EP1934286A1 - Conductive polymers - Google Patents

Conductive polymers

Info

Publication number
EP1934286A1
EP1934286A1 EP06779462A EP06779462A EP1934286A1 EP 1934286 A1 EP1934286 A1 EP 1934286A1 EP 06779462 A EP06779462 A EP 06779462A EP 06779462 A EP06779462 A EP 06779462A EP 1934286 A1 EP1934286 A1 EP 1934286A1
Authority
EP
European Patent Office
Prior art keywords
group
ionically conductive
conductive polymer
solid ionically
polymer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06779462A
Other languages
German (de)
French (fr)
Inventor
Ian David Brotherston
John Lindley Bancroft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionic Polymer Solutions Ltd
Original Assignee
Ionic Polymer Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionic Polymer Solutions Ltd filed Critical Ionic Polymer Solutions Ltd
Publication of EP1934286A1 publication Critical patent/EP1934286A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • C08F26/04Diallylamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to solid ionically conductive polymers, structures and fuel cells incorporating same, and associated methods of production and use.
  • conductive polymers A wide range of ionically conductive polymers are known, with possibly the most famous example being Nafion (RTM).
  • Nafion (RTM) is a conductive membrane that conducts via cation conduction. Whilst Nafion (RTM) has achieved significant commercial success, there are problems associated with the material. In particular, Nafion (RTM) can only achieve useful conductivities in a swollen, hydrated state in which the material achieves volumes approximately 10 times greater than the volume associated with its unhydrated state. Thus, Nafion (RTM) membranes require constant hydration in order to function as conductive membranes and cannot operate conductively at high temperatures, eg, at greater than 100°C.
  • the present invention in at least some of its embodiments, provides improvements to the prior art conductive polymers discussed above. Furthermore, the present invention can provide advantageous ways of applying conductive polymers and provides a class of conductive polymers that conduct by anionic conduction.
  • a solid ionically conductive polymer having repeat units of a quaternary amine and including a plasticiser in an amount sufficient to render the polymer noncrystalline thereby increasing conductivity.
  • the plasticiser may be present as an additive to the polymer.
  • a preferred plasticiser of this sort is propylene carbonate.
  • the polymer may contain between 5 and 60% by weight plasticiser additive. In order to produce polymers with reasonable mechanical strength, it is preferred that the polymer contains between 5 and 30% by weight plasticiser additive. For higher conductivities, the polymer may contain between 25 and 60% by weight plasticiser additive. In general, . polymers of this type exhibit somewhat poorer mechanical properties, but this may be acceptable or even desirable in certain applications. In some instances the polymer may contain more than 60% by weight plastic additive. Alternatively the polymer may be self-plasticising. The polymer can be self- plasticising in numerous ways.
  • This polymer may include an anion present as a counterion to the quaternary amine, and the anion may act as a plasticiser.
  • the quaternary amine itself acts as a self-plasticiser.
  • larger anions and/or cationic quaternary amines render the polymer less likely to adopt a crystalline configuration.
  • the polymer may contain a plurality of different plasticisers.
  • the polymer may conduct by anionic conduction. It has been found that it is possible to provide anionically conducting polymers which exhibit conductivity comparable to H + conducting membranes. Alternatively, the polymer may conduct by cationic conduction, which may be proton conduction.
  • the polymer is formed from the polymerisation of a monomer which comprises a group of sub-formula (I)
  • R 2 and R 3 are independently selected from (CR 7 R 8 ) n , or a group CR 9 R 10 , CR 7 R 8 CR 9 R 10 Or CR 9 R 10 CR 7 R 8 where n is 0, 1 or 2, R 7 and R 8 are independently selected from hydrogen, halo or hydrocarbyl, and either one of R 9 or R 10 is hydrogen and the other is an electron withdrawing group, or R 9 and R 10 together form an electron withdrawing group, and
  • R 4 and R 5 are independently selected from CH or CR 11 where R 11 is an electron withdrawing group; the dotted lines indicate the presence or absence of a bond, X 1 is a group CX 2 X 3 where the dotted line bond to which it is attached is absent and a group CX 2 where the dotted line bond to which it is attached is present, Y 1 is a group CY 2 Y 3 where the dotted line bond to which it is attached is absent and a group CY 2 where the dotted line bond to which it is attached is present, and X 2 , X 3 , Y 2 and
  • Y 3 are independently selected from hydrogen, fluorine or other substituents
  • R 1 is selected from hydrogen, halo, nitro or hydrocarbyl, optionally substituted or interposed with functional groups;
  • Z is an anion of charge m.
  • the polymer is formed from the polymerisation of a dienyl quaternary amine, most preferably from polymerisation of a starting material which comprises a group of sub-formula (II)
  • R 2 and R 3 are independently selected from (CR 7 R 8 ) n , or a group CR 9 R 10 , CR 7 R 8 CR 9 R 10 or CR 9 R 10 CR 7 R 8 where n is 0, 1 or 2, R 7 and R 8 are independently selected from hydrogen, halo or hydrocarbyl, and either one of R 9 or R 10 is hydrogen and the other is an electron withdrawing group, or R 9 and R 10 together form an electron withdrawing group, and
  • R 4 and R 5 are independently selected from CH or CR 11 where R 11 is an electron withdrawing group; the dotted lines indicate the presence or absence of a bond, X 1 is a group CX 2 X 3 where the dotted line bond to which it is attached is absent and a group CX 2 where the dotted line bond to which it is attached is present, Y 1 is a group CY 2 Y 3 where the dotted line bond to which it is attached is absent and a group
  • CY 2 where the dotted line bond to which it is attached is present, and X 2 , X 3 , Y 2 and Y 3 are independently selected from hydrogen and fluorine; and R 1 is hydrogen or hydrocarbyl, and Z is an anion of charge m.
  • the expression "in the substantial absence of solvent” means that there is either no solvent present or there is insufficient solvent present to completely dissolve the reagents, although a small amount of a diluent may be present to allow the reagents to flow.
  • Conditions under which polymerisation occurs include the influence of radiation or an electron beam, heat or the presence of a chemical initiator. Radiation or electron beam induced polymerisation is suitably effected in the substantial absence of a solvent.
  • R 7 and R 8 are independently selected from fluoro, chloro, alkyl or H. In the case of alkyl, methyl is most preferred.
  • At least one, and possibly all, of X 2 , X 3 , Y 2 and Y 3 is a substituent other than hydrogen or fluorine.
  • at least one, and possibly all, of X 2 , X 3 , Y 2 and Y 3 is an optionally substituted hydrocarbyl group.
  • it is preferred that at least one, and most preferably all, of X 2 , X 3 , Y 2 and Y 3 is an optionally substituted alkyl group.
  • Particularly preferred examples are C 1 and C 4 alkyl groups, especially methyl or ethyl.
  • X 2 , X 3 , Y 2 and Y 3 are aryl and/or heterocyclic, such as pyridyl, pyrimidinyl, or a pyridine or pyrimidine containing group.
  • X 1 and Y 1 are groups CX 2 X 3 and CY 1 Y 2 respectively and the dotted lines represent an absence of a bond.
  • preferred compounds are those of sub-formula (IA)
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , X 2 , X 3 , Y 2 and Y 3 are as defined above.
  • One or more such starting materials may be polymerised together. When more than one starting material is used, a copolymer will result.
  • the resulting polymer will comprise polyacetylene chains. This can lead to a conjugated system with the possibility of associated conductivity.
  • the starting material is one which will cyclopolymerise in the sort of conditions used in polymer production.
  • This may comprise the application of radiation, such as UV radiation, where necessary in the presence of a photoinitiator, the application of heat (which may be in form of IR radiation), where necessary in the presence of an initiator, by the application of other sorts of initiator such as chemical initiators, or by initiation using an electron beam.
  • radiation such as UV radiation
  • heat which may be in form of IR radiation
  • an initiator by the application of other sorts of initiator such as chemical initiators, or by initiation using an electron beam.
  • chemical initiator refers to compounds which can initiate polymerisation such as free radical initiators and ion initiators such as cationic or anionic initiators as are understood in the art.
  • the starting materials polymerise under the influence of ultraviolet radiation or thermal radiation or both.
  • Cyclopolymerisation may take place either spontaneously or in the presence of a suitable initiator.
  • suitable initiators include 2, 2' - azobisisobutyronitrile (AIBN), aromatic ketones such as benzophenones in particular acetophenone; chlorinated acetophenones such as di- or tri-chloracetophenone; dialkoxyacetophenones such as dimethoxyacetophenones (sold under the trade name "Irgacure 651”) dialkylhydroxyacetophenones such as dimethylhydroxyacetophenone (sold under the trade name "Darocure 1173"); substituted dialkylhydroxyacetophenone alkyl ethers such as compounds of formula
  • AIBN 2, 2' - azobisisobutyronitrile
  • aromatic ketones such as benzophenones in particular acetophenone
  • chlorinated acetophenones such as di- or tri-chloracetophenone
  • dialkoxyacetophenones such as
  • R y is alkyl and in particular 2, 2-dimethylethyl
  • R x is hydroxyl or halogen such as chloro
  • R p and R q are independently selected from alkyl or halogen such as chloro
  • alkyl or halogen such as chloro
  • 1-benzoylcyclohexanol-2 sold under the trade name "Irgacure 184"
  • benzoin or derivatives such as benzoin acetate, benzoin alkyl ethers in particular benzoin butyl ether, dialkoxybenzoins such as dimethoxybenzoin or deoxybenzoin
  • dibenzyl ketone acyloxime esters such as methyl or ethyl esters of acyloxime (sold under the trade name "Quantaqure PDO”); acylphosphine oxides, acylphosphonates such as
  • R z is alkyl and Ar is an aryl group; dibenzoyl disulphides such as 4, 4'- dialkylbenzoyldisuphide; diphenyldithiocarbonate; benzophenone; 4, 4'-bis (N, N-dialkyamino) benzophenone; fluorenone; thioxanthone; benzil; or a compound of formula
  • Ar is an aryl group such as phenyl and R z is alkyl such as methyl (sold under the trade name "Speedcure BMDS").
  • alkyl refers to straight or branched chain alkyl groups, suitably containing up to 20 and preferably up to 6 carbon atoms.
  • alkenyl and alkynyl refer to unsaturated straight or branched chains which include for example from 2-20 carbon atoms, for example from 2 to 6 carbon atoms. Chains may include one or more double to triple bonds respectively.
  • aryl refers to aromatic groups such as phenyl or naphthyl.
  • hydrocarbyl refers to any structure comprising carbon and hydrogen atoms.
  • these may be alkyl, alkenyl, alkynyl, aryl such as phenyl or napthyl, arylalkyl, cycloalkyl, cycloalkenyl or cycloalkynyl.
  • aryl such as phenyl or napthyl
  • arylalkyl cycloalkyl
  • cycloalkenyl or cycloalkynyl Suitably they will contain up to 20 and preferably up to 10 carbon atoms.
  • heteroatom such as oxygen, sulphur or nitrogen.
  • Examples of such groups include furyl, thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl,- tetrazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzthiazolyl, benzoxazolyl, benzothieny! or benzofuryl.
  • heteroatom refers to non-carbon atoms such as oxygen, nitrogen or sulphur atoms. Where the nitrogen atoms are present, they will generally be present as part of an amino residue so that they will be substituted for example by hydrogen or alkyl.
  • amide is generally understood to refer to a group of formula C(O)NR a R b where R a and R b are hydrogen or an optionally substituted hydrocarbyl group.
  • sulphonamide will refer to a group of formula S(O) 2 NR a R b .
  • electron withdrawing group includes within its scope atomic substituents such as halo, e.g. fluro, chloro and bromo.
  • R 11 is an electron withdrawing group, it is suitably acyl such as acetyl, nitrile or nitro.
  • X 1 , X 2 , Y 1 and Y 2 are all hydrogen.
  • Suitable groups R a include hydrogen or methyl, in particular hydrogen.
  • the invention includes within its scope oligomers, in which instances y is typically between 2 and 15, preferably between 5 and 12. Higher molecular weight polymers are also within the scope of the invention, in which instance y can be in excess of 100.
  • z m- may be a halide ion, a boride ion, triflate, PF 6 " , HSO 4 " , H 2 PO 4 " , BF 4 " , NO 3 " , or a carboxylic acid ester, preferably a carboxylic acid ester having an alkyl or a per-fluorinated alkyl group of greater than five carbon atoms, most preferably octanoate or per-fluoro octanoate.
  • anions having hydrocarbyl or substituted hydrocarbyl moieties Anions having branched hydrocarbyl moieties may disrupt the formation of crystals and hence increase non-crystallinity.
  • X 1 and Y 1 may represent CX 2 X 3 and CY 2 Y 3 respectively, the dotted bonds being absent and X 2 , X 3 , Y 2 and Y 3 being all hydrogen.
  • the starting material may be a compound of structure (III)
  • r is an integer of 1 or more
  • R 6 is a bridging group, an optionally substituted hydrocarbyl group, a perhaloalkyl group, a siloxane group or an amide, of valency r.
  • Monomers of this type may be represented as structure (IV) where X 2 , X 3 , Y 2 , Y 3 , R 1 , R 2 , R 3 , R 4 , and R 5 are as defined in relation to formula (I) above, R 6' is an optionally substituted hydrocarbyl group, a perhaloalkyl group, a siloxane group or an amide.
  • the invention may also be applied to other sorts of polymers; for example, where in the compounds of formula (III), r is greater than one, polymerisation can result in polymer networks.
  • Particular examples are compounds of formula (III) as defined above, where R 6 is a bridging group and r is an integer of 2 or more, for example from 2 to 8 and preferably from 2 - 4. Embodiments in which r is two are particularly preferred.
  • networks are formed whose properties maybe selected depending upon the precise nature of the R 6 group, the amount of chain terminator present and the polymerisation conditions employed.
  • R 1 may be an alkyl group, preferably having less than three carbon atoms, most preferably methyl. Alternatively, R 1 may be H. Embodiments in which R 1 is H may be useful for providing proton conduction mechanisms.
  • R 6 or R 6' comprises a straight or branched chain alkyl group, optionally substituted or interposed with functional groups.
  • R 6 or R 6' may be an optionally substituted hydrocarbyl group having four or more carbon atoms.
  • R 6 or R 6 is an alkyl group, most preferably a straight chain alkyl group, although R 6 or R 6' may be a branched chain alkyl group.
  • R 6 or R 6 ' may have between five and twenty carbon atoms, preferably between eight and fourteen carbon atoms, most preferably ten carbon atoms.
  • the starting material is a compound
  • the starting material may be a compound of formula (Vl)
  • Z m' may be PF 6 " , per-fluoro octanoate or triflate.
  • R 6 or R 6 may comprise a perhalo hydrocarbyl group, preferably a perfluoro hydrocarbyl group.
  • R 6 or R 6' may comprise a perhaloalkyl group such as a perfluoroalkyl group, for example of from 1 to 3 carbon atoms such as a perhalomethyl group, in particular perfluoromethyl.
  • R 6 or R 6 may comprise a sulfonated group and/or an imidazole containing group.
  • Suitable bridging groups include those found in polyethylenes, polypropylenes, nylons, as listed in Table 1. Further examples of bridging groups can be found in WO 00/06610. Table 1
  • the invention includes the possibility of producing copolymers where another monomeric compound, for example one which is not of formula (I), is mixed with the compound of formula (I) prior to polymerisation.
  • Such monomers are known in the art.
  • the solid ionically conductive polymer may be provided in a composite structure with one or more other materials in order to produce desired mechanical and/or electrochemical properties.
  • the solid ionically conductive polymer may be utilised in combination with one or more inorganic materials such as SiO 2 , tungsten compounds, and glass fibre.
  • the monomer is preferably of the following formula
  • R 6 is as previously defined and may be a group R 6 as previously defined.
  • the solid ionically conductive polymer may be self-supporting, such as in the form of a membrane, or may be used in conjunction with a substrate.
  • a substrate and a solid ionically conductive polymer according to the first aspect of the invention located therein or thereon.
  • the substrate may be a solid substrate, or a structure having voids therein, such as a mesh, a web or a porous substrate.
  • a mesh or web structure can be used to reinforce the polymer.
  • Nylon mesh or web structures may be employed.
  • the solid ionically conductive polymer may be located in the pores of the substrate.
  • the plasticiser may be less prone to washing out of the polymer in such structures.
  • the structure can be produced by soaking an appropriate monomer into the pores of the substrate and polymerising in situ. The plasticiser may be present with the monomer when the polymerisation takes place.
  • the substrate is a ceramic or a zeolite.
  • conductive materials can be provided which are tough, can operate at high temperatures and do not require the presence of water to conduct.
  • the structure may be in the form of an ionically conductive membrane.
  • Such conductive membranes have numerous applications, such as in fuel cells.
  • a method of producing a solid ionically conductive polymer having repeat units of a quaternary amine including the steps of polymerising a quaternary amine starting material and providing a plasticiser in the polymer present in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
  • the quaternary amine starting material may be sprayed onto a target structure prior to the step of polymerising.
  • This is an extremely effective and practical way of applying a conductive coating.
  • the step of polymerising may be effected by the application of radiation, where necessary in the presence of an initiator.
  • the polymerisation is effected by the application of ultraviolet radiation.
  • the step of polymerising may be effected by the application of heat, where necessary in the presence of an initiator.
  • the plasticiser is mixed with the starting material prior to the step of polymerising.
  • the plasticiser may be added to the polymer after or during the step of polymerising.
  • WO 01/40814 and WO 01/74919 disclose the preparation of monomers and polymers of the dienyl type.
  • International Publication WO 01/74919 also discloses the preparation of monomers and polymers formed from quaternary ammonium species having a single vinyl type group.
  • a method of producing a structure including the steps of providing a porous substrate, introducing a quaternary amine starting material and a plasticiser into the pores of the substrate, and polymerising the starting material to produce a solid ionically conductive polymer, the plasticiser being present in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
  • a fuel cell including a solid ionically conductive polymer according to the first aspect of the invention.
  • the fuel cell may include an ionically conductive membrane as described in respect of the second aspect of the invention, preferably a proton conductive membrane.
  • Example 4 The mixture of quaternary amine 1 , photoiniator and propylene carbonate prepared in Example 2 was added to a zeolite and polymerised in situ by exposure to UV radiation. The zeolite exhibited conductivity.
  • Example 4 The mixture of quaternary amine 1 , photoiniator and propylene carbonate prepared in Example 2 was added to a zeolite and polymerised in situ by exposure to UV radiation. The zeolite exhibited conductivity.
  • Example 4 Example 4
  • An analogue of the target molecule 1 was prepared in which the anion is per-fluoro octanoate.
  • the analogue was prepared using the method described in Example 1 , except that aqueous perfluorooctanoic acid was used instead of hydroperfluoric acid.
  • the analogue was polymerised using the methodology of Example 2, and the resulting polymer exhibited a marginally higher conductivity than the polymer of Example 2.
  • Example 5 An analogue of the target molecule 1 was prepared in which the anion is triflate.
  • the analogue was prepared using the method described in Example 1 , except that triflic acid (CF 3 SO 3 H) was used instead of hydroperfluoric acid.
  • the analogue was polymerised using the methodology of Example 2, and the resulting polymer exhibited a marginally higher conductivity than the polymer of Example 2.
  • the reaction scheme of bromoalkane, diallylamine and K 2 CO 3 is a general one that can be used to prepare monomers for subsequent polymerisation and use according to the invention.
  • Bisubstituted bromoalkanes (particularly where the bromo substitution is at either end of the alkyl chain) are used to produce monomers having two dienyl end groups.
  • Singly substituted bromo alkanes are used to produce monomers having one dienyl end group.

Abstract

There is provided a solid ionically conductive polymer having repeat units of a quaternary amine and including a plasticiser in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.

Description

Conductive Polymers
This invention relates to solid ionically conductive polymers, structures and fuel cells incorporating same, and associated methods of production and use. There is much interest in the manufacture and use of conductive polymers. A wide range of ionically conductive polymers are known, with possibly the most famous example being Nafion (RTM). Nafion (RTM) is a conductive membrane that conducts via cation conduction. Whilst Nafion (RTM) has achieved significant commercial success, there are problems associated with the material. In particular, Nafion (RTM) can only achieve useful conductivities in a swollen, hydrated state in which the material achieves volumes approximately 10 times greater than the volume associated with its unhydrated state. Thus, Nafion (RTM) membranes require constant hydration in order to function as conductive membranes and cannot operate conductively at high temperatures, eg, at greater than 100°C.
International publications WO00/06610, WO00/06533, WO00/06658, WO01/36510, WO01/40874 and WO01/74919, the contents of all of which are herein incorporated by reference, disclose a class of polymers obtained from the polymerisation of a number of compounds which possess one or more dienyl end groups. The polymers possess or promise a variety of useful and exciting properties, one of which was thought to be conductivity. However, further investigations have revealed that the conductivities of the polymers disclosed in these documents are not optimal ones. In fact, the present inventors have found that large increases in the conductivities of various polymers including polymers of the type genetically disclosed in the above mentioned International publications is possible.
Accordingly, the present invention, in at least some of its embodiments, provides improvements to the prior art conductive polymers discussed above. Furthermore, the present invention can provide advantageous ways of applying conductive polymers and provides a class of conductive polymers that conduct by anionic conduction.
According to a first aspect of the invention there is provided a solid ionically conductive polymer having repeat units of a quaternary amine and including a plasticiser in an amount sufficient to render the polymer noncrystalline thereby increasing conductivity.
Conductivities comparable to that of Nafion (RTM) can be achieved without requiring hydration. Without wishing to be bound by any theory, it is believed that departure from crystallinity increases the efficiency of ion transfer between repeat units.
The plasticiser may be present as an additive to the polymer. A preferred plasticiser of this sort is propylene carbonate. The polymer may contain between 5 and 60% by weight plasticiser additive. In order to produce polymers with reasonable mechanical strength, it is preferred that the polymer contains between 5 and 30% by weight plasticiser additive. For higher conductivities, the polymer may contain between 25 and 60% by weight plasticiser additive. In general, . polymers of this type exhibit somewhat poorer mechanical properties, but this may be acceptable or even desirable in certain applications. In some instances the polymer may contain more than 60% by weight plastic additive. Alternatively the polymer may be self-plasticising. The polymer can be self- plasticising in numerous ways. This polymer may include an anion present as a counterion to the quaternary amine, and the anion may act as a plasticiser. In alternative embodiments the quaternary amine itself acts as a self-plasticiser. In general larger anions and/or cationic quaternary amines render the polymer less likely to adopt a crystalline configuration.
The polymer may contain a plurality of different plasticisers.
The polymer may conduct by anionic conduction. It has been found that it is possible to provide anionically conducting polymers which exhibit conductivity comparable to H+ conducting membranes. Alternatively, the polymer may conduct by cationic conduction, which may be proton conduction.
Advantageously, the polymer is formed from the polymerisation of a monomer which comprises a group of sub-formula (I)
where R2 and R3 are independently selected from (CR7R8)n, or a group CR9R10, CR7R8CR9R10 Or CR9R10CR7R8 where n is 0, 1 or 2, R7 and R8 are independently selected from hydrogen, halo or hydrocarbyl, and either one of R9 or R10 is hydrogen and the other is an electron withdrawing group, or R9 and R10 together form an electron withdrawing group, and
R4 and R 5 are independently selected from CH or CR11 where R11 is an electron withdrawing group; the dotted lines indicate the presence or absence of a bond, X1 is a group CX2 X3 where the dotted line bond to which it is attached is absent and a group CX2 where the dotted line bond to which it is attached is present, Y1 is a group CY2Y3 where the dotted line bond to which it is attached is absent and a group CY2 where the dotted line bond to which it is attached is present, and X2, X 3, Y 2 and
Y 3 are independently selected from hydrogen, fluorine or other substituents;
R1 is selected from hydrogen, halo, nitro or hydrocarbyl, optionally substituted or interposed with functional groups;
R12 is selected from hydrogen, halo, nitro, hydrocarbyl, optionally substituted or interposed with functional groups, or -R3-R^=Y1; and
Z is an anion of charge m.
Preferably, the polymer is formed from the polymerisation of a dienyl quaternary amine, most preferably from polymerisation of a starting material which comprises a group of sub-formula (II)
where R2 and R3 are independently selected from (CR7R8)n, or a group CR9R10, CR7R8CR9R10 or CR9R10CR7R8 where n is 0, 1 or 2, R7 and R8 are independently selected from hydrogen, halo or hydrocarbyl, and either one of R9 or R10 is hydrogen and the other is an electron withdrawing group, or R9 and R10 together form an electron withdrawing group, and
R4 and R 5 are independently selected from CH or CR11 where R11 is an electron withdrawing group; the dotted lines indicate the presence or absence of a bond, X1 is a group CX2 X3 where the dotted line bond to which it is attached is absent and a group CX2 where the dotted line bond to which it is attached is present, Y1 is a group CY2Y3 where the dotted line bond to which it is attached is absent and a group
CY2 where the dotted line bond to which it is attached is present, and X2, X 3, Y2 and Y3 are independently selected from hydrogen and fluorine; and R1 is hydrogen or hydrocarbyl, and Z is an anion of charge m.
As used herein, the expression "in the substantial absence of solvent" means that there is either no solvent present or there is insufficient solvent present to completely dissolve the reagents, although a small amount of a diluent may be present to allow the reagents to flow.
Conditions under which polymerisation occurs include the influence of radiation or an electron beam, heat or the presence of a chemical initiator. Radiation or electron beam induced polymerisation is suitably effected in the substantial absence of a solvent.
Preferably, R7 and R8 are independently selected from fluoro, chloro, alkyl or H. In the case of alkyl, methyl is most preferred.
It is possible that at least one, and possibly all, of X2, X3, Y2 and Y3 is a substituent other than hydrogen or fluorine. Preferably at least one, and possibly all, of X2, X3, Y2 and Y3 is an optionally substituted hydrocarbyl group. In such embodiments, it is preferred that at least one, and most preferably all, of X2, X3, Y2 and Y3 is an optionally substituted alkyl group. Particularly preferred examples are C1 and C4 alkyl groups, especially methyl or ethyl. Alternatively, at least one, and preferably all, of X2, X3, Y2 and Y3 are aryl and/or heterocyclic, such as pyridyl, pyrimidinyl, or a pyridine or pyrimidine containing group.
In preferred embodiments, X1 and Y1 are groups CX2 X3 and CY1Y2 respectively and the dotted lines represent an absence of a bond. Thus preferred compounds are those of sub-formula (IA)
where R1, R2, R3, R4, R5, R6, X2, X3, Y2 and Y3 are as defined above. One or more such starting materials may be polymerised together. When more than one starting material is used, a copolymer will result.
When the dotted bonds in sub formula (I) are present, the resulting polymer will comprise polyacetylene chains. This can lead to a conjugated system with the possibility of associated conductivity.
Suitably the starting material is one which will cyclopolymerise in the sort of conditions used in polymer production. This may comprise the application of radiation, such as UV radiation, where necessary in the presence of a photoinitiator, the application of heat (which may be in form of IR radiation), where necessary in the presence of an initiator, by the application of other sorts of initiator such as chemical initiators, or by initiation using an electron beam. The expression "chemical initiator" as used herein refers to compounds which can initiate polymerisation such as free radical initiators and ion initiators such as cationic or anionic initiators as are understood in the art. Preferably, the starting materials polymerise under the influence of ultraviolet radiation or thermal radiation or both. Cyclopolymerisation may take place either spontaneously or in the presence of a suitable initiator. Examples of suitable initiators include 2, 2' - azobisisobutyronitrile (AIBN), aromatic ketones such as benzophenones in particular acetophenone; chlorinated acetophenones such as di- or tri-chloracetophenone; dialkoxyacetophenones such as dimethoxyacetophenones (sold under the trade name "Irgacure 651") dialkylhydroxyacetophenones such as dimethylhydroxyacetophenone (sold under the trade name "Darocure 1173"); substituted dialkylhydroxyacetophenone alkyl ethers such as compounds of formula
where Ry is alkyl and in particular 2, 2-dimethylethyl, Rx is hydroxyl or halogen such as chloro, and Rp and Rq are independently selected from alkyl or halogen such as chloro (examples of which are sold under the trade names "Darocure 1116" and "Trigonal P1"); 1-benzoylcyclohexanol-2 (sold under the trade name "Irgacure 184"); benzoin or derivatives such as benzoin acetate, benzoin alkyl ethers in particular benzoin butyl ether, dialkoxybenzoins such as dimethoxybenzoin or deoxybenzoin; dibenzyl ketone; acyloxime esters such as methyl or ethyl esters of acyloxime (sold under the trade name "Quantaqure PDO"); acylphosphine oxides, acylphosphonates such as dialkylacylphosphonate, ketosulphides for example of formula
where Rz is alkyl and Ar is an aryl group; dibenzoyl disulphides such as 4, 4'- dialkylbenzoyldisuphide; diphenyldithiocarbonate; benzophenone; 4, 4'-bis (N, N-dialkyamino) benzophenone; fluorenone; thioxanthone; benzil; or a compound of formula
where Ar is an aryl group such as phenyl and Rz is alkyl such as methyl (sold under the trade name "Speedcure BMDS").
As used herein, the term "alkyl" refers to straight or branched chain alkyl groups, suitably containing up to 20 and preferably up to 6 carbon atoms. The term "alkenyl" and "alkynyl" refer to unsaturated straight or branched chains which include for example from 2-20 carbon atoms, for example from 2 to 6 carbon atoms. Chains may include one or more double to triple bonds respectively. In addition, the term "aryl" refers to aromatic groups such as phenyl or naphthyl.
The term "hydrocarbyl" refers to any structure comprising carbon and hydrogen atoms. For example, these may be alkyl, alkenyl, alkynyl, aryl such as phenyl or napthyl, arylalkyl, cycloalkyl, cycloalkenyl or cycloalkynyl. Suitably they will contain up to 20 and preferably up to 10 carbon atoms. The term "heterocylyl" includes aromatic or non-aromatic rings, for example containing from 4 to 20, suitably from 5 to 10 ring atoms, at least one of which is a heteroatom such as oxygen, sulphur or nitrogen. Examples of such groups include furyl, thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl,- tetrazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzthiazolyl, benzoxazolyl, benzothieny! or benzofuryl.
The term "functional group" refers to reactive groups such as halo, cyano, nitro, OXO, C(O) nRa, ORa, S(O) tRa, NRbRc, OC (O) NRbRc, C(O)NRbRc, OC(O)NRbRc, -NR7C(O)nR6, -NRaCONRbR°, - C=NOR3, -N=CRbRc, S(O) tNRbRc,
C(S)nR3, C(S)OR3, C(S)NRbRc or - NRbS (O)tRa where R3, Rb and Rc are independently selected from hydrogen or optionally substituted hydrocarbyl, or Rb and Rc together form an optionally substituted ring which optionally contains further heteroatoms such as S (O)s, oxygen and nitrogen, n is an integer of 1 or 2, t is O or an integer of 1-3. In particular the functional groups are groups such as halo, cyano, nitro, oxo, C(O)nR3, OR3, S(O)tRa, NRbRc, OC(O)NRbRc, C(O)NRbRc, OC(O) NRbRc, -NR7C(O)nR6, -NR3CONRbRc, - NR3CSNRbR°, C=NOR3, -N=CRbRc, S(O)tNRbRc, or -NRbS(O)tRa where R3, Rb and Rc , n and t are as defined above. The term "heteroatom" as used herein refers to non-carbon atoms such as oxygen, nitrogen or sulphur atoms. Where the nitrogen atoms are present, they will generally be present as part of an amino residue so that they will be substituted for example by hydrogen or alkyl.
The term "amide" is generally understood to refer to a group of formula C(O)NRaRb where Ra and Rb are hydrogen or an optionally substituted hydrocarbyl group. Similarly, the term "sulphonamide" will refer to a group of formula S(O)2NRaRb.
The nature of any electron withdrawing group or groups additional to the amine moiety used in any particular case will depend upon its position in relation to the double bond it is required to activate, as well as the nature of any other functional groups within the compound. The term "electron withdrawing group" includes within its scope atomic substituents such as halo, e.g. fluro, chloro and bromo. Where R11 is an electron withdrawing group, it is suitably acyl such as acetyl, nitrile or nitro.
Preferably X1, X2, Y1 and Y2 are all hydrogen.
Suitable groups Ra include hydrogen or methyl, in particular hydrogen.
sub-formula (I) or (II), and y is an integer in excess of 1 , preferably in excess of 5. The invention includes within its scope oligomers, in which instances y is typically between 2 and 15, preferably between 5 and 12. Higher molecular weight polymers are also within the scope of the invention, in which instance y can be in excess of 100. zm- may be a halide ion, a boride ion, triflate, PF6 ", HSO4 ", H2PO4 ", BF4 ", NO3 ", or a carboxylic acid ester, preferably a carboxylic acid ester having an alkyl or a per-fluorinated alkyl group of greater than five carbon atoms, most preferably octanoate or per-fluoro octanoate. Also possible are other anions having hydrocarbyl or substituted hydrocarbyl moieties. Anions having branched hydrocarbyl moieties may disrupt the formation of crystals and hence increase non-crystallinity.
In the group of sub-formula (I), X1 and Y1 may represent CX2X3 and CY2Y3 respectively, the dotted bonds being absent and X2, X3, Y2 and Y3 being all hydrogen.
The starting material may be a compound of structure (III)
where X1, Y1, R2, R3, R4, R5 and the dotted bonds are as defined in relation to formula (I) above, r is an integer of 1 or more, and R6 is a bridging group, an optionally substituted hydrocarbyl group, a perhaloalkyl group, a siloxane group or an amide, of valency r.
Where in the compound of formula (III), r is 1 , compounds can be readily polymerised to form a variety of polymer types depending upon the nature of the group R6. Examples of groups which are commonly found in polymer technology are included below in Table 1.
Monomers of this type may be represented as structure (IV) where X2, X3, Y2, Y3, R1, R2, R3, R4, and R5 are as defined in relation to formula (I) above, R6' is an optionally substituted hydrocarbyl group, a perhaloalkyl group, a siloxane group or an amide.
The invention may also be applied to other sorts of polymers; for example, where in the compounds of formula (III), r is greater than one, polymerisation can result in polymer networks. Particular examples are compounds of formula (III) as defined above, where R6 is a bridging group and r is an integer of 2 or more, for example from 2 to 8 and preferably from 2 - 4. Embodiments in which r is two are particularly preferred.
On polymerisation of these such compounds, networks are formed whose properties maybe selected depending upon the precise nature of the R6 group, the amount of chain terminator present and the polymerisation conditions employed.
R1 may be an alkyl group, preferably having less than three carbon atoms, most preferably methyl. Alternatively, R1 may be H. Embodiments in which R1 is H may be useful for providing proton conduction mechanisms. In preferred structures, R6 or R6' comprises a straight or branched chain alkyl group, optionally substituted or interposed with functional groups.
R6 or R6' may be an optionally substituted hydrocarbyl group having four or more carbon atoms. Preferably, R6 or R6 is an alkyl group, most preferably a straight chain alkyl group, although R6 or R6' may be a branched chain alkyl group. R6 or R6' may have between five and twenty carbon atoms, preferably between eight and fourteen carbon atoms, most preferably ten carbon atoms.
In particularly preferred embodiments, the starting material is a compound
The starting material may be a compound of formula (Vl)
In the embodiments of formulae (v) and (vi), Zm' may be PF6 ", per-fluoro octanoate or triflate. R6 or R6 may comprise a perhalo hydrocarbyl group, preferably a perfluoro hydrocarbyl group. R6 or R6' may comprise a perhaloalkyl group such as a perfluoroalkyl group, for example of from 1 to 3 carbon atoms such as a perhalomethyl group, in particular perfluoromethyl.
R6 or R6 may comprise a sulfonated group and/or an imidazole containing group.
Examples of suitable bridging groups include those found in polyethylenes, polypropylenes, nylons, as listed in Table 1. Further examples of bridging groups can be found in WO 00/06610. Table 1
The invention includes the possibility of producing copolymers where another monomeric compound, for example one which is not of formula (I), is mixed with the compound of formula (I) prior to polymerisation. Such monomers are known in the art. Additionally or alternatively the solid ionically conductive polymer may be provided in a composite structure with one or more other materials in order to produce desired mechanical and/or electrochemical properties. The solid ionically conductive polymer may be utilised in combination with one or more inorganic materials such as SiO2, tungsten compounds, and glass fibre. In embodiments in which R12 is not -R3-R5 ===* Y1, the monomer is preferably of the following formula
where R6 is as previously defined and may be a group R6 as previously defined.
The solid ionically conductive polymer may be self-supporting, such as in the form of a membrane, or may be used in conjunction with a substrate. Thus, according to a second aspect of the invention there is provided a substrate and a solid ionically conductive polymer according to the first aspect of the invention located therein or thereon.
The substrate may be a solid substrate, or a structure having voids therein, such as a mesh, a web or a porous substrate. A mesh or web structure can be used to reinforce the polymer. Nylon mesh or web structures may be employed. In embodiments in which the structure is porous, the solid ionically conductive polymer may be located in the pores of the substrate. The plasticiser may be less prone to washing out of the polymer in such structures. The structure can be produced by soaking an appropriate monomer into the pores of the substrate and polymerising in situ. The plasticiser may be present with the monomer when the polymerisation takes place.
Preferably, the substrate is a ceramic or a zeolite. In this way conductive materials can be provided which are tough, can operate at high temperatures and do not require the presence of water to conduct. The structure may be in the form of an ionically conductive membrane.
Such conductive membranes have numerous applications, such as in fuel cells.
According to a third aspect of the invention there is provided a method of producing a solid ionically conductive polymer having repeat units of a quaternary amine including the steps of polymerising a quaternary amine starting material and providing a plasticiser in the polymer present in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
Advantageously, the quaternary amine starting material may be sprayed onto a target structure prior to the step of polymerising. This is an extremely effective and practical way of applying a conductive coating. The step of polymerising may be effected by the application of radiation, where necessary in the presence of an initiator. Preferably, the polymerisation is effected by the application of ultraviolet radiation.
Alternatively, the step of polymerising may be effected by the application of heat, where necessary in the presence of an initiator. In one embodiment the plasticiser is mixed with the starting material prior to the step of polymerising.
Alternatively, the plasticiser may be added to the polymer after or during the step of polymerising. International Publications WO 00/06610, WO 00/06533, WO 00/06658,
WO 01/40814 and WO 01/74919 disclose the preparation of monomers and polymers of the dienyl type. International Publication WO 01/74919 also discloses the preparation of monomers and polymers formed from quaternary ammonium species having a single vinyl type group. According to a fourth aspect of the invention there is provided a method of producing a structure including the steps of providing a porous substrate, introducing a quaternary amine starting material and a plasticiser into the pores of the substrate, and polymerising the starting material to produce a solid ionically conductive polymer, the plasticiser being present in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
According to a fifth aspect of the invention there is provided a fuel cell including a solid ionically conductive polymer according to the first aspect of the invention. The fuel cell may include an ionically conductive membrane as described in respect of the second aspect of the invention, preferably a proton conductive membrane.
Whilst the invention has been described above, it extends to any inventive combination or sub-combination of the features set out above or in the following description or claims. Example 1
A mixture of 1 ,10 - dibromodecane (23.8g), diallylamine (15.4g) and K2CO3 (58.Og) in absolute ethanol were refluxed overnight with a drying arm over the condenser. Reaction progress was checked using TLC. Solid KBr and excess K2CO3 were removed from the solvent by filtration. Ethanol was removed by rotary evaporation together with any remaining diallylamine. Any sold KBr appearing at this point in the synthesis can be dissolved in dichloromethane (DCM) and filtered. Monomers obtained using dry silica gel flushed through with dry DCM. To a solution of monomer in methanol or dry DCM, a 6M aqueous solution of hydroperfluoric acid (HPF6) is added until the mixture reaches a pH of about 5-6. The water is allowed to evaporate, leaving a quaternary amine.
Example 2
To the quaternary amine 1 prepared in Example 1 , propylene carbonate and 3wt% of lrgacure 184 photoinitiator was added, dissolved by gentle heating (at ca.°C) and mixing using a whilimixer. Various amounts of propylene carbonate were added in different experiments, but mixtures having between 25 and 60% by weight of propylene carbonate were found to provide the best results.
The mixture was cured by exposure to UV radiation. Exposure times depend on the UV radiation source and exposure conditions: in this instance exposure involved two passes each of ~1 sec to a 600W/cm Ga doped mercury UV source. The polymer thus formed was found to be conductive. Example 3
The mixture of quaternary amine 1 , photoiniator and propylene carbonate prepared in Example 2 was added to a zeolite and polymerised in situ by exposure to UV radiation. The zeolite exhibited conductivity. Example 4
An analogue of the target molecule 1 was prepared in which the anion is per-fluoro octanoate. The analogue was prepared using the method described in Example 1 , except that aqueous perfluorooctanoic acid was used instead of hydroperfluoric acid. The analogue was polymerised using the methodology of Example 2, and the resulting polymer exhibited a marginally higher conductivity than the polymer of Example 2. Example 5 An analogue of the target molecule 1 was prepared in which the anion is triflate. The analogue was prepared using the method described in Example 1 , except that triflic acid (CF3SO3H) was used instead of hydroperfluoric acid. The analogue was polymerised using the methodology of Example 2, and the resulting polymer exhibited a marginally higher conductivity than the polymer of Example 2.
The reaction scheme of bromoalkane, diallylamine and K2CO3 is a general one that can be used to prepare monomers for subsequent polymerisation and use according to the invention. Bisubstituted bromoalkanes (particularly where the bromo substitution is at either end of the alkyl chain) are used to produce monomers having two dienyl end groups. Singly substituted bromo alkanes are used to produce monomers having one dienyl end group.

Claims

Claims
1. A solid ionically conductive polymer having repeat units of a quaternary amine and including a plasticiser in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
2. A solid ionically conductive polymer according to claim 1 in which the plasticiser is present as an additive to the polymer.
3. A solid ionically conductive polymer according to claim 2 in which the plasticiser is propylene carbonate.
4. A solid ionically conductive polymer according to claim 1 in which the polymer is self-plasticising.
5. A solid ionically conductive polymer according to claim 4 in which the polymer includes an anion present as a counterion to the quaternary amine, and the anion itself acts as a plasticiser.
6. A solid ionically conductive polymer according to claim 4 in which the quaternary amine itself acts as a self-plasticiser.
7. A solid ionically conductive polymer according to any previous claim which conducts by anionic conduction.
8. A solid ionically conductive polymer according to any one of claims 1 to 6 which conducts by cationic conduction.
9. A solid ionically conductive polymer according to claim 8 which conducts by proton conduction.
10. A solid ionically conductive polymer according to any previous claim in which the polymer is formed from the polymerisation of a dienyl quaternary amine.
11. A solid ionically conductive polymer according to claim 10 in which the polymer is formed from polymerisation of a starting material which comprises a group of sub-formula (I)
where R2 and R3 are independently selected from (CR7R8)n, or a group CR9R10, CR7R8CR9R10 or CR9R10CR7R8 where n is 0, 1 or 2, R7 and R8 are independently selected from hydrogen, halo or hydrocarbyl, and either one of R9 or R10 is hydrogen and the other is an electron withdrawing group, or R9 and R10 together form an electron withdrawing group, and
R4 and R 5 are independently selected from CH or CR11 where R11 is an electron withdrawing group; the dotted lines indicate the presence or absence of a bond, X1 is a group CX2 X3 where the dotted line bond to which it is attached is absent and a group CX2 where the dotted line bond to which it is attached is present, Y1 is a group CY2Y3 where the dotted line bond to which it is attached is absent and a group CY2 where the dotted line bond to which it is attached is present, and X2, X 3, Y2 and
Y 3 are independently selected from hydrogen, fluorine or other substituents;
R1 is selected from hydrogen, halo, nitro or hydrocarbyl, optionally substituted or interposed with functional groups;
R12 is selected from hydrogen, halo, nitro, hydrocarbyl, optionally substituted or interposed with functional groups, or -R3-R5=Y1; and
Z is an anion of charge m.
12. A solid ionically conductive polymer according to claim 11 in which the polymer is formed from polymerisation of a starting material which comprises a group of sub formula (II)
where R2 and R3 are independently selected from (CR7R8)n, or a group CR9R10, CR7R8CR9R10 or CR9R10CR7R8 where n is 0, 1 or 2, R7 and R8 are independently selected from hydrogen, fluoro, or hydrocarbyl, and either one of R9 or R10 is hydrogen and the other is an electron withdrawing group, or R9 and R10 together form an electron withdrawing group, and
R4 and R 5 are independently selected from CH or CR11 where R11 is an electron withdrawing group; the dotted lines indicate the presence or absence of a bond, X1 is a group CX2 X3 where the dotted line bond to which it is attached is absent and a group CX2 where the dotted line bond to which it is attached is present, Y1 is a group CY2Y3 where the dotted line bond to which it is attached is absent and a group CY2 where the dotted line bond to which it is attached is present, and X2, X 3, Y2 and Y3 are independently selected from hydrogen and fluorine; and R1 is hydrogen or hydrocarbyl, and Z is an anion of charge m.
13. A solid ionically conductive polymer according to claim 11 or claim 12 in which the polymer is formed by a cyclopolymerisation of the starting material.
14. A solid ionically conductive polymer according to any one of claims 11 to
13 wherein Zm" is a halide ion, a boride ion, triflate, PF6 ", HSO4 ", H2PO4 ", BF4 ", NO3 ", or a carboxylic acid ester, preferably a carboxylic acid ester having an alkyl or a per-fluorinated alkyl group of greater than five carbon atoms, most preferably octanoate or per-fluoro octanoate.
15. A solid ionically conductive polymer according to any one of claims 11 to
14 where, in the group of sub-formula (I) or (II), X1 and Y1 represent CX2X3 and CY2Y3 respectively, the dotted bonds are absent and X2, X3, Y2 and Y3 are all hydrogen.
16. A solid ionically conductive polymer according to any one of claims 11 to
15 wherein the starting material is a compound of structure (III)
κ
where X1, Y1, R2, R3, R4, R5 and the dotted bonds are as defined in claim 11 , r is an integer of 1 or more, and R6 is a bridging group, an optionally substituted hydrocarbyl group, a perhaloalkyl group, a siloxane group or an amide, of valency r.
17. A solid ionically conductive polymer according to claim 16 wherein the starting material comprises a compound of formula (IV)
# frϊ where X2, X3, Y2, Y3, R2, R 3, R4, and R5 are as defined in claim 11 , R6' is an optionally substituted hydrocarbyl group, a perhaloalkyl group, a siloxane group or an amide.
18. A solid ionically conductive polymer according to claim 16 or claim 17 in which r is two.
19. A solid ionically conductive polymer according to any one of claims 16 to
18 wherein R6 or R6' comprises a straight or branched chain alkyl group, optionally substituted or interposed with functional groups.
20. A solid ionically conductive polymer according to any one of claims 16 to
19 wherein R6 or R6 is an optionally substituted hydrocarbyl group having four or more carbon atoms.
21. A solid ionically conductive polymer according to claim 20 in which R6 or R6' is an alkyl group, preferably a straight chain alkyl group.
22. A solid ionically conductive polymer according to claim 21 in which R6 or R6' has between five and twenty carbon atoms, preferably between eight and fourteen carbon atoms, most preferably ten carbon atoms.
23. A solid ionically conductive polymer according to claim 22 in which the starting material is a compound of formula (V)
24. A solid ionically conductive polymer according to any one of claims 11 to 22 in which R1 is an alkyl group, preferably having less than three carbon atoms, most preferably methyl.
25. A structure including a substrate and a solid ionically conductive polymer according to any previous claim located therein or thereon.
26. A structure according to claim 25 in which the substrate is porous, and solid ionically conductive polymer is located in the pores of the substrate.
27. A structure according to claim 26 in which the substrate is a ceramic.
28. A structure according to claim 26 in which the substrate is a zeolite.
29. A structure according to any one of claims 25 to 28 in the form of an ionically conductive membrane.
30. A method of producing a solid ionically conductive polymer having repeat units of a quaternary amine including the steps of polymerising a quaternary amine starting material and providing a plasticiser in the polymer present in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
31. A method according to claim 30 in which the quaternary amine starting material is sprayed onto a target structure prior to the step of polymerising.
32. A method according to claim 30 or claim 31 in which the step of polymerising is effected by the application of radiation, where necessary in the presence of an initiator.
33. A method according to claim 32 in which the polymerisation is effected by the application of ultraviolet radiation.
34. A method according to claim 30 or claim 31 in which the step of polymerising is effected by the application of heat, where necessary in the presence of an initiator.
35. A method according to any one of claims 30 to 34 in which the plasticiser is mixed with the starting material prior to the step of polymerising.
36. A method according to any one of claims 30 to 34 in which the plasticiser is added to the polymer after or during the step of polymerising.
37. A method of producing a structure including the steps of providing a porous substrate, introducing a quaternary amine starting material and a plasticiser into the pores of the substrate, and polymerising the starting material to produce a solid ionically conductive polymer, the plasticiser being present in an amount sufficient to render the polymer non-crystalline thereby increasing conductivity.
38. A fuel cell including a solid ionically conductive polymer according to any one of claims 1 to 24.
39. A fuel cell including an ionically conductive membrane according to claim 29.
40. A polymer, structure, fuel cell or method substantially as described herein.
EP06779462A 2005-09-17 2006-09-18 Conductive polymers Withdrawn EP1934286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0519045.9A GB0519045D0 (en) 2005-09-17 2005-09-17 Conductive polymers
PCT/GB2006/003450 WO2007031781A1 (en) 2005-09-17 2006-09-18 Conductive polymers

Publications (1)

Publication Number Publication Date
EP1934286A1 true EP1934286A1 (en) 2008-06-25

Family

ID=35248992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06779462A Withdrawn EP1934286A1 (en) 2005-09-17 2006-09-18 Conductive polymers

Country Status (7)

Country Link
EP (1) EP1934286A1 (en)
JP (1) JP2009509294A (en)
KR (1) KR20080064947A (en)
CN (1) CN101273092A (en)
CA (1) CA2622275A1 (en)
GB (2) GB0519045D0 (en)
WO (1) WO2007031781A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0606016D0 (en) * 2006-03-25 2006-05-03 Ionic Polymer Solutions Ltd Quaternary ammonium compounds and their uses
GB0613013D0 (en) * 2006-06-30 2006-08-09 Novel Polymer Solutions Ltd Polymeric Materials and Methods for Manufacturing Them
GB0722631D0 (en) * 2007-11-17 2007-12-27 Novel Polymer Solutions Ltd Method of encapsulating a substance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957699A (en) * 1973-06-12 1976-05-18 Ici Australia Limited Process for polymerizing allylamines employing a redox initiator consisting of Fe++ or Ti+++ with H2 O2, hydroxyl amine, or hydroperoxides to form insoluble crosslinked polymers
GB9816167D0 (en) * 1998-07-25 1998-09-23 Secr Defence Polymer production
GB9816171D0 (en) * 1998-07-25 1998-09-23 Secr Defence Monomers and network polymers obtained therefrom
EP1268586B1 (en) * 2000-04-01 2010-01-27 Qinetiq Limited Polymers, processes, compositions, adhesives, uses, products
DE60124779T2 (en) * 2000-12-29 2007-09-13 The Board Of Regents Of The University Of Oklahoma, Norman CONDUCTIVE ELECTROLYTIC BASED ON POLYAMINES
US7799467B2 (en) * 2002-04-08 2010-09-21 Massachusetts Institute Of Technology Solid polymer electrolytes from ethylene oxide-containing, layer-by-layer assembled films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007031781A1 *

Also Published As

Publication number Publication date
KR20080064947A (en) 2008-07-10
WO2007031781B1 (en) 2007-05-10
GB0618289D0 (en) 2006-10-25
CA2622275A1 (en) 2007-03-22
GB2430439B (en) 2010-04-28
WO2007031781A1 (en) 2007-03-22
GB2430439A (en) 2007-03-28
GB0519045D0 (en) 2005-10-26
CN101273092A (en) 2008-09-24
JP2009509294A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US20080199755A1 (en) Conductive polymers
EP2361271B1 (en) Curable compositions and membranes
JP4297516B2 (en) Microporous membrane and use thereof
CA2866300C (en) Resilient anion exchange membranes prepared by polymerizing ionic surfactant monomers
CA1094982A (en) Single film, high performance bipolar membrane
US5746917A (en) Strongly alkaline anion exchange membranes and process for producing the same
KR20140081846A (en) Ion exchange compositions, methods for making and materials prepared therefrom
CN109939572B (en) Preparation method of anion exchange membrane with multiple cross-linked structure
US9922773B2 (en) Ionic polymer membrane comprising radiation-crosslinkable poly(vinyl alcohol) and method of preparation thereof
CN111036099A (en) Preparation method of crosslinked polysulfone anion exchange membrane
KR20150073651A (en) Manufacturing Method of Thin Ion Exchange Membrane Using High Molecular Support
WO2007031781A1 (en) Conductive polymers
CN110860211A (en) Preparation method of homogeneous phase PVC-based anion exchange membrane
KR20140060527A (en) Cation exchange materials prepared in aqueous media
CN108067102B (en) Cation exchange membrane and preparation method thereof
JP6030692B2 (en) Preparation of ionic membrane
KR20040100316A (en) Preparation of Polyethylene/Polyvinylbenzyl chloride anion-exchange membrane
KR101799996B1 (en) Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
JP3423765B2 (en) Lamination method of ion exchange membrane
KR100473351B1 (en) Preparation method of Polyethylene/Polystyrene cation-exchange membrane
CN112703049A (en) Membrane formed from cationic monomers suitable for detecting, filtering and/or purifying biomolecules
JP2006114372A (en) Solid polymer electrolyte and solid polymer electrolyte membrane
JPS61259707A (en) Separation membrane for pervaporation
JP2007280653A (en) Composite electrolyte membrane
JP6521213B2 (en) Composite polymer electrolyte membrane, method for producing the same, and use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100812