EP1933006A1 - 3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit) - Google Patents

3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit) Download PDF

Info

Publication number
EP1933006A1
EP1933006A1 EP06025909A EP06025909A EP1933006A1 EP 1933006 A1 EP1933006 A1 EP 1933006A1 EP 06025909 A EP06025909 A EP 06025909A EP 06025909 A EP06025909 A EP 06025909A EP 1933006 A1 EP1933006 A1 EP 1933006A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
chamber
piston rod
inner cylinder
hollow piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06025909A
Other languages
German (de)
French (fr)
Inventor
Richard Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP06025909A priority Critical patent/EP1933006A1/en
Publication of EP1933006A1 publication Critical patent/EP1933006A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/16Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with pistons synchronously moving in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/20Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with two or more pistons reciprocating one within another, e.g. one piston forming cylinder of the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • F01B7/04Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on same main shaft
    • F01B7/06Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on same main shaft using only connecting-rods for conversion of reciprocatory into rotary motion or vice versa
    • F01B7/10Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on same main shaft using only connecting-rods for conversion of reciprocatory into rotary motion or vice versa having piston-rod of one piston passed through other piston

Definitions

  • the invention relates to a 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder for liquid or gas as the working medium. From the prior art, a hydraulic cylinder is known, which operates on the principle of a flow chamber and a return chamber. All telescopic presses also work on the same system. The invention relates to a 3-, 5-, 7-, 9-, 11-, etc.
  • chamber cylinder for liquid or gas as the working medium, consisting of a sealingly guided in an inner cylinder axially displaceable hollow piston with a hollow piston rod, wherein the inner cylinder is provided at an inner end with a cylinder bottom through which the hollow piston rod is sealingly guided, and connected via an outer cylinder bottom fixed to the hollow piston rod, sealingly axially displaceably guided on the inner cylinder outer cylinder, so that a first flow chamber between an outer cylinder bottom is formed of the inner cylinder and the hollow piston, a second flow chamber between the outer cylinder bottom of the outer cylinder and the inner cylinder bottom of the inner cylinder is formed around the hollow piston rod and a return chamber between the inner cylinder bottom of the inner cylinder and the hollow piston is formed around the hollow piston rod.
  • the inventive 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder can be used in machines and systems as a hydraulic cylinder individually or in combination.
  • the cylinder according to the invention can be used in all machines and equipment in which conventional cylinders with 2-chamber cylinder system (supply and return) are in use, in power plants, compressors, as a compressor and as a pressure transducer.
  • the design can also find application in internal combustion engines by the return chamber c works as a combustion chamber and the bursts of explosion act on both pistons or the first flow chamber a and the return chamber c act as combustion chambers and the bursts impact on four piston surfaces or all 3 chambers as combustion chambers in the Clock a + b to c work with b is the second flow chamber is called.
  • the 3-, 5-, 7-, 9-, 11- and 11-cylinder chambers work on the same principle, namely with 2 flow chambers (a and b) and a return chamber (c) and vice versa, which can be arranged as required can be extended according to the principle 3, 5, 7, 9, 11, etc. according to the choice of the chamber.
  • Important in the present invention is the expansion of the piston area compared to the conventional cylinder by constructing a 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder, which makes it possible to integrate a second flow chamber into the cylinder, which increases the piston area up to 95% and thus increases the power of the 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder to the required need.
  • a 3, 5, 7, 9, 11, and so forth chamber cylinder according to the invention has various advantages over the conventional cylinder: Reduction of the dead weight to the required requirement or increase the pressing force to the required requirement or reduce the pressure while maintaining the same force. When used as a compressor, the pressure in the chamber c increases as needed.
  • FIG. 1 represents a longitudinal section through the 3-, 5-, 7-, 9-, 11- usw chamber cylinder, which is driven through the openings 51 to chambers a and to chambers b with liquid or gas (flow).
  • the liquid or gas escapes from chamber c (return)
  • the piston surfaces 52 and 53 in the chambers a and b the pressing force of the 3-, 5-, 7-, 9-, 11- usw chamber cylinder is determined.
  • the openings 59 are opened.
  • the tensile force of the 3-, 5-, 7-, 9-, 11- is determined chamber cylinder.
  • the openings 51 are opened.
  • FIG. 1 shows the longitudinal section of the 3, 5, 7, 9, 11 and so forth chamber cylinder in driven and FIG. 2 in extended state

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)

Abstract

The cylinder design includes an internal cylinder with a cylinder bottom (52) on its inner end, with the hollow piston rod (53) passing through a seal in it. There is an external cylinder with an outer cylinder bottom fixed to the hollow piston rod and sealed to the inner cylinder, forming first and second additional chambers (e.g. a2, a3, b1, b2, b3).

Description

Die Erfindung betrifft einen 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder für Flüssigkeit oder Gas als Arbeitsmedium.
Aus dem Stand der Technik ist ein Hydrozylinder bekannt, der nach dem Prinzip einer Vorlaufkammer und einer Rücklaufkammer arbeitet. Auch alle Teleskoppressen funktionieren nach dem gleichen System.
Gegenstand der Erfindung ist ein 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder für Flüssigkeit oder Gas als Arbeitsmedium, bestehend aus einem dichtend in einem Innenzylinder axial verschieblich geführten hohlen Kolben mit einer hohlen Kolbenstange, wobei der Innenzylinder an einem inneren Ende mit einem Zylinderboden versehen ist, durch den die hohle Kolbenstange dichtend geführt wird, und einem über einen äußeren Zylinderboden fest mit der hohlen Kolbenstange verbundenen, dichtend an dem Innenzylinder axial verschieblich geführten Außenzylinder, so dass eine erste Vorlaufkammer zwischen einem äußeren Zylinderboden des Innenzylinders und dem hohlen Kolben gebildet wird, eine zweite Vorlaufkammer zwischen dem äußeren Zylinderboden des Außenzylinders und dem inneren Zylinderboden des Innenzylinders um die hohle Kolbenstange gebildet wird und eine Rücklaufkammer zwischen dem inneren Zylinderboden des Innenzylinders und dem hohlen Kolben um die hohle Kolbenstange gebildet wird.
The invention relates to a 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder for liquid or gas as the working medium.
From the prior art, a hydraulic cylinder is known, which operates on the principle of a flow chamber and a return chamber. All telescopic presses also work on the same system.
The invention relates to a 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder for liquid or gas as the working medium, consisting of a sealingly guided in an inner cylinder axially displaceable hollow piston with a hollow piston rod, wherein the inner cylinder is provided at an inner end with a cylinder bottom through which the hollow piston rod is sealingly guided, and connected via an outer cylinder bottom fixed to the hollow piston rod, sealingly axially displaceably guided on the inner cylinder outer cylinder, so that a first flow chamber between an outer cylinder bottom is formed of the inner cylinder and the hollow piston, a second flow chamber between the outer cylinder bottom of the outer cylinder and the inner cylinder bottom of the inner cylinder is formed around the hollow piston rod and a return chamber between the inner cylinder bottom of the inner cylinder and the hollow piston is formed around the hollow piston rod.

Der erfindungsgemäße 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder kann in Maschinen und Anlagen als Hydrozylinder einzeln oder im Verbund eingesetzt werden. Der erfindungsgemäße Zylinder ist in allen Maschinen und Geräten verwendbar, in denen herkömmliche Zylinder mit 2-Kammer-Zylinder-System (Vor- und Rücklauf) im Einsatz sind, in Energiegewinnungsanlagen, Kompressoren, als Vedichter sowie als Druckumformer.The inventive 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder can be used in machines and systems as a hydraulic cylinder individually or in combination. The cylinder according to the invention can be used in all machines and equipment in which conventional cylinders with 2-chamber cylinder system (supply and return) are in use, in power plants, compressors, as a compressor and as a pressure transducer.

Die Konstruktion kann auch in Verbrennungsmotoren Anwendung finden, indem die Rücklaufkammer c als Verbrennungskammer arbeitet und die Explosionsstöße auf beide Kolben wirken oder die erste Vorlaufkammer a und die Rücklaufkammer c als Verbrennungskammern wirken und die Explosionsstöße auf vier Kolbenflächen wirken oder auch alle 3 Kammern als Verbrennungskammern im Takt a + b zu c arbeiten wobei mit b die zweite Vorlaufkammer bezeichnet ist.
In allen Bereichen funktioniert der 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder nach dem gleichen Prinzip, nämlich mit 2 Vorlaufkammern (a und b) und einer Rücklaufkammer (c) und umgekehrt, die beliebig nach Bedarf erweitert werden nach dem Prinzip 3, 5, 7, 9, 11 u.s.w. entsprechend der Wahl der Kammer.
Wichtig in der vorliegenden Erfindung ist die Erweiterung der Kolbenfläche im Vergleich zum herkömmlichen Zylinder durch Konstruktion eines 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders, die es ermöglicht, eine zweite Vorlaufkammer in den Zylinder zu integrieren, die die Kolbenfläche bis auf 95 % vergrößert und somit die Kraft des 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders um den erforderlichen Bedarf erhöht.
Ein erfindungsgemäßer 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder weist im Vergleich zum herkömmlichen Zylinder verschiedene Vorteile auf:
Verringerung des Eigengewichtes bis zum erforderlichen Bedarf oder Erhöhung der Presskraft bis zum erforderlichen Bedarf oder Verringerung des Druckes bei gleichbleibender Kraft. Im Einsatz als Verdichter erhöht sich der Druck in der Kammer c nach Bedarf.
Als Druckumformer kann durch das Betreiben der Kammern a und b der Druck in Kammer c bis 100 % erhöht und durch das Betreiben der Kammer c der Druck in den Kammern a und b bis zu 100 % verringert werden.
In Energiegewinnungsanlagen (Wasserkraft) kann der Schweredruck beim Einsatz des 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders durch Wirkung auf die vergrößerte Kolbenfäche entsprechend erhöht werden.
In Verbrennungsmotoren erhöht sich die Leistung, da bei der Explosion gleichzeitig beide Kolbenflächen einen Arbeitsweg machen.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Figur 1 stellt einen Längsschnitt durch den 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder dar, der durch die Öffnungen 51 zu Kammern a und zu Kammern b mit Flüssigkeit oder Gas angetrieben wird (Vorlauf). Durch die Öffnungen 59 entweicht die Flüssigkeit oder das Gas aus Kammer c (Rücklauf)
Durch die Kolbenflächen 52 und 53 in den Kammern a und b wird die Presskraft des 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders bestimmt. Gleichzeitig sind die Öffnungen 59 geöffnet.
Durch die Kolbenflächen 52 und 53 aus Sicht der Kammer c wird die Zugkraft des 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders bestimmt. Gleichzeitig sind die Öffnungen 51 geöffnet.
Wenn die Zugkraft und die Presskraft gleich groß sein sollen, dann muss die Flüssigkeit oder das Gas mit dem doppelten Druck in die Kammern c gepumpt werden, da dieser Arbeitshub nur aus den Kammern c erfolgt und nicht, wie bei der Pressluft, aus 2 oder mehr Kammern.
Figur 1 zeigt den Längsschnitt des 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders in gefahrenem und Figur 2 in ausgefahrenem Zustand
The design can also find application in internal combustion engines by the return chamber c works as a combustion chamber and the bursts of explosion act on both pistons or the first flow chamber a and the return chamber c act as combustion chambers and the bursts impact on four piston surfaces or all 3 chambers as combustion chambers in the Clock a + b to c work with b is the second flow chamber is called.
In all areas, the 3-, 5-, 7-, 9-, 11- and 11-cylinder chambers work on the same principle, namely with 2 flow chambers (a and b) and a return chamber (c) and vice versa, which can be arranged as required can be extended according to the principle 3, 5, 7, 9, 11, etc. according to the choice of the chamber.
Important in the present invention is the expansion of the piston area compared to the conventional cylinder by constructing a 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder, which makes it possible to integrate a second flow chamber into the cylinder, which increases the piston area up to 95% and thus increases the power of the 3-, 5-, 7-, 9-, 11-, etc. chamber cylinder to the required need.
A 3, 5, 7, 9, 11, and so forth chamber cylinder according to the invention has various advantages over the conventional cylinder:
Reduction of the dead weight to the required requirement or increase the pressing force to the required requirement or reduce the pressure while maintaining the same force. When used as a compressor, the pressure in the chamber c increases as needed.
As a pressure transducer can be increased by operating the chambers a and b, the pressure in chamber c to 100% and reduced by operating the chamber c, the pressure in the chambers a and b up to 100%.
In energy production plants (hydropower), the gravitational pressure when using the 3, 5, 7, 9, 11 and so forth chamber cylinders can be correspondingly increased due to the increased piston area.
In combustion engines, the performance increases because both pistons make a working path during the explosion.
Advantageous embodiments of the invention are specified in the subclaims.
FIG. 1 represents a longitudinal section through the 3-, 5-, 7-, 9-, 11- usw chamber cylinder, which is driven through the openings 51 to chambers a and to chambers b with liquid or gas (flow). Through the openings 59, the liquid or gas escapes from chamber c (return)
By the piston surfaces 52 and 53 in the chambers a and b, the pressing force of the 3-, 5-, 7-, 9-, 11- usw chamber cylinder is determined. At the same time, the openings 59 are opened.
By the piston surfaces 52 and 53 from the perspective of the chamber c, the tensile force of the 3-, 5-, 7-, 9-, 11- is determined chamber cylinder. At the same time, the openings 51 are opened.
If the tensile force and the pressing force are to be equal, then the liquid or the gas must be pumped into the chambers c at twice the pressure, since this working stroke takes place only from the chambers c and not, as in the compressed air, from 2 or more chambers.
FIG. 1 shows the longitudinal section of the 3, 5, 7, 9, 11 and so forth chamber cylinder in driven and FIG. 2 in extended state

Claims (7)

3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder für Flüssigkeit oder Gas als Arbeitsmedium, bestehend aus einem dichtend in einem Innenzylinder (50) axial verschieblich geführten hohlen Kolben (53) mit einer hohlen Kolbenstange (54), wobei der Innenzylinder (50) an einem inneren Ende mit einem Zylinderboden (52) versehen ist, durch den die hohle Kolbenstange (54) dichtend geführt wird, und einem über einen äußeren Zylinderboden (57) fest mit der hohlen Kolbenstange (54) verbundenen, dichtend an dem Innenzylinder (50) axial verschieblich geführten Außenzylinder (56), so dass eine erste Vorlaufkammer (a) zwischen einem äußeren Zylinderboden (65) des Innenzylinders (50) und dem hohlen Kolben (53) gebildet wird, eine zweite Vorlaufkammer (b) zwischen dem äußeren Zylinderboden (57) des Außenzylinders (56) und dem inneren Zylinderboden (52) des Innenzylinders (50) um die hohle Kolbenstange (54) gebildet wird und eine Rücklaufkammer (c) zwischen dem inneren Zylinderboden (52) des Innenzylinders (50) und dem hohlen Kolben (53) um die hohle Kolbenstange (54) gebildet wird.3, 5, 7, 9, 11 and so on Chamber cylinder for liquid or gas as a working medium, consisting of a hollow piston (53) axially displaceably guided in an inner cylinder (50) with a hollow piston rod (54), wherein the inner cylinder (50) at an inner end with a cylinder bottom ( 52) is provided, through which the hollow piston rod (54) is sealingly guided, and one via an outer cylinder bottom (57) fixed to the hollow piston rod (54), sealingly on the inner cylinder (50) axially displaceably guided outer cylinder (56) in that a first flow chamber (a) is formed between an outer cylinder bottom (65) of the inner cylinder (50) and the hollow piston (53), a second flow chamber (b) between the outer cylinder base (57) of the outer cylinder (56) and the inner cylinder bottom (52) of the inner cylinder (50) is formed around the hollow piston rod (54) and a return chamber (c) between the inner cylinder bottom (52) of the inner cylinder (50) and the h piston (53) around the hollow piston rod (54) is formed. 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder nach Anspruch 1,
dadurch gekennzeichnet,
dass an dem äußeren Boden (65) des Innenzylinders (50) und an dem äußeren Boden (57) des Außenzylinders (56) jeweils eine oder mehrere Öffnungen (51) für den Eintritt und den Austritt von Flüssigkeit oder Gas vorgesehen sind, die am Rand des Bodens (57, 65) über den Umfang des Bodens gleichmäßig verteilt sind.
3, 5, 7, 9, 11, etc. chamber cylinder according to claim 1,
characterized,
that in each case one or more openings (51) for the entry and exit of liquid or gas are provided on the outer bottom (65) of the inner cylinder (50) and on the outer bottom (57) of the outer cylinder (56) at the edge of the soil (57, 65) are evenly distributed over the circumference of the soil.
3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass der Außenzylinder (56) am Ende der Kolbenstange (54) angeordnet ist und den Innenzylinder (50) bis in Höhe des Kolbens (53) übergreift.
3, 5, 7, 9, 11, and so forth. Chamber cylinder according to claim 1 or 2,
characterized,
that the outer cylinder (56) is arranged at the end of the piston rod (54) and the inner cylinder (50) up to the level of the piston (53) engages.
3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder nach einem der Ansprüche 1 bis 3
dadurch gekennzeichnet,
dass der Kolben (53) und die Kolbenstange (54) wenigstens 2 axial verlaufende Öffnungen (59) aufweisen.
3, 5, 7, 9, 11, and so forth. Chamber cylinder according to one of claims 1 to 3
characterized,
in that the piston (53) and the piston rod (54) have at least two axially extending openings (59).
3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder nach einem der Ansprüche 1 bis 4
dadurch gekennzeichnet,
dass der 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder (14) innerhalb des Außenzylinders (56) einen Außenringraum (67) und innerhalb der Kolbenstange (54) und des Kolbens (53) einen zusammenhängenden Innenraum (69) aufweist.
3, 5, 7, 9, 11, and so forth. Chamber cylinder according to one of claims 1 to 4
characterized,
that the 3-, 5-, 7-, 9-, 11-, etc chamber cylinder (14) within the outer cylinder (56) has an outer annular space (67) and within the piston rod (54) and the piston (53) a continuous interior (69).
3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinder nach einem der Ansprüche 1 bis 5
dadurch gekennzeichnet,
dass die einzelnen Kammern zueinander durch Ventilsteuerung beliebig nach Bedarf aktiviert und blockiert werden und somit in den blockierten Kammern a und b ein Unterdruck wirkt, der die Presskraft reduziert.
3, 5, 7, 9, 11, and so forth. Chamber cylinder according to one of claims 1 to 5
characterized,
that the individual chambers are activated and blocked as required by valve control as required, and thus a negative pressure acts in the blocked chambers a and b, which reduces the pressing force.
Verwendung eines 3-, 5-,7-,9-,11- u.s.w. Kammer-Zylinders nach den vorhergehenden Ansprüchen als 3-, 5-,7-,9-,11- u.s.w. Kammer-Hydrozylinder, als Verdichter, im Anlagen- und Maschinenbau oder in Verbrennungsmotoren und Energiegewinnungsanlagen.Using a 3-, 5-, 7-, 9-, 11-, etc. Chamber cylinder according to the preceding claims as 3, 5, 7, 9, 11 and so on. Chamber hydraulic cylinders, as compressors, in plant and mechanical engineering or in internal combustion engines and energy production plants.
EP06025909A 2006-12-14 2006-12-14 3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit) Ceased EP1933006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06025909A EP1933006A1 (en) 2006-12-14 2006-12-14 3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06025909A EP1933006A1 (en) 2006-12-14 2006-12-14 3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit)

Publications (1)

Publication Number Publication Date
EP1933006A1 true EP1933006A1 (en) 2008-06-18

Family

ID=38740495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06025909A Ceased EP1933006A1 (en) 2006-12-14 2006-12-14 3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit)

Country Status (1)

Country Link
EP (1) EP1933006A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719859A1 (en) 2012-10-12 2014-04-16 Weiss, Günter Universal piston turbine
DE102014003071A1 (en) 2014-03-03 2015-09-03 Richard Weiss Energy storage system in the wind boiler
DE102014006157A1 (en) * 2014-04-28 2015-10-29 Richard Weiss Wing wind turbine on the wind boiler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194288A (en) * 1984-03-14 1985-10-02 Mitsuo Okamoto Isometric and isothermal heat exchanger
DE3518982A1 (en) * 1985-05-07 1986-11-13 Fred 5600 Wuppertal Nixdorf Two stroke internal combustion engine
EP0741232A1 (en) * 1995-05-03 1996-11-06 Richard Weiss 3 chamber cylinder
WO1996035042A1 (en) * 1995-05-03 1996-11-07 Fa. Kib Ingenieurbüro Gmbh Construction of a 3-chamber-cylinder with enlarged piston area and with two forward motion chambers and one reverse motion chamber or inverse
EP0745754A1 (en) * 1995-05-03 1996-12-04 Richard Weiss Engine with a 3 chamber cylinder
WO1998026166A1 (en) * 1996-12-09 1998-06-18 Julia Boon An internal combustion engine
WO2001057377A1 (en) * 2000-02-02 2001-08-09 Normand Beaudoin Mechanical discharge self-supercharging engine
US20040226436A1 (en) * 2003-05-16 2004-11-18 Wood Group Pressure Control Canada, Inc. D/B/A Barber Industries Tandem cylinder apparatus and method of using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194288A (en) * 1984-03-14 1985-10-02 Mitsuo Okamoto Isometric and isothermal heat exchanger
DE3518982A1 (en) * 1985-05-07 1986-11-13 Fred 5600 Wuppertal Nixdorf Two stroke internal combustion engine
EP0741232A1 (en) * 1995-05-03 1996-11-06 Richard Weiss 3 chamber cylinder
WO1996035042A1 (en) * 1995-05-03 1996-11-07 Fa. Kib Ingenieurbüro Gmbh Construction of a 3-chamber-cylinder with enlarged piston area and with two forward motion chambers and one reverse motion chamber or inverse
EP0745754A1 (en) * 1995-05-03 1996-12-04 Richard Weiss Engine with a 3 chamber cylinder
WO1998026166A1 (en) * 1996-12-09 1998-06-18 Julia Boon An internal combustion engine
WO2001057377A1 (en) * 2000-02-02 2001-08-09 Normand Beaudoin Mechanical discharge self-supercharging engine
US20040226436A1 (en) * 2003-05-16 2004-11-18 Wood Group Pressure Control Canada, Inc. D/B/A Barber Industries Tandem cylinder apparatus and method of using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719859A1 (en) 2012-10-12 2014-04-16 Weiss, Günter Universal piston turbine
DE102014003071A1 (en) 2014-03-03 2015-09-03 Richard Weiss Energy storage system in the wind boiler
DE102014006157A1 (en) * 2014-04-28 2015-10-29 Richard Weiss Wing wind turbine on the wind boiler

Similar Documents

Publication Publication Date Title
EP0857256A1 (en) Pneumo-hydraulic converter for energy storage
DE102014101929A1 (en) Connecting rod and internal combustion engine
EP1433915A3 (en) Damping device
DE10260394B3 (en) Hydraulic oscillation damper with variable damping force provided via adjustable damping valve in flow path between cylinder chambers on opposite sides of sliding piston
EP0741232B1 (en) 3 chamber cylinder
EP2564040A1 (en) Pressure accumulator arrangement for a camshaft adjusting system
WO2013143676A1 (en) Method for reducing pressure spikes in a cylinder of a reciprocating internal combustion engine, and piston for a reciprocating internal combustion engine
DE2849048A1 (en) FORCE CONTROL SYSTEM FOR PISTON COMPRESSOR VALVES
DE102017104391A1 (en) Switching device for controlling an adjusting device and connecting rod for a reciprocating internal combustion engine with such a switching device
EP1933006A1 (en) 3-,5-,7-,9-,11- etc. chamber cylinder construction (expansion possible up to strength limit)
EP3058223B1 (en) A component which conducts high-pressure medium
DE102008014152B4 (en) Hydropulse device and method for generating a time-variant fluid pressure by means of a hydraulic pulse device
DE10343875B4 (en) Vibration damper with stroke-dependent damping force
DE102013225990A1 (en) Piston for a variable compression ratio having internal combustion engine
WO2005059362A1 (en) Piston compressor for compressing gaseous media in at least two working chambers
DE4042242C2 (en) compressor
DE112009003662T5 (en) Spiral refrigerator compressor
DE102014000469A1 (en) screw compressors
DE10003415B4 (en) Hydraulic hammer with a compressed gas storage
WO2007000128A1 (en) Hydraulic accumulator
DE102017107719A1 (en) Hydraulic valve for adjusting a hydraulic fluid flow of a connecting rod for a variable compression internal combustion engine
DE102015214640A1 (en) Energy collector
DE19818116C1 (en) Self pumping hydropneumatic vehicle gas strut with level adjustment
WO2005010347A1 (en) Connection for high-pressure spaces of fuel injectors
DE102005010240A1 (en) Self-pumping hydropneumatic vibration damper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080908

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100319

R17C First examination report despatched (corrected)

Effective date: 20100927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20180226