EP1935653A1 - Ajustement de matrices d'impression dans un dispositif d'impression - Google Patents

Ajustement de matrices d'impression dans un dispositif d'impression Download PDF

Info

Publication number
EP1935653A1
EP1935653A1 EP07122482A EP07122482A EP1935653A1 EP 1935653 A1 EP1935653 A1 EP 1935653A1 EP 07122482 A EP07122482 A EP 07122482A EP 07122482 A EP07122482 A EP 07122482A EP 1935653 A1 EP1935653 A1 EP 1935653A1
Authority
EP
European Patent Office
Prior art keywords
marks
array
relative position
nozzles
arrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07122482A
Other languages
German (de)
English (en)
Other versions
EP1935653B1 (fr
Inventor
Hylke Veenstra
Jaap J. Mattheijer
Matheus Wijnstekers
Joseph L.M. Nelissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Netherlands BV
Original Assignee
Oce Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oce Technologies BV filed Critical Oce Technologies BV
Priority to EP20070122482 priority Critical patent/EP1935653B1/fr
Publication of EP1935653A1 publication Critical patent/EP1935653A1/fr
Application granted granted Critical
Publication of EP1935653B1 publication Critical patent/EP1935653B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2135Alignment of dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/001Mechanisms for bodily moving print heads or carriages parallel to the paper surface
    • B41J25/005Mechanisms for bodily moving print heads or carriages parallel to the paper surface for serial printing movements superimposed to character- or line-spacing movements

Definitions

  • the invention relates to a method for adjusting a first and a second array relatively to each other in a printing device having a carrying structure for mounting the first and second arrays, the first array having nozzles arranged in a first row substantially parallel to a first direction for forming first marks on a recording substrate, the second array having nozzles arranged in a second row substantially parallel to the first direction for forming second marks on the recording substrate, wherein in an attainable relative position, the first and second arrays at least partially flank each other, thereby defining a degree of a longitudinal overlap along the first direction, the method comprising forming a test pattern having first and second test marks and detecting the locations of the first and second test marks .
  • a carriage whereon the printheads are mounted is generally moved over a recording substrate in a main scanning direction parallel to an y-axis for the purpose of recording a swath of an image.
  • the first and second printheads have respectively a first and a second arrays of nozzles extending in a direction substantially parallel to the x-axis, which is the sub-scanning direction.
  • the sub-scanning direction x is perpendicular to the main scanning direction y.
  • An image swath consisting of a certain number of pixel lines, corresponding to the number of activated nozzles of the printheads is thus recorded during a pass of the carriage along the main scan direction.
  • the first and second arrays at least partially flank each other and are arranged for forming respectively first and second marks (also referred to as dots) on a substrate.
  • Some pixels lines are thus constituted by first marks, corresponding to the nozzles of the first row, while other pixels lines are constituted by second marks, corresponding to the nozzles of the second row.
  • first and second rows at least partially flank each other, pixel lines constituted by first marks and pixel lines constituted by second marks both are formed in a same image swath onto the recording substrate during a single pass of the carriage.
  • interlacing of such pixel lines is desired to obtain a high resolution of the recording image and the spacing between the lines should be as regular as possible.
  • a printing resolution twice as high as the resolution of a single printhead may be achieved. Therefore, the relative position of a first and a second printhead along the x-axis has to be adjusted with a high degree of precision.
  • a common error in the positioning of the pixel lines is caused by jet angles which deviate from the ideal jet angle. Such defects may be caused by impurities present in the nozzles. Such defects may lead, for graphical applications, to the appearance of white or light stripes in an image, known as 'banding' effect.
  • a method for adjusting a first and a second array relatively to each other in a printing device of the type set forth is known from US 4,675,696 .
  • a reference pattern is recorded, wherein the reference pattern comprises 'recording elements' formed by each printhead for detecting the relative positional aberration of the printheads in the sub-scanning direction.
  • the recorded reference pattern is read for providing an output indicative of the relative locations of the 'recording elements'. This enables detection means to provide an output indicative of the intervals between the printheads in the sub-scanning direction.
  • control means to control and adjust the relative position of the printheads in the sub-scanning direction.
  • the method of the prior art is not suited for adjusting the relative position of the first and second printheads such that interlaced pixel lines are obtained with a recording resolution twice as high as the resolution of a single printhead. Furthermore, the known method is not able to solve the problem of 'banding'.
  • the object of the present invention is to improve a method for adjusting a first and a second array relatively to each other in a printing device such that interlaced pixel lines can be obtained in one carriage single pass with a regular spacing between the pixel lines. With a regular spacing between pixel lines, a high resolution image swath can be obtained within a single pass of the carriage. At the same time, the phenomenon of 'banding' is significantly reduced.
  • a method for adjusting a first and a second array relatively to each other in a printing device further comprising determining a plurality of deviation factors for a plurality of attainable relative positions based on said detected locations, wherein each one of said deviation factors is an attribute of a distinct attainable relative position and is indicative of an amount by which distances between neighbouring first and second marks deviate from a nominal distance, and selecting an attainable relative position among the plurality of attainable relative positions which satisfies a selection criterion applied to the plurality of deviation factors.
  • Deviation factors are determined for a plurality of attainable relative positions. Thus, for each of said attainable positions, the defects that would appear in a printed image are quantified. This enables the selection of an attainable relative position which is the optimum attainable relative position of the first and second arrays. To select the optimum attainable relative position, a selection criterion is applied to the plurality of deviation factors attributed to the plurality of attainable relative positions.
  • the selected attainable relative position is the one having the smallest deviation factor among the plurality of deviation factors.
  • a maximum function constrains the deviation factor attributed to a distinct attainable relative position to take the value of the largest difference, in absolute value, among an ensemble of differences computed between the nominal distance and the distances between neighbouring first and second marks.
  • This maximum function in order to set the deviation factor leads to the selection of an attainable relative position wherein large spacing between pixel lines in a printed image are avoided.
  • This embodiment is particularly interesting for applications directed to printed electronics, such as printing etch-resist, where maximum deviations in a printed pattern must be minimised and are more important than uniform distributions in droplet positioning. When this method is applied, reliable printed circuit boards are obtained.
  • an average function constrains the deviation factor attributed to a distinct attainable relative position to take the value of an averaged difference, computed in absolute value between the nominal distance and the distances between neighbouring first and second marks.
  • This average function in order to set the deviation factor leads to the selection of an attainable relative position wherein the averaged spacing between pixel lines is as close as possible to the nominal value. This is particularly of interest for graphical applications and leads to printed images with a good uniformity of the pixel distribution.
  • a maximum function constrains the deviation factor attributed to a distinct attainable relative position to take the value of the largest difference between the nominal distance and the distances between neighbouring first and second marks. With this maximum function, an attainable relative position may be selected which leads to printed images wherein the image banding is strongly reduced.
  • the method according to the invention further comprises the step of displacing at least one of the first and second arrays for bringing the first and second printheads into the selected relative attainable position.
  • the arrays are positioned relatively to each other such that printing under optimal conditions may start.
  • This method may be applied from time to time, in order to calibrate a printing device comprising a first and a second array. Alternately, the method may be applied before every printing session.
  • the invention also relates to a printing device comprising a first and a second array mounted on a carrying structure, the first array having nozzles arranged in a first row substantially parallel to a first direction for forming first marks on a recording substrate, the second array having nozzles arranged in a second row substantially parallel to the first direction for forming second marks on the recording substrate, wherein in an attainable relative position, the first and second arrays at least partially flank each other, thereby defining a degree of a longitudinal overlap along the first direction, displacement means for displacing at least one of the arrays thereby causing a change in the degree of the longitudinal overlap and control means adapted to control the first and second arrays for forming a test pattern having first and second test marks and to control detecting means for detecting the locations of the first and second test marks.
  • a printing device of the type set forth may be used for graphical applications or for special applications such as printing an etch-resist material on a substrate for printed circuit board manufacturing or printing directly metallic patterns for similar purposes.
  • a high printing resolution as well as a high productivity are generally required.
  • a high resolution can be achieved in a single pass of a carriage supporting the arrays. In this case, the quality of a printed image depends strongly on the regularity of the spacing between the printed pixel lines obtained in one single pass of the carriage.
  • first and second arrays at least partially flank each such that the first array is normally used for printing purposes, while the second array is used for backup purposes in the case that malfunctioning of some nozzles of the first array is detected.
  • the malfunctioning nozzles of the first array can be set in an inactive state, while nozzles of the second array take over their function.
  • the second marks, formed by the second array come to lie on the recorded substrate at substantially the same locations as the first marks formed by the first array would do if the first array was functioning properly.
  • the printing devices of the prior art have the problem that the second marks are not positioned properly with respect to the desired locations.
  • the object of the present invention is to improve a printing device of the type set forth such that these problems are minimised.
  • a printing device having control means adapted to control a computing module for executing the steps of determining a plurality of deviation factors for a plurality of attainable relative positions based on said detected locations, wherein each one of said deviation factors is an attribute of a distinct attainable relative position and is indicative of an amount by which distances between neighbouring first and second marks deviate from a nominal distance, and selecting an attainable relative position among the plurality of attainable relative positions which satisfies a selection criterion applied to the plurality of deviation factors.
  • Deviation factors are determined for a plurality of attainable relative positions. Thus, for each of said attainable positions, the defects that would appear in a printed image are quantified. This enables the selection of an attainable relative position which is the optimum attainable relative position of the first and second arrays. To select the optimum attainable relative position, a selection criterion is applied to the plurality of deviation factors attributed to the plurality of attainable relative positions.
  • control means are adapted to control the displacement means for causing the first and second arrays to have a degree of longitudinal overlap corresponding to the selected attainable relative position. This enables a calibrating procedure for adjusting the first and second arrays relatively to each other which may easily be executed automatically, for example before each time an image is to be printed.
  • the detecting means is a CCD camera mounted on a carriage and arranged for scanning the test pattern.
  • the CCD camera is arranged for determining a geometrical centre of gravity of each one of the first and second test marks in the test pattern and extracting coordinates of said first and second test marks along an axis.
  • the locations of the test marks in the test pattern can be accurately determined.
  • the distances between neighbouring first and second marks can be also accurately extracted. This leads to determined deviation factors which characterise properly the defects in an image depending on the attainable relative position.
  • the nozzles of the first array are regularly spaced according to a pitch and the nozzles of the second array are regularly spaced according to the same pitch. This is useful for many applications, such as high resolution graphical applications or printed electronics applications.
  • the nominal distance is equal to half the pitch, printing with a double resolution may be achieved with a good quality.
  • the nominal distance is equal to zero, a printing device for printed electronics with a high reliability can be achieved, since the second array can serve as a backup array in the event that some nozzles in the first array have to be set inactive due to their malfunctions.
  • the invention also relates to a computer program product residing on a computer readable medium comprising instructions for causing at least one process unit to perform the method of any of the claims 1 to 10.
  • Figure 1 schematically shows a carriage 10 of an ink jet printer having a first printhead and a second printhead which are mounted on the carriage 10.
  • the first printhead has a first array 12 of nozzles 18 aligned in a row and the second printhead has a second array 14 of nozzles 20 aligned in a row.
  • the arrays 12 and 14 may be suited for recording marks of the same marking substance, such as black ink or an etch-resist ink suited for printed electronics applications.
  • the arrays 12 and 14 may also be suited for recording marks of different marking substances such as a conductive material and an etch-resist material. With even more arrays, a full colour printer may be obtained, whereby the plurality of additional arrays are used for printing the colours yellow, cyan and magenta.
  • the method for adjusting two arrays such as described hereinafter easily translates to more than two arrays.
  • the arrays 12 and 14 may be of any type suited for ejecting ink droplets according to a recording signal.
  • a known ink jet printhead with an array of nozzles is provided with a plurality of pressure chambers each of which is fluidly connected on the one hand, via an ink supply path, to an ink reservoir and on the other hand to a nozzle, wherein an actuator is provided for each pressure chamber for pressurising the ink contained therein, so as to eject an ink droplet through the nozzle in accordance with a recording signal supplied by a control unit.
  • the nozzles are arranged in a row, so that a plurality of pixel lines of an image can be recorded simultaneously.
  • the actuators may be formed by piezoelectric or thermal elements that are arranged along each ink channel.
  • the associated actuator is energised so that the liquid ink contained in the ink channel is pressurised and an ink droplet is ejected through the nozzle.
  • the array 12 is provided with a row of nozzles 18 and the array 14 is provided with a row of nozzles 20. Each row extends in a so-called sub-scanning direction which is parallel to an x-axis.
  • the sub-scanning direction is the direction in which a recording substrate 26 (such as a sheet of paper) is advanced step-wise.
  • the carriage 10 In order to print a swath of an image, the carriage 10 is moved across the substrate 26 in a main scanning direction parallel to an y-axis, normal to the x-axis.
  • the control unit 11 is connected to the first printhead with the array 12 and to the second printhead with the array 14 and is arranged for supplying recording signals to the first and second printheads so as to activate image-wise the nozzles.
  • the carriage 10 has an element 16 configured for adjusting the relative position of the arrays 12 and 14 along the x-axis.
  • the element 16 is mechanically connected to at least one of the arrays, for example the array 14, in order to displace the array along the x-axis such that the relative position of the arrays is modified.
  • the element 16 may be a piezoelectric element adapted to expand and retract along the x-axis, in response to electrical signals supplied by the control unit 11.
  • the nozzles 18 of the array 12 are spaced from one another according to a substantially constant pitch p.
  • the nozzles 20 of the array 14 are regularly spaced according to the same pitch p.
  • the array 12 is suited for printing marks (or dots) 22, which result from the ejection of ink droplets out of the nozzles 18, with a resolution along the x-axis substantially equal to 1/p (usually expressed in dots per inch).
  • first pixel lines having first marks 22 are formed on the recording substrate 26 and extend along the y-axis.
  • the array 14 is suited for printing marks 24 with the same resolution. Second pixel lines having second marks 24 and extending along the y-axis are formed.
  • a pattern with alternating first and second lines such as shown in Figure 1 may be obtained, with printing resolution substantially equal to 2/p.
  • both arrays 12 and 14 are activated image-wise within one single carriage pass.
  • a pattern extending along the y-axis is represented, whereby all possible nozzles are activated.
  • the arrays are driven by the control unit 11 in order to activate the nozzles image-wise.
  • lines may be recorded using a special etch-resistant ink in order to later on produce tracks of a conductive material by means of an etching process.
  • an array may comprise much more nozzles.
  • Some nozzles for example 20a, 20c, 20g, 18b, 18c, 18g etc
  • nozzles for example 20e
  • major deviation to the left for example 20e
  • other nozzles have a minor deviation to the right (for example 20b, 20d, 20f, 18a, 18d, 18e etc).
  • the fact that the jet angles deviate from the ideal angle may cause banding in a recorded dot pattern, as is shown in Figure 3 . At some locations of the pattern, undesired empty (or 'white') lines appear while at some other locations, undesired dark appear due to overlapping. These defects are particularly pronounced in an area 23, wherein a strong overlap as well as a large spacing between vertical lines are visible. The phenomenon of banding is visually unpleasant. For printed electronics application, this leads to isolation problems between conductive tracks.
  • the pattern represented in Figure 3 may appear when a prior art method for adjusting sidewise the relative position of the arrays is implemented.
  • the arrays are aligned by a control means which utilises signals from a sensor for determining and controlling the position of reference markers formed on the arrays.
  • the arrays are deemed aligned correctly when such reference markers are brought into registration.
  • control unit 11 is adapted to issue instructions to different modules such as described hereinafter.
  • the control unit 11 comprises for example a processor, first memory means such as a RAM whereon data may be written during the adjusting procedure and second memory means such as an EPROM for storing instructions executable by the processor.
  • first memory means such as a RAM whereon data may be written during the adjusting procedure
  • second memory means such as an EPROM for storing instructions executable by the processor.
  • the procedure may be carried out semi-automatically or manually.
  • a first step S2 the adjusting procedure is started by a user in order to launch a program for adjusting the relative position of the arrays which may be installed on the control unit 11.
  • step S4 the control unit 11 issues an instruction to the printing device for recording a test pattern on the recording substrate.
  • the first and second arrays are arranged according to an initial relative position, such as shown in Figs. 2A and 2B .
  • An example of a suitable test pattern is shown in Figure 4 .
  • the test pattern is obtained by activating all nozzles of both arrays such that each nozzle expels at least one ink droplet for forming marks on the recording substrate.
  • the arrays 12 and 14 are in the initial position and the carriage 10 is immobile.
  • the recorded test pattern comprises a group of first test marks 22a... 22h...22j etc and a group of second test marks 24a... 24h...
  • both groups extend in a direction parallel to the x-axis.
  • the arrays 12 and 14 are in the initial position and the carriage 10 is moved along the y-axis in order to form a swath of an image. In this case, when all nozzles are activated while the carriage 10 is moved, pixel lines would be formed on the recording substrate.
  • step S6 the control unit 11 issues an instruction to opto-electronic sensors such as a CCD camera (not shown) in order to generate data suited for detecting the locations on the substrate of the first and second test marks of the test pattern.
  • the CCD camera (not shown) may be installed on the carriage 10 of the printing device and is suited for scanning optically the test pattern.
  • the scanned test pattern may then be saved in a suitable image format onto the first memory means for further analysis by the control unit 11. Based on the scanned pattern, which is an image comprising data representing the first and second test marks, the location of the first and second test marks are determined by an image analysis software module running on the control unit 11.
  • a normal projection of the recorded first marks defines points having x-coordinates (x22a...x22h... x22i etc).
  • a normal projection of the recorded second marks defines points having x-coordinates (x24a...x24h... x24i etc).
  • the analysis module of the control unit 11 extracts the x-coordinates of the points and generates a list of x-coordinates corresponding to the recorded first and second marks. An example of such a list is represented in Figure 6 .
  • the CCD camera may be provided with a micro-processor for performing the tasks of determining the locations of the first and second test marks and extracting the x-coordinates.
  • the CCD camera is preferably arranged for determining a geometrical centre of gravity of each recorded test mark. The determination of the centres of gravity leads directly to the x-coordinates (such as exemplified in Figure 6 ) which are transmitted by the CCD camera to the control unit 11 via connection means.
  • An attainable relative position is a position wherein the first and second arrays at least partially flank each other, thereby defining a degree of a longitudinal overlap along the x-axis.
  • the first and second arrays, in an attainable relative position could record a pattern with alternating pixel lines comparable to the initial pattern of Figure 3 , expect the fact that the recorded pattern would be less wide in the x-direction since the nozzles falling outside the overlapping area would not be usable anymore. Said nozzles are not usable anymore because the resolution would not be acceptable anymore compared to the desired resolution.
  • the nozzles falling outside the overlapping area would produce a print resolution equal to 1/p while the nozzles falling within the overlapping area would lead to a resolution equal to 2/p, which is in the example the desired resolution.
  • the recorded mark pattern would be as is illustrated in Figure 5A for position P1, in Figure 5B for position P2, in Figure 5C for position P3, in Figure 5D for position P4, in Figure 5E for position P5 and in Figure 5F for position P6.
  • the position P1 simply corresponds to the initial position and the degree of longitudinal overlap is 100%. All nozzles may be used to record a pattern.
  • Position P2 corresponds to a position wherein the arrays have been relatively displaced along the x-axis by a distance equal to one pitch p.
  • the degree of longitudinal overlap is about 95%.
  • the outermost left nozzle of the array 14, i.e. the nozzle 20a is not usable anymore.
  • Position P3 corresponds to a position wherein the arrays have been relatively displaced along the x-axis by a distance equal to two pitches (2p).
  • the degree of longitudinal overlap is about 90%.
  • the two outermost left nozzles of the array 14 i.e. the nozzles 20a and 20b are not usable anymore.
  • the nozzles 20a, 20b, 20c, 18u, 18t and 18s are not usable anymore.
  • the degree of longitudinal overlap is about 85%.
  • the nozzles 20a, 20b, 20c, 20d, 18u, 18t, 18s and 18r are not usable anymore.
  • the degree of longitudinal overlap is about 80%.
  • the nozzles 20a, 20b, 20c, 20d, 20e, 18u, 18t, 18s, 18r and 18q are not usable anymore.
  • the degree of longitudinal overlap is about 75%.
  • the number of attainable positions may be freely chosen, and depends mainly on the design of the arrays and on choices made for an acceptable minimum print width.
  • the projected distance onto the x-axis between adjacent first and second marks should be equal to a nominal distance.
  • the nominal distance is equal to half the pitch p.
  • the pitch p is supposed to be equal to 80 arbitrary units (a.u.) Therefore, the projected distance between adjacent first and second marks should ideally be equal to 40 a.u (the nominal distance).
  • step S8 a list of distances between first and second neighbouring marks is computed by the control unit 11 for each one of the attainable relative positions of the first and second arrays.
  • the term 'neighbouring marks' relates to first and second marks which are located next to each other.
  • a distance between first and second neighbouring marks may be the projected distance onto the x-axis that would arise between adjacent first and second points if the first and second arrays were brought into one of the attainable relative positions.
  • d 11 is the projected distance between the second mark 24a and the first mark 22a.
  • a list L 1 of distances between first and second neighbouring marks is computed for the relative position P1 and is illustrated in Figure 7A .
  • step S8 similarly, a list of distances between first and second neighbouring marks is also computed for the position P3.
  • the nozzles 24a and 24b are not usable anymore, since the relative position of the first and second arrays is shifted by a distance equal to two pitches (2p) compared to the initial position.
  • a list L 3 of distances between first and second neighbouring marks is computed for the relative position P3 and is illustrated in Figure 7B .
  • a so-called deviation factor F is extracted by control unit 11 for each one of the list of distances.
  • the deviation factor F is an attribute of the relative position (P1 or P2 or P3 etc.) and is indicative of an amount by which distances between first and second neighbouring marks deviate from the nominal distance.
  • a deviation factor is actually indicative of an amount by which the distances in a list (in L 1 or L 3 , for example) deviate from the nominal distance.
  • the nominal distance may be the projected distance onto the x-axis between adjacent first and second marks in the ideal case.
  • the nominal value is in the present example equal to half the pitch of the nozzles in a row, i.e. 40 a.u.
  • a maximum function may constrain the deviation factor attributed to a distinct attainable relative position to take the value of the largest difference, in absolute value, among the ensemble of differences ⁇ n computed between the nominal distance and the distances between neighbouring first and second marks.
  • the deviation factor for a given list (corresponding to an attainable relative position) may thus be equal to the largest ⁇ n found in the list. Indeed, the largest said value(s) is/are, the more visible the defect(s) will be.
  • the deviation factor for a list is set to be the largest difference, in absolute value, among the ensemble of differences ⁇ n computed between the nominal distance and the distances between neighbouring first and second marks, the deviation factor is clearly indicative of a degree of deviation from an ideal situation.
  • the deviation factor F 1 for the list L 1 (see the greyed area in the list L 1 of Figure 7A ) is 30 a.u., corresponding to ⁇ 19 .
  • the deviation factor is extracted.
  • the deviation factor F 3 for the list L 3 (see the greyed areas in the list L 3 of Figure 7B ) is 20 a.u. corresponding to a number of difference ⁇ n ( ⁇ 35 , ⁇ 310 , ⁇ 319 etc.).
  • a selection module of the control unit 11 selects a relative attainable position among the plurality of relative attainable positions.
  • the selected relative position has to satisfy a selection criterion which is applied to the deviation factors attributed to the plurality of relative attainable positions.
  • An optimum attainable position is thus selected based on the extracted plurality of deviation factors F 1 ... F 3 etc. For example, a relative attainable position satisfies the selection criterion when the deviation factor attributed to said relative position is the smallest among the attributed deviation factors. In the example described here, not all lists have been illustrated.
  • step S14 a signal is sent by the control unit 11 to the displacement means 16 for displacing the array 14 thereby bringing the first and second arrays in the selected relative position which is position P3.
  • the arrays are thus shifted from the initial position P1 by a distance equal to two pitches (2p).
  • step S16 the program is ended.
  • the first and second arrays are now in an optimum relative position, and the printing device can be used for recorded patterns. After a certain period, or after a certain amount of recording, the deviation angles associated with the nozzles may evolve. Therefore, the method, as illustrated by the flowchart of Figure 10 , has to be carried out again. Possibly, another relative position will be selected.
  • the position P3 is illustrated by Figure 8A and 8B , wherein each one of the arrays 14 and 12 is represented in a cross-sectional view.
  • the overlapping area 28 is also shown.
  • An example of a pattern that may be recorded by the arrays in the illustrated arrangement is shown in Figure 9 .
  • the nozzles 20a, 20b, 18t and 18 u are not usable anymore since they find themselves outside of the overlapping area 28. Therefore, these nozzles are set inactive by the control unit 11.
  • the nozzles 20c to 20u and 18a to 18s find themselves within the overlapping area and may be activated image-wise by the control unit.
  • the position P3 appears to be the most advantageous relative position of the arrays 12 and 14.
  • eighteen nozzles from the first row and eighteen nozzles from the second row find themselves in the overlapping area. These in total thirty-six nozzles are activated image-wise in order to record a pattern. If another position had been found to be optimum, a different number of nozzles would find themselves in the overlapping area.
  • sixteen nozzles from the first row and sixteen nozzles from the second row find themselves in the overlapping area (in total thirty-two nozzles). It might be undesirable to render the number of nozzles to be image-wise activated dependent on the optimum relative position.
  • a pre-defined number of nozzles for image-wise activation may be chosen. This number may be equal to the number of nozzles finding themselves in the overlapping area when the arrays are in the most shifted possible position. In the example above, that would mean that, independently from the optimum found for the relative position, the number of image-wise to be activated nozzles would be thirty-two, i.e. the number of nozzles in the overlapping area when the arrays are in the position P6. If such a choice was made, in the optimum relative position P3, only thirty-two nozzles in the overlapping area would be chosen for image-wise activation. The choice may be based again on an best possible relative positioning of the first and second marks within the overlapping area.
  • the first and second arrays are adjusted respectively to each other such that the nominal distance is zero.
  • the adjustment with a nominal distance equal to zero is for example interesting for applications wherein marks formed by ink of a first type have to be printed at the same locations on the recording substrate as marks formed by ink of a second type.
  • the nozzles of the first array are regularly spaced according to a pitch and the nozzles of the second array are regularly spaced according to the same pitch.
  • the adjustment with a nominal distance equal to zero is interesting for graphical applications.
  • the cross section of a possible resulting pattern is partly shown in Figure 12A .
  • marks 32 formed by ink droplets of a first colorant are printed by the first array.
  • marks 34 formed by ink droplets of a second colorant are printed on top of the marks 32, using the second array of nozzles.
  • the deviation factor is preferably obtained by an average function which constrains the deviation factor attributed to a distinct attainable relative position to take the value of an averaged difference, computed in absolute value between the nominal distance and the distances between neighbouring first and second marks.
  • the selected attainable relative position is the one having the smallest deviation factor among the plurality of deviation factors. Consequently, the overlapping between first and second marks is on average as good as is possible.
  • first marks 38 are deposited by the nozzles of the first array.
  • the material used for forming the first marks 38 is an electrically conductive ink or a metal. If liquid metal is to be jetted by the nozzles of the first array, the printhead has to be adapted for expelling liquid metal droplets.
  • a second mark 40 is formed on top of the first mark 38.
  • the material used for forming the marks 40 may be an electrically insulating ink.
  • the deviation factor is preferably obtained by a maximum function which constrains the deviation factor attributed to a distinct attainable relative position to take the value of the largest difference, in absolute value, among an ensemble of differences computed between the nominal distance and the distances between neighbouring first and second marks.
  • the selected attainable relative position is the one having the smallest deviation factor among the plurality of deviation factors. Consequently, largest errors in the overlap between first and second marks are, as much as possible, avoided. This is of great importance for printed circuit boards applications, to ensure good electrical insulation between conductive tracks, where it is required on the board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
EP20070122482 2006-12-19 2007-12-06 Ajustement de matrices d'impression dans un dispositif d'impression Active EP1935653B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070122482 EP1935653B1 (fr) 2006-12-19 2007-12-06 Ajustement de matrices d'impression dans un dispositif d'impression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06126503 2006-12-19
EP20070122482 EP1935653B1 (fr) 2006-12-19 2007-12-06 Ajustement de matrices d'impression dans un dispositif d'impression

Publications (2)

Publication Number Publication Date
EP1935653A1 true EP1935653A1 (fr) 2008-06-25
EP1935653B1 EP1935653B1 (fr) 2009-09-16

Family

ID=39420633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070122482 Active EP1935653B1 (fr) 2006-12-19 2007-12-06 Ajustement de matrices d'impression dans un dispositif d'impression

Country Status (1)

Country Link
EP (1) EP1935653B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100245428A1 (en) * 2009-03-26 2010-09-30 Seiko Epson Corporation Liquid ejecting apparatus and flying curve detecting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675696A (en) 1982-04-07 1987-06-23 Canon Kabushiki Kaisha Recording apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675696A (en) 1982-04-07 1987-06-23 Canon Kabushiki Kaisha Recording apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100245428A1 (en) * 2009-03-26 2010-09-30 Seiko Epson Corporation Liquid ejecting apparatus and flying curve detecting method
US8449060B2 (en) * 2009-03-26 2013-05-28 Seiko Epson Corporation Liquid ejecting apparatus and flying curve detecting method

Also Published As

Publication number Publication date
EP1935653B1 (fr) 2009-09-16

Similar Documents

Publication Publication Date Title
EP2280831B1 (fr) Réglage d' une matrice d' impression et d' un substrat dans un dispositif d' impression
JP5736207B2 (ja) インクジェットプリントヘッドの精密見当合わせに効果的なテストパターンおよびインクジェットプリンタのテストパターンに対応する画像データの分析方法
JPH11216884A (ja) ペン整列方法
JP2000052574A (ja) インクジェットのプリントヘッドを較正するための方法
JP5898591B2 (ja) インクジェットプリンタ内の機能的に不十分なまたは欠落したインクジェットの文書内検出の方法およびシステム
CN111791608B (zh) 一种喷墨打印头无缝拼接的误差调整方法
US7607751B2 (en) Method for aligning droplets expelled from an ink jet printer
US20060158476A1 (en) Method and system for aligning ink ejecting elements in an image forming device
JP4756842B2 (ja) プリント位置調整方法およびプリント装置
US7815279B2 (en) Adjustment of print arrays in a printing device
US7891757B2 (en) Marking element registration
EP3152708B1 (fr) Impression d'ensemble de largeur de page
EP1935653B1 (fr) Ajustement de matrices d'impression dans un dispositif d'impression
US11633961B2 (en) Printing methods and systems
JP5603703B2 (ja) 記録装置及びその記録位置調整方法
EP3885146B1 (fr) Procédés et systèmes de suture
KR20080105392A (ko) 어레이 타입 잉크젯 헤드 및 그 제조방법
CN117261459A (zh) 一种用于对齐打印设备的打印头的方法及打印设备
CN117261436A (zh) 一种用于微调由打印设备的至少一个打印头打印的墨滴的位置的方法和打印设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081229

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007002462

Country of ref document: DE

Date of ref document: 20091029

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

26N No opposition filed

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091231

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20130308

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

Owner name: MU TRACX, NL

Effective date: 20130320

Ref country code: FR

Ref legal event code: TQ

Owner name: OCE-TECHNOLOGIES B.V., NL

Effective date: 20130320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007002462

Country of ref document: DE

Owner name: MUTRACX, NL

Free format text: FORMER OWNER: OCE-TECHNOLOGIES B.V., VENLO, NL

Effective date: 20130305

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007002462

Country of ref document: DE

Owner name: OCE-TECHNOLOGIES B.V., NL

Free format text: FORMER OWNER: OCE-TECHNOLOGIES B.V., VENLO, NL

Effective date: 20130305

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007002462

Country of ref document: DE

Owner name: MUTRACX INTERNATIONAL B.V., NL

Free format text: FORMER OWNER: OCE-TECHNOLOGIES B.V., VENLO, NL

Effective date: 20130305

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130404 AND 20130410

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130425 AND 20130501

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

Owner name: OCE-TECHNOLOGIES B.V., NL

Effective date: 20160425

Ref country code: FR

Ref legal event code: TQ

Owner name: MUTRACX INTERNATIONAL B.V., NL

Effective date: 20160425

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: MUTRACX INTERNATIONAL B.V.; NL

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: OCE-TECHNOLOGIES B.V.

Effective date: 20160303

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20161020 AND 20161026

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007002462

Country of ref document: DE

Representative=s name: TER MEER STEINMEISTER & PARTNER PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007002462

Country of ref document: DE

Owner name: OCE-TECHNOLOGIES B.V., NL

Free format text: FORMER OWNERS: MUTRACX, BZ HELMOND, NL; OCE-TECHNOLOGIES B.V., VENLO, NL

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007002462

Country of ref document: DE

Owner name: MUTRACX INTERNATIONAL B.V., NL

Free format text: FORMER OWNERS: MUTRACX, BZ HELMOND, NL; OCE-TECHNOLOGIES B.V., VENLO, NL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 17

Ref country code: DE

Payment date: 20231214

Year of fee payment: 17