EP1937936A1 - Wellbore completion design to naturally separate water and solids from oil and gas - Google Patents

Wellbore completion design to naturally separate water and solids from oil and gas

Info

Publication number
EP1937936A1
EP1937936A1 EP05814934A EP05814934A EP1937936A1 EP 1937936 A1 EP1937936 A1 EP 1937936A1 EP 05814934 A EP05814934 A EP 05814934A EP 05814934 A EP05814934 A EP 05814934A EP 1937936 A1 EP1937936 A1 EP 1937936A1
Authority
EP
European Patent Office
Prior art keywords
bore
wellbore
section
tertiary
separation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05814934A
Other languages
German (de)
French (fr)
Inventor
Jim B. Surjaatmadja
Billy W. Mcdaniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP1937936A1 publication Critical patent/EP1937936A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0035Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/38Arrangements for separating materials produced by the well in the well
    • E21B43/385Arrangements for separating materials produced by the well in the well by reinjecting the separated materials into an earth formation in the same well

Definitions

  • the present invention is directed generally to methods of separating water and solids from oil and gas and more particularly to a wellbore completion design that separates water and solids from oil and gas downhole in such a way that the water and solids remain downhole
  • These solids will usually consist of granular to very fine sized formation solids, or solids introduced into the well during drilling, completion, stimulation, or production operations
  • sand screens typically comprise multiple layers of wire mesh
  • the pore sizes of these screens are usually selected to filter out or remove as many granules of sand present in a particular formation as possible
  • the screens can be, and often are, customized for a particular application
  • one screen does not usually "fit all " Accordingly, well operators are required to learn as much about the nature of the formations they will be producing from to insure that they select the right sand screen to filter out as much of the sand as possible
  • sand screens for removing sand from hydrocarbons
  • Another technique for removing sand and other debris from the hydrocarbons being produced from a well is to employ a device at the surface, known as a separator, in some cases, specifically a sand separator This technique involves producing the sand with the hydrocarbons
  • a drawback of this approach is that the separator devices take up space at the surface, which is often limited in off-shore applications Furthermore, it reduces the producing rate of the well, requires repeated cleaning or maintenance, and may be a separate additional device needed additional to a water separator system
  • the present invention is directed to a wellbore configuration that separates water and solids from oil and gas downhole in such a way that the water and solids remain downhole
  • the present invention is directed to a method of separating other fluids and solids from hydrocarbons being produced from a subterranean formation
  • the method comprises the step of forming a primary wellbore having a deviated section in the subterranean formation, which stimulates convective separation of the other fluids and solids from the hydrocarbons during production of the hydrocarbons from the subterranean formation
  • the method may include the additional step of forming a secondary bore, which intersects the deviated section of the primary wellbore at an acute angle into which is accumulated one or more of the other fluids and solids separated from the hydrocarbons
  • the present invention may further comprise the step of drilling a tertiary bore, which intersects the secondary bore at an acute angle such that the solids accumulate in the secondary bore and the fluids accumulate in the tertiary bore
  • perforations and/or fractures may be formed in either the secondary bore or the tertiary bore and a pump may be employed to pump the fluids
  • the present invention is directed to an improved wellbore design, which is adapted to separate other fluids and solids from hydrocarbons being produced from the subterranean formation
  • the wellbore comprises a primary bore having a deviated section, which stimulates convected separation of the other fluids and solids from hydrocarbons during production of the hydrocarbons from the subterranean formation
  • the wellbore according to the present invention may further comprise a secondary bore, which intersects the deviated section of the primary wellbore at an acute angle and which accumulates one or more of the other fluids and/or solids separating the hydrocarbons
  • the wellbore according to the present invention may further comprise a tertiary bore which intersects the secondary bore at an acute angle and a pump for pumping the fluids back into the formation
  • Figure l is a schematic diagram of one embodiment of a wellbore configuration in accordance with the present invention, which stimulates convective separation of other fluids and solids from hydrocarbons being produced from a subterranean formation
  • Figure 2 is a schematic diagram illustrating the convective action of the wellbore configuration shown in Figure 1
  • Figure 3 illustrates an injection pump installed in the toe section of a secondary bore of the wellbore shown in Figure 1
  • Figure 4 illustrates a configuration where the toe section of the secondary bore shown in Figure 3 is disposed at an acute angle to the remaining portion of the secondary bore in accordance with another embodiment of the present invention
  • Figure 5 is a schematic diagram of another embodiment of a wellbore configuration in accordance with the present invention, which employs a secondary bore and a tertiary bore
  • Figure 6 illustrates incorporation of yet another embodiment of a wellbore configuration in accordance with the present invention into conventional wellbore designs DETAILED DESCRIPTION OF THE INVENTION
  • the present invention is directed to a wellbore completion design that separates water and solids from oil and gas downhole in such a way that the water and solids remain downhole
  • FIG. 1 one embodiment of a wellbore configuration is shown generally by reference numeral 10
  • the wellbore 10 comprises a primary bore 12 and a secondary bore 14
  • the primary bore 12 in turn comprises a vertical section 16, deviated section 18 and a horizontal section 20
  • the secondary bore 14 is deviated from the deviated section 18 or the horizontal section 20 and intersects the deviated section 18 or the horizontal section 20 at an acute angle
  • the wellbore 10 is formed in subterranean formation 22 by conventional drilling or equivalent techniques
  • Subterranean formation 22 m comprises an inactive or dead zone 24, a producing zone 26, and a water containing zone 28
  • the vertical section 16 of the primary bore 12 is most often formed in a zone 24 of the subterranean formation 22 that is non-productive, or not being produced, a highly deviated section 18, which may or may not be within the producing section, and horizontal section 20 formed in the producing zone 26 of the subterranean formation
  • the secondary bore 14 transverses into both the producing zone 26 and the water contaimng zone 28
  • the deviated and horizontal sections 18 and 20 of the primary bore 12 and the secondary bore 14 are formed by conventional directional drilling or equivalent techniques
  • the vertical section 16 of the primary bore 12 of the wellbore 10 may be lined with a casing string 30, which may be cemented 32 to the dead zone 24 of the subterranean formation 22 This step can be accomplished using conventional casing techniques
  • the deviated section 18 of the primary bore 12 and the horizontal section 20 of the primary bore 12 may also be lined with a casing string, which may also be cemented to the subterranean formation 22 Those of ordinary skill in the art will appreciate the circumstances under which the various sections of the primary bore 12 should be lined with a casing string and whether the casing string should be cemented to the subterranean formation 22
  • the horizontal section 20 of the primary bore 12 is the main section from which the hydrocarbons will be drawn from the subterranean formation This can be accomplished through several well known techniques For horizontal wellbores, the most common method currently is to leave the drilled wellbore in this section as an open hole without casing or liner, or by using a lmer where the annulus between the formation and the liner is not cemented This allows the free flow of formation fluids into the openhole
  • the deviated section 18 and the horizontal section 20 have a cemented casing If a non-cemented liner is used, at least some portions of this liner may contain sections of the pipe that are pre-slotted or have pre-d ⁇ lled perforations, as is well understood by those skilled in the art
  • the liner or the casing and cement sheath will usually be connected to the reservoir 26 by forming a plurality of perforations along the length of the horizontal section 20 (and possibly de
  • the convective separation process in accordance with present invention is best illustrated in Figure 2
  • the hydrocarbons primarily oil and gas, mixed with other fluids and solids, primarily water and formation particles or fracturing proppants, are forced in a upward direction by either the action of a downhole pump or the reservoir pressure of the formation
  • the water and solids are heavier than the hydrocarbons, i e , they have a higher specific gravity than the hydrocarbons, they have a tendency to separate from the hydrocarbons and fall to the bottom of the deviated section 18 of the primary bore 12, which because of its inclined nature creates a convective flow, as indicated by the arrow A
  • the opening of the secondary bore 14 in turn "catches" the heavier elements, namely the water and solids, into the secondary bore, which operates to accumulate these components, as indicated by the arrow B
  • the embodiment of the present invention shown in Figure 4 may be a more desirable configuration to use when solids are present in the produced fluids in more than trace amounts This is because if the solids entering the secondary bore 14 accumulates excessively (builds up), they may plug the intake on the injection pump 44, which is placed directly in the flow path of the water/sand mixture
  • the embodiment shown in Figure 4 is intended to prevent this from happening when there are more than trace amounts of sand m the production
  • the toe section 46 of the secondary bore 14 is aligned at an acute angle ⁇ from the centerline of the secondary bore
  • the angle ⁇ is desirably between about 5 ° and 45°, and more desirably about 15°
  • the injection pump 44 is thus placed at an angle to the remaining "straight" section of the secondary bore 14
  • the solids can therefore build up in the straight section of the secondary bore 14 It is possible to form a bridge in this section and therefore is not likely to build up in the upward angled toe section 46 of the secondary bore 14, where it could plug the intake to
  • FIG. 5 Another wellbore completion design in accordance with the present invention is illustrated in Figure 5 This design is similar to the embodiment shown in Figure 3
  • the tertiary bore 48 intersects, and communicates with, the secondary bore 14 at an acute angle ⁇ , which is desirably between about 5° and 45° and more desirably about 15°
  • the injection pump 44 is disposed in the toe section 50 of the tertiary bore 48
  • the tertiary bore 48 may also be lined with a section of casing string 52, which may be cemented 54 to the subterranean formation
  • the section of casing string 52 prevents the seepage of water into the tertiary bore 48
  • the perforations 56 and fractures 58 desirably intersect with the tertiary bore 48
  • the secondary bore 14 accumulates the solids, which are heavier than the water, and therefore settles in the lower of the two lower bores of the wellbore 10 Indeed,
  • the deviated section 18 of the wellbore 10 serves both to separate the water and sand from the oil and gas and also to accumulate the water and sand
  • the deviated section 18 of the wellbore is about one hundred feet (100 ft) or more, as noted above It is particularly important that the imperforated portion of the deviated section 18 of the wellbore, which is used for the separation of the water and sand from the hydrocarbons, be of sufficient length that it does not become plugged before desired
  • the deviated section 18 of the wellbore 10 is
  • Figure 6 illustrates this embodiment as incorporated into five different potential conventional wellbore configurations
  • the conventional wellbore configurations are identified by the dashed lines and labeled with the designations I-V
  • the wellbore configurations according to the present invention which are modifications to the conventional designs that incorporate the imperforated deviated section 18, are indicated by the solid black lines and labeled with the designations I'-V
  • the Type V conventional design has two modifications in accordance with the present invention shown, namely Type V and Type V"
  • the circles shown in Figure 6 indicates a desirable location of a production pump or production assembly tip
  • all the pumps or production assembly tips in the conventional wellbore designs are located in the production zone 26
  • the production pumps or production assembly tips in the wellbore configurations in accordance with the present invention are all located above the production zone 26, namely in the non-producing zone 24
  • the production pumps or production assembly tips in the wellbore configurations in accordance with the present invention are all located in the imperforated portion of the deviated section 18 of the wellbor
  • the present invention has application in virtually any type of well
  • it can be used in multilateral wells and wells with fish bones as well as other wells not mentioned herein

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A wellbore completion design is provided, which creates a convective flow action that separates water and sand from hydrocarbons during production of the hydrocarbons from a subterranean formation. A deviated section of the wellbore creates the desired effect. The wellbore completion design may include a secondary bore, which intersects the deviated section of the wellbore at an acute angle, to accumulate the separated water and sand. An injection pump disposed in the toe section of the secondary bore can also be employed to pump the water back into the water containing portion of the subterranean formation. If solids are present in more than trace amounts, the toe section of the secondary bore may be formed at an acute angle to the remaining portion of the secondary bore to prevent blockage of the pump. Alternatively, a tertiary bore may be provided, so that the solids can accumulate in the secondary bore and the water can flow into the tertiary bore.

Description

WELLBORE COMPLETION DESIGN TO NATURALLY SEPARATE WATER AND SOLIDS FROM OIL AND GAS
BACKGROUND OF THE INVENTION
The present invention is directed generally to methods of separating water and solids from oil and gas and more particularly to a wellbore completion design that separates water and solids from oil and gas downhole in such a way that the water and solids remain downhole These solids will usually consist of granular to very fine sized formation solids, or solids introduced into the well during drilling, completion, stimulation, or production operations
One of the most burdensome aspects of producing hydrocarbons from a well for well operators is dealing with the presence of solids and water in the hydrocarbons It is not desirous to have either of these by-products present in the hydrocarbons Indeed, the presence of these elements in hydrocarbons only inhibits their recovery, often to the degree that economics will force an operator to suspend or even abandon well production Accordingly, well operators have had to develop techniques for removing or separating the sand and water from the hydrocarbons as nature itself in most wells lends no assistance in this regard Many of the techniques developed to deal with the removal of these elements, however, are cumbersome, expensive, not always environmentally friendly and often involve complex processes and equipment
One conventional technique for removing sand from the hydrocarbons is to install sand screens at the end of the production pipe or inside the wellbore through the producing interval These sand screens typically comprise multiple layers of wire mesh The pore sizes of these screens are usually selected to filter out or remove as many granules of sand present in a particular formation as possible Thus, the screens can be, and often are, customized for a particular application Thus, one screen does not usually "fit all " Accordingly, well operators are required to learn as much about the nature of the formations they will be producing from to insure that they select the right sand screen to filter out as much of the sand as possible There are two major drawbacks to using sand screens for removing sand from hydrocarbons First, over time the sand screens begin to plug up This causes a decrease in the amount of hydrocarbons being produced Eventually, the sand screens plug up entirely, requiring either removal of the sand screen or invocation of an operation to clean the sand screens, downhole Typically, either operations will require the well to be shut down, which in turn ceases the production of hydrocarbons, and causes an additional economic loss to the well owner Another major drawback of using sand screens attached to the production tubing is that eventually sand bridges form between the sand screen and the wellbore wall These sand bridges block the flow of remedial treatment fluids, which occasionally need to be pumped downhole through the annulus between the production tubing and the wellbore To unblock the sand bridges, the well often has to be shut down so that the sand screen can be removed for cleaning This again results in an economic loss to the well owner
Another technique for removing sand and other debris from the hydrocarbons being produced from a well is to employ a device at the surface, known as a separator, in some cases, specifically a sand separator This technique involves producing the sand with the hydrocarbons A drawback of this approach, however, is that the separator devices take up space at the surface, which is often limited in off-shore applications Furthermore, it reduces the producing rate of the well, requires repeated cleaning or maintenance, and may be a separate additional device needed additional to a water separator system
Water is usually removed from the hydrocarbons at the surface using multi-phase separation devices These devices operate to agglomerate and coalesce the hydrocarbons, thereby separating them from the water A drawback of this approach, however, is that no separation process is perfect As such, some amount of the hydrocarbons always remains in the water This can create environmental problems when disposing of the water, especially in off-shore applications Also, the multi-phase separation devices are fairly large in size, which is another disadvantage in off-shore applications, as space is limited as pointed out above Another limitation is that this can require additional maintenance or repair if solids are part of the produced fluid stream
SUMMARY OF THE INVENTION
The present invention is directed to a wellbore configuration that separates water and solids from oil and gas downhole in such a way that the water and solids remain downhole
In one embodiment, the present invention is directed to a method of separating other fluids and solids from hydrocarbons being produced from a subterranean formation The method comprises the step of forming a primary wellbore having a deviated section in the subterranean formation, which stimulates convective separation of the other fluids and solids from the hydrocarbons during production of the hydrocarbons from the subterranean formation The method may include the additional step of forming a secondary bore, which intersects the deviated section of the primary wellbore at an acute angle into which is accumulated one or more of the other fluids and solids separated from the hydrocarbons The present invention may further comprise the step of drilling a tertiary bore, which intersects the secondary bore at an acute angle such that the solids accumulate in the secondary bore and the fluids accumulate in the tertiary bore In yet another aspect of the present invention, perforations and/or fractures may be formed in either the secondary bore or the tertiary bore and a pump may be employed to pump the fluids back into the formation
In another embodiment, the present invention is directed to an improved wellbore design, which is adapted to separate other fluids and solids from hydrocarbons being produced from the subterranean formation The wellbore comprises a primary bore having a deviated section, which stimulates convected separation of the other fluids and solids from hydrocarbons during production of the hydrocarbons from the subterranean formation The wellbore according to the present invention may further comprise a secondary bore, which intersects the deviated section of the primary wellbore at an acute angle and which accumulates one or more of the other fluids and/or solids separating the hydrocarbons In yet another embodiment, the wellbore according to the present invention may further comprise a tertiary bore which intersects the secondary bore at an acute angle and a pump for pumping the fluids back into the formation
The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the exemplary embodiments that follows
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the present disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, which
Figure l is a schematic diagram of one embodiment of a wellbore configuration in accordance with the present invention, which stimulates convective separation of other fluids and solids from hydrocarbons being produced from a subterranean formation
Figure 2 is a schematic diagram illustrating the convective action of the wellbore configuration shown in Figure 1
Figure 3 illustrates an injection pump installed in the toe section of a secondary bore of the wellbore shown in Figure 1
Figure 4 illustrates a configuration where the toe section of the secondary bore shown in Figure 3 is disposed at an acute angle to the remaining portion of the secondary bore in accordance with another embodiment of the present invention
Figure 5 is a schematic diagram of another embodiment of a wellbore configuration in accordance with the present invention, which employs a secondary bore and a tertiary bore
Figure 6 illustrates incorporation of yet another embodiment of a wellbore configuration in accordance with the present invention into conventional wellbore designs DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a wellbore completion design that separates water and solids from oil and gas downhole in such a way that the water and solids remain downhole
The details of the wellbore completion design in accordance with the present invention will now be described with reference to the accompanying drawings Turning to Figure 1 , one embodiment of a wellbore configuration is shown generally by reference numeral 10 The wellbore 10 comprises a primary bore 12 and a secondary bore 14 The primary bore 12 in turn comprises a vertical section 16, deviated section 18 and a horizontal section 20 The secondary bore 14 is deviated from the deviated section 18 or the horizontal section 20 and intersects the deviated section 18 or the horizontal section 20 at an acute angle
The wellbore 10 is formed in subterranean formation 22 by conventional drilling or equivalent techniques Subterranean formation 22 m turn comprises an inactive or dead zone 24, a producing zone 26, and a water containing zone 28 As can be seen from Figure 1, the vertical section 16 of the primary bore 12 is most often formed in a zone 24 of the subterranean formation 22 that is non-productive, or not being produced, a highly deviated section 18, which may or may not be within the producing section, and horizontal section 20 formed in the producing zone 26 of the subterranean formation The secondary bore 14 transverses into both the producing zone 26 and the water contaimng zone 28 The deviated and horizontal sections 18 and 20 of the primary bore 12 and the secondary bore 14 are formed by conventional directional drilling or equivalent techniques
The vertical section 16 of the primary bore 12 of the wellbore 10 may be lined with a casing string 30, which may be cemented 32 to the dead zone 24 of the subterranean formation 22 This step can be accomplished using conventional casing techniques The deviated section 18 of the primary bore 12 and the horizontal section 20 of the primary bore 12 may also be lined with a casing string, which may also be cemented to the subterranean formation 22 Those of ordinary skill in the art will appreciate the circumstances under which the various sections of the primary bore 12 should be lined with a casing string and whether the casing string should be cemented to the subterranean formation 22
The horizontal section 20 of the primary bore 12 is the main section from which the hydrocarbons will be drawn from the subterranean formation This can be accomplished through several well known techniques For horizontal wellbores, the most common method currently is to leave the drilled wellbore in this section as an open hole without casing or liner, or by using a lmer where the annulus between the formation and the liner is not cemented This allows the free flow of formation fluids into the openhole In some wells, the deviated section 18 and the horizontal section 20 have a cemented casing If a non-cemented liner is used, at least some portions of this liner may contain sections of the pipe that are pre-slotted or have pre-dπlled perforations, as is well understood by those skilled in the art In the case of using a solid liner or a cemented casing, after placement into sections 18 and 20, the liner or the casing and cement sheath will usually be connected to the reservoir 26 by forming a plurality of perforations along the length of the horizontal section 20 (and possibly deviated section 18 also) of the primary bore 12 This can be accomplished by any one of a number of techniques, including, e g , but not limited to, conventional explosive charge perforating techniques or by hydrajetting the perforations In some cases, this may be followed by conventional damage removal or stimulation techniques such as acidizing or hydraulic fracturing It may be desirable that all or a substantial portion of the deviated section 18 of the primary bore 12 not be perforated or fractured Indeed, it is in this section that the convective separation of the hydrocarbons from other fluids and solids can most easily take place The presence of perforations and/or fractures in this region may interfere with this process To facilitate this convective separation, which will be explained immediately below, at least a significant length (possibly about one hundred feet (100 ft)) of the deviated section 18 of the primary bore 12 should not be perforated Furthermore, to facilitate the separation process, the deviation section 18 of the primary bore 12, should be oriented at an acute angle α to the horizontal, which is designated by reference number 34 The horizontal line 34 generally forms an approximate right angle with the vertical section 16 The acute angle α is desirably within the range of about 20° to 70°, and more desirably about 30° to 60°
The convective separation process in accordance with present invention is best illustrated in Figure 2 The hydrocarbons, primarily oil and gas, mixed with other fluids and solids, primarily water and formation particles or fracturing proppants, are forced in a upward direction by either the action of a downhole pump or the reservoir pressure of the formation Because the water and solids are heavier than the hydrocarbons, i e , they have a higher specific gravity than the hydrocarbons, they have a tendency to separate from the hydrocarbons and fall to the bottom of the deviated section 18 of the primary bore 12, which because of its inclined nature creates a convective flow, as indicated by the arrow A The opening of the secondary bore 14 in turn "catches" the heavier elements, namely the water and solids, into the secondary bore, which operates to accumulate these components, as indicated by the arrow B
It may be desirable to line the secondary bore 14 with a section of casing string 36, which may be cemented 38 to the subterranean formation 22 as required, so as to prevent the seepage of additional water into the secondary bore 14 It may also be desirable to form perforations 40 and possibly also fractures 42 in the subterranean formation 22, which intersect, and thereby communicate, with the secondary bore 14, as shown in Figure 3 An injection pump 44 could possibly be installed in the toe section 46 of the secondary bore 14 The injection pump operates to pump the separated water back into the water containing formation, and thereby remove it from the system The injection pump 44 may operate on a continual or intermittent basis depending upon the amount of water or solids present in the produced hydrocarbons
The embodiment of the present invention shown in Figure 4 may be a more desirable configuration to use when solids are present in the produced fluids in more than trace amounts This is because if the solids entering the secondary bore 14 accumulates excessively (builds up), they may plug the intake on the injection pump 44, which is placed directly in the flow path of the water/sand mixture The embodiment shown in Figure 4 is intended to prevent this from happening when there are more than trace amounts of sand m the production In this embodiment, the toe section 46 of the secondary bore 14 is aligned at an acute angle β from the centerline of the secondary bore The angle β is desirably between about 5 ° and 45°, and more desirably about 15° The injection pump 44 is thus placed at an angle to the remaining "straight" section of the secondary bore 14 The solids can therefore build up in the straight section of the secondary bore 14 It is possible to form a bridge in this section and therefore is not likely to build up in the upward angled toe section 46 of the secondary bore 14, where it could plug the intake to the injection pump 44 Accordingly, the solids can partially accumulate in the straight section of the secondary bore 14, while the water is pumped back into the water containing formation 28 via the injection pump 44 As with the previously described embodiments, once the sand builds up to the point that it starts to interfere with the flow of the separated hydrocarbons, the sand will need to be removed This can be done using several techniques well known to those skilled in the art
Another wellbore completion design in accordance with the present invention is illustrated in Figure 5 This design is similar to the embodiment shown in Figure 3 The embodiment of Figure 5, however, includes a tertiary bore 48 The tertiary bore 48 intersects, and communicates with, the secondary bore 14 at an acute angle γ, which is desirably between about 5° and 45° and more desirably about 15° In this embodiment, the injection pump 44 is disposed in the toe section 50 of the tertiary bore 48 The tertiary bore 48 may also be lined with a section of casing string 52, which may be cemented 54 to the subterranean formation The section of casing string 52 prevents the seepage of water into the tertiary bore 48 In this embodiment, the perforations 56 and fractures 58 (if present) desirably intersect with the tertiary bore 48 In this embodiment, the secondary bore 14 accumulates the solids, which are heavier than the water, and therefore settles in the lower of the two lower bores of the wellbore 10 Indeed, the convective effect also occurs in the secondary bore 14 wherein flow of the lighter element, water, rises to the top part of the secondary bore 14 and flow of the heavier element, solids, falls to the bottom part of the secondary bore The water flowing in the top half of the secondary bore 14 is then directed into the tertiary bore 48, wherein the injection pump 44 forces it back into the subterranean formation 22 via perforations 56 and (if present) fractures 58 As those of ordinary skill in the art will appreciate the wellbore design shown in Figure 5 can easily be modified such that the tertiary bore 48 intersects the primary bore 12 in the deviated section 18 hi this embodiment, the secondary bore 14 would operate in the same way but would intersect the tertiary bore 48 at a point below where the tertiary bore 48 intersects deviated section 18
In another embodiment of the present invention, the deviated section 18 of the wellbore 10 serves both to separate the water and sand from the oil and gas and also to accumulate the water and sand There is no secondary bore 14 or tertiary bore 48 in this embodiment hi order to effectively accumulate the water and sand in this configuration, therefore, it is desirable that the deviated section 18 of the wellbore 10 be imperforated and unfractured This will thereby prevent the seepage of water and other elements into the wellbore 10, which may interfere with the production of the hydrocarbons and the accumulation of the separated elements In one exemplary version of this embodiment, the deviated section 18 of the wellbore is about one hundred feet (100 ft) or more, as noted above It is particularly important that the imperforated portion of the deviated section 18 of the wellbore, which is used for the separation of the water and sand from the hydrocarbons, be of sufficient length that it does not become plugged before desired Furthermore, as also noted above, the deviated section 18 of the wellbore 10 is desirably formed at an acute angle α to the horizontal 34, which is desirably within the range of about 30° to 60°, and more desirably about 45°
Figure 6 illustrates this embodiment as incorporated into five different potential conventional wellbore configurations The conventional wellbore configurations are identified by the dashed lines and labeled with the designations I-V The wellbore configurations according to the present invention, which are modifications to the conventional designs that incorporate the imperforated deviated section 18, are indicated by the solid black lines and labeled with the designations I'-V The Type V conventional design has two modifications in accordance with the present invention shown, namely Type V and Type V" The circles shown in Figure 6 indicates a desirable location of a production pump or production assembly tip As can be seen from Figure 6 all the pumps or production assembly tips in the conventional wellbore designs are located in the production zone 26 The production pumps or production assembly tips in the wellbore configurations in accordance with the present invention, however, are all located above the production zone 26, namely in the non-producing zone 24 Furthermore, the production pumps or production assembly tips in the wellbore configurations in accordance with the present invention are all located in the imperforated portion of the deviated section 18 of the wellbore 10 The separation of the water and solids from the hydrocarbons will occur, via the convective separation phenomenon described above, below the pumps or production assembly tips, so that the only fluid that encounters the pumps or production assembly tips is a mixture of essentially hydrocarbons with no or very little water or solids
As those of ordinary skill in the art will appreciate, the present invention has application in virtually any type of well For example, it can be used in multilateral wells and wells with fish bones as well as other wells not mentioned herein
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims

Claims

What is claimed is
1 A method of separating other fluids and solids from hydrocarbons being produced from a subterranean formation, comprising the steps of
(a) forming a primary wellbore having a deviated section in the subterranean formation, which stimulates convective separation of the other fluids and solids from the hydrocarbons during production of the hydrocarbons from the subterranean formation, and
(b) forming a secondary bore, which intersects the deviated section of the primary wellbore at an acute angle and which accumulates one or more of the other fluids and solids separated from the hydrocarbons
2 The separation method according to claim 1 , further comprising the step of installing a section of casing string in the secondary bore
3 The separation method according to claim 2, further comprising the step of cementing the section of casing string to an inner wall of the secondary bore
4 The separation method according to claim 1 , further comprising the step of forming perforations into the subterranean formation, which intersect with the secondary bore
5 The separation method according to claim 4, further comprising the step of forming hydraulic fractures in the subterranean formation, which intersect with the secondary bore
6 The separation method according to claim 1, wherein the secondary bore has a toe section and the method further comprises the step of installing an injection pump in the toe section of the secondary bore, which pumps at least the other fluids separated from the hydrocarbons back into the subterranean formation
7 The separation method according to claim 6, wherein the toe section of the secondary bore forms an acute angle with the remaining portion of the secondary bore
8 The separation method according to claim 1, further comprising the step of drilling a tertiary bore, which intersects the secondary bore at an acute angle
9 The separation method according to claim 8, wherein the solids accumulate in the secondary bore
10 The separation method according to claim 9, wherein the other fluids flow into the tertiary bore
11 The separation method according to claim 8, wherein the tertiary bore has a toe section and the method further comprises the step of installing an injection pump in the toe section of the tertiary bore
12 The separation method according to claim 8, further comprising the step of installing a section of casing string in the tertiary bore
13 The separation method according to claim 12, further comprising the step of cementing the section of casing string to an inner wall of the tertiary bore
14 The separation method according to claim 8, further comprising the step of forming perforations into the subterranean formation, which intersect with the tertiary bore
15 The separation method according to claim 14, further comprising the step of forming fractures in the subterranean formation, which intersect with the tertiary bore
16 The separation method according to claim 1, wherein the acute angle is in the range of about 20-70°
17 The separation method according to claim 16, wherein the acute angle is in the range of about 30-60°
18 A method of separating other fluids and solids from hydrocarbons being produced from a subterranean formation, comprising the step of forming an imperforated deviated section of a wellbore at an acute angle to horizontal, the unperforated deviated section of the wellbore stimulating convective separation of the other fluids and solids from the hydrocarbons during production of the hydrocarbons in the subterranean formation
19 The separation method according to claim 18, further comprising the step of forming a secondary bore, which intersects the unperforated deviated section of the wellbore at an acute angle and which accumulates one or more of the other fluids and solids separated from the hydrocarbons
20 The separation method according to claim 19, further comprising the step of installing a section of casing string in the secondary bore
21 The separation method according to claim 20, further comprising the step of cementing the section of casing string to an inner wall of the secondary bore
22 The separation method according to claim 19, further comprising the step of forming perforations into the subterranean formation, which intersect with the secondary bore
23 The separation method according to claim 22, further comprising the step of forming hydraulic fractures in the subterranean formation, which intersect with the secondary bore
24 The separation method according to claim 19, wherein the secondary bore has a toe section and the method further comprises the step of installing an injection pump in the toe section of the secondary bore, which pumps at least the other fluids separated from the hydrocarbons back into the subterranean formation
25 The separation method according to claim 24, wherein the toe section of the secondary bore forms an acute angle with the remaimng portion of the secondary bore
26 The separation method according to claim 19, further comprising the step of forming a tertiary bore, which intersects the secondary bore at an acute angle
27 The separation method according to claim 26, wherein the solids accumulate in the secondary bore
28 The separation method according to claim 27, wherein the other fluids flow into the tertiary bore
29 The separation method according to claim 26, wherein the tertiary bore has a toe section and the method further comprises the step of installing an injection pump in the toe section of the tertiary bore
30 The separation method according to claim 26, further comprising the step of installing a section of casing string in the tertiary bore
31 The separation method according to claim 30, further comprising the step of cementing the section of casing string to an inner wall of the tertiary bore
32 The separation method according to claim 26, further comprising the step of forming perforations into the subterranean formation, which intersect with the tertiary bore
33 The separation method according to claim 32, further comprising the step of forming hydraulic fractures in the subterranean formation, which intersect with the tertiary bore
34 The separation method according to claim 19, wherein the acute angle is in the range of about 20-70°
35. The separation method according to claim 34, wherein the acute angle is in the range of about 30-60°
36 A wellbore adapted to separate other fluids and solids from hydrocarbons being produced from a subterranean formation, comprising a primary bore having a deviated section, which stimulates convective separation of the other fluids and solids from the hydrocarbons during production of the hydrocarbons from the subterranean formation and a secondary bore, which intersects the deviated section of the primary wellbore at an acute angle and which accumulates one or more of the other fluids and/or solids separated from the hydrocarbons
37 The wellbore according to claim 36, wherein the secondary bore is lined with a section of casing string.
38 The wellbore according to claim 37, wherein the casing string is cemented to an inner wall of the secondary bore
39 The wellbore according to claim 38, further comprising a plurality of fractures in the subterranean formation, which open to the secondary bore
40 The wellbore according to claim 39, further comprising an injection pump installed in a toe section of the secondary bore, which is adapted to pump the other fluids back into the subterranean formation via the plurality of fractures
41 The wellbore according to claim 40, wherein the toe section of the secondary bore forms an acute angle with the remaining portion of the secondary bore
42 The wellbore according to claim 36, further comprising a tertiary bore, which intersects the secondary bore at an acute angle
43 The wellbore according to claim 42, wherein the solids accumulate in the secondary bore
44 The wellbore according to claim 43, wherein the other fluids flow into the tertiary bore
45 The wellbore according to claim 42, wherein the tertiary bore has a toe section and an injection pump is installed in the toe section of the tertiary bore
46 The wellbore according to claim 42, wherein a section of casing string is installed in the tertiary bore
47 The wellbore according to claim 46, wherein the section of casing string is cemented to an inner wall of the tertiary bore
48 The wellbore according to claim 42, wherein perforations into the subterranean formation intersect with the tertiary bore
49 The wellbore according to claim 48, wherein fractures in the subterranean formation intersect with the tertiary bore
50 The wellbore according to claim 36, wherein the acute angle that the secondary bore forms with the primary bore is in the range of about 20-70°
51 The wellbore according to claim 50, wherein the acute angle that the secondary bore forms with the primary bore is in the range of about 30-60°
52. A wellbore adapted to separate other fluids and solids from hydrocarbons being produced from a subterranean formation, comprising a primary bore having an imperforated deviated section, which is oriented at an acute angle to horizontal that stimulates convective separation of the other fluids and solids from the hydrocarbons during production of the hydrocarbons from the subterranean formation
53 The wellbore according to claim 52, further comprising a secondary bore, which intersects the unperforated deviated section of the primary bore at an acute angle and which accumulates one or more of the other fluids and solids separated from the hydrocarbons
54 The wellbore according to claim 53, wherein the secondary bore is lined with a section of casing string
55 The wellbore according to claim 54, wherein the casing string is cemented to an inner wall of the secondary bore
56 The wellbore according to claim 53, further comprising a plurality of fractures in the subterranean formation, which open to the secondary bore
57 The wellbore according to claim 53, further comprising an injection pump installed in a toe section of the secondary bore, which is adapted to pump the other fluids back into the subterranean formation via the plurality of fractures
58 The wellbore according to claim 57, wherein the toe section of the secondary bore forms an acute angle with the remaining portion of the secondary bore
59 The wellbore according to claim 53, further comprising a tertiary bore, which intersects the secondary bore at an acute angle
60 The wellbore according to claim 59, wherein the solids accumulate in the secondary bore
61 The wellbore according to claim 60, wherein the other fluids flow into the tertiary bore
62 The wellbore according to claim 59, wherein the tertiary bore has a toe section and an injection pump is installed in the toe section of the tertiary bore
63 The wellbore according to claim 59, wherein a section of casing string is installed in the tertiary bore
64 The wellbore according to claim 63, wherein the section of casing string is cemented to an inner wall of the tertiary bore 65 The wellbore according to claim 59 wherein perforations into the subterranean formation intersect with the tertiary bore
66 The wellbore according to claim 65, wherein fractures in the subterranean formation intersect with the tertiary bore
67 The wellbore according to claim 53, wherein the acute angle that the secondary bore forms with the unperforated deviated section of the primary bore is in the range of about 20-70°
68 The wellbore according to claim 67, wherein the acute angle that the secondary bore forms with unperforated deviated section of the primary bore is in the range of about 30-60°
EP05814934A 2005-10-20 2005-10-20 Wellbore completion design to naturally separate water and solids from oil and gas Withdrawn EP1937936A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/037601 WO2007046797A1 (en) 2005-10-20 2005-10-20 Wellbore completion design to naturally separate water and solids from oil and gas

Publications (1)

Publication Number Publication Date
EP1937936A1 true EP1937936A1 (en) 2008-07-02

Family

ID=37962792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05814934A Withdrawn EP1937936A1 (en) 2005-10-20 2005-10-20 Wellbore completion design to naturally separate water and solids from oil and gas

Country Status (3)

Country Link
EP (1) EP1937936A1 (en)
NO (1) NO20082310L (en)
WO (1) WO2007046797A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016767A2 (en) * 2008-08-08 2010-02-11 Ziebel As Subsurface reservoir drainage system
GB2484525A (en) 2010-10-14 2012-04-18 Apec Ltd Gravity separation of water from production fluid in a wellbore

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028914A (en) * 1958-09-29 1962-04-10 Pan American Petroleum Corp Producing multiple fractures in a cased well
NO321386B1 (en) * 1997-03-19 2006-05-02 Norsk Hydro As A method and apparatus for separating a fluid comprising several fluid components, preferably separating a source fluid in conjunction with a hydrocarbon / water production rudder
GB9713960D0 (en) * 1997-07-03 1997-09-10 Schlumberger Ltd Separation of oil-well fluid mixtures
NO311814B1 (en) * 2000-02-23 2002-01-28 Abb Research Ltd Device and method for oil recovery
US20030037923A1 (en) * 2001-08-24 2003-02-27 Emanuele Mark A. Method of maintaining water volume in an oil strata of an oil production reservoir
US6591903B2 (en) * 2001-12-06 2003-07-15 Eog Resources Inc. Method of recovery of hydrocarbons from low pressure formations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007046797A1 *

Also Published As

Publication number Publication date
WO2007046797A1 (en) 2007-04-26
NO20082310L (en) 2008-07-18

Similar Documents

Publication Publication Date Title
US7370701B2 (en) Wellbore completion design to naturally separate water and solids from oil and gas
US6675893B2 (en) Single placement well completion system
EP3074592B1 (en) Method for re-fracturing multizone horizontal wellbores
US7228908B2 (en) Hydrocarbon sweep into horizontal transverse fractured wells
US6857476B2 (en) Sand control screen assembly having an internal seal element and treatment method using the same
US10689949B2 (en) Systems and apparatuses for separating wellbore fluids and solids during production
US6176307B1 (en) Tubing-conveyed gravel packing tool and method
US5722490A (en) Method of completing and hydraulic fracturing of a well
US4842068A (en) Process for selectively treating a subterranean formation using coiled tubing without affecting or being affected by the two adjacent zones
US5862863A (en) Dual completion method for oil/gas wells to minimize water coning
EP0885346B1 (en) Method and well tool for gravel packing a well using low-viscosity fluids
AU2745802A (en) Intelligent well sand control
RU2334867C1 (en) Method of simultaneous-separate operation of several payout beds and installation of well for implementation of this method
US20060076140A1 (en) Gas Lift Apparatus and Method for Producing a Well
US7757762B2 (en) Downhole tools having screens for insertion into gravel disposed in wellbores and methods of installing same
US6923259B2 (en) Multi-lateral well with downhole gravity separation
CN111886398B (en) Separating gas and liquid in a wellbore
US20090101343A1 (en) High rate gravel packing
EP1937936A1 (en) Wellbore completion design to naturally separate water and solids from oil and gas
US20040206504A1 (en) System and method for fracturing a hydrocarbon producing formation
US11346187B2 (en) Well screen for use with external communication lines
CN101514621B (en) Sand prevention in multiple regions without a drill
RU2774455C1 (en) Method for completing a well with a horizontal completion using a production column of one diameter from head to bottomhouse and subsequent carrying out large-volume, speed and multi-stage hydraulic fracturing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ LI

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110503