hide ».The optimal alignment of the sequences for the comparison can be performed in a computer manner using known algorithms. Most preferably, the percentage of sequence identity is determined using the CLUSTAL W software (version 1.82) with the parameters set as follows: (1) CPU MODE = ClustalW mp; (2) ALIGNMENT = "full"; (3) OUTPUT FORMAT = "aln w / numbers"; (4) OUTPUT ORDER = "aligned"; (5) COLOR ALIGNMENT = "no"; (6) KTUP (word size) = "default"; (7) WINDOW LENGTH = "default"; (8) SCORE TYPE = "percent"; (9) TOPDIAG = "default"; (10) PAIRGAP = "default"; (11) PHYLOGENETIC TREE / TREE TYPE = "none"; (12) MATRIX = "default"; (13) GAP OPEN = "default"; (14) END GAPS = "default"; (15) GAP EXTENSION = "default"; (16) GAP DISTANCES = "default"; (17) TREE TYPE = "cladogram" and (18) TREE GRAP DISTANCES = "hide".
Selon l'invention on a montré que la sensibilité du procédé de criblage décrit ci-dessus est accrue lorsque, préalablement à la mise en contact des cellules de levure avec l'agent à tester, on stoppe l'expression de la protéine p21 cible dans les cellules de levure, c'est à dire soit la protéine de fusion p21WAF1/Cιp1-protéine détectable, soit la protéine de fusion p21 [6KR]WAF1/Cip1-protéine détectable.According to the invention it has been shown that the sensitivity of the screening method described above is increased when, prior to contacting the yeast cells with the agent to be tested, the expression of the target p21 protein is stopped in yeast cells, that is to say either the p21 fusion protein WAF1 / Cip1-detectable protein or the p21 [6KR] fusion protein WAF1 / Cip1- detectable protein.
Ainsi, selon un premier mode de réalisation préféré du procédé ci- dessus, l'étape (a) comprend elle-même les étapes suivantes : (ai ) cultiver les cellules de levure qui expriment dans leur noyau ladite protéine de fusion comprenant le polypeptide p21 et au moins une protéine détectable ;Thus, according to a first preferred embodiment of the method above, step (a) itself comprises the following steps: (ai) culturing yeast cells which express in their nucleus said fusion protein comprising the p21 polypeptide and at least one detectable protein;
(a2) stopper l'expression de ladite protéine de fusion comprenant le polypeptide p21 et au moins une protéine détectable par les cellules de levure ;(a2) stopping the expression of said fusion protein comprising the p21 polypeptide and at least one protein detectable by yeast cells;
(a3) mettre en contact les cellules de levures obtenues à la fin de l'étape (a2) avec l'agent candidat à tester.(a3) contacting the yeast cells obtained at the end of step (a2) with the candidate agent to be tested.
L'arrêt de l'expression de la protéine de fusion p21WAF1/Cιp1-protéine détectable, à un moment choisi, peut être facilement réalisé par l'homme du métier, en utilisant, pour transformer les cellules de levure, une cassette d'expression dans laquelle le polynucléotide codant ladite protéine de fusion est placé sous le contrôle d'un promoteur fonctionnel dans les cellules de levure et dont l'activation, ou à l'inverse la répression, est induite par un agent inducteur. De nombreux promoteurs inductibles actifs dans des cellules de levure sont connus par l'homme du métier, dont certains d'entre eux sont décrits plus loin dans la description, y compris dans les exemples.Stopping the expression of the detectable protein p21 WAF1 / Cip1- protein protein at a chosen time can be easily achieved by those skilled in the art, using, to transform the yeast cells, a cassette of wherein the polynucleotide encoding said fusion protein is under the control of a promoter functional in yeast cells and whose activation, or conversely repression, is induced by an inducing agent. Many inducible promoters active in yeast cells are known to those skilled in the art, some of which are described later in the description, including in the examples.
Dans la pratique, la protéine de fusion p21 -protéine détectable est rapidement reconnue et dégradée par le protéasome dans les cellules de levure.In practice, the detectable protein-p21 fusion protein is rapidly recognized and degraded by the proteasome in yeast cells.
Les conditions optimales de mise en œuvre du procédé de criblage selon l'invention sont les conditions dans lesquelles on induit une accumulation intracellulaire d'une grande quantité de la protéine de fusion p21 -protéine détectable qui est exprimée dans les cellules de levure. Plus la quantité intracellulaire de protéine de fusion p21 -protéine détectable est grande au début de l'étape a) du procédé, plus la valeur du signal généré par la protéine détectable est élevée et peut être mesurée avec une grande précision au moment de l'étape b) du procédé. Ainsi, plus la quantité intracellulaire de la protéine de fusion p21 -protéine détectable est grande au début de l'étape a), plus les variations de quantité de cette protéine de fusion peuvent être mesurées avec précision, à l'étape b) du procédé.The optimum conditions for carrying out the screening method according to the invention are the conditions under which an intracellular accumulation of a large quantity of the detectable protein p21-protein which is expressed in the yeast cells is induced. The higher the intracellular quantity of detectable protein p21-protein found at the beginning of step a) of the method, the higher the value of the signal generated by the detectable protein, which can be measured with great precision at the time of detection. step b) of the process. Thus, the greater the intracellular quantity of detectable p21-protein fusion protein is large at the beginning of step a), the more the variations in the amount of this fusion protein can be measured accurately, in step b) of the method .
Pour obtenir l'accumulation d'une grande quantité intracellulaire de la protéine de fusion p21 -protéine détectable dans les cellules de levure, il est avantageux de placer la séquence codant ladite protéine de fusion sous le contrôle d'un promoteur répressible fort et d'utiliser des souches de levure possédant plusieurs copies d'un polynucléotide comprenant (i) un promoteur répressible fort, (ii) un acide nucléique codant la protéine de fusion p21 -protéine détectable. La présence de plusieurs copies du polynucléotide codant d'intérêt permet l'obtention d'un fort signal de détection de la protéine détectable, à l'étape a) du procédé. Ces conditions de fort signal permettent de quantifier avec une grande sensibilité la protéine détectable pendant toute la durée du procédé, au fur et à mesure de la dégradation de la protéine de fusion p21 -protéine détectable par le protéasome. De manière évidente, plus le signal détectable de départ est fort, meilleure est la sensibilité des mesures lors de la mise en œuvre du procédé.To obtain the accumulation of a large intracellular amount of detectable p21-protein fusion protein in yeast, it is advantageous to place the sequence coding for said fusion protein under the control of a strong repressible promoter and to use yeast strains having several copies of a polynucleotide comprising (i) a strong repressible promoter, (ii) a nucleic acid encoding the detectable p21-protein fusion protein. The presence of several copies of the polynucleotide coding of interest makes it possible to obtain a strong detection signal for the detectable protein in step a) of the method. These high signal conditions make it possible to quantify the detectable protein with great sensitivity throughout the duration of the process, as the protease-detectable protein p21-protein fusion protein is degraded. Obviously, the stronger the detectable signal of departure, the better the sensitivity of the measurements during the implementation of the method.
Selon un mode de réalisation avantageux du procédé de criblage selon l'invention, on utilise des cellules de levures dans lesquelles la ou les copies du polynucléotide codant la protéine de fusion p21 -protéine détectable est (sont) intégrée(s) dans le chromosome. Ce mode de réalisation avantageux permet l'accumulation intracellulaire de la protéine de fusion p21 -protéine détectable à un niveau élevé dans toutes les cellules de levure cultivées pour la mise en œuvre du procédé. Ce mode de réalisation du procédé de criblage de l'invention constitue un avantage, par rapport à l'utilisation de cellules de levures transformées par des plasmides dans chacune desquelles une ou plusieurs copies du polynucléotide codant la protéine de fusion p21 -protéine détectable est (sont) insérée(s). En effet, lorsque les cellules de levures qui expriment la protéine de fusion p21 -protéine détectable consistent en des cellules contenant un ou plusieurs vecteurs recombinants, en particulier un ou plusieurs plasmides recombinants, dans lesquels est insérée au moins une copie du polynucléotide codant la protéine de fusion p21 -protéine détectable, il peut arriver que la transmission desdits vecteurs recombinants d'intérêt ne se réalise pas de manière homogène, avec les générations successives de cellules de levure. Dans certains cas, le niveau d'expression intracellulaire de la protéine de fusion p21 -protéine détectable serait hétérogène au sein de l'ensemble des cellules de levure cultivées, ce qui serait susceptible de réduire la sensibilité du procédé de criblage de l'invention.According to an advantageous embodiment of the screening method according to the invention, yeast cells in which the copy or copies of the polynucleotide encoding the detectable p21-protein fusion protein are (are) integrated into the chromosome are used. This advantageous embodiment allows the intracellular accumulation of the detectable p21 protein-protein at a high level in all cultured yeast cells for the implementation of the method. This embodiment of the screening method of the invention is an advantage over the use of plasmid-transformed yeast cells in each of which one or more copies of the polynucleotide encoding the detectable p21-protein fusion protein is ( are) inserted. Indeed, when the yeast cells which express the detectable p21-protein fusion protein consist of cells containing one or more recombinant vectors, in particular one or more recombinant plasmids, in which at least one copy of the polynucleotide encoding the protein is inserted. detectable protein fusion, it may happen that the transmission of said recombinant vectors of interest is not carried out homogeneously, with successive generations of yeast cells. In some cases, the level of intracellular expression of the detectable protein p21-proteine protein would be heterogeneous within the set of cells. cultured yeast, which would be likely to reduce the sensitivity of the screening method of the invention.
Description des modes de réalisation préférés du procédé de criblageDescription of the preferred embodiments of the screening method
Les modes de réalisation préférés du procédé de criblage de l'invention sont décrits ci-dessous, notamment en relation avec la description des aspects fonctionnels et structurels des divers moyens permettant la mise en œuvre dudit procédé. De manière générale, la protéine détectable qui est comprise dans la protéine de fusion p21 -protéine détectable peut être de toute nature, dès lors que sa présence, peut être spécifiquement détectée dans les cellules de levure avant sa protéolyse, et que la présence de formes protéolysées de la protéine détectable, notamment de fragments peptidiques produits par protéolyse de ladite protéine détectable, ne sont pas détectées par le moyen de détection spécifique qui est choisi.The preferred embodiments of the screening method of the invention are described below, in particular in connection with the description of the functional and structural aspects of the various means for implementing said method. In general, the detectable protein that is included in the detectable p21-protein fusion protein can be of any kind, since its presence, can be specifically detected in yeast cells before its proteolysis, and that the presence of forms proteolysed proteins of the detectable protein, in particular peptide fragments produced by proteolysis of said detectable protein, are not detected by the specific detection means which is chosen.
Comme cela se comprend aisément, l'activité protéolytique du protéasome est suivie, selon le procédé de l'invention, en mesurant son effet sur la stabilité de la protéine de fusion p21 -protéine détectable. Grâce à l'expression dans les cellules de levure du facteur p21 sous forme de protéine fusion, la dégradation de la protéine fusion contenant p21 peut être suivie en temps réel, par détection de la protéine détectable non protéolysée.As is easily understood, the proteolytic activity of the proteasome is monitored, according to the method of the invention, by measuring its effect on the stability of the detectable protein p21-protein fusion. Thanks to the expression in yeast cells of the factor p21 in the form of a fusion protein, the degradation of the p21-containing fusion protein can be monitored in real time, by detecting the unproteolysed detectable protein.
Préférentiellement, la protéine de fusion p21 -protéine détectable comporte une forme mutante du polypeptide p2iWAF1/Cιp1 chez laquelle les 6 résidus lysine de la protéine p21 ont été substitués par des résidus arginines, qui est désignée p21[6KR]WAF1/Cιp1. La stabilité de la protéine de fusion p21 [6KR]WAF1/Cip1-protéine détectable dépend exclusivement de l'activité protéolytique du protéasome et n'implique pas son ubiquitination préalable. Selon la nature de la protéine détectable fusionnée à p21 (p21wAFi/ci P i ou P21[6KR]WAF1/Cip1 ), la dégradation de la protéine fusion peut être suivie par des techniques connues en soi, notamment des techniques de mesure de fluorescence à l'aide, soit d'un cytomètre de flux, soit d'un lecteur de microplaques, soit d'un fluorimètre, soit grâce à un microscope à fluorescence, ou encore par des techniques colorimétriques, enzymatiques ou immunologiques. A titre illustratif, la protéine détectable peut être choisie parmi un antigène, une protéine fluorescente ou une protéine ayant une activité enzymatique.Preferentially, the detectable protein p21-protein fusion protein comprises a mutant form of the p2i polypeptide WAF1 / Cιp1 in which the 6 lysine residues of the p21 protein have been substituted by arginine residues, which is designated p21 [6KR] WAF1 / Cιp1 . The stability of the detectable protein p21 [6KR] WAF1 / Cip1- protein protein depends exclusively on the proteolytic activity of the proteasome and does not imply its prior ubiquitination. Depending on the nature of the detectable protein fused to p21 (p21 w AF1 / c i P i or P 21 [6KR] WAF1 / Cip1 ), degradation of the fusion protein can be followed by techniques known per se, including fluorescence measurement with the aid of a flow cytometer, a microplate reader or a fluorimeter, or by means of a fluorescence microscope, or by colorimetric, enzymatic or immunological. By way of illustration, the detectable protein may be chosen from an antigen, a fluorescent protein or a protein having an enzymatic activity.
Lorsque la protéine détectable consiste en un antigène, elle peut être tout type d'antigène, dès lors que des anticorps spécifiques de cet antigène sont déjà accessibles ou, alternativement, peuvent être préparés, selon toute technique d'obtention d'anticorps, notamment d'anticorps polyclonaux ou monoclonaux, bien connues de l'homme du métier. Préférentiellement, dans ce cas, la protéine détectable consiste en un antigène de faible taille, qui n'est pas susceptible d'interférer avec la reconnaissance de la protéine p21 (p2iWAF1/CiP1 ou p21 [6KR]WAF1/Cip1 ) par le protéasome. Ainsi, préférentiellement, on utilise, comme antigène, un peptide ayant une chaîne de 7 à 100 acides aminés de longueur, mieux de 7 à 50 acides aminés de longueur, et encore mieux de 7 à 30 acides aminés de longueur, par exemple 10 acides aminés de longueur. A titre illustratif, on peut utiliser l'antigène HA de séquence [NH2- YPYDVPDYA-COOH] SEQ ID N0 7, ou encore un antigène FLAG de séquence [NH2-DYKDDDDK-COOH] SEQ ID N0 8 (monomère FLAG) ou de séquence [NH2-MDYKDHDGDYKDHDIDYKDDDDK-COOH] SEQ ID N0 9 (trimère FLAG) Dans ce cas, on utilise, pour quantifier la protéine détectable à l'étape (b) du procédé, un anticorps qui reconnaît spécifiquement l'antigène compris dans la protéine de fusion, cet anticorps étant marqué directement ou indirectement. La quantification est alors réalisée par mesure du signal détectable produit par les complexes formés, dans les cellules de levure, entre l'anticorps marqué et la protéine de fusion p21 -antigène. Ainsi, à l'étape (b), lorsque la première protéine détectable est un antigène, on quantifie ladite première protéine détectable par détection des complexes formés entre ladite protéine et des anticorps la reconnaissant. Lorsque la protéine détectable consiste en une protéine à fluorescence intrinsèque, elle est notamment choisie parmi la protéine mAG, la protéine GFP ou l'un de ses dérivés, la protéine YFP ou l'un de ses dérivés, et la protéine dsRED. Parmi les protéines dérivées de la protéine GFP, on peut utiliser notamment l'une quelconque des protéines connues sous les noms GFPMut3 (Cormack et al. (Gène (1996) 173_: 33-38)), Venus (Nagai et al., {Nat. Biotechnol. (2002) 20:87-90)) ou Sapphire (Zapata-Hommer and Griesbeck, BMC Biotechnol. (2003) 3:5). La protéine à fluorescence intrinsèque peut aussi être choisie parmi les protéines auto-fluorescentes originaires de divers organismes, autres que Aequorea Victoria. Notamment, la protéine à fluorescence intrinsèque peut être choisie parmi les protéines suivantes : la protéine CopGFP originaire de Pontellina plumata, et décrite par D.A. Shagin et al. (2004, Mol. Biol. Evol. 21 :841-850) ; la protéine TurboGFP, un variant de CopGFP ; et décrite par D.A. Shagin et al., 2004 {Mol. Biol. Evol. 21 :841-850) ; la protéine PhiYFP originaire de Phialidium sp. ; et décrite par D.A. Shagin et al.( 2004, Mol. Biol. Evol. 21 :841-850) ; la protéine AcGFP originaire de Aequorea coerulescens, ainsi que ses variants, et décrite par N. G. Gurskaya, (2003, Biochem. J. 373:403-408) ; et la protéine DsRed originaire de Discosoma sp. ; et décrite par M.V. Matz et al (1999, Nature Biotech. 17:969-973). Préférentiellement on utilisera, dans la protéine fusion p21- protéine détectable, la protéine mAG, aussi appelée « monomeric Azami- Green », originaire du corail de Galaxeidae; et décrite par Karasawa et al. (Karasawa et al., J. Biol. Chem. 2003 278:34167-34171 ).When the detectable protein consists of an antigen, it can be any type of antigen, since antibodies specific for this antigen are already accessible or, alternatively, they can be prepared, according to any technique for obtaining antibodies, especially for polyclonal or monoclonal antibodies, well known to those skilled in the art. Preferentially, in this case, the detectable protein consists of a small antigen, which is not likely to interfere with the recognition of the p21 protein ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 ) by the proteasome. Thus, preferably, as antigen is used a peptide having a chain of 7 to 100 amino acids in length, better 7 to 50 amino acids in length, and more preferably 7 to 30 amino acids in length, for example 10 acids. amines of length. Illustratively, there may be used the antigen HA sequence [NH 2 - YPYDVPDYA-COOH] SEQ ID 0 7, or a sequence of FLAG antigen [NH 2 -DYKDDDDK-COOH] SEQ ID 0 8 (monomer FLAG ) or sequence [NH 2 -MDYKDHDGDYKDHDIDYKDDDDK-COOH] SEQ ID NO 9 0 (FLAG trimer) in this case, is used to quantify the detectable protein in step (b) of the method, an antibody that specifically recognizes the antigen included in the fusion protein, this antibody being labeled directly or indirectly. Quantification is then performed by measuring the detectable signal produced by the complexes formed in the yeast cells between the labeled antibody and the p21-antigen fusion protein. Thus, in step (b), when the first detectable protein is an antigen, said first detectable protein is quantified by detecting complexes formed between said protein and recognizing antibodies. When the detectable protein consists of an intrinsically fluorescent protein, it is especially chosen from the mAG protein, the GFP protein or one of its derivatives, the YFP protein or one of its derivatives, and the dsRED protein. Among the proteins derived from the GFP protein, it is possible to use in particular any of the proteins known under the names GFPMut3 (Cormack et al., Gene (1996) 173: 33-38)), Venus (Nagai et al., (Nat Biotechnol (2002) 20: 87-90)) or Sapphire (Zapata-Hommer and Griesbeck, BMC Biotechnol (2003) 3: 5). The intrinsically fluorescent protein may also be selected from auto-fluorescent proteins originating from various organisms, other than Aequorea Victoria. In particular, the intrinsically fluorescent protein may be chosen from the following proteins: the CopGFP protein originating from Pontellina plumata, and described by DA Shagin et al. (2004, Mol Biol Evol 21: 841-850); TurboGFP protein, a variant of CopGFP; and described by DA Shagin et al., 2004 {Mol. Biol. Evol. 21: 841-850); PhiYFP protein from Phialidium sp. ; and described by DA Shagin et al (2004, Mol Biol Evol 21: 841-850); the AcGFP protein native to Aequorea coerulescens, as well as its variants, and described by NG Gurskaya, (2003, Biochem J. 373: 403-408); and the DsRed protein from Discosoma sp. ; and described by MV Matz et al (1999, Nature Biotech 17: 969-973). Preferably, in the p21 protein-detectable fusion protein, the mAG protein, also called "monomeric Azami- Green" originating from the coral of Galaxeidae, will be used; and described by Karasawa et al. (Karasawa et al., J. Biol Chem 2003 278: 34167-34171).
Lorsque la protéine détectable consiste en une protéine à fluorescence intrinsèque, on quantifie la protéine détectable à l'étape (b) du procédé par mesure du signal de fluorescence qui est émis par la protéine de fusion p21 -protéine fluorescente à l'aide de tout dispositif adapté. Ainsi, à l'étape (b), lorsque la protéine détectable est une protéine fluorescente, on quantifie ladite protéine détectable par une mesure du signal de fluorescence émis par ladite protéine.When the detectable protein consists of an intrinsically fluorescent protein, the detectable protein is quantified in step (b) of the method by measuring the fluorescence signal that is emitted by the p21-fluorescent protein fusion protein using any adapted device. Thus, in step (b), when the detectable protein is a fluorescent protein, said detectable protein is quantified by measuring the fluorescence signal emitted by said protein.
Lorsque la protéine détectable consiste en une protéine à activité enzymatique, ladite protéine détectable est choisie notamment parmi la luciférase et la β-lactamase. Dans ce cas, on quantifie la protéine détectable à l'étape (b) du procédé par mesure de la quantité du ou des composés produits par la conversion du substrat par l'enzyme. Lorsque le produit de l'activité enzymatique est coloré, la mesure peut être réalisée par colorimétrie. Lorsque le produit de l'activité enzymatique est fluorescent, on mesure l'intensité du signal de fluorescence qui est émis par ledit produit, à l'aide de tout dispositif de mesure de la fluorescence adapté. Ainsi, à l'étape (b), lorsque la première protéine détectable est une protéine ayant une activité enzymatique, on quantifie ladite protéine détectable par une mesure de la quantité de substrat transformé par ladite protéine.When the detectable protein consists of a protein with enzymatic activity, said detectable protein is chosen in particular from luciferase and β-lactamase. In this case, the detectable protein is quantified in step (b) of the process by measuring the amount of compound (s) produced by the conversion of the substrate by the enzyme. When the product of the enzymatic activity is colored, the measurement can be performed by colorimetry. When the product of the enzymatic activity is fluorescent, the intensity of the fluorescence signal emitted by said product is measured using any suitable fluorescence measuring device. Thus, in step (b), when the first detectable protein is a protein having an enzymatic activity, said detectable protein is quantified by measuring the amount of substrate transformed by said protein.
Selon un mode de réalisation préféré, la protéine comprenant le polypeptide P21WAF1/Cιp1 consiste en la protéine de séquence en acides aminés SEQ ID N°3, qui peut être codée par l'acide nucléique de séquence SEQ ID N°5. La protéine de séquence SEQ ID N0 3 consiste, de l'extrémité NH2-terminale vers l'extrémité COOH-terminale, respectivement en (i) la séquence de la protéine détectable mAG allant de l'acide aminé en position 1 jusqu'à l'acide aminé en position 226, (ii) un premier peptide espaceur allant de l'acide aminé en position 227 jusqu'à l'acide aminé en position 228 et (iii) le polypeptide P21WAF1/Cip1 allant de l'acide aminé en position 229 jusqu'à l'acide aminé en position 392. L'acide nucléique de séquence SEQ ID N°5 consiste, de l'extrémité 5' vers l'extrémité 3', respectivement en (i) la séquence codant la protéine détectable mAG allant du nucléotide en position 1 jusqu'au nucléotide en position 678, (ii) la séquence codant un peptide espaceur allant du nucléotide en position 679 jusqu'au nucléotide en position 684 et (iii) la séquence codant le polypeptide p2iWAF1/Cιp1 allant du nucléotide en position 685 jusqu'au nucléotide en position 1179 (codon stop compris). Selon un autre mode de réalisation préféré, la protéine comprenant le polypeptide p21 [6KR]WAF1/Cιp1 consiste en la protéine de séquence en acides aminés SEQ ID N0 4, qui peut être codée par l'acide nucléique de séquence SEQ ID N0 6. La protéine de séquence SEQ ID N0 4 consiste, de l'extrémité NH2-terminale vers l'extrémité COOH- terminale, respectivement en (i) la séquence de la protéine détectable mAG allant de l'acide aminé en position 1 jusqu'à l'acide aminé en position 226, (ii) un premier peptide espaceur allant de l'acide aminé en position 227 jusqu'à l'acide aminé en position 228 et (iii) le polypeptide p21 [6KR]WAF1/Cip1 allant de l'acide aminé en position 229 jusqu'à l'acide aminé en position 392. L'acide nucléique de séquence SEQ ID N°6 consiste, de l'extrémité 5' vers l'extrémité 3', respectivement en (i) la séquence codant la protéine détectable mAG allant du nucléotide en position 1 jusqu'au nucléotide en position 678, (ii) la séquence codant un peptide espaceur allant du nucléotide en position 679 jusqu'au nucléotide en position 684 et (iii) la séquence codant le polypeptide p21 [6KR]WAF1/Cip1 allant du nucléotide en position 685 jusqu'au nucléotide en position 1179 (codon stop compris).According to a preferred embodiment, the protein comprising the P 21 WAF1 / Cιp1 polypeptide consists of the amino acid sequence protein SEQ ID No. 3, which may be encoded by the nucleic acid of sequence SEQ ID No. 5. The protein of SEQ ID NO : 3 sequence consists, from the 2 -terminal NH end to the COOH-terminal end, respectively in (i) the sequence of the detectable mAG protein ranging from the amino acid in position 1 to the at the amino acid at position 226, (ii) a first spacer peptide ranging from amino acid at position 227 to the amino acid at position 228 and (iii) the polypeptide P 21 WAF1 / Cip1 ranging from amino acid in position 229 to the amino acid in position 392. The nucleic acid of sequence SEQ ID No. 5 consists, from the 5 'end to the 3' end, respectively in (i) the coding sequence the detectable mAG protein ranging from the nucleotide at position 1 to the nucleotide at position 678, (ii) the sequence coding for a spacer peptide ranging from the nucleotide at position 679 to the nucleotide at position 684 and (iii) the sequence coding for the p2i polypeptide WAF1 / CIP1 ranging from the nucleotide at position 685 to the nucleotide at position 1179 (cod we stop included). According to another preferred embodiment, the protein comprising the p21 [6KR] WAF1 / Cιp1 polypeptide consists of the amino acid sequence protein SEQ ID N 0 4, which can be encoded by the nucleic acid of sequence SEQ ID N 0 6. The protein of sequence SEQ ID NO : 4 consists, from the 2- terminal NH end to the COOH-terminal end, respectively in (i) the sequence of the detectable mAG protein ranging from the amino acid in the 1-position. to the amino acid at position 226, (ii) a first spacer peptide ranging from amino acid at position 227 to the amino acid at position 228 and (iii) the polypeptide p21 [6KR] WAF1 / Cip1 ranging from the amino acid at position 229 to the amino acid at position 392. The nucleic acid of sequence SEQ ID No. 6 consists, from the 5 'end to the 3' end, respectively in (i) the sequence encoding the detectable mAG protein from the nucleotide at position 1 to the nucleotide at position 678, (ii) the sequence coding for a spacer peptide ranging from the nucleotide at position 679 to the nucleotide at position 684 and (iii) the sequence coding for the polypeptide p21 [6KR] WAF1 / Cip1 ranging from the nucleotide at position 685 to the nucleotide at position 1179 (stop codon included).
Dans les polynucléotides de séquence SEQ ID N0 5 codant la protéine de fusion comprenant P21WAF1/Cip1 et de séquence SEQ ID N0 6 codant la protéine de fusion comprenant p21 [6KR]WAF1/Cip1, l'identité des bases nucléiques a été adaptée de manière à inclure, dans ces séquences nucléiques, les codons qui sont préférentiellement utilisés dans les cellules de levure.In SEQ ID N 0 5 polynucleotide sequence encoding the fusion protein comprising P21 WAF1 / Cip1 and of sequence SEQ ID N 0 6 encoding the fusion protein comprising p21 [6KR] WAF1 / Cip1, the identity of the nucleobase has has been adapted to include, in these nucleic sequences, the codons which are preferentially used in yeast cells.
Selon encore un autre aspect, le procédé de criblage selon l'invention est caractérisé en ce que les cellules de levure recombinantes sont transformées avec un polynucléotide qui comprend :According to yet another aspect, the screening method according to the invention is characterized in that the recombinant yeast cells are transformed with a polynucleotide which comprises:
(a) un cadre de lecture ouvert codant (i) la protéine de fusion comprenant le polypeptide p21 (p2iWAF1/CiP1 ou p21 [6KR]WAF1/Cip1 ) et (ii) une protéine détectable, et (b) une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert; Le polynucléotide ci-dessus peut consister en l'acide nucléique de séquence SEQ ID N°5 ou en l'acide nucléique de séquence SEQ ID N°6.(a) an open reading frame encoding (i) the fusion protein comprising the p21 polypeptide ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1) and (ii) a detectable protein, and (b) a regulatory sequence functional in yeast cells that directs the expression of said open reading frame; The above polynucleotide may consist of the nucleic acid of sequence SEQ ID No. 5 or the nucleic acid of sequence SEQ ID No. 6.
Acides nucléiques, vecteurs d'expression et cellules de levure transformées préférés selon l'invention.Nucleic acids, expression vectors and transformed yeast cells preferred according to the invention.
On a synthétisé selon l'invention des acides nucléiques, lesquels, lorsqu'ils sont introduits dans des cellules de levure, provoquent l'expression de la protéine de fusion p21 -protéine détectable, c'est à dire des acides nucléiques codant la protéine de fusion p21WAF1/Cιp1-protéine détectable et des acides nucléiques codant la protéine de fusion p21 [6KR]WAF1/Cip1-protéine détectable.Nucleic acids have been synthesized according to the invention, which, when introduced into yeast cells, cause the expression of the detectable protein p21-protein fusion protein, that is to say nucleic acids encoding the protein of the invention. p21 fusion WAF1 / CIP1- detectable protein and nucleic acids encoding the p21 fusion protein [6KR] WAF1 / Cip1- detectable protein.
Chacun des acides nucléiques synthétisés comprend une séquence codante, qui est aussi désignée « cadre de lecture ouvert » ou « ORF » qui code la protéine de fusion p21 -protéine détectable d'intérêt. Des exemples illustratifs des acides nucléiques selon l'invention sont les acides nucléiques de séquence SEQ ID N0 5 (p21WAF1/Cip1-protéine détectable ) et SEQ ID N0 6 (p21 [6KR]WAF1/Cip1-protéine détectable), dont la structure a été décrite précédemment dans la description.Each of the synthesized nucleic acids comprises a coding sequence, which is also referred to as an "open reading frame" or "ORF" which encodes the p21 fusion protein - detectable protein of interest. Illustrative examples of the nucleic acids according to the invention are the nucleic acids of sequence SEQ ID N 0 5 (p21 WAF1 / Cip1 detectable -protein) and SEQ ID N 0 6 (p21 [6KR] WAF1 / Cip1 detectable -protein), including the structure has been described previously in the description.
Chacun des acides nucléiques comprend aussi une séquence régulatrice comprenant un promoteur fonctionnel dans les cellules de levure.Each of the nucleic acids also comprises a regulatory sequence comprising a promoter functional in yeast cells.
Dans un mode de réalisation préféré, le promoteur fonctionnel dans les cellules de levure consiste en un promoteur répressible, c'est à dire un promoteur fonctionnel dans les cellules de levure et qui est sensible à l'action d'un agent inducteur. Lorsque l'agent inducteur est ajouté dans le milieu de culture des cellules de levure, il induit la répression ou le blocage de l'expression de la séquence codant la protéine d'intérêt placée sous son contrôle. Ce promoteur répressible est avantageusement choisi parmi les promoteurs CUP1, GAL1, GAL10,In a preferred embodiment, the functional promoter in yeast cells consists of a repressible promoter, that is to say a functional promoter in yeast cells and which is sensitive to the action of an inducing agent. When the inducing agent is added to the culture medium of the yeast cells, it induces the repression or the blocking of the expression of the sequence encoding the protein of interest placed under its control. This repressible promoter is advantageously chosen from the promoters CUP1, GAL1, GAL10,
MET3, MET25, PH05, PHO87 et THI4 de la levure Saccharomyces cerevisae.MET3, MET25, PH05, PHO87 and THI4 of the yeast Saccharomyces cerevisae.
La séquence du promoteur du gène GAL1 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Johnston et Davis (Mol. CeII. Biol. (1984) 4 : 1440- 1448).The promoter sequence of the GAL1 gene of the yeast S. cerevisiae, which can be used according to the invention may consist of that described by Johnston and Davis (Mol., C. Biol. (1984) 4: 1440-1448).
La séquence du promoteur du gène MET3 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Cherest et al. (Mol. Gen. Genêt. (1987) 210 (2) : 307- 313).The promoter sequence of the S. cerevisiae yeast MET3 gene that can be used according to the invention may consist of that described by Cherest et al. (Gen. Gen. Genet (1987) 210 (2): 307-313).
La séquence du promoteur du gène MET25 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite dans Kerjan et al. (Nucleic Acids Res.(1986) 14(20) : 7861-7871 ).The promoter sequence of the S. cerevisiae yeast MET25 gene that can be used according to the invention may consist of that described in Kerjan et al. (Nucleic Acids Res (1986) 14 (20): 7861-7871).
La séquence du promoteur du gène PHO5 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Feldmann et al. (EMBO J. (1994) 13(24) : 5795- 5809). La séquence du promoteur du gène THI4 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Skala et al., Yeast (1995) 14:1421-1427.The promoter sequence of the S. cerevisiae yeast PHO5 gene that can be used according to the invention can consist of that described by Feldmann et al. (EMBO J. (1994) 13 (24): 5795-5809). The promoter sequence of the THI4 gene of S. cerevisiae yeast, which can be used according to the invention may consist of that described by Skala et al., Yeast (1995) 14: 1421-1427.
La séquence du promoteur du gène CUP1 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Karin et al. (PNAS (1984) 81 (2) : 337-341 ).The promoter sequence of the CUP1 gene of S. cerevisiae yeast, which can be used according to the invention may consist of that described by Karin et al. (PNAS (1984) 81 (2): 337-341).
Dans un mode de réalisation préféré, l'acide nucléique ou le polynucléotide qui code la protéine de fusion p21 -protéine détectable comprend la séquence régulatrice GAL1. Cette séquence active l'expression du cadre de lecture ouvert codant la protéine de fusion comprenant le polypeptide p21 lorsque les cellules de levure sont cultivées en présence de galactose. Par contre cette séquence réprime l'expression du cadre de lecture ouvert codant la protéine de fusion comprenant le polypeptide p21 lorsque les cellules de levure sont cultivées en présence de glucose.In a preferred embodiment, the nucleic acid or polynucleotide that encodes the detectable p21-protein fusion protein comprises the GAL1 regulatory sequence. This sequence activates expression of the open reading frame encoding the p21 polypeptide fusion protein when the yeast cells are cultured in the presence of galactose. On the other hand, this sequence represses the expression of the open reading frame encoding the fusion protein comprising the p21 polypeptide when the yeast cells are cultured in the presence of glucose.
Ainsi, dans un mode de réalisation avantageux du procédé de criblage de l'invention, l'expression de la protéine fusion comprenant le polypeptide p21 est réalisée de manière temporaire durant l'essai de criblage. Après avoir été induite durant un temps fixé pouvant varier de 20 minutes à 24 heures, l'expression de la protéine contenant p21 est spécifiquement stoppée (dans une expérience connue par l'homme du métier sous le nom de « promoter shut off ») avant d'exposer les cellules aux molécules devant être criblées. Cet arrêt de l'expression est obtenu par l'addition dans le milieu de culture d'une molécule pouvant réprimer l'activité du promoteur contrôlant l'expression de la protéine fusion p21- protéine détectable, ou bien encore par l'élimination de la présence, dans le milieu de culture, d'un agent ou d'une molécule requise pour l'activation dudit promoteur.Thus, in an advantageous embodiment of the screening method of the invention, the expression of the fusion protein comprising the p21 polypeptide is carried out temporarily during the screening test. After having been induced for a fixed time which can vary from 20 minutes to 24 hours, the expression of the protein containing p21 is specifically stopped (in an experiment known to those skilled in the art under the name of "promoter shut off") before to expose the cells to the molecules to be screened. This termination of the expression is obtained by the addition in the culture medium of a molecule that can repress the activity of the promoter controlling the expression of the p21-detectable protein fusion protein, or else by eliminating the presence, in the culture medium, of an agent or a molecule required for the activation of said promoter.
Ainsi, lorsque la protéine de fusion p21 -protéine détectable est exprimée sous le contrôle du promoteur du gène GAL1, alors l'expression de ce promoteur est réprimée en ajoutant du glucose à la concentration finale de 2 % dans le milieu de culture. L'arrêt de la néosynthèse de la protéine de fusion comprenant p21 permet de mesurer sa stabilité en temps réel, en déterminant par exemple la fluorescence des cellules de levure au cours du temps après l'arrêt de synthèse, dans le mode de réalisation dans lequel ladite protéine de fusion contient une protéine détectable à fluorescence intrinsèque, comme la mAG ou une protéine dérivée de la GFP.Thus, when the detectable protein p21-protein fusion protein is expressed under the control of the GAL1 gene promoter, then the expression of this promoter is repressed by adding glucose to the final concentration of 2% in the culture medium. Stopping the neosynthesis of the fusion protein comprising p21 makes it possible to measure its stability in real time, for example by determining the fluorescence of the yeast cells over time after stopping synthesis, in the wherein said fusion protein contains a detectable intrinsically fluorescent protein, such as mAG or a GFP-derived protein.
Ainsi, l'invention a aussi pour objet une cassette d'expression fonctionnelle dans les cellules de levure comprenant un polynucléotide qui comprend un cadre de lecture ouvert codant la protéine de fusion comprenant le polypeptide p21 et au moins une protéine détectable, et une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert. Une telle cassette d'expression peut être caractérisée en ce que le polypeptide p21 est choisi parmi le polypeptide p2iWAF1/Cιp1 et le polypeptide p21 [6KR]WAF1/Cip1.Thus, the invention also relates to a functional expression cassette in yeast cells comprising a polynucleotide which comprises an open reading frame encoding the fusion protein comprising the p21 polypeptide and at least one detectable protein, and a regulatory sequence functional in yeast cells that directs the expression of said open reading frame. Such an expression cassette may be characterized in that the p21 polypeptide is chosen from the p2i WAF1 / Cip1 polypeptide and the p21 [6KR] WAF1 / Cip1 polypeptide.
Une telle cassette d'expression peut notamment être caractérisée en ce que le polypeptide p21 est choisi parmi le polypeptide p2iWAF1/Cιp1 de séquence SEQ ID N0 1 et le polypeptide p21 [6KR]WAF1/Cip1 de séquence SEQ ID N0 2.Such an expression cassette may in particular be characterized in that the p21 polypeptide is selected from the polypeptide P2i WAF1 / Cιp1 sequence SEQ ID N 0 1 and the p21 polypeptide [6KR] WAF1 / Cip1 sequence SEQ ID N 0 2.
Une telle cassette d'expression peut notamment comprendre ou consister en l'acide nucléique de séquence SEQ ID N°5 selon l'invention, qui code la protéine de fusion mAG- P21WAF1/Cip1 de séquence SEQ ID N°3.Such expression cassette may in particular comprise or consist of the nucleic acid of sequence SEQ ID No. 5 according to the invention, which encodes the mAG- P 21 WAF1 / Cip1 fusion protein of sequence SEQ ID No. 3.
Une telle cassette d'expression peut aussi comprendre ou consister en l'acide nucléique de séquence SEQ ID N0 6 selon l'invention, qui code la protéine de fusion mAG- p21 [6KR]WAF1/Cip1 de séquence SEQ ID N0 4. Selon un mode de réalisation préféré d'une telle cassette d'expression, la séquence régulatrice comprend un promoteur répressible fonctionnel dans les cellules de levure, et qui est sensible à l'action d'un agent inducteur, tel qu'un promoteur choisi parmi les promoteurs CUP1, GAU, GAUO, MET3, MET25, PHO5, et THI4 de la levure Saccharomyces cerevisiae.Such an expression cassette may also comprise or consist of the nucleic acid of sequence SEQ ID N 0 6 according to the invention, which encodes the fusion protein MAG- p21 [6KR] WAF1 / Cip1 sequence SEQ ID N 0 4 According to a preferred embodiment of such an expression cassette, the regulatory sequence comprises a repressible promoter functional in yeast cells, and which is sensitive to the action of an inducing agent, such as a chosen promoter. among the promoters CUP1, GAU, GAUO, MET3, MET25, PHO5, and THI4 of the yeast Saccharomyces cerevisiae.
Selon un autre mode de réalisation avantageux du procédé de criblage selon l'invention, les cellules de levure recombinantes possèdent l'acide nucléique ou le polynucléotide comprenant la séquence codant la protéine de fusion p21 -protéine détectable sous une forme intégrée dans leur génome, comme cela est illustré dans les exemples Dans encore un autre mode de réalisation du procédé de criblage selon l'invention, les cellules de levure sont transformées par l'acide nucléique ou le polynucléotide comprenant la séquence codant la protéine de fusion p21 -protéine détectable qui se présente sous une forme non intégrée dans les chromosomes, par exemple sous la forme de vecteurs fonctionnels dans les cellules de levure et qui portent au moins une origine de réplication fonctionnelle dans les cellules de levure.According to another advantageous embodiment of the screening method according to the invention, the recombinant yeast cells possess the nucleic acid or the polynucleotide comprising the sequence coding for the p21-proteine fusion protein detectable in a form integrated in their genome, such as this is illustrated in the examples In yet another embodiment of the screening method according to the invention, the yeast cells are transformed with the nucleic acid or the polynucleotide comprising the sequence coding for the detectable p21 protein-protein which is in a non-integrated form in the chromosomes, for example in the form of functional vectors in yeast cells and which carry at least one origin of functional replication in yeast cells.
De manière générale, pour la mise en œuvre du procédé de criblage de l'invention, il est avantageux d'utiliser des cellules de levures qui possèdent une bonne perméabilité membranaire, notamment une bonne perméabilité membranaire pour les agents à tester par le procédé.In general, for the implementation of the screening method of the invention, it is advantageous to use yeast cells which have good membrane permeability, including good membrane permeability for the agents to be tested by the method.
Pour la mise en œuvre du mode de réalisation préféré du procédé de criblage de l'invention dans lequel l'expression de la protéine fusion est réalisée sous le contrôle d'un promoteur répressible, il est également avantageux d'utiliser des cellules de levures qui possèdent une bonne perméabilité membranaire pour les composés « inducteurs » vis-à-vis desquels lesdits promoteurs répressibles sont sensibles.For the implementation of the preferred embodiment of the screening method of the invention in which the expression of the fusion protein is carried out under the control of a repressible promoter, it is also advantageous to use yeast cells which have good membrane permeability for the "inducing" compounds against which said repressible promoters are sensitive.
Ainsi, dans un autre mode de réalisation préféré du procédé de criblage de l'invention, on utilise des souches de levure dont le génome comprend une à plusieurs mutations qui augmentent la perméabilité aux produits à tester, telles que des mutations inactivant les gènes PDR1 et PDR3, deux gènes codant des facteurs transcriptionnels qui chez la levure contrôlent l'expression de transporteurs insérés dans la membrane plasmique (Vidal ét al., 1999, Nourani ét al., 1997). Préférentiellement, on utilise des souches de levure possédant le fond génétique de la souche W303 de la levure Saccharomyces cerevisiae décrite par Bailis et al. (1990), ou tout autre souche caractérisée de la dite levure Saccharomyces cerevisiae.Thus, in another preferred embodiment of the screening method of the invention, yeast strains whose genome comprises one to several mutations which increase the permeability to the products to be tested, such as mutations inactivating the PDR1 and PDR3, two genes encoding transcriptional factors that in yeast control the expression of transporters inserted into the plasma membrane (Vidal et al., 1999, Nourani et al., 1997). Preferentially, yeast strains possessing the genetic background of the strain W303 of the yeast Saccharomyces cerevisiae described by Bailis et al. (1990), or any other characterized strain of said yeast Saccharomyces cerevisiae.
La transformation des cellules de levure par de l'ADN exogène est préférentiellement réalisée en utilisant des techniques connues de l'homme du métier, notamment la technique décrite par Schiestl et al. (1989). Les constructions des différentes souches de levure ont été réalisées en employant des techniques de génétique (croisement, sporulation dissection des asques et analyse phénotypique des spores) connues et décrites notamment par Sherman et al. (1979) et les techniques de génétique inverse décrites notamment par Rothstein (1991 ).Transformation of yeast cells with exogenous DNA is preferably carried out using techniques known to those skilled in the art, in particular the technique described by Schiestl et al. (1989). The constructs of the various yeast strains were made using genetic techniques (cross, sporulation dissection of asci and phenotypic analysis of spores) known and described in particular by Sherman et al. (1979) and reverse genetics techniques described in particular by Rothstein (1991).
Conformément à l'invention, les levures sont transformées préférentiellement par des plasmides construits selon des techniques de biologie moléculaire classiques, notamment selon les protocoles décrits par Sambrook et al. (1989) et Ausubel et al. (1990-2004).According to the invention, the yeasts are preferably converted by plasmids constructed according to conventional molecular biology techniques, in particular according to the protocols described by Sambrook et al. (1989) and Ausubel et al. (1990-2004).
Ainsi, un autre objet de l'invention consiste en un vecteur d'expression caractérisé en ce qu'il comprend une cassette d'expression telle que définie dans la présente description. Un premier vecteur conforme à l'invention est le vecteur pCSYAQ6-p21wt qui est décrit dans les exemples, et qui a servi à la construction de la souche de levure CYS343.Thus, another subject of the invention consists of an expression vector characterized in that it comprises an expression cassette as defined in the present description. A first vector according to the invention is the vector pCSYAQ6-p21wt which is described in the examples, and which was used for the construction of the yeast strain CYS343.
Un second vecteur conforme à l'invention est le vecteur pCSYAQ6-p21 [6KR] qui est décrit dans les exemples, et qui a servi à la construction de la souche de levure CYS344.A second vector according to the invention is the vector pCSYAQ6-p21 [6KR] which is described in the examples, and which was used for the construction of the yeast strain CYS344.
La présente invention est également relative à une souche de levure recombinante comprenant, sous une forme intégrée dans son génome, un polynucléotide qui comprend (a) un cadre de lecture ouvert codant la protéine de fusion comprenant un polypeptide p21 (p2iWAF1/c'P1 ou p21 [6KR]WAF1/Cip1 ) et au moins une protéine détectable, et (b) une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert.The present invention also relates to a recombinant yeast strain comprising, in an integrated form in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 polypeptide (p2i WAF1 / c ' P1 or p21 [6KR] WAF1 / Cip1 ) and at least one detectable protein, and (b) a regulatory sequence functional in yeast cells that directs the expression of said open reading frame.
Une souche de levure recombinante selon l'invention peut consister en une souche de levure recombinante comprenant, sous une forme intégrée dans son génome, un polynucléotide qui comprend (a) un cadre de lecture ouvert codant la protéine de fusion comprenant un polypeptide p21wAFi/ci P i de séquence SEQ ID N0 1 et au moins une protéine détectable, et (b) une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert. Une souche de levure recombinante selon l'invention peut consister en une souche de levure recombinante comprenant, sous une forme intégrée dans son génome, un polynucléotide qui comprend (a) un cadre de lecture ouvert codant la protéine de fusion comprenant un polypeptide p21 [6KR]WAF1/Cip1 de séquence SEQ ID N0 2 et au moins une protéine détectable, et (b) une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert.A recombinant yeast strain according to the invention may consist of a recombinant yeast strain comprising, in an integrated form in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 w AFi polypeptide / c i P i of sequence SEQ ID N 0 1 and at least one detectable protein, and (b) a regulatory sequence functional in yeast cells which directs the expression of said open reading frame. A recombinant yeast strain according to the invention may consist of a recombinant yeast strain comprising, in a form integrated in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 [6KR polypeptide ] WAF1 / Cip1 of sequence SEQ ID N 0 2 and at least one protein detectable, and (b) a functional regulatory sequence in yeast cells that directs the expression of said open reading frame.
En particulier, l'invention est relative à une souche de levure recombinante conforme à la définition ci-dessus, qui consiste en la souche de levure CYS343, qui exprime la protéine de fusion comprenant le polypeptide P2iWAF1/CiP1 et la protéine détectable mAG, c'est à dire la protéine de fusion de séquence SEQ ID N0 3.In particular, the invention relates to a recombinant yeast strain according to the above definition, which consists of the yeast strain CYS343, which expresses the fusion protein comprising the P 2i polypeptide WAF1 / CiP1 and the detectable protein mAG. , ie the fusion protein of sequence SEQ ID N 0 3.
En particulier, l'invention est relative à une souche de levure recombinante conforme à la définition ci-dessus, qui consiste en la souche de levure CYS344, qui exprime la protéine de fusion comprenant le polypeptide p21 [6KR]WAF1/Cip1 et la protéine détectable mAG, c'est à dire la protéine de fusion de séquence SEQ ID N0 4.In particular, the invention relates to a recombinant yeast strain according to the above definition, which consists of the yeast strain CYS344, which expresses the fusion protein comprising the p21 [6KR] WAF1 / Cip1 polypeptide and the protein detectable mAG, ie the fusion protein sequence SEQ ID N 0 4.
L'invention concerne aussi une trousse ou kit pour le criblage d'agents modulant l'activité du protéasome, caractérisé en ce qu'il comprend un vecteur d'expression comprenant une cassette d'expression codant la protéine de fusion comprenant le polypeptide p21The invention also relates to a kit or kit for screening agents that modulate the activity of the proteasome, characterized in that it comprises an expression vector comprising an expression cassette encoding the fusion protein comprising the p21 polypeptide
(p21wAFi/ci P i ou P21 [6KR]WAF1/Cip1 ) telle que définie ci-dessus. (p21 w AFi / c i P i or P 21 [6KR] WAF1 / Cip1 ) as defined above.
L'invention est aussi relative à une trousse ou kit pour le criblage d'agents modulant l'activité du protéasome caractérisé en ce qu'il comprend des cellules de levures recombinantes comprenant, sous une forme insérée dans leur génome, une cassette d'expression codant la protéine de fusion comprenant le polypeptide p21 (P21WAF1/C|P1 OU p21 [6KR]WAF1/Cip1 ) telle que définie ci-dessus.The invention also relates to a kit or kit for screening agents that modulate the activity of the proteasome, characterized in that it comprises recombinant yeast cells comprising, in a form inserted in their genome, an expression cassette. encoding the fusion protein comprising the p21 polypeptide (P21 WAF1 / C | P 1 OR p21 [6KR] WAF1 / Cip1) as defined above.
Préférentiellement, la trousse ou kit ci-dessus comprend des cellules de levure recombinantes de la souche de levure CYS343 ou des cellules de levure recombinantes de la souche de levure CYS344.Preferentially, the kit or kit above comprises recombinant yeast cells of the yeast strain CYS343 or recombinant yeast cells of the yeast strain CYS344.
Le procédé de criblage selon l'invention, permet de visualiser l'activité du protéasome vis-à-vis d'une protéine cible humaine dans des cellules de levure, et plus précisément vis-à-vis d'une protéine cible p21 , c'est à dire soit la protéine cible consistant en une protéine de fusion comprenant la protéine p2iWAF1/Cιp1 humaine fusionnée à une protéine détectable, soit la protéine mutée p21[6KR]WAF1/Cip1 fusionnées à une protéine détectable.The screening method according to the invention makes it possible to visualize the activity of the proteasome vis-à-vis a human target protein in yeast cells, and more precisely with respect to a target protein p21, c either the target protein consisting of a fusion protein comprising the human p2i protein WAF1 / Cιp1 fused to a detectable protein, or the mutated protein p21 [6KR] WAF1 / Cip1 fused to a detectable protein.
Ce procédé est particulièrement avantageux pour cribler des molécules ou agents aptes à agir sur les pathologies associées à une dégradation excessive ou insuffisante des protéines cellulaires, tels que certains cancers, les syndromes inflammatoires et immuns, les infections fongiques, bactériennes et virales ou certaines maladies du système nerveux central. Les principaux avantages du procédé de criblage de l'invention sont notamment les suivants : la simplicité de mise en œuvre: l'activité du protéasome tel qu'il existe dans les cellules est visualisée simplement grâce à l'expression contrôlée du facteur humain sauvage ou mutant p2 <|WAFi/cιpi dans |es ce||u|es (je |evure. De plus, lorsque le facteur p2<|WAFi/cιpi esj exprimé en tant que protéine hybride en fusion avec une protéine à fluorescence intrinsèque, telle que la mAG ou la GFP, l'activité du protéasome vis-à-vis du facteur p2iWAF1/c'P1 ou p21[6KR]WAF1/Cip1 est directement mesurée par la quantification de la fluorescence émise par la protéine hybride. De même lorsque le facteur p2iWAF1/CiP1 ou du facteur p21 [6KR]WAF1/Cip1 est exprimé en tant que protéine hybride en fusion avec une protéine telle que la luciférase, l'activité du protéasome vis-à-vis du facteur p2iWAF1/Cιp1 ou du facteur p21 [6KR]WAF1/Cip1 est directement mesurée par la quantification de la luminescence émise par la protéine hybride en présence d'un substrat comme la fluorescéine. l'adéquation avec un contexte thérapeutique: l'activité du protéasome est suivie selon un test fonctionnel réalisé dans des cellules entières. Le procédé de criblage in cellulo selon l'invention permet donc de sélectionner des molécules capables d'activer ou d'inhiber l'activité du protéasome dans un contexte semblable à celui de leur usage thérapeutique final. la spécificité: bien que réalisé in cellulo dans la cellule, le procédé de criblage selon l'invention est spécifique, car il repose sur l'expression, dans un organisme hétérologue à l'organisme humain, de la protéine humaine p21. Les molécules sélectionnées grâce au procédé de criblage de l'invention seront spécifiques de l'activité du protéasome, et ne seront donc pas des molécules sélectionnées en raison, par exemple, de leur capacité à interférer avec l'une des nombreuses voies de signalisation induisant la dégradation du facteur p2iWAF1/c'P1 dans les cellules humaines. En effet, lors de la mise en œuvre du procédé de criblage selon l'invention, la dégradation de P21WAF1/Cie1 ou de p21[6KR]WAF1/Cip1 par le protéasome est induite par une voie métabolique tout à fait artificielle et totalement reproductible, comme par exemple, l'ajout de glucose pour bloquer l'activité du promoteur GAL1, lorsque p21wAFi/ci P i ou P21[6KR]WAF1/Cip1 est exprimé sous le contrôle de ce promoteur. L'emploi de la protéine p21 [6KR] WAF1/CiP1 dont les 6 résidus lysine de la protéine native p2iWAF1/Cιp1 ont été substitués par des résidus arginine, supprimant les sites internes d'ubiquitination, assure de plus que les molécules sélectionnées selon l'invention n'interfèrent pas avec les autres composant de la voie ubiquitine-protéasome comme les ubiquitine ligases, les enzymes de conjugaison de l'ubiquitine et l'enzyme d'activation de l'ubiquitine. la stabilité des souches de levure recombinantes: les techniques d'intégration dans un endroit choisi d'un chromosome de levure et de remplacement ciblé de gènes permettent la construction de souches de levures recombinantes exprimant la protéine de fusion contenant soit p2iWAF1/CiP1, soit p21 [6KR]WAF1/Cip1 à partir des chromosomes de la levure. Ces souches de levure recombinantes sont donc génétiquement stables et peuvent être multipliées et conservées indéfiniment, la rapidité de croissance et de criblage: la levure est un micro- organisme à croissance rapide et rendement élevé. En particulier, le procédé de criblage de l'invention est préférentiellement réalisé en cultivant les cellules de levure dans un milieu de culture complet, dans lequel la croissance des cellules de levure est particulièrement rapide et le rendement particulièrement élevé, ce qui permet l'obtention d'une grande quantité de cellules de levure recombinantes pour la réalisation simultanée d'un nombre important de tests de criblage. le faible coût: la levure est un microorganisme dont la culture, le stockage et la caractérisation sont peu onéreux, l'automatisation du procédé de criblage de l'invention: la levure est un microorganisme dont la culture, réalisée dans un faible volume de milieu, à température basse, en atmosphère classique, dans l'air, est tout particulièrement adapté à l'automatisation (robotisation) des procédés de criblage.This method is particularly advantageous for screening molecules or agents capable of acting on the pathologies associated with a excessive or insufficient degradation of cellular proteins, such as certain cancers, inflammatory and immune syndromes, fungal, bacterial and viral infections or certain diseases of the central nervous system. The main advantages of the screening method of the invention include the following: the simplicity of implementation: the activity of the proteasome as it exists in the cells is simply visualized thanks to the controlled expression of the wild or human factor mutant p 2 < | WAFi / c ιpi in | this || u | es (I | e VING In addition, when the factor p2 <|. WAFI / c ιpi j are expressed as fusion hybrid protein with an intrinsically fluorescent protein, such as GFP or mAG, proteasome activity with respect to the p2i factor WAF1 / c ' P1 or p21 [6KR] WAF1 / Cip1 is directly measured by the quantification of the fluorescence emitted by the hybrid protein, likewise when the factor p 2i WAF1 / CiP1 or factor p21 [6KR] WAF1 / Cip1 is expressed as a fusion protein with a protein such as luciferase, proteasome activity against p2i factor WAF1 / Cip1 or factor p21 [6KR] WAF1 / Cip1 is directly measured by the quantification of the luminescence emitted by the hybrid protein in the presence of a substrate such as fluorescein, the adequacy with a therapeutic context: the activity of the proteasome is monitored according to a functional test carried out in whole cells. in cellulo screening according to the vention thus makes it possible to select molecules capable of activating or inhibiting the activity of the proteasome in a context similar to that of their final therapeutic use. the specificity: although produced in cellulo in the cell, the screening method according to the invention is specific because it is based on the expression, in an organism heterologous to the human organism, of the human protein p21. The molecules selected by the screening method of the invention will be specific for the activity of the proteasome, and therefore will not be selected molecules because, for example, of their ability to interfere with one of the many signaling pathways inducing the degradation of p2i factor WAF1 / c ' P1 in human cells. Indeed, during the implementation of the screening method according to the invention, the degradation of P 21 WAF1 / Ci e 1 or p21 [6KR] WAF1 / Cip1 by the proteasome is induced by a completely artificial metabolic pathway and fully reproducible, such as, for example, the addition of glucose to block the activity of the GAL1 promoter, when p21 w AF1 / c i P i or P 21 [6KR] WAF1 / Cip1 is expressed under the control of this promoter. The use of the p21 [6KR] WAF1 / CiP1 protein, of which the 6 lysine residues of the native p2i protein WAF1 / Cιp1 were substituted with arginine residues, suppressing the internal sites of ubiquitination, further ensures that the molecules selected according to The invention does not interfere with the other components of the ubiquitin-proteasome pathway such as ubiquitin ligases, ubiquitin conjugation enzymes and ubiquitin activating enzyme. the stability of recombinant yeast strains: integration techniques in a selected location of a yeast chromosome and targeted replacement of genes allow the construction of recombinant yeast strains expressing the fusion protein containing either p 2i WAF1 / CiP1 , either p21 [6KR] WAF1 / Cip1 from the chromosomes of the yeast. These recombinant yeast strains are therefore genetically stable and can be multiplied and stored indefinitely, the speed of growth and screening: yeast is a fast-growing and high-yielding microorganism. In particular, the screening method of the invention is preferably carried out by culturing the yeast cells in a complete culture medium, in which the growth of the yeast cells is particularly rapid and the yield is particularly high, which makes it possible to obtain a large amount of recombinant yeast cells for the simultaneous realization of a large number of screening tests. the low cost: yeast is a microorganism whose culture, storage and characterization are inexpensive, the automation of the screening method of the invention: the yeast is a microorganism whose culture, carried out in a low volume of medium, at low temperature, in a conventional atmosphere, in the air, is particularly suitable for automation (robotization) screening methods.
Les procédés de criblage selon l'invention sont utiles notamment pour sélectionner et caractériser des agents actifs tels que des agents anticancéreux, anti-inflammatoires, anti-viraux, des agents contre des infections fongiques, bactériennes ou des agents contre les maladies du système nerveux central.The screening methods according to the invention are particularly useful for selecting and characterizing active agents such as anti-cancer agents, anti-inflammatory agents, anti-viral agents, agents against fungal infections, bacterial agents or agents against diseases of the central nervous system. .
La présente invention est en outre illustrée, sans pour autant être limitée, par les figures et les exemples suivants.The present invention is further illustrated, without being limited, by the following figures and examples.
DESCRIPTION DES FIGURES La Figure 1 représente les cartes des plasmides recombinants codant une protéine de fusion p21 -protéine détectable. La Figure 1A représente un schéma du plasmide pCSYAQ6-p21 comprenant une cassette d'expression codant la protéine de fusion mAG-p21. La Figure 1 B représente un schéma du plasmide pCSYAQ6-p21-6KR comprenant une cassette d'expression codant la protéine de fusion mAG-p21[6KR].DESCRIPTION OF THE FIGURES FIG. 1 represents the maps of the recombinant plasmids encoding a detectable p21-protein fusion protein. Figure 1A is a schematic of plasmid pCSYAQ6-p21 comprising an expression cassette encoding the mAG-p21 fusion protein. Figure 1B is a schematic of plasmid pCSYAQ6-p21-6KR comprising an expression cassette encoding the mAG-p21 [6KR] fusion protein.
La Figure 2 représente la séquence nucléotidique et la séquence d'acides aminés de la protéine p21 [6KR]WAF1/Cip1.Figure 2 shows the nucleotide sequence and amino acid sequence of the p21 [6KR] WAF1 / Cip1 protein.
La Figure 3 représente des clichés d'immuno-empreintes (« Western Blotting ») illustrant la dégradation des protéines de fusion comprenant p2iWAF1/CiP1 ou p21 [6KR]WAF1/Cip1 fusionnée avec mAG, en présence ou en l'absence d'un agent inhibiteur du protéasome, le composé MG132. Les résultats sont illustrés pour les souches de levure recombinantes suivantes : CYS343 (Figure 2A) et CYS344 (Figure 2B).Figure 3 depicts immunoblotting ("Western Blotting") images illustrating the degradation of fusion proteins comprising p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 fused with mAG, in the presence or absence of a proteasome inhibitory agent, compound MG132. The results are illustrated for the following recombinant yeast strains: CYS343 (Figure 2A) and CYS344 (Figure 2B).
La Figure 4 illustre les résultats d'une analyse au microscope d'épifluorescence, de la dégradation de la protéine de fusion mAG- p21 [6KR]WAF1/Cιp1 dans des cellules de levure de la souche recombinante CYS344. La Figure 3A illustre les résultats d'épifluorescence obtenus avec les cellules de la souche CYS344 cultivées en présence de glucose et au temps 0, 60 minutes, 120 minutes et 180 minutes (du haut vers le bas de la figure) après l'arrêt de l'induction de l'expression de la protéine de fusion. La Figure 3B illustre les résultats d'épifluorescence obtenus avec les cellules de la souche CYS344 cultivées en présence de glucose et au temps 0, 60 minutes, 120 minutes et 180 minutes (du haut vers le bas de la figure) après l'arrêt de l'induction de l'expression de la protéine de fusion.Figure 4 illustrates the results of epifluorescence microscopy analysis, degradation of mAG-p21 [6KR] WAF1 / Cip1 fusion protein in yeast cells of recombinant strain CYS344. Figure 3A illustrates the epifluorescence results obtained with cells of the CYS344 strain cultured in the presence of glucose and at time 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after stopping. the induction of the expression of the protein fusion. FIG. 3B illustrates the epifluorescence results obtained with cells of the CYS344 strain cultured in the presence of glucose and at the time of 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after stopping induction of expression of the fusion protein.
La Figure 5 illustre la quantification, par cytométrie de flux des cellules de levure de chacune des souches CYS343 et CYS344, du signal de fluorescence émis par ces cellules, au cours du temps de culture, respectivement (i) pendant l'induction de la production de la protéine de fusion en présence de galactose et (ii) en présence de glucose après arrêt de la production de la protéine de fusion. Les cellules de levure ont été cultivées en présence ou en l'absence de l'inhibiteur de protéasome MG 132. La Figure 4A illustre une quantification en cytométrie de flux (FACS) de la fluorescence émise par la protéine de fusion mAG-p21WAF1/Cip1 produite par la souche CYS343, en présence et en absence de l'inhibiteur du protéasome MG132. La Figure 4B illustre une quantification en cytométrie de flux (FACS) de la fluorescence émise par la protéine de fusion mAG-p21 [6KR]WAF1/Cip1 produite par la souche CYS344, en présence et en absence de l'inhibiteur du protéasome MG132.FIG. 5 illustrates the quantification, by flow cytometry of the yeast cells of each of the strains CYS343 and CYS344, of the fluorescence signal emitted by these cells during the culture time, respectively (i) during the induction of the production. of the fusion protein in the presence of galactose and (ii) in the presence of glucose after stopping the production of the fusion protein. The yeast cells were cultured in the presence or in the absence of the proteasome inhibitor MG 132. FIG. 4A illustrates flow cytometry quantification (FACS) of the fluorescence emitted by the mAG-p21 fusion protein WAF1 / Cip1 produced by strain CYS343, in the presence and absence of the MG132 proteasome inhibitor. FIG. 4B illustrates flow cytometry quantification (FACS) of the fluorescence emitted by the mAG-p21 [6KR] WAF1 / Cip1 fusion protein produced by the CYS344 strain, in the presence and absence of the MG132 proteasome inhibitor.
EXEMPLES EXEMPLES 1 A 3.EXAMPLES EXAMPLES 1 TO 3.
A. MATERIEL ET METHODES DES EXEMPLES 1 A 3. A.1. Récapitulatif des séquences de polynucléotide utiliséesA. MATERIAL AND METHODS OF EXAMPLES 1 TO 3. A.1. Summary of the polynucleotide sequences used
Dans les descriptions qui suiventIn the descriptions that follow
La séquence de la protéine p2iWaf1/Cιp1 est celle déposée à la banque de données EMBL, numéro d'accession BC001935.1The sequence of the p2i protein Waf1 / Cιp1 is that deposited in the EMBL databank, accession number BC001935.1
La séquence de la protéine p21 [6KR]Waf1/Cip1 est celle déposée à la banque de données EMBL, numéro d'accession BC001935.1 dont lesThe sequence of the p21 [6KR] Waf1 / Cip1 protein is that deposited in the EMBL databank, BC001935.1 accession number whose
6 résidus Lysine ont été transformés en résidus Arginine.6 Lysine residues were transformed into Arginine residues.
La séquence du gène mAG (monomeric Azami-Green) du corailThe sequence of the mAG (monomeric Azami-Green) coral gene
Galaxeidae codant pour la protéine fluorescente désignée ci-après sous le terme mAG est celle déposée à GenBankTM/EBI Data Bank avec le numéro d'accession AB108447. La séquence du plasmide pRS306 est celle déposée à la banque de données EMBL, identificateur « PRS306 », numéro d'accession U03438.Galaxeidae encoding the fluorescent protein hereinafter referred to as mAG is that deposited at GenBankTM / EBI Data Bank with accession number AB108447. The sequence of the plasmid pRS306 is that deposited in the EMBL database, identifier "PRS306" accession number U03438.
La séquence du promoteur du gène GAL1 de la levure S. cerevisiae utilisé dans les descriptions qui suivent est entièrement comprise dans la séquence déposée à la banque de données EMBL, identificateur « SCGAL10 », numéro d'accession K02115.The promoter sequence of the S. cerevisiae yeast GAL1 gene used in the following descriptions is fully included in the sequence deposited in the EMBL databank, identifier "SCGAL10", accession number K02115.
La séquence du promoteur du gène GAL1 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Johnston et Davis (Mol. CeII. Biol. (1984) 4 (8) : 1440-1448).The promoter sequence of the GAL1 gene of the yeast S. cerevisiae, which can be used according to the invention may consist of that described by Johnston and Davis (Mol., C. Biol., (1984) 4 (8): 1440-1448). ).
La séquence du promoteur du gène MET3 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Cherest et al. (Mol. Gen. Genêt. (1987) 210 (2) : 307- 313).The promoter sequence of the S. cerevisiae yeast MET3 gene that can be used according to the invention may consist of that described by Cherest et al. (Gen. Gen. Genet (1987) 210 (2): 307-313).
La séquence du promoteur du gène MET25 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite dans Kerjan et al. (Nucleic Acids Res.(1986) 14(20) : 7861-7871 ). La séquence du promoteur du gène PHO5 de la levureThe promoter sequence of the S. cerevisiae yeast MET25 gene that can be used according to the invention may consist of that described in Kerjan et al. (Nucleic Acids Res (1986) 14 (20): 7861-7871). The promoter sequence of the PHO5 gene of yeast
S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Feldmann et al. (EMBO J. (1994) 13(24) : 5795- 5809).S. cerevisiae, which may be used according to the invention may consist of that described by Feldmann et al. (EMBO J. (1994) 13 (24): 5795-5809).
La séquence du promoteur du gène THI4 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite Skala et al., Yeast (1995) 14:1421-1427.The promoter sequence of the THI4 gene of yeast S. cerevisiae, which can be used according to the invention may consist of that described by Skala et al., Yeast (1995) 14: 1421-1427.
La séquence du promoteur du gène CUP1 de la levure S. cerevisiae, susceptible d'être utilisée selon l'invention peut consister en celle décrite par Karin et al. (PNAS (1984) 81 (2) : 337-341 ).The promoter sequence of the CUP1 gene of S. cerevisiae yeast, which can be used according to the invention may consist of that described by Karin et al. (PNAS (1984) 81 (2): 337-341).
A.2. Conventions utiliséesA.2. Conventions used
Les descriptions sont faites en utilisant la nomenclature et les règles typographiques en usage dans la communauté des biologistes spécialistes de la levure Saccharomyces cerevisiae. le nom de la forme sauvage d'un gène est donné en majuscule italique ; exemple : GAL1. le nom d'une forme mutante d'un gène est donné en minuscule italique, le numéro d'allèle si il est connu est précisé à la suite d'un tiret ; exemple cup1-1. le nom d'un allèle inactivé d'un gène est donné en minuscule suivi de 2 fois deux points suivi du nom du gène inactivant ex ppr1::TRP1 (dans cet exemple le gène inactivé ppr1 a été interrompu par le gène actif TRP1 ).Descriptions are made using the nomenclature and typographical rules used in the community of yeast biologists Saccharomyces cerevisiae. the name of the wild form of a gene is given in uppercase italic; example: GAL1. the name of a mutant form of a gene is given in lowercase italic, the allele number if known is specified following a dash; example cup1-1. the name of an inactivated allele of a gene is given in lowercase followed by 2 times colon followed by the name of the inactivating gene ex ppr1 :: TRP1 (in this example the inactivated gene ppr1 was interrupted by the active gene TRP1).
Alternativement, le nom d'un gène inactivé peut être donné par le symbole « delta » ; exemple gal4AAlternatively, the name of an inactivated gene can be given by the symbol "delta"; example gal4A
le nom de la protéine est celui du gène qui la code est donné en minuscule, excepté la première lettre qui est en majuscule ex Gal4the name of the protein is that of the gene that the code is given in lowercase, except the first letter which is capitalized ex Gal4
(alternativement on peut utiliser le même symbole suivi d'un p ; exemple Gal4p).(alternatively we can use the same symbol followed by a p, example Gal4p).
A.3. Remarques préliminaires concernant la construction des plasmidesA3. Preliminary remarks concerning plasmid construction
L'ensemble des plasmides a été construit par des techniques de biologie moléculaire classiques selon des protocoles décrits par Sambrook et al. (in Molecular Cloning, Laboratory Manual, 2nd édition, (1989), CoId Spring Harbor, N. Y.) et Ausubel et al., ( in Current Protocols in Molecular Biology, (1990-2004), John Wiley and Sons Inc, N.Y.). Le clonage, la propagation et la production d'ADN plasmidiques ont été réalisés dans la souche d'Escherichia coli DH 10B.All plasmids were constructed by standard molecular biology techniques according to protocols described by Sambrook et al. (in Molecular Cloning, Laboratory Manual, 2 nd Edition, (1989), CoId Spring Harbor, NY) and Ausubel et al., (in Current Protocols in Molecular Biology, (1990-2004), John Wiley and Sons Inc., NY) . Cloning, propagation and production of plasmid DNAs were carried out in Escherichia coli strain DH 10B.
EXEMPLE 1 : Construction des plasmides permettant l'expression chez la levure des protéines de fusion mAG-p21WAF1/Cip1 et mAG- EXAMPLE 1 Construction of Plasmids for the Expression in Yeast of the mAG-p21 Fusion Proteins WAF1 / Cip1 and mAG-
Les plasmides suivants permettent l'expression chez la levure Saccharomyces cerevisiae de dérivés de la protéine humaine p21wAFi/ci P i ou de |a protéine humaine mutante p21[6KR]WAF1/Cip1 fusionnés à la protéine fluorescente mAG du corail Galaxeidae. Un fragment de 614 paires de bases (pb) correspondant au promoteur du gène GAL1 (pGAL1 ) de la levure Saccharomyces cerevisiae a été amplifié par Polymerase Chain Reaction (PCR) à partir d'ADN génomique d'une souche sauvage de S.cerevisiae X2180-1A, en utilisant les oligonucléotides suivants : (i) « pGAL1(Asp)Forw » de séquence δ'-GCTGGGTACCTTAATAATCATATTACATGGCATTA-S' [SEQ ID N0 10], et (ii) « pGAL1(Xho)Rev » de séquence δ'-CGACCTCGAGTATAGTTTTTTCTCCTTGACGTTAA-S' SEQ ID N0 11].The following plasmids allow the expression in yeast Saccharomyces cerevisiae of derivatives of the human protein p21 w AFi / c i P i or of | a protein huma i do mu aunt p21 [6KR] WAF1 / Cip1 fused to the fluorescent protein mAG coral Galaxeidae. A fragment of 614 base pairs (bp) corresponding to the promoter of the GAL1 gene (pGAL1) of the yeast Saccharomyces cerevisiae was amplified by Polymerase Chain Reaction (PCR) from genomic DNA of a wild strain of S. cerevisiae X2180. -1A, using the following oligonucleotides: (i) "pGAL1 (Asp) Forw" sequence δ'-GCTGGGTACCTTAATAATCATATTACATGGCATTA-S '[SEQ ID N 0 10], and (ii) "pGAL1 (Xho) Rev" sequence δ -CGACCTCGAGTATAGTTTTTTCTCCTTGACGTTAA-S 'SEQ ID NO : 11].
Le fragment obtenu a été digéré par les enzymes de restriction Asp7'\8\ et Xho\ et inséré dans le plasmide navette S.cerevisiae-E.coli pRS306 préalablement digéré par les enzymes Λsp718l et Xho\, produisant le vecteur pRS306-pGAL1.The fragment obtained was digested with the restriction enzymes Asp7 'and XhoI and inserted into the shuttle plasmid S.cerevisiae-E.coli pRS306 previously digested with the enzymes Λsp7181 and Xho1, producing the vector pRS306-pGAL1.
Un fragment de 678 paires de bases (pb) correspondant à un variant du gène codant pour la protéine fluorescente monomérique Azami Green (mAG) du corail Galaxeidae, dont la séquence est optimisée pour l'expression en levures, a été obtenu par digestion enzymatique par les enzymes de restriction Xho\ et EcoR\ à partir du vecteur pPCR-Script-mAG. Le fragment obtenu a été inséré dans le plasmide pRS306-pGAL1 préalablement digéré par les enzymes Xho\ et EcoRI, produisant le vecteur pRS306-pGAL1-mAG.A fragment of 678 base pairs (bp) corresponding to a variant of the gene coding for the Azami Green monomeric fluorescent protein (mAG) of the coral Galaxeidae, whose sequence is optimized for yeast expression, was obtained by enzymatic digestion with XhoI and EcoR restriction enzymes from the pPCR-Script-mAG vector. The fragment obtained was inserted into the plasmid pRS306-pGAL1 previously digested with the XhoI and EcoRI enzymes, producing the pRS306-pGAL1-mAG vector.
Un fragment de 340 paires de bases (pb) correspondant au terminateur du gène ADH1 (tADH1 ) de la levure Saccharomyces cerevisiae a été amplifié par Polymerase Chain Reaction (PCR) à partir d'ADN génomique d'une souche sauvage de S.cerevisiae X2180-1A, en utilisant les oligonucléotides suivants : (i) « TermADH1 (NotlBstXI)5' » de séquence 5'-A 340 base pair (bp) fragment corresponding to the terminator of the ADH1 gene (tADH1) of the yeast Saccharomyces cerevisiae was amplified by Polymerase Chain Reaction (PCR) from genomic DNA of a wild strain of S. cerevisiae X2180. -1A, using the following oligonucleotides: (i) "TermADH1 (NotIBstXI) 5 '" of sequence 5'-
GGCGGCGGCCGCCACCGCGGTGGGCGAATTTCTTATGATTTATG- 3' [SEQ ID N0 12] et (ii) « TermADH1 (Sacl)3' » de séquence δ'-GGCGGAGCTCTGGAAGAACGATTACAACAG-S' [SEQ ID N0 13]. Le fragment obtenu a été digéré par les enzymes de restriction Sac\ et Λ/ofl et inséré dans le plasmide pRS306-pGAL1-mAG préalablement digéré par les enzymes Sac\ et Not\, produisant le vecteur PCSYAQ6. Le gène codant pour la protéine p2iWAF1/Cιp1 dont la séquence a été optimisée pour l'expression dans en levure, a été purifié à partir du plasmide pPCR-Script-p21WAF1/Cip1 [wt] par digestion par les enzymes de restriction EcoR\ et Λ/ofl. Le fragment a été clone dans le plasmide pCSYAQβ préparé par une digestion par les enzymes de restriction EcoR\ et Λ/ofl. Le vecteur produit a été appelé pCSYAQ6-p21 [wt], dont le schéma est illustré sur la Figure 1 A.GGCGGCGGCCGCCACCGCGGTGGGCGAATTTCTTATGATTTATG- 3 '[SEQ ID NO : 12] and (ii) "TermADH1 (SacI) 3'" of sequence δ'-GGCGGAGCTCTGGAAGAACGATTACAACAG-S '[SEQ ID NO : 13]. The fragment obtained was digested with the restriction enzymes SacI and / ofI and inserted into the plasmid pRS306-pGAL1-mAG previously digested with the enzymes SacI and NotI, producing the vector PCSYAQ6. The gene coding for the p2i protein WAF1 / Cιp1 , the sequence of which was optimized for expression in yeast, was purified from the plasmid pPCR-Script-p21WAF1 / Cip1 [wt] by digestion with the restriction enzymes EcoR \ and Λ / ofl. The fragment was cloned into the plasmid pCSYAQβ prepared by digestion with restriction enzymes EcoR1 and Λ / ofl. The product vector was named pCSYAQ6-p21 [wt], which is shown in Figure 1 A.
Le gène codant pour la protéine p21[6KR]WAF1/Cip1, dont la séquence a été optimisée pour l'expression dans en levure, a été purifié à partir du plasmide pPCR-Script-p21WAF1/Cip1[6KR] par digestion par les enzymes de restriction EcoR\ et Λ/ofl. Le fragment a été clone dans le plasmide pCSYAQ6 préparé par une digestion par les enzymes de restriction EcoR\ et Λ/ofl. Le vecteur produit a été appelé pCSYAQβ- p21 [6KR], dont le schéma est illustré sur la Figure 1 B.The gene coding for the p21 [6KR] WAF1 / Cip1 protein, the sequence of which was optimized for expression in yeast, was purified from the plasmid pPCR-Script-p21WAF1 / Cip1 [6KR] by enzyme digestion. of restriction EcoR \ and Λ / ofl. The fragment was cloned into plasmid pCSYAQ6 prepared by digestion with restriction enzymes EcoR1 and Λ / ofl. The product vector was named pCSYAQβ-p21 [6KR], the scheme of which is shown in Figure 1B.
Construction des souches de levure CYS343 et CYS344Construction of yeast strains CYS343 and CYS344
Pour l'obtention de la souche de levure CYS343, le plasmide pCSYAQ6-p21[wt]. décrit ci-dessus a été linéarisé en utilisant l'enzyme Sfu1. L'enzyme Sfu1 clive le plasmide pCSYAQ6-p211 [wt] à une position unique localisée dans la séquence du gène URA3. Le plasmide pCSYAQ6-p21 [wt] linéarisé s'intègre au locus URA3 situé sur le bras gauche du chromosome 5 de la levure Saccharomyces cerevisiae.For obtaining the yeast strain CYS343, the plasmid pCSYAQ6-p21 [wt]. described above was linearized using the Sfu1 enzyme. The Sfu1 enzyme cleaves plasmid pCSYAQ6-p211 [wt] at a unique position located in the URA3 gene sequence. The linearized plasmid pCSYAQ6-p21 [wt] integrates with the URA3 locus located on the left arm of chromosome 5 of the yeast Saccharomyces cerevisiae.
Pour l'obtention de la souche de levure CYS344, le plasmide pCSYAQ6-p21 [6KR] décrit ci-dessus a été linéarisé en utilisant l'enzyme SM . L'enzyme Sfu1 clive le plasmide pCSYAQ6-p21 [6KR] à une position unique localisée dans la séquence du gène URA3. Le plasmide pCSYAQ6-p21 [6KR] linéarisé s'intègre au locus URA3 situé sur le bras gauche du chromosome 5 de la levure Saccharomyces cerevisiae.To obtain the yeast strain CYS344, the plasmid pCSYAQ6-p21 [6KR] described above was linearized using the enzyme SM. The Sfu1 enzyme cleaves plasmid pCSYAQ6-p21 [6KR] at a unique position localized in the URA3 gene sequence. The linearized plasmid pCSYAQ6-p21 [6KR] integrates with the URA3 locus located on the left arm of chromosome 5 of the yeast Saccharomyces cerevisiae.
Les souches de levure CYS343 et CYS344 ont été obtenues comme décrit ci-dessus, conformément au protocole général décrit par Rohthstein (1991 ). Les génotypes respectifs des souches de levure selon l'invention sont indiqués dans le Tableau 1 ci-dessous.Yeast strains CYS343 and CYS344 were obtained as described above, according to the general protocol described by Rohthstein (1991). The respective genotypes of the yeast strains according to the invention are shown in Table 1 below.
Tableau 1 : Génotype des souches de levure Saccharomyces cerevisiae construites pour les besoins de la présente invention.Table 1: Genotype of Saccharomyces cerevisiae yeast strains constructed for the purposes of the present invention.
EXEMPLES 2 A 6 : Mise au point du procédé de criblage selon l'invention.EXAMPLES 2 TO 6: Development of the Screening Process According to the Invention
EXEMPLE 2: Séquences nucléotidiαue et protéiαue de la forme mutante du facteur humain p21 r6KR1WAF1/Cip1 exprimé dans les cellules de levure.EXAMPLE 2: Nucleotide and Protein Sequences of the Mutant Form of the Human Factor p21 r6KR1 WAF1 / Cip1 Expressed in Yeast Cells
La séquence d'acides aminés codant la protéine de fusion comprenant le protéine p21 [6KR]WAF1/Cιp1 consiste en le polypeptide de séquence SEQ ID N0 4 qui peut être codé par le polynucléotide de séquence SEQ ID N0 6, dont l'identité des codons a été spécifiquement adapté à une expression optimale dans les cellules de levure.The amino acid sequence coding for the fusion protein comprising the p21 [6KR] WAF1 / Cιp1 protein consists of the polypeptide of sequence SEQ ID N 0 4 which may be encoded by the polynucleotide of sequence SEQ ID N 0 6, of which Codon identity has been specifically adapted to optimal expression in yeast cells.
La séquence nucléotidique et la séquence d'acides aminés de la protéine p21 [6KR]WAF1/Cip1 sont représentées sur la Figure 2.The nucleotide sequence and the amino acid sequence of the p21 [6KR] WAF1 / Cip1 protein are shown in Figure 2.
Sur la Figure 2, les 6 résidus lysine (K) qui ont été remplacés par des résidus arginine (R) sont surlignées en noir, ainsi que les codons correspondants. Les codons optimisés pour l'expression du facteur p21 [6KR]WAF1/Cιp1 chez la levure Saccharomyces cerevisiae sont surlignés en gris.In Figure 2, the 6 lysine residues (K) that have been replaced by arginine (R) residues are highlighted in black, as well as the corresponding codons. Optimized codons for the expression of p21 [6KR] WAF1 / Cιp1 in the yeast Saccharomyces cerevisiae are highlighted in gray.
EXEMPLE 3: Dégradation par le protéasome cellulaire des facteurs humains P21WAF1/CJP1 et p21 r6KR1WAF1/Cip1 exprimés dans les cellules de levure (Résultats d'immuno-empreinte) La dégradation, par le protéasome des cellules de levure recombinées des souches CYS343 et CYS344, des protéines de fusion comprenant p2iWAF1/CiP1 ou p21[6KR]WAF1/Cip1 fusionnée avec mAG, a été suivie par une technique d'immuno-empreinte, en présence ou en l'absence d'un agent inhibiteur du protéasome, le composé Mg132. A. Matériel et MéthodesExample 3: Degradation cellular proteasome human factors P21 WAF1 / CJ P 1 and r6KR1 p21 WAF1 / Cip1 expressed in yeast (immunoblot results) The degradation, by the proteasome of the recombinant yeast cells of strains CYS343 and CYS344, of fusion proteins comprising p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1 fused with mAG, was followed by an immunoblot technique , in the presence or absence of a proteasome inhibitory agent, the compound Mg132. A. Materials and Methods
Toutes les souches de levure employées ont été cultivées et analysées de manière identique.All yeast strains employed were grown and analyzed identically.
Les cellules ont été cultivées en milieu minimum en présence de galactose comme source de carbone pendant 120 minutes.The cells were cultured in a minimum medium in the presence of galactose as carbon source for 120 minutes.
A l'issue de ces 120 minutes, du glucose 2 % est ajouté à la culture, en présence et en absence de 50 μM d'un inhibiteur connu du protéasome, le Mg132.At the end of these 120 minutes, 2% glucose is added to the culture, in the presence and in the absence of 50 μM of a known proteasome inhibitor, Mg132.
Les résultats sont présentés sur la Figure 3 (Figure 3A et Figure 3B). La Figure 3A présente les résultats obtenus avec la souche de levure recombinante CYS344.The results are shown in Figure 3 (Figure 3A and Figure 3B). Figure 3A shows the results obtained with the recombinant yeast strain CYS344.
Les protéines totales sont préparées avant l'ajout de galactose (0), 60 et 120 minutes après l'ajout de galactose (+ galactose 0, 60, 120) et 30, 60 et 120 minutes (+ glucose, 30, 60, 120) après l'ajout de glucose. La Figure 3B présente les résultats obtenus avec la souche de levure recombinante CYS343. Les protéines totales sont préparées avant l'ajout de galactose (0), 60 et 120 minutes après l'ajout de galactose (+ galactose 0, 60, 120) et 30, 60, 120 et 150 minutes (+ glucose, 30, 60, 120, 150) après l'ajout de glucose. Ces protéines sont analysées par la technique d'immuno- empreinte (« Western blotting ») en employant un anticorps reconnaissant la partie p2iWAF1/Cιp1 des protéines de fusion (indiquée « mAG- p21WAF1/Cip1» ou « mAG-p21 [6KR]WAF1/Cip1 » sur la Figure 3).The total proteins are prepared before the addition of galactose (0), 60 and 120 minutes after the addition of galactose (+ galactose 0, 60, 120) and 30, 60 and 120 minutes (+ glucose, 30, 60, 120 ) after the addition of glucose. Figure 3B shows the results obtained with the recombinant yeast strain CYS343. The total proteins are prepared before the addition of galactose (0), 60 and 120 minutes after the addition of galactose (+ galactose 0, 60, 120) and 30, 60, 120 and 150 minutes (+ glucose, 30, 60 , 120, 150) after the addition of glucose. These proteins are analyzed by the Western blotting technique using an antibody recognizing the p2i WAF1 / CIP1 portion of the fusion proteins (indicated as "mAG-p21 WAF1 / Cip1 " or "mAG-p21 [6KR] ] WAF1 / Cip1 "in Figure 3).
La présence de MG132 dans la culture est indiquée « + MG132 » sur la Figure 3. Un contrôle de la quantité de protéines déposée dans chaque puits est réalisé en analysant les mêmes protéines à l'aide d'anticorps reconnaissant la Lysyl-ARNt-synthase de levure (indiquéeThe presence of MG132 in the culture is indicated "+ MG132" in FIG. 3. A control of the quantity of proteins deposited in each well is carried out by analyzing the same proteins using antibodies recognizing Lysyl-tRNA-synthase. yeast (indicated
« LysRS » sur la Figure 3). Clichés de gels d'immuno-empreinte"LysRS" in Figure 3). Immunoblot gel images
(« Western blotting ») révélés avec des anticorps anti-p21 et des anticorps anti-Lys. B. Résultats("Western blotting") revealed with anti-p21 antibodies and anti-Lys antibodies. B. Results
Les résultats sont illustrés pour les souches de levure recombinantes suivantes : CYS343 (Figure 3A) et CYS344 (Figure 3B). Les résultats présentés sur la Figure 3A illustre par une analyse biochimique de type Western blotting, la dégradation de la protéine de fusion mAG-p21 [6KR]WAF1/Cip1 dans laquelle les 6 résidus Lysine du facteur p2iWAF1/Cιp1 ont été remplacés par des résidus Arginine.The results are illustrated for the following recombinant yeast strains: CYS343 (Figure 3A) and CYS344 (Figure 3B). The results presented in FIG. 3A illustrate, by a Western blotting biochemical analysis, the degradation of the mAG-p21 [6KR] WAF1 / Cip1 fusion protein in which the 6 Lysine residues of the p2i factor WAF1 / Cιp1 have been replaced by Arginine residues.
Les résultats présentés sur la Figure 3B illustre, par une analyse biochimique de type Western blotting, la dégradation de la protéine de fusion mAG-p21 [wt]WAF1/Cip1 dans des cellules de levure.The results presented in FIG. 3B illustrate, by a Western blotting biochemical analysis, the degradation of the mAG-p21 [wt] WAF1 / Cip1 fusion protein in yeast cells.
Sur la Figure 3A et la Figure 3B, on observe que la présence de galactose (indiquée « + Galactose » sur la Figure 3) durant la totalité du temps de culture provoque une induction continue de la production de la protéine de fusion comprenant p21 [6KR]WAF1/Cip1 (Figure 3A) ou comprenant p21 [wt]WAF1/Cip1 (Figure 3B), qui pallie la dégradation des protéines de fusion par le protéasome qui a simultanément lieu dans les cellules de levure.In FIG. 3A and FIG. 3B, it is observed that the presence of galactose (indicated "+ Galactose" in FIG. 3) during the entire culture time causes a continuous induction of the production of the fusion protein comprising p21 [6KR ] WAF1 / Cip1 (Figure 3A) or comprising p21 [wt] WAF1 / Cip1 (Figure 3B), which mitigates fusion protein degradation by the proteasome that occurs simultaneously in yeast cells.
Sur la Figure 3A et la Figure 3B, on observe que la culture des cellules en présence de glucose (indiquée « + Glucose » sur la Figure 3), du fait que la production de la protéine de fusion n'est plus induite, permet de visualiser la dégradation de la protéine de fusion par le protéasome.In FIG. 3A and FIG. 3B, it is observed that the culture of the cells in the presence of glucose (indicated "+ Glucose" in FIG. 3), since the production of the fusion protein is no longer induced, makes it possible to visualize degradation of the fusion protein by the proteasome.
Sur la Figure 3A et la Figure 3B, on observe que la culture des cellules en présence de glucose et d'un inhibiteur du protéasome, le composé MG132 (indiquée « + Glucose + 50 μM MG132 » sur la FigureIn FIG. 3A and FIG. 3B, it is observed that the culture of the cells in the presence of glucose and of a proteasome inhibitor, compound MG132 (indicated "+ Glucose + 50 μM MG132" in FIG.
3) permet d'inhiber la dégradation de la protéine de fusion qui est observée en l'absence du composé MG132.3) makes it possible to inhibit the degradation of the fusion protein which is observed in the absence of the compound MG132.
EXEMPLE 4 : Dégradation de la protéine mAG- p21 f6KR1WAF1/Cip1 (microscopie d'épifluorescence)EXAMPLE 4 Degradation of the mAG-p21 f6KR1 protein WAF1 / Cip1 (epifluorescence microscopy)
L'exemple 4 illustre les résultats d'une analyse au microscope d'épifluorescence, de la dégradation de la protéine de fusion mAG- p21 [6KR]WAF1/Cιp1 dans des cellules de levure de la souche recombinante CYS344. A. Matériel et MéthodesExample 4 illustrates the results of an epifluorescence microscope analysis, the degradation of the mAG-p21 [6KR] WAF1 / Cιp1 fusion protein in yeast cells of the recombinant strain CYS344. A. Materials and Methods
Les cellules de levure de la souche CYS344 ont été cultivées en milieu minimum en présence de galactose comme source de carbone pendant 120 minutes.The yeast cells of strain CYS344 were cultured in a minimum medium in the presence of galactose as carbon source for 120 minutes.
A l'issue de ces 120 minutes, du glucose 2 % est ajouté à la culture, en présence et en absence de 50 μM d'un inhibiteur connu du protéasome, le MG 132.At the end of these 120 minutes, 2% glucose is added to the culture, in the presence and in the absence of 50 μM of a known proteasome inhibitor, MG 132.
Les cellules sont observées au microscope à épifluorescence (microscope à fluorescence Nikon Eclipse équipé d'un filtre OmégaThe cells are observed under an epifluorescence microscope (Nikon Eclipse fluorescence microscope equipped with an Omega filter
XF116). Toutes les images ont été enregistrées en employant une caméra Hamamastu® en employant des réglages identiques et analysées avec le logiciel LUCIA G, juste avant l'ajout de glucose (0 minutes), et 60, 120 et 180 minutes (60, 120, 180 minutes ) après l'ajout de glucose. La présence de MG132 dans la culture est indiquée « +XF116). All images were recorded using a Hamamastu® camera using identical settings and analyzed with LUCIA G software, just before the addition of glucose (0 minutes), and 60, 120 and 180 minutes (60, 120, 180 minutes) after adding glucose. The presence of MG132 in culture is indicated "+
MG132 ».MG132 ".
B. RésultatsB. Results
Les résultats sont représentés sur la Figure 4 (Figure 4A et Figure 4B). La Figure 4A illustre les résultats d'épifluorescence obtenus avec les cellules de la souche CYS344 cultivées en présence de glucose et au temps 0, 60 minutes, 120 minutes et 180 minutes (du haut vers le bas de la figure) après l'arrêt de l'induction de l'expression de la protéine de fusion. La Figure 4B illustre les résultats d'épifluorescence obtenus avec les cellules de la souche CYS344 cultivées en présence de glucose et au temps 0, 60 minutes, 120 minutes et 180 minutes (du haut vers le bas de la figure) après l'arrêt de l'induction de l'expression de la protéine de fusion.The results are shown in Figure 4 (Figure 4A and Figure 4B). FIG. 4A illustrates the epifluorescence results obtained with the cells of the CYS344 strain cultured in the presence of glucose and at the time 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after the stopping of induction of expression of the fusion protein. FIG. 4B illustrates the epifluorescence results obtained with the cells of the CYS344 strain cultured in the presence of glucose and at the time 0, 60 minutes, 120 minutes and 180 minutes (from the top to the bottom of the figure) after stopping induction of expression of the fusion protein.
Sur la Figure 4A et la Figure 4B, la colonne de gauche représente les clichés de microscopie à fluorescence permettant de localiser dans les cellules l'expression de la protéine de fusion mAG-p21[6KR]WAF1/Cip1 . Sur la Figure 4A et la Figure 4B, la colonne de droite représente une visualisation des mêmes cellules, en lumière visible.In FIG. 4A and FIG. 4B, the left column represents the fluorescence microscopy images making it possible to locate in the cells the expression of the mAG-p21 [6KR] WAF1 / Cip1 fusion protein. In Figure 4A and Figure 4B, the right column represents a visualization of the same cells in visible light.
Sur la Figure 4A, on observe une réduction progressive du signal de fluorescence avec la durée de culture, au fur et à mesure de la progression de la dégradation de la protéine de fusion par le protéasome (colonne de gauche), alors que la densité cellulaire dans le champ observé est identique (colonne de droite).In FIG. 4A, there is a progressive reduction of the fluorescence signal with the duration of culture, as and when the progression of degradation of the fusion protein by the proteasome (left column), while the cell density in the observed field is identical (right column).
Sur la Figure 4B, on observe un maintien de l'intensité du signal de fluorescence avec la durée de culture (colonne de gauche), alors que la densité cellulaire dans le champ observé est identique (colonne de droite), ce qui illustre le blocage de l'activité de dégradation de la protéine de fusion par le protéasome, blocage qui est induit par l'inhibiteur MG132.In FIG. 4B, a maintenance of the intensity of the fluorescence signal is observed with the culture time (left column), whereas the cell density in the observed field is identical (right column), which illustrates the blocking degradation activity of the fusion protein by the proteasome, a blockade that is induced by the MG132 inhibitor.
EXEMPLE 5 : Dégradation de la protéine mAG-p21 f6KR1WAF1/Cip1 (quantification par cvtomètrie de flux)EXAMPLE 5 Degradation of the mAG-p21 f6KR1 protein WAF1 / Cip1 (quantification by flow cytometry)
L'exemple 5 illustre un quantification, par cytométrie de flux des cellules de levure de chacune des souches CYS343 et CYS344, du signal de fluorescence émis par ces cellules, au cours du temps de culture, respectivement (i) pendant l'induction de la production de la protéine de fusion en présence de galactose et (ii) en présence de glucose après arrêt de la production de la protéine de fusion. Les cellules de levure ont été cultivées en présence ou en l'absence de l'inhibiteur de protéasome MG 132.Example 5 illustrates a quantification, by flow cytometry of the yeast cells of each of the strains CYS343 and CYS344, of the fluorescence signal emitted by these cells, during the culture time, respectively (i) during the induction of the production of the fusion protein in the presence of galactose and (ii) in the presence of glucose after stopping the production of the fusion protein. The yeast cells were cultured in the presence or absence of the MG 132 proteasome inhibitor.
Les résultats sont illustrés par les courbes présentées sur la Figure 5.The results are illustrated by the curves shown in Figure 5.
La Figure 5A illustre une quantification en cytométrie de flux (FACS) de la fluorescence émise par la protéine de fusion mAG- p2iWAF1/c'P1 produite par la souche CYS343, en présence et en absence de l'inhibiteur du protéasome MG132.Figure 5A illustrates flow cytometric quantification (FACS) of the fluorescence emitted by the mAG-p2i fusion protein WAF1 / c ' P1 produced by strain CYS343, in the presence and absence of the proteasome inhibitor MG132.
La Figure 5B illustre une quantification en cytométrie de flux (FACS) de la fluorescence émise par la protéine de fusion mAG- p21 [6KR]WAF1/Cip1 produite par la souche CYS344, en présence et en absence de l'inhibiteur du protéasome MG 132.FIG. 5B illustrates flow cytometric quantification (FACS) of the fluorescence emitted by the mAG-p21 [6KR] WAF1 / Cip1 fusion protein produced by the CYS344 strain, in the presence and absence of the proteasome inhibitor MG 132. .
A. Matériel et MéthodesA. Materials and Methods
Toutes les cellules ont été cultivées en milieu minimum en présence de galactose comme source de carbone pendant 120 minutes. A l'issue de ces 120 minutes, du glucose 2 % est ajouté à la culture, en présence et en absence de 50 μM d'un inhibiteur connu du protéasome, le MG 132.All cells were cultured in a minimum medium in the presence of galactose as carbon source for 120 minutes. At the end of these 120 minutes, 2% glucose is added to the culture, in the presence and in the absence of 50 μM of a known proteasome inhibitor, MG 132.
La fluorescence émise par les cellules a été quantifiée en employant un cytomètre flux FacsCalibur (Beckton-Dickinson), juste avant l'ajout de galactose (10), 1 et 2 heures après l'ajout de galactose (11 et 12) et 1 , 2 et 3 heures (D1 , D2 et D3) après l'ajout de glucose. La présence de Mg132 dans la culture est indiquée « + MG132 ». La fluorescence est rapportée en unités arbitrairesThe fluorescence emitted by the cells was quantified using a FacsCalibur flow cytometer (Beckton-Dickinson), just before the addition of galactose (10), 1 and 2 hours after the addition of galactose (11 and 12) and 1, 2 and 3 hours (D1, D2 and D3) after the addition of glucose. The presence of Mg132 in the culture is indicated "+ MG132". Fluorescence is reported in arbitrary units
B. RésultatsB. Results
Les résultats des Figures 5A et 5B montrent que la protéine de fusion est activement produite par les souches de levure CYS343 et CYS344, lorsque les cellules sont cultivées en présence de galactose (temps lo, M h, I2h/Dθ).The results of Figures 5A and 5B show that the fusion protein is actively produced by the yeast strains CYS343 and CYS344, when the cells are cultured in the presence of galactose (time lo, M h, I2h / Dθ).
Les résultats des Figures 5A et 5B montrent que la protéine de fusion, qui s'est accumulée dans les cellules en présence de galactose, est progressivement dégradée au cours du temps de culture en l'absence de galactose et en présence de glucose, en l'absence du composé MG132 (Temps D1 h, D2h, D3h).The results of FIGS. 5A and 5B show that the fusion protein, which has accumulated in the cells in the presence of galactose, is progressively degraded during the culture time in the absence of galactose and in the presence of glucose, in the presence of glucose. absence of compound MG132 (time D1 h, D2h, D3h).
Les résultats des Figures 5A et 5B montrent que, en présence de l'inhibiteur du protéasome MG132, la dégradation de la protéine de fusion est fortement inhibée (Temps D1 h, D2h, D3h).The results of FIGS. 5A and 5B show that, in the presence of the proteasome inhibitor MG132, the degradation of the fusion protein is strongly inhibited (Time D1 h, D2h, D3h).
EXEMPLE 6 : localisation, dans les cellules de levure des protéines de fusions mAG-p2ir6KR1WAF1/Cip1.EXAMPLE 6: Localization, in Yeast Cells, of the Fusion Proteins mAG-p2ir6KR1 WAF1 / Cip1
Dans l'exemple 6, on a déterminé la localisation, dans les cellules de levure de la souche CYS344, de la protéine mAG-p21[6KR]WAF1/Cip1.In Example 6, the localization, in the yeast cells of strain CYS344, of the protein mAG-p21 [6KR] WAF1 / Cip1 was determined .
Des cellules de levures de la souche CYS344 comprenant un polynucléotide permettant l'expression de la protéine de fusion mAG- p21 [6KR]WAF1/Cip1 sous le contrôle du promoteur GAL1 ont été cultivées en présence de galactose 2 % pendant 2 heures et ont été ensuite observées en microscopie à fluorescence.Yeast cells of strain CYS344 comprising a polynucleotide allowing the expression of the mAG-p21 [6KR] WAF1 / Cip1 fusion protein under the control of the GAL1 promoter were cultured in the presence of 2% galactose for 2 hours and were then observed by fluorescence microscopy.
La position du noyau a été révélée en employant un indicateur coloré spécifique du noyau, le Hoescht 333-42. On a réalisé des clichés de microscopie en lumière visible et des clichés de microscopie à fluorescence permettant de colorer l'ADN des noyaux cellulaires avec le colorant Hoechst 333-42 (clichés non représentés). On a superposé les clichés de microscopie en lumière visible et les clichés de microscopie à fluorescence (non représenté).The position of the nucleus was revealed by using a specific color indicator of the nucleus, the Hoescht 333-42. Visible light microscopy and fluorescence microscopy were taken to stain the DNA of the cell nuclei with the Hoechst 333-42 stain (not shown). Visible light microscopy and fluorescence microscopy (not shown) were superimposed.
On a observé une co-localisation des noyaux cellulaires et de la protéine de fusion mAG-p21 [6KR]WAF1/Cip1. Co-localization of the cell nuclei and the mAG-p21 [6KR] WAF1 / Cip1 fusion protein was observed.
REFERENCESREFERENCES
Adams (Nature Reviews Cancer (2004) 4 :349-360)Adams (Nature Reviews Cancer (2004) 4: 349-360)
Adams et Anderson (Cancer Res. (2001 ) 61 :3071-3076) Ausubel et al. (in Current Protocols in Molecular Biology, (1990-2004),Adams and Anderson (Cancer Res. (2001) 61: 3071-3076) Ausubel et al. (in Current Protocols in Molecular Biology, (1990-2004),
John Wiley and Sons Inc, N.Y.).John Wiley and Sons Inc., N.Y.).
Bailis et al., (Genetics (1990), 126:535-547)Bailis et al., (Genetics (1990), 126: 535-547)
Bendjennat et al. (CeII (2003) 114 : 599-610)Bendjennat et al. (CeII (2003) 114: 599-610)
Bennetzen et Hall. (J. Biol. Chem. (1982) 257: 3018-3025). Beverly et al., (Clin. Cancer Res. (1999) 5 :2638-2645)Bennetzen and Hall. (J. Biol Chem (1982) 257: 3018-3025). Beverly et al., (Clin Cancer Res (1999) 5: 2638-2645)
Bomstein ét al., (J. Biol. Chem. (2003) 278:25752-25757)Bomstein et al., (J. Biol Chem (2003) 278: 25752-25757)
Burger et Seth (Eur J Cancer. (2004) 40:2217-2229)Burger and Seth (Eur J Cancer, (2004) 40: 2217-2229)
Coux et al., (Annu Rev Biochem. (1996) 65:801-47)Coux et al., (Annu Rev Biochem. (1996) 65: 801-47)
Johnston et Davis (Mol. CeII. Biol. (1984) 4 : 1440-1448). Glickman et Ciechanover (Physiol Rev. (2002) 82:373-428)Johnston and Davis (Mol., C. Biol. (1984) 4: 1440-1448). Glickman and Ciechanover (Physiol Rev. (2002) 82: 373-428)
Glickman et Coux (Curr.Protoc.Prot Sci (2001) p21.5.1-21.5.17)Glickman and Coux (Curr.Protoc.Prot Sci (2001) p21.5.1-21.5.17)
Glickman ét al. (Mol. CeII. Biol. (1998) 18: 3149-3162Glickman et al. (Mol.coli Biol (1998) 18: 3149-3162
Glickman ét al. (In: Proteasomes: The World of Regultory Proteolysis, edited by HiIt W and WoIf DH. Georgetown, TX: Landes Bioscience, (2000), p. 71-90)Glickman et al. (In: Proteasomes: The World of Regultory Proteolysis, edited by HiIt W and WoIf DH, Georgetown, TX: Landes Bioscience, (2000), pp. 71-90)
Gurskaya et al., (Biochem. J. (2003) 373:403-408)Gurskaya et al., (Biochem J. (2003) 373: 403-408)
Hideshima et al. (Cancer Res. (2001 ) 61 :3071-3076)Hideshima et al. (Cancer Res (2001) 61: 3071-3076)
Hipp et al. (Mol CeII Biol. (2005) 25:3483-3491.Hipp et al. (Mol CeII Biol (2005) 25: 3483-3491.
HoIzI ét al. (J. CeII Biol. (2000) 150: 119-130) Karasawa et al. (J. Biol. Chem. (2003) 278:34167-34171 )HoIzI et al. (J. CeII Biol (2000) 150: 119-130) Karasawa et al. (J. Biol Chem (2003) 278: 34167-34171)
Karin et al. (PNAS (1984) 81 : 337-341 ).Karin et al. (PNAS (1984) 81: 337-341).
Kerjan ét al. (Nucleic Acids Res.(1986) 14: 7861-7871).Kerjan et al. (Nucleic Acids Res (1986) 14: 7861-7871).
Kriwacki et al., (Proc. Natl. Acad. Sci. U.S. A. (1996) 93 :11504-11509)Kriwacki et al., (Proc Natl Acad Sci U.S.A. (1996) 93: 11504-11509)
Leggett et al. (Mol. CeII. (2002) 10:495-507) Liu et al. (Science (2003) 299 :408-411 )Leggett et al. (Mol CeII (2002) 10: 495-507) Liu et al. (Science (2003) 299: 408-411)
Matz et al. (Nature Biotech. (1999) 17:969-973)Matz et al. (Nature Biotech, (1999) 17: 969-973)
Pei et al. (Leukemia (2003) 17 :2036-2045)Pei et al. (Leukemia (2003) 17: 2036-2045)
Rothstein, in Methods in Enzymology, (1991 ), 194:281-301 Sambrook et al. (in Molecular Cloning, Laboratory Manual, 2nd édition, (1989), CoId Spring Harbor, N. Y.) Schiestl ét al. (Curr. Genêt. (1989), 16:339-346 Schmidt et al., (Nature Struc. Mol. Biol. (2005) 12 :294-303) Shagin et al. (Mol. Biol. Evol. (2004) 21 :841 -850)Rothstein, in Methods in Enzymology, (1991), 194: 281-301 Sambrook et al. (in Molecular Cloning, Laboratory Manual, 2nd Edition, (1989), Coid Spring Harbor, NY) Schiestl fl al. (Curr Genet (1989), 16: 339-346 Schmidt et al., (Nature Struc Mol Mol Biol (2005) 12: 294-303) Shagin et al (Mol Biol Evol (2004)). 21: 841-850)
Sherman et al., in Methods in Yeast Genetics : a Laboratory Manual, (1979), CoId Spring Harbor, N. Y. Sikorski et Hieter (Genetics (1989) 122: 19-27). Ustrell et al. (Embo J. (2002) 21 :3516-3525) Wojcik et al. (Eur. J. CeII. Biol. (1998) 77 :151-160)Sherman et al., In Methods in Yeast Genetics: A Laboratory Manual, (1979), CoId Spring Harbor, N.Y. Sikorski and Hieter (Genetics (1989) 122: 19-27). Ustrell et al. (Embo J. (2002) 21: 3516-3525) Wojcik et al. (Eur JL Biol (1998) 77: 151-160)
Zhang et al., (J. Biol. Chem. (2004) 279 : 16000-16006) Zhang et al., (J. Biol Chem (2004) 279: 16000-16006)
Tableau 2 : SéquencesTable 2: Sequences

Claims

REVENDICATIONS
1. Procédé in cellulo pour le criblage d'agents modulant l'activité du protéasome, ledit procédé comprenant les étapes suivantes : a) mettre en contact un agent candidat à tester avec des cellules de levure recombinantes qui expriment dans leur noyau une protéine de fusion comprenant :An in cellulo method for screening agents for modulating proteasome activity, said method comprising the steps of: a) contacting a candidate agent to be tested with recombinant yeast cells that express in their nucleus a fusion protein comprising:
(i) un polypeptide p21 choisi parmi le polypeptide p2iWAF1/Cιp1 et le polypeptide p21[6KR]WAF1/Cip1 ;et (ii) au moins une protéine détectable. b) quantifier ladite première protéine détectable dans les cellules de levure, à la fin d'au moins une période de temps prédéterminée après la mise en contact de l'agent candidat avec lesdites cellules ; c) comparer la valeur obtenue à l'étape (b) avec une valeur témoin obtenue lorsque l'étape (a) est réalisée en l'absence de l'agent candidat.(i) a p21 polypeptide selected from the p2i WAF1 / Cιp1 polypeptide and the p21 [6KR] WAF1 / Cip1 polypeptide, and (ii) at least one detectable protein. b) quantifying said first detectable protein in the yeast cells at the end of at least a predetermined period of time after contacting the candidate agent with said cells; c) comparing the value obtained in step (b) with a control value obtained when step (a) is performed in the absence of the candidate agent.
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape (a) comprend les étapes suivantes :2. Method according to claim 1, characterized in that step (a) comprises the following steps:
(ai ) cultiver les cellules de levure qui expriment dans leur noyau ladite protéine de fusion comprenant le polypeptide p21 et au moins une protéine détectable ;(ai) culturing yeast cells which express in their nucleus said fusion protein comprising the p21 polypeptide and at least one detectable protein;
(a2) stopper l'expression de ladite protéine de fusion comprenant le polypeptide p21 et au moins une protéine détectable par les cellules de levure ; (a3) mettre en contact les cellules de levures obtenues à la fin de l'étape (a2) avec l'agent candidat à tester.(a2) stopping the expression of said fusion protein comprising the p21 polypeptide and at least one protein detectable by yeast cells; (a3) contacting the yeast cells obtained at the end of step (a2) with the candidate agent to be tested.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que la protéine détectable comprise dans la protéine de fusion comprenant le polypeptide p21 est choisie parmi un antigène, une protéine fluorescente et une protéine ayant une activité enzymatique.3. Method according to one of claims 1 and 2, characterized in that the detectable protein included in the fusion protein comprising the p21 polypeptide is selected from an antigen, a fluorescent protein and a protein having an enzymatic activity.
4. Procédé selon la revendication 3, caractérisé en ce que la protéine détectable consiste en une protéine fluorescente choisie parmi la protéine mAG ou l'un de ses dérivés, et la protéine GFP ou l'un de ses dérivés.4. Method according to claim 3, characterized in that the detectable protein consists of a fluorescent protein chosen from the mAG protein or one of its derivatives, and the GFP protein or one of its derivatives.
5. Procédé selon la revendication 3, caractérisé en ce que la protéine détectable consiste en une protéine ayant une activité enzymatique choisie parmi la luciferase et la β-lactamase.5. Method according to claim 3, characterized in that the detectable protein consists of a protein having an enzymatic activity selected from luciferase and β-lactamase.
6. Procédé selon la revendication 3, caractérisé en ce que la protéine détectable consiste en un antigène choisi parmi le peptide Ha et le peptide Flag.6. Method according to claim 3, characterized in that the detectable protein consists of an antigen selected from the peptide Ha and the peptide Flag.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la protéine comprenant le polypeptide p2iWAF1/Cιp1 consiste en la protéine de séquence SEQ ID N°3.7. Method according to one of claims 1 to 6, characterized in that the protein comprising the p2i polypeptide WAF1 / Cιp1 consists of the protein sequence SEQ ID No. 3.
8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la protéine comprenant le polypeptide p21 [6KR]WAF1/Cιp1 consiste en la protéine de séquence SEQ ID N°4.8. Method according to one of claims 1 to 6, characterized in that the protein comprising the polypeptide p21 [6KR] WAF1 / Cιp1 consists of the protein sequence SEQ ID No. 4.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'à l'étape (b), lorsque la première protéine détectable est un antigène, on quantifie ladite première protéine détectable par détection des complexes formés entre ladite protéine et des anticorps la reconnaissant.9. Method according to one of claims 1 to 8, characterized in that in step (b), when the first detectable protein is an antigen, said first detectable protein is quantified by detecting the complexes formed between said protein and antibodies recognizing it.
10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'à l'étape (b), lorsque la première protéine détectable est une protéine fluorescente, on quantifie ladite protéine détectable par une mesure du signal de fluorescence émis par ladite protéine.10. Method according to one of claims 1 to 8, characterized in that in step (b), when the first detectable protein is a fluorescent protein, said detectable protein is quantified by measuring the fluorescence signal emitted by said protein.
11. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'à l'étape (b), lorsque la première protéine détectable est une protéine ayant une activité enzymatique, on quantifie ladite protéine détectable par une mesure de la quantité de substrat transformé par ladite protéine. 11. Method according to one of claims 1 to 8, characterized in that in step (b), when the first detectable protein is a protein having an enzymatic activity, said detectable protein is quantified by a measurement of the quantity substrate transformed by said protein.
12. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que les cellules de levures recombinantes sont transformées avec un polynucléotide qui comprend :12. Method according to one of claims 1 to 11, characterized in that the recombinant yeast cells are transformed with a polynucleotide which comprises:
(a) un cadre de lecture ouvert codant (i) la protéine de fusion comprenant le polypeptide p21 (p2iWAF1/CiP1 ou p21 [6KR]WAF1/Cip1 ) et (ii) une protéine détectable, et(a) an open reading frame encoding (i) the fusion protein comprising the p21 polypeptide ( p 2i WAF1 / CiP1 or p21 [6KR] WAF1 / Cip1) and (ii) a detectable protein, and
(b) une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert;(b) a functional regulatory sequence in yeast cells that directs the expression of said open reading frame;
13. Procédé selon la revendication 12, caractérisé en ce que la séquence régulatrice contenue dans le premier polynucléotide comprenne un promoteur fonctionnel dans les cellules de levure et qui est sensible à l'action d'un agent inducteur.13. The method of claim 12, characterized in that the regulatory sequence contained in the first polynucleotide comprises a functional promoter in yeast cells and which is sensitive to the action of an inducing agent.
14. Procédé selon la revendication 13, caractérisé en ce le promoteur sensible à l'action d'un agent inducteur consiste en un promoteur répressible fonctionnel dans les cellules de levure choisi parmi CUP1, GAL1, GAUO, MET3, MET25, PHO5, et THI4 de la levure Saccharomyces cerevisae.14. The method of claim 13, characterized in that the promoter responsive to the action of an inducing agent consists of a functional repressible promoter in yeast cells selected from CUP1, GAL1, GAUO, MET3, MET25, PHO5, and THI4. yeast Saccharomyces cerevisae.
15. Procédé selon la revendication 14, caractérisé en ce que ledit polynucléotide codant la protéine de fusion comprend la séquence régulatrice GAL1, qui active l'expression du cadre de lecture ouvert codant ladite protéine de fusion.15. The method of claim 14, characterized in that said polynucleotide encoding the fusion protein comprises the regulatory sequence GAL1, which activates the expression of the open reading frame encoding said fusion protein.
16. Procédé selon l'une des revendications 1 à 15, caractérisé en en ce que les cellules de levure recombinantes possèdent le polynucléotide sous une forme insérée dans leur génome.16. Method according to one of claims 1 to 15, characterized in that the recombinant yeast cells possess the polynucleotide in a form inserted in their genome.
17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce que les cellules de levure recombinantes possèdent dans leur génome une forme inactivée d'un ou plusieurs gènes contrôlant l'expression de protéines transporteurs insérées dans la membrane plasmique. 17. Method according to one of claims 1 to 16, characterized in that the recombinant yeast cells have in their genome an inactivated form of one or more genes controlling the expression of transporter proteins inserted into the plasma membrane.
18. Procédé selon la revendication 17, caractérisé en ce que le ou les gènes inactivés sont choisis parmi les gènes PDR1 et PDR3.18. The method of claim 17, characterized in that the inactivated gene or genes are selected from the PDR1 and PDR3 genes.
19. Cassette d'expression fonctionnelle dans les cellules de levure comprenant un polynucléotide codant qui comprend un cadre de lecture ouvert codant la protéine de fusion comprenant un polypeptide p21 et au moins une protéine détectable, et une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert.19. Functional expression cassette in yeast cells comprising a coding polynucleotide which comprises an open reading frame encoding the fusion protein comprising a p21 polypeptide and at least one detectable protein, and a regulatory sequence functional in yeast cells which directs the expression of said open reading frame.
20. Cassette d'expression fonctionnelle selon la revendication 19, caractérisée en ce que le polypeptide p21 est choisi parmi le polypeptide p21wAFi/ci P i et |e poiypeptjde p21 [6KR]WAF1/Cip1.20. functional expression cassette according to claim 19, characterized in that the p21 polypeptide is chosen from the p21 w polypeptide AFi / c i P i and p 21 [6KR] WAF1 / Cip1 poiypeptjde polypeptide.
21. Cassette d'expression fonctionnelle selon la revendication 20, caractérisée en ce que le polypeptide p21 est choisi parmi le polypeptide p21wAFi/ciPi de séquence SEQ |D No 1 et ,e poiypeptjde P21[6KR]WAF1/Cip1 de séquence SEQ ID N0 2.21. Functional expression cassette according to claim 20, characterized in that the p21 polypeptide is chosen from the p21 wAFi / ci P i polypeptide of sequence SEQ . DN o 1 and , e poiypeptjde of P 21 [6KR] WAF1 / Cip1 sequence SEQ ID N 0 2.
22. Cassette d'expression selon l'une des revendications 19 à 21 , caractérisée en ce que la séquence régulatrice contenue dans ledit polynucléotide comprend un promoteur fonctionnel dans les cellules de levure et qui est sensible à l'action d'un agent inducteur.22. Expression cassette according to one of claims 19 to 21, characterized in that the regulatory sequence contained in said polynucleotide comprises a promoter functional in yeast cells and which is sensitive to the action of an inducing agent.
23. Cassette d'expression selon la revendication 22, caractérisée en ce le promoteur inductible fonctionnel dans les cellules de levure est choisi parmi CUP1, GAU, GAUO, MET3, MET25, PHO5, et THI4 de la levure Saccharomyces cerevisiœ.23. An expression cassette according to claim 22, characterized in that the inducible promoter functional in yeast cells is selected from CUP1, GAU, GAUO, MET3, MET25, PHO5, and THI4 from the yeast Saccharomyces cerevisiae.
24. Vecteur d'expression caractérisé en ce qu'il comprend une cassette d'expression selon l'une des revendications 19 à 23.24. Expression vector characterized in that it comprises an expression cassette according to one of claims 19 to 23.
25. Vecteur d'expression selon la revendication 24, caractérisé en ce qu'il s'agit du vecteur pCSYAQ6-p21 [wt]. 25. Expression vector according to claim 24, characterized in that it is the vector pCSYAQ6-p21 [wt].
26. Vecteur d'expression selon la revendication 24, caractérisé en ce qu'il s'agit du vecteur pCSYAQ6-p21 [6KR].26. Expression vector according to claim 24, characterized in that it is the vector pCSYAQ6-p21 [6KR].
27. Souche de levure recombinante comprenant, sous une forme intégrée dans son génome, un polynucléotide qui comprend (a) un cadre de lecture ouvert codant la protéine de fusion comprenant un polypeptide p21 et au moins une protéine détectable, et (b) une séquence régulatrice fonctionnelle dans des cellules de levure qui dirige l'expression dudit cadre de lecture ouvert.A recombinant yeast strain comprising, in an integrated form in its genome, a polynucleotide which comprises (a) an open reading frame encoding the fusion protein comprising a p21 polypeptide and at least one detectable protein, and (b) a sequence functional regulator in yeast cells that directs the expression of said open reading frame.
28. Souche de levure recombinante selon la revendication 27, caractérisée en ce que le polypeptide p21 est choisi parmi le polypeptide p21wAFi/ci P i et |e poiypeptjde p21 [6KR]WAF1/Cip1.28. A recombinant yeast strain according to claim 27, characterized in that the p21 polypeptide is chosen from the p21 w polypeptide AFi / c i P i and the p 21 [6 KR] WAF1 / Cip1 polypeptide.
29. Souche de levure recombinante selon la revendication 28, caractérisée en ce que le polypeptide p21 est choisi parmi le polypeptide p21wAFi/ciPi de séquence SEQ |D No 1 et ,e poiypeptjde P21[6KR]WAF1/Cip1 de séquence SEQ ID N0 2.29. A recombinant yeast strain according to claim 28, characterized in that the p21 polypeptide is chosen from the p21 wAFi / ci P i polypeptide of sequence SEQ . DN o 1 and , e poiypeptjde of P 21 [6KR] WAF1 / Cip1 sequence SEQ ID N 0 2.
30. Trousse ou kit pour le criblage d'agents modulant l'activité du protéasome caractérisé en ce qu'il comprend un vecteur d'expression comprenant une cassette d'expression selon l'une des revendications 19 à 23.30. Kit or kit for the screening of agents modulating the activity of the proteasome, characterized in that it comprises an expression vector comprising an expression cassette according to one of claims 19 to 23.
31. Trousse ou kit pour le criblage d'agents modulant l'activité du protéasome, caractérisé en ce qu'il comprend des cellules de levures recombinantes comprenant, sous une forme insérée dans leur génome une cassette d'expression selon l'une des revendications 19 à 23. 31. Kit or kit for screening agents modulating the activity of the proteasome, characterized in that it comprises recombinant yeast cells comprising, in a form inserted in their genome, an expression cassette according to one of the claims. 19 to 23.
EP06820318A 2005-10-19 2006-10-19 Method for screening a proteasome activity modulating agent and means for carrying out said method Withdrawn EP1941281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553183A FR2892199B1 (en) 2005-10-19 2005-10-19 METHOD FOR SCREENING AGENTS MODULATING PROTEASOME ACTIVITY AND MEANS FOR CARRYING OUT SAID METHOD
PCT/FR2006/051062 WO2007045799A1 (en) 2005-10-19 2006-10-19 Method for screening a proteasome activity modulating agent and means for carrying out said method

Publications (1)

Publication Number Publication Date
EP1941281A1 true EP1941281A1 (en) 2008-07-09

Family

ID=36698861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06820318A Withdrawn EP1941281A1 (en) 2005-10-19 2006-10-19 Method for screening a proteasome activity modulating agent and means for carrying out said method

Country Status (6)

Country Link
US (1) US20100216160A1 (en)
EP (1) EP1941281A1 (en)
JP (1) JP2009512432A (en)
CA (1) CA2626600A1 (en)
FR (1) FR2892199B1 (en)
WO (1) WO2007045799A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007045799A1 *

Also Published As

Publication number Publication date
WO2007045799A1 (en) 2007-04-26
JP2009512432A (en) 2009-03-26
FR2892199B1 (en) 2008-02-01
FR2892199A1 (en) 2007-04-20
US20100216160A1 (en) 2010-08-26
CA2626600A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
Srikumar et al. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation
Li et al. The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity
AU2010266096A1 (en) Yeast Ectopically Expressing Abnormally Processed Proteins and Uses Therefor
Ghaboosi et al. A conditional yeast E1 mutant blocks the ubiquitin–proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome
Keaton et al. Nucleocytoplasmic trafficking of G2/M regulators in yeast
Rossi et al. Subcellular localization of the cyclin dependent kinase inhibitor Sic1 is modulated by the carbon source in budding yeast
WO2009080981A2 (en) Method for screening for agents that modulate the activity of the mdm2 ubiquitin ligase and means for implementing said method
Pina et al. Hph1 and Hph2 are novel components of the Sec63/Sec62 posttranslational translocation complex that aid in vacuolar proton ATPase biogenesis
WO1998057978A1 (en) Methods and compositions for rapid purification of proteasomes and methods of use of components thereof
EP1941281A1 (en) Method for screening a proteasome activity modulating agent and means for carrying out said method
EP1234041B1 (en) Methods for cell screening of compounds capable of modulating the activity of ubiquitin-ligase scf complexes and their uses
EP0941319A1 (en) Peptides capable of inhibiting the endocytosis of the app and corresponding nucleotide sequences
WO2005093086A1 (en) Method for screening agents modulating a lkb$g(a) protein ubiquitination and means for carrying out said method
EP1651668B1 (en) Novel peptide interacting with anti-apoptotic proteins of a bcl-2 family
EP0977840A2 (en) Methods for detecting interaction among several proteins
Doshi Structural Alterations of Mutant Forms of Ubiquitin and Their Relevance to Its Multitudinous Functions
WO2011036812A1 (en) Cell, method and assay kit for measuring level of transcriptional activation of aryl hydrocarbon receptor
Trainor Effects of Trans-Acting Factors on the Translational Machinery in Yeast
Wang Structural and functional studies of E6-AP and related ubiquitin protein ligases in Saccharomyces cerevisiae
Bulut In vivo detection of yeast alpha mating pheromone receptor ste2p homodimerization by FRET
Piña Functional Analyses of HPH1and HPH2 Revealed Roles in Post-Translational Protein Translocation and Nutrient Translocation and Nutrient Signaling
Goh Characterization of novel F-box proteins in Saccharomyces cerevisiae
Sun Rad53/Spk1, a central kinase of both the DNA damage and the replication checkpoints in Saccharomyces cerevisiae
Yan Analysis of ribosome-associated Hsp40 molecular chaperones in the yeast Saccharomyces cerevisiae
Reineke Characterization of the URE2 IRES Element and the Role of eIF2A in its Regulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110619