EP1929139A1 - Co2 emission-free energy production by gas turbine - Google Patents
Co2 emission-free energy production by gas turbineInfo
- Publication number
- EP1929139A1 EP1929139A1 EP06808156A EP06808156A EP1929139A1 EP 1929139 A1 EP1929139 A1 EP 1929139A1 EP 06808156 A EP06808156 A EP 06808156A EP 06808156 A EP06808156 A EP 06808156A EP 1929139 A1 EP1929139 A1 EP 1929139A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- combustion
- compressed
- fumes
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/34—Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
Definitions
- the present invention relates to the field of gas turbines, the carbon dioxide (CO 2 ) emitted being captured under conditions of favorable concentration and pressure.
- Document FR 2 825 935 describes a gas turbine arrangement which has significant advantages over the prior art. This arrangement illustrated in FIG. 1 makes it possible to capture the CO 2 under pressure and at a higher concentration than that which is normally obtained at the outlet of a gas turbine. However, it has the disadvantage of the need for a purge of gas to avoid a build-up of nitrogen and oxygen. As a result, a portion of the CO 2 generated is sent to the atmosphere.
- the present invention proposes to carry out a capture of CO 2 on pressurized and relatively concentrated gases, avoiding evacuation of a flow comprising CO 2 .
- the present invention relates to a process for reducing the amount of CO 2 present in the fumes discharged by a power generator burning a mixture of an oxidant and a fuel containing hydrocarbons, in which the following steps are carried out: a) the combustion fumes are expanded, b) a gas composed at least partly of combustion fumes is compressed, c) at least a portion of the CO 2 present in a first part of the compressed gas obtained in step is removed; b), d) a second part of the compressed gas obtained in step b) is recycled, the oxidant comprising at least the second part of the compressed gas.
- the combustion fumes can be mixed with a gas comprising oxygen so that the gas compressed in step b) comprises combustion fumes and the combustion gas. oxygen.
- said second portion of the compressed gas can be mixed with a gas comprising oxygen.
- the compressed gas obtained in step b) can be cooled and, before step d), the second portion of the compressed gas can be compressed.
- the gases depleted in CO 2 obtained in step c) can be released and then released into the atmosphere.
- the combustion fumes can be cooled by heat exchange with an absorbent solution implemented in step c).
- the power generator can perform catalytic combustion.
- the oxygen content can be adjusted so that the combustion is performed under stoichiometric conditions.
- the gas comprising oxygen may be air.
- the present invention also relates to a power generator burning a mixture of an oxidant and a fuel containing hydrocarbons, the generator comprising a compressor, combustion means, an expansion turbine and means for separating the CO 2 contained in a gas flow, the outlet of the compressor being connected firstly to an inlet of the combustion means and secondly to the inlet of the CO 2 separation means.
- the combustion means may comprise catalytic burners.
- the CO 2 separation means can be selected from the group consisting of columns using absorption solvents, cryogenic distillation columns, membranes, adsorbent molecular sieves.
- FIG. 1 illustrates, according to the prior art, the diagram of an electric generator incorporating a gas turbine and a device for capturing CO 2 on the recycled gas after compression of this gas
- FIG. 2 diagrammatically shows a power generator according to the invention
- FIG. 3 shows an example method for capturing CO 2
- FIGS. 4 and 5 represent variants of the power generator according to the invention.
- FIG. 1 schematizes an energy generator, according to the prior art, of gas turbine type in which is burned a hydrocarbon liquid or gaseous fuel (natural gas in the examples given below), followed by a device Sl CO 2 separation.
- the power generator consists of a gas turbine integrating:
- a compressor Kl comprising at least one compression stage, a combustion chamber CO,
- the supply air arriving via line 3 is mixed with recycled combustion gases so as to increase the CO 2 content of the gases flowing in the compression section of the device.
- the gases compressed by K1 are derived via line 8 to extract the CO 2 by the separating device S1.
- the CO 2 that is recovered via line 5 can for example be stored in the basement.
- the capture of CO 2 is carried out on pressurized and relatively concentrated gases, which is advantageous. It is however necessary to purge a portion of the gas leaving the turbine through the pipe 2 to remove the nitrogen arriving with the combustion air. This results in a CO 2 emission. As a result, recovery of CO 2 remains limited.
- the present invention proposes to carry out a capture of CO 2 on pressurized and relatively concentrated gases, avoiding evacuation of a flow comprising CO 2 . According to the invention, the operation is carried out so that the CO 2 produced by combustion and the nitrogen introduced with the combustion air can be evacuated simultaneously, without having to emit CO 2 with the nitrogen that is evacuated.
- a first fraction of the compressed gases is derived via line 8.
- This gas fraction is first cooled in the gas-gas heat exchanger E2 with a gaseous fraction removed from S1 and then using an external fluid. refrigeration in the heat exchanger C2.
- the cooled compressed gas is introduced into the separation device Sl in which the CO 2 is separated from the nitrogen.
- the CO 2 is evacuated from the device Sl via line 5, for example to be recompressed and injected into the basement to be stored.
- a gas substantially free of CO 2 rich in nitrogen and also containing a small proportion of oxygen is obtained.
- This gas passes through the exchanger E2 in which it is heated and is then expanded in the turbine section T2.
- the expanded gas that is discharged through line 13 contains nitrogen, a little oxygen, but substantially more CO 2 .
- a second fraction of the compressed gases from K1 is sent through line 9 into the combustion chamber CO as an oxidant.
- the fuel for example liquid or gaseous hydrocarbons, is introduced into CO via line 6.
- the combustion fumes discharged from CO through line 10 are expanded in turbine T1, cooled by heat exchange in El and Cl, and then recycled. at the inlet of the compressor Kl.
- the water condensed by cooling in El and Cl can be separated from the flue gases in the flask B1 and discharged through the duct 4.
- any known method can be used.
- the absorbent solution may comprise, for example, primary amines such as MEA, DGA and DIPA, secondary amines such as DEA, tertiary amines such as MDEA.
- the device Sl can implement a process for cryogenic distillation, membrane separation, and more particularly gas permeation membrane or it can be based on the use of molecular sieve adsorption techniques. These processes are for example described in "Natural gas: production, processing, transport" (A. Rojey and C. Jaffret) Technip Publishing, Paris, 1997.
- Figure 3 proposes to implement in the device Sl a CO 2 absorption process by solvent.
- the method described with reference to FIG. 3 is integrated with the method described in FIG. 2, the identical references designating the same elements.
- the compressed gas arriving via line 8 is cooled by heat exchangers E2 and C2 and then introduced into absorption column CA1 in order to be put in contact with a solvent comprising an amine which absorbs CO 2 .
- the solvent is regenerated in the distillation column CD2.
- the distillation column CD2 operates on the one hand with a reboiler RB1 situated at the bottom of the distillation column and with an intermediate reboiler RB2 situated at an intermediate level between the bottom and the head of the column.
- the gaseous fraction, relaxed and recycled, must be cooled. It is advantageous in this case to recover at least part of the available heat to regenerate the solvent used to capture the CO 2 .
- the two reboilers RB1 and RB2 make it possible to recover heat over a wide temperature range.
- the gas leaving the turbine T1 through the pipe 1 is first cooled in the heat exchanger E1, in which it produces steam which can feed a condensation cycle producing additional electric power. It then passes into the reboilers RB1 and RB2 in which it provides the heat necessary for the regeneration of the solvent in the distillation column CD2. And then, the gas is sent into the final cooling exchanger Cl.
- an auxiliary heat transfer fluid which makes it possible to recover the heat on the exhaust gases of the turbine section T1 and to heat the reboilers. RB1 and RB2.
- the presence of oxygen in the gas introduced into the device Sl can be troublesome in some cases. Indeed, in the case of the implementation by Sl of a CO 2 absorption process by solvent, the presence of oxygen can adversely affect the chemical stability of the solvent. In addition, the loss of oxygen requires an increase in the supply air flow, which is not favorable to the overall efficiency of the device.
- the fumes arriving via line 1 are compressed in the compression zone K1.
- the air arriving via the duct 3 is compressed in a compression zone K2 distinct from the compression zone K1.
- Kl and K2 may be two separate compressors.
- Kl and K2 can also be two separate compression stages and mounted on the same drive shaft.
- the compressed air in K2 is mixed with the gaseous fraction discharged from Kl via line 9.
- This pressurized gas mixture is introduced in the combustion chamber CO. Under these conditions, the gaseous fraction discharged through line 8 contains nitrogen and CO 2 , but practically no oxygen, which makes it possible to evacuate substantially pure nitrogen through line 13.
- FIG. 5 proposes a variant of the method shown schematically in FIG. 2.
- the mixture of air and fumes compressed by the compressor K1 is cooled in the heat exchanger E3 and is then separated into two gaseous fractions evacuated. by ducts 8 and 9.
- the gaseous fraction circulating in the duct 8 is freed of CO 2 in the device Sl, and then expanded in the turbine T2.
- the CO 2 depleted gas is expanded in the turbine T2.
- the gaseous fraction flowing in the duct 9 is compressed in the compression zone K3, then introduced through the duct 7 into the combustion chamber CO.
- the variant shown schematically in Figure 5 corresponds to a gas turbine having an intermediate cooling, commonly called “inter-cooling" on the compressor.
- the exchanger E3 allows, on the one hand to cool the gas to be compressed by K3 and, on the other hand, to cool the gas sent to the device Sl.
- the capture of CO 2 does not require additional heat exchangers.
- the air instead of mixing the air with the fumes before compression in K1, the air can be compressed by a compressor separate from the compressor K1, and then mixed with the fraction of gas flowing in the pipe 9 or 7 introduced as oxidizer in the combustion chamber CO.
- Example 1 A device similar to that described in connection with FIG. 1 is used in this example. According to the simulation carried out by the applicant, the air arrives via line 3 with a flow rate of 21,966 kmol / h (km / h).
- the fuel consists of natural gas introduced into the CO chamber via line 6 with a flow rate of 2306 kmol / h.
- the total air introduced is mixed upstream of the compressor with recycled cold fumes from the balloon Bl and whose flow rate is 26600 kmol / h (corresponding to a recycling rate of about 60% of the fumes).
- the mixture is compressed at 30 bar by the compressor Kl.
- the pressurized gas is cooled to 50 ° C. and then passes into the absorption means Sl, which is a column in which a counter-current liquid circulation of amine, and compressed gas is carried out.
- the column is dimensioned such that 90% of the CO 2 contained in the mixture is absorbed.
- the mixture freed from the majority of its CO 2 is then sent via the conduit 7 into the combustion chamber CO equipped with catalytic burners.
- the fumes whose temperature is approximately 1300 ° C. are introduced at the inlet of the expansion turbine T1.
- the molar flow rate of the treated fumes is 48470 kmol / h, of which approximately 60% is recycled to the compressor Kl.
- the flow rate of carbon dioxide discharged through line 2 is in this case approximately 1026 kmol / h.
- the capture rate of CO 2 on this unit is thus 44.5%.
- the air arrives via line 3 with a flow rate of 43920 kmol / h.
- the fuel consists of natural gas introduced into the CO chamber via line 6 with a flow rate of 2306 kmol / h.
- the total air introduced is mixed upstream of the compressor with recycled cold fumes from the balloon Bl and whose flow rate is 41038 kmol / h (corresponding to a 100% recycling rate of fumes).
- the mixture is compressed at 30 bar by the compressor Kl. Part of this mixture is conveyed via line 9 to the combustion chamber CO.
- the fumes, the temperature of which is approximately 1300 ° C., are introduced at the inlet of the expansion turbine T1.
- the other part of the compressed mixture is withdrawn through line 8.
- This pressurized gas is cooled to 50.degree. the exchangers E2 and C2, then passes into the absorption means Sl which is a column in which a countercurrent liquid circulation of amine, and compressed gas is performed. The column is dimensioned such that 90% of the CO 2 contained in the mixture is absorbed by the amine stream.
- the mixture freed from the majority of its CO 2 is then sent via the conduit 2 into the expansion turbine T2.
- the flow rate of carbon dioxide discharged through line 13 is in this case approximately 230 kmol / h.
- the capture rate of CO 2 on this unit is thus 90%.
- the fuel consists of natural gas introduced into the chamber CO through line 6 with a flow rate of 2306 kmol / h.
- the air is then mixed upstream of the combustion chamber CO with a portion of the recycled fumes from the compressor Kl and whose flow rate is
- the fumes whose temperature is about 1300 ° C are introduced at the inlet of the expansion turbine T1 and then recycled to the compressor Kl. Part of the mixture is taken from the pipe 8.
- This pressurized gas is cooled to 50 ° C. and then passes into the absorption means Sl, which is a column in which a counter-current liquid circulation of amine, and compressed gas. is done. The column is dimensioned such that 90% of the CO 2 contained in the mixture is absorbed.
- the mixture freed from the majority of its CO 2 is then sent via the conduit 2 into the expansion turbine T2.
- the flow rate of carbon dioxide discharged through line 13 is in this case approximately 230 kmol / h.
- the capture rate of CO 2 on this unit is thus 90%.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
The invention concerns a method for reducing CO2 rate present in fumes released by a power generator burning a mixture of oxidant and fuel containing hydrocarbons, which consists in expanding the combustion fumes, compressing a gas mixture comprising the oxidant and the fumes, eliminating at least part of the CO2 present in a first part of the compressed mixture and recycling a second part of the compressed mixture so as to carry out combustion. The invention also concerns a device for implementing the method.
Description
PRODUCTION D'ÉNERGIE PAR TURBINE À GAZ SANS ÉMISSION DE CO2 GAS TURBINE ENERGY PRODUCTION WITHOUT CO2 EMISSION
La présente invention concerne le domaine des turbines à gaz, le dioxyde de carbone (CO2) émis étant capturé dans des conditions de concentration et de pression favorables.The present invention relates to the field of gas turbines, the carbon dioxide (CO 2 ) emitted being captured under conditions of favorable concentration and pressure.
Depuis les débuts de l'ère industrielle, le taux de CO2 présent dans l'atmosphère augmente régulièrement en raison de l'augmentation sans cesse croissante de l'utilisation comme source d'énergie des combustibles dits "fossiles" comme le charbon, les hydrocarbures liquides ou gazeux comme le gaz naturel. Il est prouvé que le CO2 émis lors de la combustion de ces combustibles est responsable de l'effet de serre et du réchauffement global de la planète constaté depuis quelques décennies. II est ainsi impératif, pour limiter l'effet de serre dans les années futures, de développer et de mettre en oeuvre de nouvelles techniques de capture du CO2 avant le rejet final des fumées de combustion. Ces techniques doivent être simples, robustes, efficaces et les moins onéreuses possibles dans leur mise en oeuvre et leur fonctionnement. Dans le domaine des générateurs thermiques, une première solution consiste à prélever le CO2 présent dans les fumées de combustion avant le rejet de celles-ci dans l'atmosphère. Les méthodes utilisées sont basées généralement sur la cryogénie, l'absorption par réaction chimique ou physique avec un autre composé, ou encore la séparation par membranes. Les importantes quantités de fumées à traiter ainsi que les faibles pressions partielles de CO2 dans ces fumées à pression atmosphérique expliquent que ces solutions soient cependant complexes et coûteuses à mettre en oeuvre.
Le document FR 2 825 935 décrit un arrangement de turbine à gaz qui présente des avantages importants par rapport à l'art antérieur. Cet arrangement illustré par la figure 1 permet de capturer le CO2 sous pression et à une concentration plus élevée que celle qui est obtenue normalement à la sortie d'une turbine à gaz. Elle présente néanmoins comme inconvénient la nécessité d'une purge de gaz afin d'éviter une accumulation d'azote et d'oxygène. De ce fait une partie du CO2 généré est envoyée à l'atmosphère.Since the beginning of the industrial era, the rate of CO 2 present in the atmosphere has steadily increased due to the ever increasing use of fossil fuels such as coal, coal, liquid or gaseous hydrocarbons such as natural gas. There is evidence that the CO 2 emitted during the combustion of these fuels is responsible for the greenhouse effect and global warming observed in recent decades. It is therefore imperative, in order to limit the greenhouse effect in future years, to develop and implement new techniques for capturing CO 2 before the final discharge of combustion fumes. These techniques must be simple, robust, effective and the least expensive possible in their implementation and operation. In the field of thermal generators, a first solution is to take the CO 2 present in the combustion fumes before the discharge of these in the atmosphere. The methods used are generally based on cryogenics, absorption by chemical or physical reaction with another compound, or membrane separation. The large quantities of fumes to be treated and the low partial pressures of CO 2 in these fumes at atmospheric pressure explain that these solutions are however complex and expensive to implement. Document FR 2 825 935 describes a gas turbine arrangement which has significant advantages over the prior art. This arrangement illustrated in FIG. 1 makes it possible to capture the CO 2 under pressure and at a higher concentration than that which is normally obtained at the outlet of a gas turbine. However, it has the disadvantage of the need for a purge of gas to avoid a build-up of nitrogen and oxygen. As a result, a portion of the CO 2 generated is sent to the atmosphere.
La présente invention propose d'effectuer une capture du CO2 sur des gaz sous pression et relativement concentrés, en évitant d'évacuer un flux comportant du CO2.The present invention proposes to carry out a capture of CO 2 on pressurized and relatively concentrated gases, avoiding evacuation of a flow comprising CO 2 .
De manière générale, la présente invention concerne un procédé pour diminuer le taux de CO2 présent dans les fumées rejetées par un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, dans lequel on effectue les étapes suivantes : a) on détend les fumées de combustion, b) on comprime un gaz composé au moins en partie des fumées de combustion, c) on élimine au moins une partie du CO2 présent dans une première partie du gaz comprimé obtenu à l'étape b), d) on recycle une deuxième partie du gaz comprimé obtenu à l'étape b), le comburant comportant au moins la deuxième partie du gaz comprimé.In general, the present invention relates to a process for reducing the amount of CO 2 present in the fumes discharged by a power generator burning a mixture of an oxidant and a fuel containing hydrocarbons, in which the following steps are carried out: a) the combustion fumes are expanded, b) a gas composed at least partly of combustion fumes is compressed, c) at least a portion of the CO 2 present in a first part of the compressed gas obtained in step is removed; b), d) a second part of the compressed gas obtained in step b) is recycled, the oxidant comprising at least the second part of the compressed gas.
Selon l'invention, avant l'étape b), on peut mélanger les fumées de combustion avec un gaz comportant de l'oxygène de manière à ce que le gaz comprimé à l'étape b) comporte des fumées de combustion et de l'oxygène. Alternativement, avant l'étape d), on peut mélanger ladite deuxième partie du gaz comprimé avec un gaz comportant de l'oxygène.
On peut refroidir le gaz comprimé obtenu à l'étape b) et, avant l'étape d), on peut comprimer la deuxième partie du gaz comprimé.According to the invention, before step b), the combustion fumes can be mixed with a gas comprising oxygen so that the gas compressed in step b) comprises combustion fumes and the combustion gas. oxygen. Alternatively, before step d), said second portion of the compressed gas can be mixed with a gas comprising oxygen. The compressed gas obtained in step b) can be cooled and, before step d), the second portion of the compressed gas can be compressed.
On peut détendre puis rejeter à l'atmosphère les gaz appauvris en CO2 obtenus à l'étape c). On peut refroidir les fumées de combustion par échange de chaleur avec une solution absorbante mise en oeuvre à l'étape c).The gases depleted in CO 2 obtained in step c) can be released and then released into the atmosphere. The combustion fumes can be cooled by heat exchange with an absorbent solution implemented in step c).
Le générateur de puissance peut effectuer une combustion catalytique.The power generator can perform catalytic combustion.
On peut ajuster la teneur en oxygène de manière à ce que la combustion soit réalisée dans des conditions stoechiométriques. Le gaz comportant de l'oxygène peut être de l'air.The oxygen content can be adjusted so that the combustion is performed under stoichiometric conditions. The gas comprising oxygen may be air.
La présente invention concerne également un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, le générateur comportant un compresseur, des moyens de combustion, une turbine de détente et des moyens de séparation du CO2 contenu dans un flux gazeux, la sortie du compresseur étant reliée d'une part à une entrée des moyens de combustion et d'autre part à l'entrée des moyens de séparation du CO2.The present invention also relates to a power generator burning a mixture of an oxidant and a fuel containing hydrocarbons, the generator comprising a compressor, combustion means, an expansion turbine and means for separating the CO 2 contained in a gas flow, the outlet of the compressor being connected firstly to an inlet of the combustion means and secondly to the inlet of the CO 2 separation means.
Selon l'invention, les moyens de combustion peuvent comporter des brûleurs catalytiques. Les moyens de séparation du CO2 peuvent être choisis dans le groupe constitué par les colonnes utilisant des solvants d'absorption, les colonnes de distillation cryogénique, les membranes, les tamis moléculaires adsorbants.According to the invention, the combustion means may comprise catalytic burners. The CO 2 separation means can be selected from the group consisting of columns using absorption solvents, cryogenic distillation columns, membranes, adsorbent molecular sieves.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux figures 1 à 5, sur lesquelles les organes similaires sont désignés par des références identiques, et parmi lesquelles :
- la figure 1 illustre selon l'art antérieur le schéma d'un générateur électrique intégrant une turbine à gaz et un dispositif de captation du CO2 sur le gaz recyclé après compression de ce gaz,Other characteristics and advantages of the invention will be better understood and will become clear from reading the description given below with reference to FIGS. 1 to 5, in which like members are designated by identical references, and among which : FIG. 1 illustrates, according to the prior art, the diagram of an electric generator incorporating a gas turbine and a device for capturing CO 2 on the recycled gas after compression of this gas,
- la figure 2 schématise un générateur de puissance selon l'invention, - la figure 3 représente un exemple de procédé pour capter le CO2,- Figure 2 diagrammatically shows a power generator according to the invention, - Figure 3 shows an example method for capturing CO 2,
- les figures 4 et 5 représentent des variantes du générateur de puissance selon l'invention.FIGS. 4 and 5 represent variants of the power generator according to the invention.
La figure 1 schématise un générateur d'énergie, selon l'art antérieur, de type turbine à gaz dans lequel est brûlé un combustible hydrocarboné liquide ou gazeux (du gaz naturel dans les exemples donnés ci-après), suivi d'un dispositif Sl de séparation du CO2.FIG. 1 schematizes an energy generator, according to the prior art, of gas turbine type in which is burned a hydrocarbon liquid or gaseous fuel (natural gas in the examples given below), followed by a device Sl CO 2 separation.
Le générateur de puissance se compose d'une turbine à gaz intégrant :The power generator consists of a gas turbine integrating:
- un compresseur Kl comprenant au moins un étage de compression, - une chambre de combustion CO,a compressor Kl comprising at least one compression stage, a combustion chamber CO,
- une turbine de détente Tl fournissant l'énergie nécessaire pour l'entraînement du compresseur Kl et de l'alternateur Al.an expansion turbine T1 providing the energy required for driving the compressor K1 and the alternator A1.
L'air d'alimentation arrivant par le conduit 3 est mélangé avec des gaz de combustion recyclés de façon à pouvoir augmenter la teneur en CO2 des gaz qui circulent dans la section de compression du dispositif.The supply air arriving via line 3 is mixed with recycled combustion gases so as to increase the CO 2 content of the gases flowing in the compression section of the device.
Les gaz comprimés par Kl sont dérivés par le conduit 8, pour extraire le CO2 par le dispositif de séparation Sl. Le CO2 qui est récupéré par le conduit 5, peut être par exemple stocké dans le sous-sol. La capture du CO2 est effectuée sur des gaz sous pression et relativement concentrés, ce qui est avantageux. Il est toutefois nécessaire de purger une partie du gaz sortant de la turbine par le conduit 2 pour évacuer l'azote arrivant avec l'air de combustion. Il en résulte une émission de CO2. De ce fait la récupération de CO2 reste limitée.
La présente invention propose d'effectuer une capture du CO2 sur des gaz sous pression et relativement concentrés, en évitant d'évacuer un flux comportant du CO2. Selon l'invention, on opère de façon à pouvoir évacuer simultanément le CO2 produit par combustion et l'azote introduit avec l'air de combustion, sans avoir à émettre de CO2 avec l'azote qui est évacué.The gases compressed by K1 are derived via line 8 to extract the CO 2 by the separating device S1. The CO 2 that is recovered via line 5 can for example be stored in the basement. The capture of CO 2 is carried out on pressurized and relatively concentrated gases, which is advantageous. It is however necessary to purge a portion of the gas leaving the turbine through the pipe 2 to remove the nitrogen arriving with the combustion air. This results in a CO 2 emission. As a result, recovery of CO 2 remains limited. The present invention proposes to carry out a capture of CO 2 on pressurized and relatively concentrated gases, avoiding evacuation of a flow comprising CO 2 . According to the invention, the operation is carried out so that the CO 2 produced by combustion and the nitrogen introduced with the combustion air can be evacuated simultaneously, without having to emit CO 2 with the nitrogen that is evacuated.
Le principe de l'invention est décrit en relation avec le schéma de la figure 2. Dans cet exemple de configuration de la figure 2, les fumées de combustion mélangées avec de l'air arrivant par le conduit 3 sont comprimées par le compresseur Kl.The principle of the invention is described in connection with the diagram of FIG. 2. In this configuration example of FIG. 2, the combustion fumes mixed with air arriving via the duct 3 are compressed by the compressor K1.
Une première fraction des gaz comprimés est dérivée par le conduit 8. Cette fraction de gaz est refroidie d'abord dans l'échangeur de chaleur gaz-gaz E2 avec une fraction gazeuse évacuée de Sl, puis à l'aide d'un fluide extérieur de réfrigération dans l'échangeur de chaleur C2. Le gaz comprimé refroidi est introduit dans le dispositif de séparation Sl dans lequel on sépare le CO2 de l'azote. Le CO2 est évacué du dispositif Sl par le conduit 5, pour être par exemple recomprimé et injecté dans le sous-sol pour être stocké. A l'issue de cette séparation, on obtient un gaz substantiellement débarrassé du CO2, riche en azote et contenant également une faible proportion d'oxygène. Ce gaz passe par l'échangeur E2 dans lequel il est réchauffé et il est ensuite détendu dans la section de turbine T2. Le gaz détendu qui est évacué par le conduit 13 contient de l'azote, un peu d'oxygène, mais pratiquement plus de CO2.A first fraction of the compressed gases is derived via line 8. This gas fraction is first cooled in the gas-gas heat exchanger E2 with a gaseous fraction removed from S1 and then using an external fluid. refrigeration in the heat exchanger C2. The cooled compressed gas is introduced into the separation device Sl in which the CO 2 is separated from the nitrogen. The CO 2 is evacuated from the device Sl via line 5, for example to be recompressed and injected into the basement to be stored. At the end of this separation, a gas substantially free of CO 2 , rich in nitrogen and also containing a small proportion of oxygen is obtained. This gas passes through the exchanger E2 in which it is heated and is then expanded in the turbine section T2. The expanded gas that is discharged through line 13 contains nitrogen, a little oxygen, but substantially more CO 2 .
Une deuxième fraction des gaz comprimés issus de Kl est envoyée par le conduit 9 dans la chambre de combustion CO à titre de comburant. Le combustible, par exemple des hydrocarbures liquides ou gazeux, est introduit dans CO par le conduit 6. Les fumées de combustion évacuées de CO par le conduit 10 sont détendues dans la turbine Tl, refroidies par échange de chaleur dans El et Cl, puis recyclées à l'entrée du compresseur Kl. L'eau
condensée par refroidissement dans El et Cl peut être séparée des fumées dans le ballon Bl, et évacuée par le conduit 4.A second fraction of the compressed gases from K1 is sent through line 9 into the combustion chamber CO as an oxidant. The fuel, for example liquid or gaseous hydrocarbons, is introduced into CO via line 6. The combustion fumes discharged from CO through line 10 are expanded in turbine T1, cooled by heat exchange in El and Cl, and then recycled. at the inlet of the compressor Kl. The water condensed by cooling in El and Cl can be separated from the flue gases in the flask B1 and discharged through the duct 4.
Pour séparer le CO2 dans le dispositif Sl, on peut utiliser tout procédé connu. Par exemple, on peut mettre en oeuvre un procédé d'absorption du CO2 par solvant physique ou chimique, décrit notamment par les documents EP 744 987 et WO 00/57990. La solution absorbante peut comporter par exemple des aminés primaires telles la MEA, la DGA et la DIPA, des aminés secondaires comme la DEA, des aminés tertiaires comme la MDEA. On peut aussi utiliser une solution de carbonate de potassium. En outre, le dispositif Sl peut mettre en oeuvre un procédé de distillation cryogénique, de séparation par membrane, et plus particulièrement de membrane à perméation gazeuse ou il peut être basé sur l'utilisation des techniques d'adsorption sur tamis moléculaire. Ces procédés sont par exemple décrits dans "Natural gas : production, processing, transport" (A. Rojey et C. Jaffret) Editions Technip, Paris, 1997.To separate the CO 2 in the device Sl, any known method can be used. For example, it is possible to implement a process for the absorption of CO 2 by physical or chemical solvent, described in particular by the documents EP 744 987 and WO 00/57990. The absorbent solution may comprise, for example, primary amines such as MEA, DGA and DIPA, secondary amines such as DEA, tertiary amines such as MDEA. It is also possible to use a solution of potassium carbonate. In addition, the device Sl can implement a process for cryogenic distillation, membrane separation, and more particularly gas permeation membrane or it can be based on the use of molecular sieve adsorption techniques. These processes are for example described in "Natural gas: production, processing, transport" (A. Rojey and C. Jaffret) Technip Publishing, Paris, 1997.
La figure 3 propose de mettre en oeuvre dans le dispositif Sl un procédé d'absorption du CO2 par solvant. Le procédé décrit en référence à la figure 3 s'intègre au procédé décrit par la figure 2, les références identiques désignant les mêmes éléments. Sur la figure 3, le gaz comprimé arrivant par le conduit 8 est refroidi par les échangeurs de chaleur E2 et C2, puis introduit dans la colonne d'absorption CAl pour être mis en contact avec un solvant comportant une aminé qui absorbe le CO2. Le solvant est régénéré dans la colonne de distillation CD2. Dans l'exemple de configuration qui est représenté par la figure 3, la colonne de distillation CD2 opère d'une part avec un rebouilleur RBl situé au fond de la colonne de distillation et avec un rebouilleur intermédiaire RB2 situé à un niveau intermédiaire entre le fond et la tête de la colonne. La fraction gazeuse détendue et recyclée doit être
refroidie. Il est avantageux dans ce cas de récupérer au moins en partie la chaleur disponible pour régénérer le solvant utilisé pour capturer le CO2.Figure 3 proposes to implement in the device Sl a CO 2 absorption process by solvent. The method described with reference to FIG. 3 is integrated with the method described in FIG. 2, the identical references designating the same elements. In FIG. 3, the compressed gas arriving via line 8 is cooled by heat exchangers E2 and C2 and then introduced into absorption column CA1 in order to be put in contact with a solvent comprising an amine which absorbs CO 2 . The solvent is regenerated in the distillation column CD2. In the configuration example shown in FIG. 3, the distillation column CD2 operates on the one hand with a reboiler RB1 situated at the bottom of the distillation column and with an intermediate reboiler RB2 situated at an intermediate level between the bottom and the head of the column. The gaseous fraction, relaxed and recycled, must be cooled. It is advantageous in this case to recover at least part of the available heat to regenerate the solvent used to capture the CO 2 .
Les deux rebouilleurs RBl et RB2 permettent de récupérer de la chaleur sur un large intervalle de température. Ainsi, le gaz sortant de la turbine Tl par le conduit 1 est d'abord refroidi dans l'échangeur de chaleur El, dans lequel il produit de la vapeur qui peut alimenter un cycle à condensation produisant une puissance électrique supplémentaire. Il passe ensuite dans les rebouilleurs RBl et RB2 dans lequel il fournit la chaleur nécessaire à la régénération du solvant dans la colonne de distillation CD2. Et ensuite, le gaz est envoyé dans l'échangeur final de refroidissement Cl. Il est également possible d'utiliser un fluide caloporteur auxiliaire qui permet de récupérer la chaleur sur les gaz d'échappement de la section de turbine Tl et de réchauffer les rebouilleurs RBl et RB2.The two reboilers RB1 and RB2 make it possible to recover heat over a wide temperature range. Thus, the gas leaving the turbine T1 through the pipe 1 is first cooled in the heat exchanger E1, in which it produces steam which can feed a condensation cycle producing additional electric power. It then passes into the reboilers RB1 and RB2 in which it provides the heat necessary for the regeneration of the solvent in the distillation column CD2. And then, the gas is sent into the final cooling exchanger Cl. It is also possible to use an auxiliary heat transfer fluid which makes it possible to recover the heat on the exhaust gases of the turbine section T1 and to heat the reboilers. RB1 and RB2.
La présence d'oxygène dans le gaz introduit dans le dispositif Sl peut être gênante dans certains cas. En effet, dans le cas de la mise en oeuvre par Sl d'un procédé d'absorption du CO2 par solvant, la présence d'oxygène peut nuire à la stabilité chimique du solvant. En outre, la perte d'oxygène nécessite une augmentation du débit d'air d'alimentation, qui n'est pas favorable au rendement global du dispositif.The presence of oxygen in the gas introduced into the device Sl can be troublesome in some cases. Indeed, in the case of the implementation by Sl of a CO 2 absorption process by solvent, the presence of oxygen can adversely affect the chemical stability of the solvent. In addition, the loss of oxygen requires an increase in the supply air flow, which is not favorable to the overall efficiency of the device.
Pour éviter cette présence d'oxygène dans le gaz traité par le dispositif Sl, on peut opérer selon le schéma de la figure 4.To avoid this presence of oxygen in the gas treated by the device Sl, it is possible to operate according to the diagram of FIG.
Les fumées arrivant par le conduit 1 sont comprimées dans la zone de compression Kl. L'air arrivant par le conduit 3 est comprimée dans une zone de compression K2 distincte de la zone de compression Kl. Par exemple, Kl et K2 peuvent être deux compresseurs distincts. Kl et K2 peuvent également être deux étages de compression distincts et montés sur un même arbre d'entraînement. L'air comprimé dans K2 est mélangé avec la fraction gazeuse évacuée de Kl par le conduit 9. Ce mélange de gaz sous pression est introduit
dans la chambre de combustion CO. Dans ces conditions, la fraction gazeuse évacuée par le conduit 8 contient de l'azote et du CO2, mais pratiquement pas d'oxygène, ce qui permet d'évacuer de l'azote pratiquement pur par le conduit 13.The fumes arriving via line 1 are compressed in the compression zone K1. The air arriving via the duct 3 is compressed in a compression zone K2 distinct from the compression zone K1. For example, Kl and K2 may be two separate compressors. Kl and K2 can also be two separate compression stages and mounted on the same drive shaft. The compressed air in K2 is mixed with the gaseous fraction discharged from Kl via line 9. This pressurized gas mixture is introduced in the combustion chamber CO. Under these conditions, the gaseous fraction discharged through line 8 contains nitrogen and CO 2 , but practically no oxygen, which makes it possible to evacuate substantially pure nitrogen through line 13.
La figure 5 propose une variante du procédé schématisé par la figure 2. Sur la figure 5, le mélange d'air et de fumées comprimé par le compresseur Kl est refroidi dans l'échangeur de chaleur E3, puis est séparé en deux fractions gazeuses évacuées par les conduits 8 et 9. La fraction gazeuse circulant dans le conduit 8 est débarrassée du CO2 dans le dispositif Sl, puis détendu dans la turbine T2. Le gaz appauvri en CO2 est détendu dans la turbine T2. La fraction gazeuse circulant dans le conduit 9 est comprimée dans la zone de compression K3, puis introduite par le conduit 7 dans la chambre de combustion CO.FIG. 5 proposes a variant of the method shown schematically in FIG. 2. In FIG. 5, the mixture of air and fumes compressed by the compressor K1 is cooled in the heat exchanger E3 and is then separated into two gaseous fractions evacuated. by ducts 8 and 9. The gaseous fraction circulating in the duct 8 is freed of CO 2 in the device Sl, and then expanded in the turbine T2. The CO 2 depleted gas is expanded in the turbine T2. The gaseous fraction flowing in the duct 9 is compressed in the compression zone K3, then introduced through the duct 7 into the combustion chamber CO.
La variante schématisée par la figure 5 correspond à une turbine à gaz comportant un refroidissement intermédiaire, couramment appelé "inter- cooling", sur le compresseur. L'échangeur E3 permet, d'une part de refroidir les gaz destinés à être comprimé par K3 et, d'autre part, de refroidir les gaz envoyés vers le dispositif Sl. Ainsi, la capture du CO2 ne nécessite pas d'échangeurs de chaleur supplémentaires. Alternativement, à la place de mélanger l'air avec les fumées avant compression dans Kl, l'air peut être comprimé par un compresseur distinct du compresseur Kl, puis mélangée avec la fraction de gaz circulant dans le conduit 9 ou 7 introduite à titre de comburant dans la chambre de combustion CO.The variant shown schematically in Figure 5 corresponds to a gas turbine having an intermediate cooling, commonly called "inter-cooling" on the compressor. The exchanger E3 allows, on the one hand to cool the gas to be compressed by K3 and, on the other hand, to cool the gas sent to the device Sl. Thus, the capture of CO 2 does not require additional heat exchangers. Alternatively, instead of mixing the air with the fumes before compression in K1, the air can be compressed by a compressor separate from the compressor K1, and then mixed with the fraction of gas flowing in the pipe 9 or 7 introduced as oxidizer in the combustion chamber CO.
Les avantages de la présente invention sont illustrés par les exemples numériques suivants.The advantages of the present invention are illustrated by the following numerical examples.
Exemple 1 (selon Fart antérieur) :
Un dispositif analogue à celui décrit en relation avec la figure 1 est utilisé dans cet exemple. Selon la simulation réalisée par le demandeur, l'air arrive par le conduit 3 avec un débit de 21966 kmol/h (kilomoles par heure). Le combustible est constitué de gaz naturel introduit dans la chambre CO par la conduite 6 avec un débit de 2306 kmol/h. L'air total introduit est mélangé en amont du compresseur avec des fumées froides recyclées issues du ballon Bl et dont le débit est de 26600 kmol/h (correspondant à un taux de recyclage d'environ 60% des fumées).Example 1 (according to the prior art): A device similar to that described in connection with FIG. 1 is used in this example. According to the simulation carried out by the applicant, the air arrives via line 3 with a flow rate of 21,966 kmol / h (km / h). The fuel consists of natural gas introduced into the CO chamber via line 6 with a flow rate of 2306 kmol / h. The total air introduced is mixed upstream of the compressor with recycled cold fumes from the balloon Bl and whose flow rate is 26600 kmol / h (corresponding to a recycling rate of about 60% of the fumes).
Le mélange est comprimé à 30 bars par le compresseur Kl. Le gaz sous pression est refroidi à 500C puis passe dans le moyen d'absorption Sl qui est une colonne dans lequel une circulation liquide à contre courant d'aminé, et du gaz comprimé est effectuée. La colonne est dimensionnée de telle façon que 90% du CO2 contenu dans le mélange est absorbé. Le mélange débarrassé de la majorité de son CO2 est ensuite envoyé via le conduit 7 dans la chambre de combustion CO équipée de brûleurs catalytiques.The mixture is compressed at 30 bar by the compressor Kl. The pressurized gas is cooled to 50 ° C. and then passes into the absorption means Sl, which is a column in which a counter-current liquid circulation of amine, and compressed gas is carried out. The column is dimensioned such that 90% of the CO 2 contained in the mixture is absorbed. The mixture freed from the majority of its CO 2 is then sent via the conduit 7 into the combustion chamber CO equipped with catalytic burners.
Les fumées dont la température est d'environ 1300°C sont introduites à l'entrée de la turbine de détente Tl. En sortie de la turbine de détente, le débit molaire des fumées traitées est de 48470 kmol/h dont environ 60% est recyclé vers le compresseur Kl. Le débit de dioxyde de carbone rejeté par le conduit 2 est dans ce cas d'environ 1026 kmol/h. Le taux de capture du CO2 sur cette unité est ainsi de 44,5 %.The fumes whose temperature is approximately 1300 ° C. are introduced at the inlet of the expansion turbine T1. At the outlet of the expansion turbine, the molar flow rate of the treated fumes is 48470 kmol / h, of which approximately 60% is recycled to the compressor Kl. The flow rate of carbon dioxide discharged through line 2 is in this case approximately 1026 kmol / h. The capture rate of CO 2 on this unit is thus 44.5%.
Exemple 2 (selon l'invention) :Example 2 (according to the invention):
Un dispositif analogue à celui décrit en relation avec la figure 2 est utilisé dans cet exemple. Selon la simulation réalisée par le demandeur, l'air arrive par la conduite 3 avec un débit de 43920 kmol/h. Le combustible est constitué de gaz naturel introduit dans la chambre CO par la conduite 6 avec un débit de 2306 kmol/h. L'air total introduit est mélangé en amont du compresseur avec des fumées froides recyclées issues du ballon Bl et dont le
débit est de 41038 kmol/h (correspondant à un taux de recyclage de 100 % des fumées).A device similar to that described in connection with FIG. 2 is used in this example. According to the simulation carried out by the applicant, the air arrives via line 3 with a flow rate of 43920 kmol / h. The fuel consists of natural gas introduced into the CO chamber via line 6 with a flow rate of 2306 kmol / h. The total air introduced is mixed upstream of the compressor with recycled cold fumes from the balloon Bl and whose flow rate is 41038 kmol / h (corresponding to a 100% recycling rate of fumes).
Le mélange est comprimé à 30 bars par le compresseur Kl. Une partie de ce mélange est acheminée via le conduit 9 vers la chambre de combustion CO. Les fumées dont la température est d'environ 13000C sont introduites à l'entrée de la turbine de détente Tl. L'autre partie du mélange comprimé est prélevée par le conduit 8. Ce gaz sous pression est refroidi à 50°C dans les échangeurs E2 et C2, puis passe dans le moyen d'absorption Sl qui est une colonne dans lequel une circulation liquide à contre courant d'aminé, et du gaz comprimé est effectuée. La colonne est dimensionnée de telle façon que 90% du CO2 contenu dans le mélange est absorbé par le courant d'aminé. Le mélange débarrassé de la majorité de son CO2 est ensuite envoyé via le conduit 2 dans la turbine de détente T2.The mixture is compressed at 30 bar by the compressor Kl. Part of this mixture is conveyed via line 9 to the combustion chamber CO. The fumes, the temperature of which is approximately 1300 ° C., are introduced at the inlet of the expansion turbine T1. The other part of the compressed mixture is withdrawn through line 8. This pressurized gas is cooled to 50.degree. the exchangers E2 and C2, then passes into the absorption means Sl which is a column in which a countercurrent liquid circulation of amine, and compressed gas is performed. The column is dimensioned such that 90% of the CO 2 contained in the mixture is absorbed by the amine stream. The mixture freed from the majority of its CO 2 is then sent via the conduit 2 into the expansion turbine T2.
Le débit de dioxyde de carbone rejeté par le conduit 13 est dans ce cas d'environ 230 kmol/h. Le taux de capture du CO2 sur cette unité est ainsi de 90 %.The flow rate of carbon dioxide discharged through line 13 is in this case approximately 230 kmol / h. The capture rate of CO 2 on this unit is thus 90%.
Exemple 3 (selon l'invention) :Example 3 (according to the invention):
Un dispositif analogue à celui décrit en relation avec la figure 4 est utilisé dans cet exemple. Selon la simulation réalisée par le demandeur, l'air arrive par le conduit 3 avec un débit de 21966 kmol/h. Il est comprimé àA device similar to that described in connection with FIG. 4 is used in this example. According to the simulation carried out by the applicant, the air arrives via line 3 with a flow rate of 21966 kmol / h. It is compressed to
30 bars par le compresseur K2. Le combustible est constitué de gaz naturel introduit dans la chambre CO par le conduit 6 avec un débit de 2306 kmol/h.30 bars by the compressor K2. The fuel consists of natural gas introduced into the chamber CO through line 6 with a flow rate of 2306 kmol / h.
L'air est ensuite mélangé en amont de la chambre de combustion CO avec une partie des fumées recyclées issues du compresseur Kl et dont le débit est deThe air is then mixed upstream of the combustion chamber CO with a portion of the recycled fumes from the compressor Kl and whose flow rate is
47816 kmol/h.47816 kmol / h.
Les fumées dont la température est d'environ 1300°C sont introduites à l'entrée de la turbine de détente Tl puis recyclées vers le compresseur Kl.
Une partie du mélange est prélevée par le conduit 8. Ce gaz sous pression est refroidi à 5O0C puis passe dans le moyen d'absorption Sl qui est une colonne dans lequel une circulation liquide à contre courant d'aminé, et du gaz comprimé est effectuée. La colonne est dimensionnée de telle façon que 90% du CO2 contenu dans le mélange est absorbé. Le mélange débarrassé de la majorité de son CO2 est ensuite envoyé via le conduit 2 dans la turbine de détente T2.The fumes whose temperature is about 1300 ° C are introduced at the inlet of the expansion turbine T1 and then recycled to the compressor Kl. Part of the mixture is taken from the pipe 8. This pressurized gas is cooled to 50 ° C. and then passes into the absorption means Sl, which is a column in which a counter-current liquid circulation of amine, and compressed gas. is done. The column is dimensioned such that 90% of the CO 2 contained in the mixture is absorbed. The mixture freed from the majority of its CO 2 is then sent via the conduit 2 into the expansion turbine T2.
Le débit de dioxyde de carbone rejeté par le conduit 13 est dans ce cas d'environ 230 kmol/h. Le taux de capture du CO2 sur cette unité est ainsi de 90 %.
The flow rate of carbon dioxide discharged through line 13 is in this case approximately 230 kmol / h. The capture rate of CO 2 on this unit is thus 90%.
Claims
REVENDICATIONS
1) Procédé pour diminuer le taux de GO2 présent dans les fumées rejetées par un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, dans lequel on effectue les étapes suivantes : a) on détend les fumées de combustion, b) on comprime un gaz composé au moins en partie des fumées de combustion, c) on élimine au moins une partie du CO2 présent dans une première partie du gaz comprimé obtenu à l'étape b), d) on recycle une deuxième partie du gaz comprimé obtenu à l'étape b), le comburant comportant au moins la deuxième partie du gaz comprimé.1) Process for reducing the level of GO 2 present in the fumes discharged by a power generator burning a mixture of an oxidant and a fuel containing hydrocarbons, in which the following steps are carried out: a) the fumes are released combustion, b) a gas composed at least partially of combustion fumes is compressed, c) at least a portion of the CO 2 present in a first part of the compressed gas obtained in step b) is removed, d) recycled a second part of the compressed gas obtained in step b), the oxidant comprising at least the second part of the compressed gas.
2) Procédé selon la revendication 1, dans lequel avant l'étape b), on mélange les fumées de combustion avec un gaz comportant de l'oxygène de manière à ce que le gaz comprimé à l'étape b) comporte des fumées de combustion et de l'oxygène.2) Process according to claim 1, wherein before step b), the flue gases are mixed with a gas comprising oxygen so that the gas compressed in step b) comprises combustion fumes and oxygen.
3) Procédé selon la revendication 1, dans lequel avant l'étape d), on mélange ladite deuxième partie du gaz comprimé avec un gaz comportant de l'oxygène.3) Process according to claim 1, wherein before step d), said second portion of the compressed gas is mixed with a gas comprising oxygen.
4) Procédé selon l'une des revendications 2 et 3, dans lequel ledit gaz comportant de l'oxygène est de l'air.
5) Procédé selon l'une des revendications 2 à 4, dans lequel on ajuste la teneur en oxygène de manière à ce que la combustion soit réalisée dans des conditions stoechiométriques.4) Method according to one of claims 2 and 3, wherein said gas comprising oxygen is air. 5) Method according to one of claims 2 to 4, wherein the oxygen content is adjusted so that the combustion is performed under stoichiometric conditions.
6) Procédé selon l'une des revendications 1 à 5, dans lequel on refroidit le gaz comprimé obtenu à l'étape b) et dans lequel, avant l'étape d), on comprime la deuxième partie du gaz comprimé.6) Process according to one of claims 1 to 5, wherein the compressed gas obtained in step b) is cooled and in which, before step d), the second portion of the compressed gas is compressed.
7) Procédé selon l'une des revendications 1 à 6, dans lequel on détend puis on rejette à l'atmosphère les gaz appauvris en CO2 obtenus à l'étape c).7) Method according to one of claims 1 to 6, wherein is expanded and then released into the atmosphere CO 2 depleted gases obtained in step c).
8) Procédé selon l'une des revendications 1 à 7, dans lequel on refroidit les fumées de combustion par échange de chaleur avec une solution absorbante mise en oeuvre à l'étape c).8) Method according to one of claims 1 to 7, wherein the combustion fumes are cooled by heat exchange with an absorbent solution implemented in step c).
9) Procédé selon l'une des revendications 1 à 8, dans lequel le générateur de puissance effectue une combustion catalytique.9) Method according to one of claims 1 to 8, wherein the power generator performs a catalytic combustion.
10)Générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, le générateur comportant un compresseur (Kl), des moyens de combustion (CO), une turbine de détente10) Power generator burning a mixture of an oxidant and a fuel containing hydrocarbons, the generator comprising a compressor (Kl), combustion means (CO), an expansion turbine
(Tl) et des moyens de séparation (Sl) du CO2 contenu dans un flux gazeux, la sortie du compresseur (Kl) étant reliée d'une part à une entrée des moyens de combustion (CO) et d'autre part à l'entrée des moyens de séparation (Sl) du CO2.(Tl) and separation means (Sl) of the CO 2 contained in a gas stream, the outlet of the compressor (K1) being connected on the one hand to an input of the combustion means (CO) and on the other hand to the entry of the separation means (Sl) CO 2 .
lDGénérateur selon la revendication 10, dans lequel les moyens de combustion (CO) comprennent des brûleurs catalytiques.
12)Générateur selon l'une des revendications 10 et 11, dans lequel les moyens de séparation (Sl) du CO2 sont choisis dans le groupe constitué par les colonnes utilisant des solvants d'absorption, les colonnes de distillation cryogénique, les membranes, les tamis moléculaires adsorbants.
The generator of claim 10, wherein the combustion means (CO) comprises catalytic burners. 12) Generator according to one of claims 10 and 11, wherein the separation means (Sl) of CO 2 are selected from the group consisting of columns using absorption solvents, cryogenic distillation columns, membranes, the adsorbent molecular sieves.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0509525A FR2891013B1 (en) | 2005-09-16 | 2005-09-16 | GENERATION OF ENERGY BY GAS TURBINE WITHOUT C02 EMISSION |
PCT/FR2006/002134 WO2007031658A1 (en) | 2005-09-16 | 2006-09-15 | Co2 emission-free energy production by gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1929139A1 true EP1929139A1 (en) | 2008-06-11 |
Family
ID=36566017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06808156A Withdrawn EP1929139A1 (en) | 2005-09-16 | 2006-09-15 | Co2 emission-free energy production by gas turbine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090199566A1 (en) |
EP (1) | EP1929139A1 (en) |
JP (1) | JP4995822B2 (en) |
FR (1) | FR2891013B1 (en) |
WO (1) | WO2007031658A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5419869B2 (en) * | 2007-06-22 | 2014-02-19 | コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション | Improved method for transferring CO2 from a gas stream to an ammonia solution |
US20100180565A1 (en) * | 2009-01-16 | 2010-07-22 | General Electric Company | Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same |
EP2290202A1 (en) * | 2009-07-13 | 2011-03-02 | Siemens Aktiengesellschaft | Cogeneration plant and cogeneration method |
KR101103549B1 (en) | 2009-08-18 | 2012-01-09 | 삼성에버랜드 주식회사 | Steam turbine system and method for increasing the efficiency of steam turbine system |
AT508770B1 (en) * | 2009-09-11 | 2011-04-15 | Siemens Vai Metals Tech Gmbh | METHOD FOR REMOVING CO2 FROM EXHAUST GASES FROM PLANTS FOR THE PRODUCTION OF REFRIGERATED IRON |
AU2011271636B2 (en) | 2010-07-02 | 2016-03-17 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
JP5906555B2 (en) * | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | Stoichiometric combustion of rich air by exhaust gas recirculation system |
CA2801492C (en) * | 2010-07-02 | 2017-09-26 | Exxonmobil Upstream Research Company | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler |
US8726628B2 (en) * | 2010-10-22 | 2014-05-20 | General Electric Company | Combined cycle power plant including a carbon dioxide collection system |
TWI563166B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI563164B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power |
TWI593872B (en) * | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | Integrated system and methods of generating power |
US8713947B2 (en) | 2011-08-25 | 2014-05-06 | General Electric Company | Power plant with gas separation system |
US8266913B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant and method of use |
US8245493B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and control method |
US9127598B2 (en) | 2011-08-25 | 2015-09-08 | General Electric Company | Control method for stoichiometric exhaust gas recirculation power plant |
US8453462B2 (en) * | 2011-08-25 | 2013-06-04 | General Electric Company | Method of operating a stoichiometric exhaust gas recirculation power plant |
US8245492B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and method of operation |
US8205455B2 (en) | 2011-08-25 | 2012-06-26 | General Electric Company | Power plant and method of operation |
US8453461B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Power plant and method of operation |
US8266883B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant start-up method and method of venting the power plant |
US8347600B2 (en) | 2011-08-25 | 2013-01-08 | General Electric Company | Power plant and method of operation |
CN102305109B (en) * | 2011-09-13 | 2014-03-26 | 华北电力大学 | Oxygen enrichment-coal gasification flue gas reheating combined cycle power system |
CN102337936A (en) * | 2011-09-13 | 2012-02-01 | 华北电力大学 | Flue gas reheating combined cycle power system |
CN102337937B (en) * | 2011-09-13 | 2014-08-20 | 华北电力大学 | Coal integrally-gasified smoke reheating combined-cycle power system |
EP2916933A1 (en) * | 2012-10-31 | 2015-09-16 | Membrane Technology and Research, Inc | Sweep-based membrane gas separation integrated with gas-fired power production and co2 recovery |
FR3067099B1 (en) * | 2017-05-30 | 2019-10-25 | Madhav Rathour | GAS MIXTURE SEPARATION DEVICE |
SE546350C2 (en) * | 2023-02-22 | 2024-10-08 | Stora Enso Oyj | Oxidation method with reduced carbon dioxide emisson |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2268270A (en) * | 1938-12-13 | 1941-12-30 | Sulzer Ag | Gas turbine plant |
US4733528A (en) * | 1984-03-02 | 1988-03-29 | Imperial Chemical Industries Plc | Energy recovery |
US6209307B1 (en) * | 1999-05-05 | 2001-04-03 | Fpl Energy, Inc. | Thermodynamic process for generating work using absorption and regeneration |
US6260349B1 (en) * | 2000-03-17 | 2001-07-17 | Kenneth F. Griffiths | Multi-stage turbo-machines with specific blade dimension ratios |
FR2825935B1 (en) * | 2001-06-14 | 2003-08-22 | Inst Francais Du Petrole | LOW CO2 EMISSIONS POWER GENERATOR AND ASSOCIATED METHOD |
JP3814206B2 (en) * | 2002-01-31 | 2006-08-23 | 三菱重工業株式会社 | Waste heat utilization method of carbon dioxide recovery process |
CA2519145C (en) * | 2003-03-18 | 2009-11-03 | Fluor Corporation | Humid air turbine cycle with carbon dioxide recovery |
DE10325111A1 (en) * | 2003-06-02 | 2005-01-05 | Alstom Technology Ltd | Method for generating energy in a gas turbine comprehensive power generation plant and power plant for performing the method |
DE10360951A1 (en) * | 2003-12-23 | 2005-07-28 | Alstom Technology Ltd | Thermal power plant with sequential combustion and reduced CO2 emissions and method of operating such a plant |
DE102004039164A1 (en) * | 2004-08-11 | 2006-03-02 | Alstom Technology Ltd | Method for generating energy in a gas turbine comprehensive power generation plant and power generation plant for performing the method |
-
2005
- 2005-09-16 FR FR0509525A patent/FR2891013B1/en not_active Expired - Fee Related
-
2006
- 2006-09-15 WO PCT/FR2006/002134 patent/WO2007031658A1/en active Application Filing
- 2006-09-15 EP EP06808156A patent/EP1929139A1/en not_active Withdrawn
- 2006-09-15 US US12/066,835 patent/US20090199566A1/en not_active Abandoned
- 2006-09-15 JP JP2008530574A patent/JP4995822B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007031658A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP4995822B2 (en) | 2012-08-08 |
JP2009508056A (en) | 2009-02-26 |
US20090199566A1 (en) | 2009-08-13 |
FR2891013A1 (en) | 2007-03-23 |
FR2891013B1 (en) | 2011-01-14 |
WO2007031658A1 (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007031658A1 (en) | Co2 emission-free energy production by gas turbine | |
EP1869385B1 (en) | Integrated method and installation for cryogenic adsorption and separation for producing co2 | |
EP1402161B1 (en) | Power generator with low co2 emissions and associated method | |
JP6186650B2 (en) | Low emission power generation system and method including carbon dioxide separation system | |
JP5579602B2 (en) | Process and apparatus for the separation of gas mixtures | |
EP1941208B1 (en) | Oxycombustion method in which all of the carbon dioxide produced can be captured | |
US7739864B2 (en) | Systems and methods for power generation with carbon dioxide isolation | |
JP5745844B2 (en) | Process and apparatus for the separation of gas mixtures | |
US7827778B2 (en) | Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions | |
US20080127632A1 (en) | Carbon dioxide capture systems and methods | |
EP1552874A1 (en) | Process for capturing carbon dioxide in flue gas | |
KR20080069523A (en) | Purification of carbon dioxide | |
FR2872890A1 (en) | Integrated process for adsorption and cryogenic separation for the production of carbon dioxide from sources containing low percentages of carbon dioxide | |
CA2712643A1 (en) | Method for burning carbonated fuels with combustion smoke filtration before compression | |
US20170136400A1 (en) | Integration of staged complementary psa system with a power plant for co2 capture/utilization and n2 production | |
AU2003220393B2 (en) | Humid air turbine cycle with carbon dioxide recovery | |
FR2900061A1 (en) | Concentrating carbon dioxide in discharged fumes by a generator, comprises compressing a fuel in the form of an air in a gas inlet, making a combustion of air and fuel in the inlet and evacuating the fumes produced by the combustion | |
RU2619313C2 (en) | Method for separating gases using membranes based on purge joined with power generation at gas power stations and extracting co2 | |
EP1911505B1 (en) | Process for the removal of CO2 including a thermally integrated regenerator | |
FR2944217A1 (en) | Method for collecting carbon dioxide in flue gases from e.g. power station, involves recycling heated refrigerant to constitute part of purging gas introduced into adsorbing solid loaded with carbon dioxide to regenerate solid | |
KR101209704B1 (en) | Oxy-fuel combustion power generation system and method for purification carbon dioxide of the same | |
FR2860442A1 (en) | Treating gas containing at least one impurity selected from e.g. carbon dioxide, sulfur dioxide, mercaptans or nitrogen, comprises placing gas in contact with solvent which dissolves impurities | |
FR2884304A1 (en) | Carbon dioxide separating method for iron and steel industry, involves receiving flow enriched in carbon dioxide from absorption unit, sending it towards homogenization unit and subjecting carbon dioxide to intermediate compression stage | |
EP3944890A1 (en) | Method and system for pretreatment of gaseous effluent for capturing post-combustion co2 | |
ZA200507243B (en) | Humid air turbine cycle with carbon dioxide recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080416 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080805 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130403 |