EP1927816B1 - Dispositif à compression de vapeur et procédé de réalisation d'un cycle transcritique associé - Google Patents

Dispositif à compression de vapeur et procédé de réalisation d'un cycle transcritique associé Download PDF

Info

Publication number
EP1927816B1
EP1927816B1 EP07354062.7A EP07354062A EP1927816B1 EP 1927816 B1 EP1927816 B1 EP 1927816B1 EP 07354062 A EP07354062 A EP 07354062A EP 1927816 B1 EP1927816 B1 EP 1927816B1
Authority
EP
European Patent Office
Prior art keywords
fluid
cycle
source temperature
expansion
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07354062.7A
Other languages
German (de)
English (en)
Other versions
EP1927816A1 (fr
Inventor
Maxime Ducoulombier
Stéphane Colasson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP1927816A1 publication Critical patent/EP1927816A1/fr
Application granted granted Critical
Publication of EP1927816B1 publication Critical patent/EP1927816B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Definitions

  • thermodynamic refrigeration cycle or vapor compression cycle, using carbon dioxide CO 2 as a refrigerant
  • the hot source temperature is the minimum temperature at which the refrigerant can reject heat
  • the cold source temperature is the maximum temperature at which the refrigerant can absorb heat.
  • the critical temperature T crit of CO 2 is 31.1 ° C. Beyond this temperature, the CO 2 is neither in the liquid state nor in the gaseous state, but in the supercritical state, in the form of a dense gas.
  • the figure 1 represents an enthalphic diagram of the pressure P as a function of the enthalpy h of a conventional version, called Evans-Perkins, of a vapor compression transcritical cycle according to the prior art.
  • the cycle using carbon dioxide CO 2 , with and without internal heat exchanger, the temperature conditions are as follows, namely a hot source temperature T C of 35 ° C and a cold source temperature T F of 0 ° vs.
  • the vapor compression transcritical cycle according to Evans-Perkins, schematically represented by a solid line through points 1 to 4 on the figure 1 , works by following the following four transformations.
  • the cycle comprises a first stage 1-2 of isentropic compression of the fluid, that is to say without losses.
  • the CO 2 in the saturated vapor state (point 1) is compressed from the low pressure level (LP) to the high pressure level (HP), for example via a compressor.
  • w C represents the mass compression work.
  • the cycle comprises a second stage 2-3 of isobaric cooling of the fluid.
  • the CO 2 at the outlet of the compressor (point 2) is cooled substantially to the hot source temperature T C (point 3).
  • T C hot source temperature
  • Step 2-3 is performed, for example, through a gas cooler, commonly called “gas cooler” in English.
  • the cycle comprises a step 3-4 of isenthalpic expansion of the fluid, that is to say without exchange of work or heat.
  • the supercritical CO 2 is expanded to the low pressure level via, for example, an expansion valve, where it takes the form of a liquid-vapor mixture (point 4).
  • q R represents the refrigeration mass capacity
  • the first modification consists in making the compression of step 1-2 and non-isentropic isothermal, in order to reduce the mass compression work w C. This can be done by performing a staged compression, including the addition of an intermediate gas cooler.
  • the second modification consists of recovering the relaxation work to perform isentropic and nonisenthalpic relaxation between points 3 and 4 of the cycle.
  • piston, screw, ejector, spiro-orbital and other systems can be used.
  • the third modification consists in cooling the CO 2 at the outlet of the gas cooler (point 3 on the figure 1 ), in particular to reduce the relaxation losses.
  • an internal exchanger can be used.
  • On the figure 1 such a modification corresponds to the cycle passing through points 1 'to 4'. This is to cool the CO 2 high pressure between points 3 and 3 ', superheating the saturated steam recovered at the end of evaporation, namely between points 1 and 1'.
  • the increase in the compression work between the points 1 'and 2' is compensated by a greater increase in the cooling capacity between the points 4 'and 1.
  • heat exchange is limited by the difference in specific heat between CO 2 at high pressure and CO 2 at low pressure.
  • the internal exchanger is supposed to be perfect, that is to say having a temperature at point 1 'equal to the temperature at point 3 ( figure 1 )
  • the CO 2 can not be cooled down to the lowest temperature, namely the cold source temperature T F or the evaporation temperature.
  • the relaxation losses can therefore be further reduced provided that the CO 2 temperature approaches the cold source temperature T F before the isenthalpic expansion step 3-4, as shown schematically by the arrows between the points 3 'and 3 ". and 4 'and 4 "on the figure 1 .
  • the principle consists in using a mass fraction y of CO 2 at the outlet of the gas cooler, namely at point 6 on the figure 2 , in an auxiliary cooling circuit for cooling the remaining complementary mass fraction 1-y of CO 2 , flowing in a main circuit of the cycle.
  • the cycle comprises a CO 2 heating step 1-2, followed by a step 2-3 of isentropic compression and a step 3-4 of isobaric cooling. Then, according to the Lorentzen cycle, a new step 4-5 of isentropic compression is performed, followed by a new isobaric cooling step 5-6, in order to reach the hot source temperature T C. The fluid is then separated in two and the mass fraction y of fluid, according to the auxiliary cooling circuit shown in dotted lines on the figure 2 , is then relaxed between points 6 and 10 of the cycle until reaching an intermediate pressure P int .
  • the two-phase mixture is evaporated and then superheated between the points 10 and 4 of the cycle, until reaching the hot source temperature T C , the temperature at which the CO 2 at high pressure exits the gas cooler.
  • the mass fraction is determined in such a way that the complementary mass fraction 1-y of high pressure CO 2 at the outlet of the cooler reaches the saturation temperature T sat at the intermediate pressure, namely the temperature at point 7 and at point 10, of the order of 17.83 ° C.
  • the mass fraction 1-y of CO 2 at high pressure exiting the cooler then passes into an internal exchanger and its temperature decreases further between the points 7 and 8 of the cycle. Then, the fraction 1-y mass of CO 2 is expanded between points 8 and 9 of the cycle, to reach the cold source temperature T F.
  • the CO 2 at intermediate pressure P int namely between points 10 and 4 of the figure 2
  • the fluid at the inlet of the expansion valve intended to perform the expansion step on the main circuit of the cycle (point 8 of the cycle of the figure 2 ) can not reach the cold source temperature T F.
  • the vapor compression device 11 comprises an internal heat exchanger 12, a compressor 13 connected to the outlet of the exchanger 12, a gas cooler 14 connected to the outlet of the compressor 13, and a fluid distributor ( point 4 of the figure 3 ) separating the cycle into a main circuit 1-y and an auxiliary cooling circuit y.
  • the auxiliary cooling circuit y comprises an auxiliary expansion system 15, for example a turbine, connected to the inlet of the internal heat exchanger 12, so as to form a cooling loop, and the main circuit 1-y, preferably passing through the exchanger 12 connected to the output of the fluid distributor, comprises a main expansion system 16, for example an expansion valve, connected to the outlet of the exchanger 12.
  • the passage of the fluid in the exchanger 12 on the main circuit 1-y allows in particular to lower as much as possible the CO 2 high pressure temperature, before its passage through the main expansion system 16, to reduce the irreversibilities associated with relaxation.
  • the main circuit 1-y also comprises an evaporator 17, operating at low pressure, connected to the output of the main expansion system 16 and the inlet of the heat exchanger 12 internal heat, and therefore the output of the auxiliary relief system (point 1 of the figure 3 ).
  • the cycle conventionally comprises a heating step 1-2 between points 1 and 2 of the cycle ( Figures 3 and 4 ) via the internal heat exchanger 12 ( figure 3 ), until reaching the hot source temperature T C , followed by a step 2-3 of isentropic compression via the compressor 13 operating at low pressure ( figure 3 ). Then, a step 3-4 of isobaric cooling is carried out between the points 3 and 4 of the cycle, via the isobaric gas cooler 14, until the temperature of the hot source T C is reached again ( figure 3 ). The high pressure fluid, after having passed through the gas cooler 14, is then split in two, via the fluid distributor (point 4 of the figure 4 ). In a first main circuit, a mass fraction 1-y of fluid is cooled in a step 4-5 of isobaric cooling, by through the internal heat exchanger 12 until a temperature close to the cold source temperature T F ( figure 4 ).
  • a remaining mass fraction y of fluid is used in a second auxiliary cooling circuit, namely a "sub-cycle" of refrigeration passing through points 1 to 4, commonly referred to as the reverse Brayton cycle.
  • the cycle proposed by Meunier is an ideal cycle composed of isothermal compression (with heat rejection) and isothermal expansion (with absorption of heat).
  • an isentropic compression between the points 2 and 3 of the cycle and an isenthalpic expansion between the points 5 and 6 of the cycle are represented, these steps being closer to the technological reality of implementation of the cycle.
  • the relaxation of the mass fraction y of the fluid, between the points 4 and 1 of the cycle, is isentropic, that is to say that the work is recovered. If this were not the case, the coefficient of performance COP (Coefficient Of Performance) would be disadvantageous, notably less than the coefficient of performance obtained in a cycle according to Evans-Perkins as described above.
  • the low pressure fluid vapor, in particular CO 2 which enters the exchanger 12 of the figure 3 must not be overheated, otherwise the CO 2 at high pressure can not reach the minimum temperature, that of the evaporator 17, namely the cold source temperature T F.
  • the pressure before the expansion between points 4 and 1 of the cycle, that is to say the high pressure P HP can not fall below a certain threshold called minimum pressure P min .
  • This is the configuration of the figure 4 in which the high pressure P HP is equal to the minimum pressure P min .
  • the increase of the high pressure P HP can lead to a decrease in efficiency because, on the one hand, the compression work is more important and, on the other hand, the point 1 of the cycle moves under the saturation bell, that is to say under the parabola representative of the phase diagram of CO 2 delimiting the different states (solid, liquid, gaseous) of CO 2 .
  • the CO 2 is two- phase between points 1 and 2 of the cycle, which increases the irreversibilities in the heat exchanger 12 internal heat.
  • the Meunier cycle described above is not suitable, the cycle presenting in certain sections, in particular in the exchanger 12, two phases of the fluid (liquid and vapor).
  • the monophasic state of the fluid is therefore not possible throughout the exchanger 12, especially if the hot source temperature T C is less than 56 ° C.
  • the fluid is only monophasic in the heat exchanger 12, but at the cost of overconsumption of energy and a degraded performance of the cycle, the discharges being at non-acceptable temperatures, that is to say, too high, typically of the order of 56 ° C for CO 2 .
  • the document US-2005/0044865 discloses a vapor compression device for a fluid transcritical cycle, comprising an intermediate pressure vessel, wherein the mass of active fluid can be temperature controlled to control the efficiency and capacity of the device.
  • the object of the invention is to remedy all of the aforementioned drawbacks and is intended to provide a vapor compression device for a transcritical fluid cycle, to reduce the irreversibilities in the internal heat exchanger, in order to obtain a better cycle efficiency, by ensuring that the refrigerant, in particular carbon dioxide, remains monophasic throughout the cycle; internal heat exchanger.
  • the invention also relates to a method for producing a transcritical fluid cycle, more particularly carbon dioxide, by means of such a vapor compression device, which is easy to implement and which offers optimum performance. of the cycle.
  • the vapor compression device 11 ( figure 5 ) relates to a new thermodynamic refrigeration cycle, that is to say a vapor compression cycle. It is particularly suitable for the use of carbon dioxide CO 2 as a refrigerant.
  • CO 2 carbon dioxide
  • the interest in CO 2 comes from its low environmental impact with regard to the commonly used fluorinated synthetic refrigerants, the Freons, some of which destroy the ozone layer and which for others are greenhouse gases (generally more than a thousand times more powerful than CO 2 ).
  • CO 2 is neither toxic nor flammable.
  • the device 11 differs from the device according to the Meunier cycle ( figure 3 ) by adding a compressor 18, operating at high pressure, on the main circuit 1-y of the cycle.
  • the new compression stage defined by the high-pressure compressor 18 then requires the addition of a second associated isobaric gas cooler 19, placed on the main circuit of the fluid 1-y, after the fluid distributor (point 4 on the figure 5 ), between the output of the high-pressure compressor 18 and the inlet of the internal heat exchanger 12.
  • the vapor compression device 11 comprises the same elements as the device according to the Meunier cycle with an internal heat exchanger 12, a low-pressure compressor 13, an associated isobaric gas cooler 14, an auxiliary expansion system 15 on the auxiliary cycle cooling circuit y, a main expansion system 16, on the main circuit 1-y of the cycle, and an evaporator 17 operating at low pressure.
  • the operation of the device is the same with a fluid dispenser, more particularly CO 2 , placed at point 4 of the cycle ( figure 5 ), for separating the fluid so that a mass fraction y of the fluid follows the auxiliary cooling cycle and in particular allows to cool the fluid of the main circuit 1-y at the inlet of the heat exchanger 12 internal heat.
  • the auxiliary and main expansion systems can be simple systems, such as valve, capillary, etc.
  • the auxiliary and main expansion systems 15 may each be associated, or may even be each substituted, a system, respectively auxiliary and main, working recovery, more particularly the work of relaxation.
  • the auxiliary and main work recovery systems may be positive displacement machines, piston type, or non-positive displacement machines, turbine type.
  • the auxiliary and main work recovery systems are independent and it is possible to recover work on one and / or the other of the systems.
  • auxiliary and main work recovery systems can advantageously be mechanically and / or electrically coupled to one and / or the other of the low-pressure 13 and high-pressure compressors 18 ( figure 5 ), in particular to reduce the energy consumption of the steam compression device 11.
  • the high pressure compressor 18 is intended in particular to increase the CO 2 pressure, which circulates in the exchanger 12, so that it is supercritical, that is to say, it has a temperature above the critical temperature T crit of the order of 31.1 ° C ( figure 6 ).
  • such a device then makes it possible to increase the CO 2 pressure at the outlet of the high-pressure compressor 18, so that the corresponding isobaric cooling between points 6 and 7 takes place under supercritical conditions, as described hereinafter. That is to say that the CO 2 is monophasic, namely that it passes over the representative parabola of the phase diagram of CO 2 , representing the saturation bell delimiting the different states (solid, liquid, gas) of the CO 2 ( figure 4 ).
  • a method of performing a transcritical fluid cycle, more particularly CO 2 , by means of the vapor compression device 11 shown in FIG. figure 5 will be described in more detail with regard to figure 6 , showing an enthalpy diagram of pressure versus enerhalpy, between a hot source temperature T C of 35 ° C and a cold source temperature T F of 0 ° C.
  • the cycle comprises a heating step 1-2 between points 1 and 2 of the cycle, via the internal heat exchanger 12 ( figure 5 ), until reaching the hot source temperature T C , followed by a step 2-3 compression, preferably isentropic, through the low pressure compressor 13 ( figure 5 ).
  • a step 3-4 of CO 2 isobaric cooling is preferably carried out between points 3 and 4 of the cycle, via the isobaric gas cooler 14 ( figure 5 ), until reaching the hot source temperature T C again at point 4 of the cycle
  • the CO 2 is then split in two at point 4 of the device 11 ( figure 5 ) via the fluid distributor, to obtain, in a first circuit main, a mass fraction 1-y of CO 2 , and in a second auxiliary cooling circuit; a mass fraction y of CO 2 , used in a "sub-cycle" of refrigeration between points 1 to 4 of the cycle.
  • the CO 2 is then at a mean pressure P MP , or intermediate pressure, and at the hot source temperature T C.
  • the average pressure P MP is chosen so that the mass fraction y of the CO 2 after passing through the auxiliary expansion system, which is connected to the low pressure inlet of the internal heat exchanger 12 of the cycle ( figure 5 ), ie after step 4-1 of expansion of the mass fraction y of CO 2 , can be mixed with the remaining mass fraction 1-y of CO 2 leaving the evaporator 17, to reach a superheated vapor state ( figure 5 ), as close as possible to the state of saturated vapor.
  • Point 1 of the cycle represented on the figure 6 is then advantageously on the parabola representative of the phase diagram of CO 2 , representing the saturation curve delimiting the various states (solid, liquid, gas) CO 2 .
  • the relaxation step 4-1 described above, on the auxiliary cooling circuit y may be isenthalpic or isentropic. Furthermore, the cycle operating continuously, the steps below relating to the main circuit 1-y of the cycle are performed simultaneously with the step 4-1 of relaxation, performed on the circuit y auxiliary cooling.
  • the mass fraction 1-y of CO 2 then passes into the high-pressure compressor 18, in order to undergo a step 4-5 compression, preferably isentropic, between points 4 and 5 of the cycle ( Figures 5 and 6 ).
  • the high-pressure compressor 18 makes it possible in particular to reject the CO 2 at a maximum high pressure P HP supercritical, higher than the pressure Critical P crit of CO 2 , at which the CO 2 has a very high temperature, typically higher than 60 ° C (point 5 of the cycle).
  • the CO 2 is then in a supercritical state, that is to say that it passes over the representative parabola of the CO 2 phase diagram, associated with the critical temperature T crit , representing the saturation bell of the CO 2 delimiting the various states (solid, liquid, gaseous) of CO 2 .
  • the CO 2 is subjected to a step 5-6 of cooling, preferably isobaric through the associated gas cooler 19, connected to the output of the high pressure compressor 18, until it again substantially reaches the hot source temperature T C at point 6 of the cycle
  • the CO 2 passes back into the internal heat exchanger 12, on the main circuit 1-y of the cycle, which then performs a step 6-7 cooling, preferably isobaric of the mass fraction 1-y of CO 2 at high pressure, leaving the high pressure compressor 18 and the associated gas cooler 19.
  • a step 6-7 cooling preferably isobaric of the mass fraction 1-y of CO 2 at high pressure, leaving the high pressure compressor 18 and the associated gas cooler 19.
  • a step 7-8 of isenthalpic or isentropic expansion is then performed, on the main circuit 1-y of the cycle, through the main expansion system 16, in order to pass CO 2 from the high pressure value HP at a low pressure value P BP .
  • the fluid passes into the evaporator 17, operating at low pressure, in order to complete the cycle by an isobaric evaporation step 8-1, until reaching point 1, starting point of the cycle, at the temperature of cold source T F.
  • Such a method of carrying out a transcritical CO 2 cycle by means of such a vapor compression device 11 makes it possible to operate the main refrigeration cycle at a high pressure P HP higher than the critical pressure P crit , while the auxiliary cooling circuit operates at an average pressure P MP , lower than the high pressure P HP .
  • Such a vapor compression device 11 with a staged compression system formed by the low-pressure compressor 13 and the high-pressure compressor 18, is very simple to implement simply by adding two elements to the circuit main 1-y cycle (compressor and gas cooler operating at high pressure).
  • Such a vapor compression device 11 thus makes it possible to obtain a transcritical fluid cycle, more particularly of CO 2 , with a better efficiency of the internal heat exchanger 12, in particular thanks to the use of a monophasic fluid, which allows a minimum temperature difference between the low pressure side and the high pressure side of the vapor compression device 11 according to the invention.
  • figure 7 represents a graph illustrating the variation of the coefficient of performance COP as a function of the high pressure value P HP , for different transcritical cycles, namely according to Evans-Perkins (curve in solid single line), according to Lorentzen (curve with triangles), according to Meunier (curve with squares) and according to the invention (curve with circles). It appears from figure 7 that it is possible to optimize the performance of the transcritical cycle as a function of the high pressure P HP , for the hot source temperature values T C of 35 ° C and cold source T F of 0 ° C.
  • the COP goes through a maximum (black circle) at a pressure P HP of the order of 8.4 MPa, thus offering a relative improvement especially with respect to Evans-Perkins basic cycle (single solid curve) of the order of 34.4% and compared to the Lorentzen cycle (curve with triangles) of the order of 3.9%.
  • the invention is not limited to the various embodiments described above.
  • the method may include in particular a simple step 2-4 of fluid compression, to reach the average pressure P MP and to reach the hot source temperature T C , and a simple step 4-6 of fluid compression, to reach the maximum high pressure P HP , higher than the critical pressure P crit of the fluid, and to reach the hot source temperature T C.
  • the low pressure compressors 13 and high pressure 18 and the low pressure gas coolers 14 and high pressure 19 can be any vapor compression system and any gas cooling system capable of operating at high pressure and / or low pressure, depending on their position in the circuit associated with the vapor compression device 11.
  • the vapor compression device 11 may include any type of vapor compression system, any type of isobaric cooling system, any type of simultaneous compression cooling system, any type of fluid dispenser, any auxiliary expansion system, for the auxiliary cooling circuit, and any main expansion system, for the main circuit, as long as the vapor compression device makes it possible in particular to have a single-phase fluid on both sides of the heat exchanger 12 internal, in order to reduce the irreversibilities in the internal heat exchanger 12, while maintaining the temperature of the high pressure fluid at the outlet of the exchanger 12 as close as possible to the cold source temperature T F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

    Domaine technique de l'invention
  • L'invention concerne un dispositif à compression de vapeur, pour un cycle transcritique de fluide, comportant au moins :
    • un échangeur de chaleur interne,
    • un premier système de compression de vapeur, relié à la sortie de l'échangeur de chaleur interne,
    • un premier système de refroidissement isobare, relié à la sortie du premier système de compression de vapeur,
    • un distributeur de fluide, placé à la sortie du premier système de refroidissement isobare et séparant le fluide dans un circuit principal du cycle et dans un circuit de refroidissement auxiliaire du cycle,
    • un système de détente auxiliaire, placé sur le circuit de refroidissement auxiliaire entre le distributeur de fluide et l'entrée de l'échangeur de chaleur interne,
    • un système de détente principal, placé sur le circuit principal et relié à la sortie de l'échangeur de chaleur interne,
    • un évaporateur fonctionnant à basse pression, placé entre la sortie du système de détente principal et l'entrée de l'échangeur de chaleur interne.
  • L'invention concerne également un procédé de réalisation d'un cycle transcritique de fluide, entre une température de source chaude et une température de source froide, au moyen d'un tel dispositif à compression de vapeur, comportant au moins les étapes de :
    • chauffage du fluide dans l'échangeur de chaleur interne, jusqu'à atteindre la température de source chaude,
    • compression du fluide, pour atteindre une pression moyenne et pour atteindre la température de source chaude,
    • séparation du fluide par le distributeur de fluide dans un circuit principal du cycle et dans un circuit de refroidissement auxiliaire du cycle,
    • détente du fluide sur le circuit de refroidissement auxiliaire, par le système de détente auxiliaire, jusqu'à atteindre la température de source froide,
    • détente du fluide sur le circuit principal, par le système de détente principal, jusqu'à atteindre la température de source froide,
    • évaporation isobare du fluide sur le circuit principal.
    État de la technique
  • De manière classique, un cycle thermodynamique de réfrigération, ou cycle à compression de vapeur, utilisant le dioxyde de carbone CO2 comme réfrigérant, fonctionne entre une température de source chaude TC et une température de source froide TF. La température de source chaude est la température minimale à laquelle le fluide frigorigène peut rejeter la chaleur, alors que la température de source froide est la température maximale à laquelle le fluide frigorigène peut absorber la chaleur. La température critique Tcrit du CO2 est de 31.1°C. Au-delà de cette température, le CO2 n'est ni à l'état liquide, ni à l'état gazeux, mais à l'état supercritique, sous la forme d'un gaz dense.
  • Or, dans la plupart des applications de production de froid (mode réfrigérateur) ou de production de chaud (mode pompe à chaleur), la température de rejet de la chaleur est supérieure à la température critique du CO2. Un cycle à compression de vapeur au CO2 fonctionnera ainsi généralement entre une température de source froide « souscritique » et une température de source chaude « supercritique ». Un tel cycle est alors communément appelé « transcritique ».
  • À titre d'exemple, la figure 1 représente un diagramme enthalphique de la pression P en fonction de l'enthalpie h d'une version classique, appelée Evans-Perkins, d'un cycle transcritique à compression de vapeur selon l'art antérieur. Le cycle utilisant le dioxyde de carbone CO2, avec et sans échangeur de chaleur interne, les conditions de températures sont les suivantes, à savoir une température de source chaude TC de 35°C et une température de source froide TF de 0°C.
  • Le cycle transcritique à compression de vapeur, selon Evans-Perkins, représenté schématiquement par un trait plein passant par les points 1 à 4 sur la figure 1, fonctionne en suivant les quatre transformations suivantes.
  • Entre les points 1 et 2, le cycle comporte une première étape 1-2 de compression isentropique du fluide, c'est-à-dire sans pertes. Pendant cette transformation, le CO2 à l'état de vapeur saturée (point 1) est comprimé du niveau basse pression (BP) au niveau haute pression (HP), par l'intermédiaire, par exemple, d'un compresseur. Sur la figure 1, wC représente le travail massique de compression.
  • Entre les points 2 et 3, le cycle comporte une deuxième étape 2-3 de refroidissement isobare du fluide. Pendant cette transformation, le CO2 en sortie du compresseur (point 2) est refroidi sensiblement jusqu'à la température de source chaude TC (point 3). Il y a un glissement de température, car le fluide est monophasique, c'est-à-dire qu'il n'y a pas de condensation. L'étape 2-3 est réalisée, par exemple, par l'intermédiaire d'un refroidisseur de gaz, communément appelé « gas cooler » en anglais.
  • Entre les points 3 et 4, le cycle comporte une étape 3-4 de détente isenthalpique du fluide, c'est-à-dire sans échange de travail, ni de chaleur. Pendant cette transformation, le CO2 supercritique est détendu jusqu'au niveau basse pression, par l'intermédiaire, par exemple, d'une valve de détente, où il prend la forme d'un mélange liquide-vapeur (point 4).
  • Entre les points 4 et 1, le cycle se reboucle par une étape 4-1 d'évaporation par l'intermédiaire, par exemple, d'un évaporateur. Pendant cette transformation, la phase liquide du CO2 est totalement évaporée, ce qui correspond à une absorption de chaleur. Sur la figure 1, qR représente la capacité massique de réfrigération.
  • Le CO2, quand il est utilisé dans un tel cycle, a une efficacité inférieure à celle des réfrigérants conventionnels, du type Fréon, utilisés dans un cycle « souscritique » fonctionnant entre les mêmes températures de source chaude TC et de source froide TF. Deux raisons principales peuvent être avancées. La première est que la température moyenne de rejet de la chaleur est plus élevée, pour une température de source chaude TC donnée, puisque ce rejet ne se fait pas à température constante. La seconde raison est que des irréversibilités importantes pendant la détente isenthalpique (étape 3-4) sont observées, à savoir des pertes de détente, sous forme de travail non récupéré et d'une diminution équivalente de la capacité frigorifique δw (figure 1).
  • Afin d'améliorer la performance du CO2, il faut donc adapter le cycle thermodynamique de réfrigération. Trois types de modification sont généralement proposés. La première modification consiste à rendre isotherme la compression de l'étape 1-2 et non isentropique, afin de réduire le travail de compression massique wC. Cela peut se faire en réalisant une compression étagée, avec notamment l'ajout d'un refroidisseur de gaz intermédiaire.
  • La deuxième modification consiste à récupérer le travail de détente pour effectuer une détente isentropique et non isenthalpique entre les points 3 et 4 du cycle. À titre d'exemple, des systèmes à piston, à vis, à éjecteur, spiro-orbital et d'autres peuvent être utilisés.
  • La troisième modification consiste à refroidir le CO2 en sortie du refroidisseur de gaz (point 3 sur la figure 1), afin notamment de réduire les pertes de détente. Pour réaliser cette modification, un échangeur interne peut être utilisé. Sur la figure 1, une telle modification correspond au cycle passant par les points 1' à 4'. Il s'agit de refroidir le CO2 haute pression entre les points 3 et 3', en surchauffant la vapeur saturée récupérée en fin d'évaporation, à savoir entre les points 1 et 1'. Dans ce cas, l'augmentation du travail de compression entre les points 1' et 2' est compensée par une augmentation plus importante de la capacité frigorifique entre les points 4' et 1.
  • Cependant, l'échange de chaleur est limité par la différence de chaleur massique entre le CO2 à haute pression et le CO2 à basse pression. Autrement dit, même si l'échangeur interne est supposé parfait, c'est-à-dire présentant une température au point 1' égale à la température au point 3 (figure 1), le CO2 ne peut être refroidi jusqu'à la température la plus basse, à savoir la température de source froide TF ou température d'évaporation.
  • Les pertes de détente peuvent donc encore être réduites à condition que la température du CO2 approche la température de source froide TF avant l'étape 3-4 de détente isenthalpique, comme représenté schématiquement par les flèches entre les points 3' et 3" et 4' et 4" sur la figure 1.
  • Une première solution a été proposée, notamment dans l'article « Revival of carbon dioxide as a refrigérant » de G. Lorentzen (1994, International Journal of Refrigeration, 17(5), pp. 292-301), qui décrit l'utilisation du CO2 comme son propre réfrigérant pour le refroidir avant la détente. Pour cela, un cycle avec un fluide fractionné est utilisé, ce qui donne lieu à une compression étagée.
  • Comme représenté sur le diagramme enthalpique de la figure 2, illustrant le cycle thermodynamique selon la solution proposée par Lorentzen, le principe consiste à utiliser une fraction massique y du CO2 en sortie du refroidisseur de gaz, à savoir au point 6 sur la figure 2, dans un circuit de refroidissement auxiliaire permettant de refroidir la fraction massique restante complémentaire 1-y du CO2, circulant dans un circuit principal du cycle.
  • Sur la figure 2, le cycle comporte une étape 1-2 de chauffage du CO2, suivie d'une étape 2-3 de compression isentropique et d'une étape 3-4 de refroidissement isobare. Puis, selon le cycle de Lorentzen, une nouvelle étape 4-5 de compression isentropique est réalisée, suivie par une nouvelle étape 5-6 de refroidissement isobare, afin d'atteindre la température de source chaude TC. Le fluide est alors séparé en deux et la fraction massique y de fluide, suivant le circuit de refroidissement auxiliaire représenté en traits pointillés sur la figure 2, est alors détendue entre les points 6 et 10 du cycle jusqu'à atteindre une pression intermédiaire Pint.
  • Ensuite, le mélange diphasique est évaporé puis surchauffé entre les points 10 et 4 du cycle, jusqu'à atteindre la température de source chaude TC, température à laquelle le CO2 à haute pression sort du refroidisseur de gaz. La fraction massique y est notamment déterminée, de façon à ce que la fraction massique complémentaire 1-y de CO2 à haute pression en sortie de refroidisseur atteigne la température de saturation Tsat à la pression intermédiaire, à savoir la température au point 7 et au point 10, de l'ordre de 17,83°C. La fraction massique 1-y de CO2 à haute pression sortant du refroidisseur passe alors ensuite dans un échangeur interne et sa température diminue encore entre les points 7 et 8 du cycle. Puis, la fraction massique 1-y de CO2 est détendue entre les points 8 et 9 du cycle, pour atteindre la température de source froide TF.
  • Cependant, une telle solution décrite ci-dessus présente deux limites. D'une part, le CO2 à pression intermédiaire Pint, à savoir entre les points 10 et 4 de la figure 2, est diphasique et sa température est constante, ce qui entraîne dans le refroidisseur un écart de température avec le CO2 à haute pression et donc des irréversibilités. D'autre part, le fluide à l'entrée de la valve de détente, destinée à réaliser l'étape de détente sur le circuit principal du cycle (point 8 du cycle de la figure 2), ne peut atteindre la température de source froide TF.
  • Une autre solution utilisant un fluide comme son propre réfrigérant dans un cycle de liquéfaction a également été proposée dans l'article « Refrigeration Carnot-type cycle based on isothermal vapour compression » de F. Meunier, (2006, International Journal of Refrigeration, 29, pp. 155-158). L'article décrit l'adaptation du cycle de liquéfaction de Claude, pour l'utiliser comme cycle de réfrigération transcritique. Un mode particulier de réalisation d'un dispositif à compression de vapeur 11, pour la réalisation d'un cycle selon Meunier, est représenté schématiquement sur la figure 3.
  • Sur la figure 3, le dispositif à compression de vapeur 11 comporte un échangeur 12 de chaleur interne, un compresseur 13, relié à la sortie de l'échangeur 12, un refroidisseur de gaz 14, relié à la sortie du compresseur 13, et un distributeur de fluide (point 4 de la figure 3) séparant le cycle en un circuit principal 1-y et un circuit de refroidissement auxiliaire y. Le circuit de refroidissement auxiliaire y comporte un système de détente 15 auxiliaire, par exemple une turbine, relié à l'entrée de l'échangeur 12 de chaleur interne, de manière à former une boucle de refroidissement, et le circuit principal 1-y, passant de préférence par l'échangeur 12 relié à la sortie du distributeur de fluide, comporte un système de détente 16 principal, par exemple une vanne de détente, relié à la sortie de l'échangeur 12.
  • Dans le mode particulier de réalisation de la figure 3, le passage du fluide dans l'échangeur 12 sur le circuit principal 1-y permet notamment de baisser le plus possible la température du CO2 à haute pression, avant son passage dans le système de détente 16 principal, pour diminuer les irréversibilités associées à la détente. Par ailleurs, le circuit principal 1-y comporte également un évaporateur 17, fonctionnant à basse pression, relié à la sortie du système de détente 16 principal et à l'entrée de l'échangeur 12 de chaleur interne, et par conséquent à la sortie du système de détente 15 auxiliaire (point 1 de la figure 3).
  • Sur la figure 4, représentant un diagramme enthalpique illustrant le cycle selon le principe de Meunier, au moyen du dispositif à compression de vapeur 11 comme décrit ci-dessus, la différence de chaleur massique entre le fluide à haute pression (CO2) et le fluide à basse pression est compensée par une différence de débit massique dans l'échangeur de chaleur interne.
  • Le cycle comporte classiquement une étape 1-2 de chauffage entre les points 1 et 2 du cycle (figures 3 et 4) par l'intermédiaire de l'échangeur 12 de chaleur interne (figure 3), jusqu'à atteindre la température de source chaude TC, suivie d'une étape 2-3 de compression isentropique par l'intermédiaire du compresseur 13 fonctionnant à basse pression (figure 3). Puis, une étape 3-4 de refroidissement isobare est réalisée entre les points 3 et 4 du cycle, par l'intermédiaire du refroidisseur de gaz 14 isobare, jusqu'à atteindre de nouveau la température dé source chaude TC (figure 3). Le fluide à haute pression, après être passé dans le refroidisseur de gaz 14, est alors fractionné en deux, par l'intermédiaire du distributeur de fluide (point 4 de la figure 4). Dans un premier circuit principal, une fraction massique 1-y de fluide est refroidie dans une étape 4-5 de refroidissement isobare, par l'intermédiaire de l'échangeur 12 de chaleur interne, jusqu'à atteindre une température proche de la température de source froide TF (figure 4).
  • Une fraction massique restante y de fluide est utilisée dans un second circuit de refroidissement auxiliaire, à savoir un « sous cycle » de réfrigération passant par les points 1 à 4, communément appelé cycle de Brayton inverse. Sur la figure 4, la fraction massique y doit alors répondre à la contrainte suivante : (1- y)(h 4 - h 5)=h 2 - h 1.
  • Initialement, le cycle proposé par Meunier est un cycle idéal composé d'une compression isotherme (avec rejet de chaleur) et d'une détente isotherme (avec absorption de chaleur). Sur la figure 4, une compression isentropique entre les points 2 et 3 du cycle et une détente isenthalpique entre les points 5 et 6 du cycle sont représentées, ces étapes étant plus proches de la réalité technologique de mise en oeuvre du cycle. La détente de la fraction massique y du fluide, entre les points 4 et 1 du cycle, est isentropique, c'est-à-dire que le travail est récupéré. Si ce n'était pas le cas, le coefficient de performance COP (« Coefficient Of Performance » en anglais) serait désavantageux, notamment inférieur au coefficient de performance obtenu dans un cycle selon Evans-Perkins comme décrit précédemment.
  • Pour que le cycle puisse fonctionner, la vapeur de fluide à basse pression, notamment du CO2, qui rentre dans l'échangeur 12 de la figure 3, ne doit pas être surchauffée, sinon le CO2 à haute pression ne peut atteindre la température minimale, celle de l'évaporateur 17, à savoir la température dé source froide TF. La pression avant la détente entre les points 4 et 1 du cycle, c'est-à-dire la pression haute PHP, ne peut donc pas descendre en dessous d'un certain seuil appelé pression minimale Pmin. C'est la configuration de la figure 4, dans laquelle la pression haute PHP est égale à la pression minimale Pmin.
  • Cependant, dans de telles conditions, l'augmentation de la pression haute PHP peut entraîner une diminution de l'efficacité, car, d'une part, le travail de compression est plus important et, d'autre part, le point 1 du cycle se déplace sous la cloche de saturation, c'est-à-dire sous la parabole représentative du diagramme de phase du CO2 délimitant les différents états (solide, liquide, gazeux) du CO2. Il en résulte que le CO2 est diphasique entre les points 1 et 2 du cycle, ce qui augmente les irréversibilités dans l'échangeur 12 de chaleur interne.
  • De plus, pour une température de source chaude TC la plus faible possible, généralement comprise entre 10°C et 50°C, le cycle de Meunier décrit ci-dessus n'est pas adapté, le cycle présentant dans certaines sections, en particulier dans l'échangeur 12, deux phases du fluide (liquide et vapeur). L'état monophasique du fluide n'est donc pas possible dans tout l'échangeur 12, notamment si la température de source chaude TC est inférieure à 56°C. Au-dessus de 56°C, le fluide est bien uniquement monophasique dans l'échangeur 12, mais au prix d'une surconsommation d'énergie et d'un rendement dégradé du cycle, les rejets étant à des températures non acceptables, c'est-à-dire trop élevées, typiquement de l'ordre de 56°C pour le CO2.
  • Le document US-A-2005/0044865 décrit un dispositif à compression de vapeur pour un cycle transcritique de fluide, comportant un récipient à pression intermédiaire, dans lequel la masse de fluide actif peut être régulée en température pour contrôler l'efficacité et la capacité du dispositif.
  • Objet de l'invention
  • L'invention a pour but de remédier à l'ensemble des inconvénients précités et a pour objet la réalisation d'un dispositif à compression de vapeur, pour un cycle transcritique de fluide, permettant de réduire les irréversibilités dans l'échangeur de chaleur interne, afin d'obtenir un meilleur rendement du cycle, en s'assurant que le fluide frigorigène, en particulier du dioxyde de carbone, reste monophasique dans tout l'échangeur de chaleur interne.
  • L'invention a également pour objet un procédé de réalisation d'un cycle transcritique de fluide, plus particulièrement du dioxyde carbone, au moyen d'un tel dispositif à compression de vapeur, qui soit facile à mettre en oeuvre et qui offre un rendement optimal du cycle.
  • Selon l'invention, ce but et ces objets sont réalisés par les revendications annexées.
  • Description sommaire des dessins
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
    • La figure 1 représente un diagramme enthalpique selon l'art antérieur, illustrant un cycle transcritique de fluide selon Evans-Perkins.
    • La figure 2 représente un diagramme enthalpique selon l'art antérieur, illustrant un cycle transcritique de fluide selon Lorentzen.
    • La figure 3 représente schématiquement un dispositif à compression de vapeur selon l'art antérieur, pour la réalisation d'un cycle transcritique de fluide selon Meunier.
    • La figure 4 représente un diagramme enthalpique selon l'art antérieur, illustrant un cycle transcritique de fluide selon Meunier, réalisé au moyen d'un dispositif à compression de vapeur selon la figure 3.
    • La figure 5 représente schématiquement un dispositif à compression de vapeur selon l'invention, pour la réalisation d'un cycle transcritique de fluide selon l'invention.
    • La figure 6 représente un diagramme enthalpique illustrant un cycle transcritique de fluide selon l'invention, réalisé au moyen d'un dispositif à compression de vapeur selon la figure 5.
    • La figure 7 représente un diagramme du coefficient de performance en fonction de la pression haute, pour le cycle transcritique de fluide selon les figures 5 et 6.
    Description de modes particuliers de réalisation
  • En référence aux figures 5 à 7, le dispositif à compression de vapeur 11 selon l'invention (figure 5) concerne un nouveau cycle thermodynamique de réfrigération, c'est-à-dire un cycle à compression de vapeur. Il est en particulier adapté à l'usage du dioxyde de carbone CO2 comme réfrigérant. L'intérêt porté sur le CO2 provient de son faible impact environnemental au regard des réfrigérants synthétiques fluorés couramment utilisés, les fréons, qui pour certains détruisent la couche d'ozone et qui pour d'autres sont des gaz à effet de serre (généralement plus de mille fois plus puissant que le CO2). En outre, le CO2 n'est ni toxique, ni inflammable.
  • Sur la figure 5, un mode particulier de réalisation du dispositif à compression de vapeur 11 est représenté sous forme schématique. Le dispositif 11 se distingue du dispositif selon le cycle de Meunier (figure 3) par l'ajout d'un compresseur 18, fonctionnant à haute pression, sur le circuit principal 1-y du cycle. Le nouvel étage de compression défini par le compresseur haute pression 18 nécessite alors l'ajout d'un deuxième refroidisseur de gaz 19 isobare associé, placé sur le circuit principal du fluide 1-y, après le distributeur de fluide (point 4 sur la figure 5), entre la sortie du compresseur haute pression 18 et l'entrée de l'échangeur 12 de chaleur interne.
  • Le dispositif à compression de vapeur 11 comporte les mêmes éléments que le dispositif selon le cycle de Meunier avec un échangeur 12 de chaleur interne, un compresseur basse pression 13, un refroidisseur de gaz 14 isobare associé, un système de détente 15 auxiliaire, sur le circuit y de refroidissement auxiliaire du cycle, un système de détente 16 principal, sur le circuit principal 1-y du cycle, et un évaporateur 17 fonctionnant à basse pression. Le fonctionnement du dispositif est le même avec un distributeur de fluide, plus particulièrement du CO2, placé au point 4 du cycle (figure 5), permettant de séparer le fluide afin qu'une fraction massique y du fluide suive le cycle de refroidissement auxiliaire et permette notamment de refroidir le fluide du circuit principal 1-y à l'entrée de l'échangeur 12 de chaleur interne.
  • Sur la figure 5, les systèmes de détente 15 auxiliaire et 16 principal peuvent être des systèmes simples, du type valve, capillaire, etc. Dans des variantes de réalisation non représentées, les systèmes de détente 15 auxiliaire et 16 principal peuvent être associés chacun, ou peuvent même être substitués chacun, à un système, respectivement auxiliaire et principal, de récupération de travail, plus particulièrement du travail de détente. À titre d'exemple, les systèmes auxiliaire et principal de récupération de travail peuvent être des machines à déplacement positif, du type piston, ou bien des machines à déplacement non positif, du type turbine. Les systèmes auxiliaire et principal de récupération de travail sont indépendants et il est possible de récupérer du travail sur l'un et/ou sur l'autre des systèmes.
  • Par ailleurs, de tels systèmes auxiliaire et principal de récupération de travail peuvent être avantageusement couplés mécaniquement et/ou électriquement à l'un et/ou à l'autre des compresseurs basse pression 13 et haute pression 18 (figure 5), afin notamment d'alléger la consommation énergétique du dispositif à compression de vapeur 11.
  • Sur les figures 5 et 6, le compresseur haute pression 18 a notamment pour but d'augmenter la pression du CO2, qui circule dans l'échangeur 12, de façon à ce qu'il soit supercritique, c'est-à-dire qu'il ait une température supérieure à la température critique Tcrit de l'ordre de 31,1 °C (figure 6).
  • Contrairement au cycle de Meunier (figure 4), un tel dispositif permet alors d'augmenter la pression du CO2 à la sortie du compresseur haute pression 18, afin que le refroidissement isobare correspondant entre les points 6 et 7 se fasse en condition supercritique, comme décrit ci-après, c'est-à-dire que le CO2 soit monophasique, à savoir qu'il passe au-dessus de la parabole représentative du diagramme de phase du CO2, représentant la cloche de saturation délimitant les différents états (solide, liquide, gazeux) du CO2 (figure 4).
  • Un procédé de réalisation d'un cycle transcritique de fluide, plus particulièrement du CO2, au moyen du dispositif à compression de vapeur 11 représenté sur la figure 5, va être décrit plus en détail au regard de la figure 6, représentant un diagramme enthalpique de la pression en fonction de l'énthalpie, entre une température de source chaude TC de 35°C et une température de source froide TF de 0°C. Le cycle comporte une étape 1-2 de chauffage entre les points 1 et 2 du cycle, par l'intermédiaire de l'échangeur 12 de chaleur interne (figure 5), jusqu'à atteindre la température de source chaude TC, suivie d'une étape 2-3 de compression, de préférence, isentropique, par l'intermédiaire du compresseur basse pression 13 (figure 5). Puis, une étape 3-4 de refroidissement, de préférence, isobare du CO2 est réalisée entre les points 3 et 4 du cycle, par l'intermédiaire du refroidisseur de gaz 14 isobare (figure 5), jusqu'à atteindre de nouveau la température de source chaude TC au point 4 du cycle
  • Le CO2 est alors fractionné en deux au point 4 du dispositif 11 (figure 5) par l'intermédiaire du distributeur de fluide, pour obtenir, dans un premier circuit principal, une fraction massique 1-y de CO2, et, dans un deuxième circuit de refroidissement auxiliaire; une fraction massique y de CO2, utilisée dans un « sous cycle » de réfrigération entre les points 1 à 4 du cycle. Comme précédemment pour le cycle de Meunier, la fraction massique y répond à la contrainte suivante : (1-y).(h 6 -h7 )= h 2 -h 1 .
  • Après l'étape 3-4 de refroidissement isobare, le CO2 est alors à une pression moyenne PMP, ou pression intermédiaire, et à la température de source chaude TC. La pression moyenne PMP est choisie de sorte que la fraction massique y du CO2 après son passage dans le système de détente 15 auxiliaire, lequel est connecté à l'entrée basse pression de l'échangeur 12 de chaleur interne du cycle (figure 5), à savoir après l'étape 4-1 de détente de la fraction massique y de CO2, puisse être mélangée à la fraction massique restante 1-y du CO2 sortant de l'évaporateur 17, pour atteindre un état de vapeur surchauffée (figure 5), le plus proche possible de l'état de vapeur saturée. Le point 1 du cycle représenté sur la figure 6 se trouve alors avantageusement sur la parabole représentative du diagramme de phase du CO2, représentant la courbe de saturation délimitant les différents états (solide, liquide, gazeux) du CO2.
  • L'étape 4-1 de détente décrite ci-dessus, sur le circuit y de refroidissement auxiliaire, peut être isenthalpique ou isentropique. Par ailleurs, le cycle fonctionnant en continu, les étapes ci-dessous relatives au circuit principal 1-y du cycle sont réalisées simultanément avec l'étape 4-1 de détente, réalisée sur le circuit y de refroidissement auxiliaire.
  • Dans le circuit principal, la fraction massique 1-y de CO2 passe alors dans le compresseur haute pression 18, afin de subir une étape 4-5 de compression, de préférence, isentropique, entre les points 4 et 5 du cycle (figures 5 et 6). Le compresseur haute pression 18 permet notamment de rejeter le CO2 à une pression haute maximale PHP supercritique, supérieure à la pression critique Pcrit du CO2, à laquelle le CO2 a une température très élevée, typiquement supérieure à 60°C (point 5 du cycle). Le CO2 est alors dans un état supercritique, c'est-à-dire qu'il passe au-dessus de la parabole représentative du diagramme de phase du CO2, associée à la température critique Tcrit, représentant la cloche de saturation du CO2 délimitant les différents états (solide, liquide, gazeux) du CO2.
  • Puis, entre les points 5 et 6 du cycle, le CO2 est soumis à une étape 5-6 de refroidissement, de préférence, isobare par l'intermédiaire du refroidisseur de gaz 19 associé, connecté à la sortie du compresseur haute pression 18, jusqu'à atteindre de nouveau sensiblement la température de source chaude TC, au point 6 du cycle
  • Puis, entre les points 6 et 7 du cycle (figures 5 et 6), le CO2 repasse dans l'échangeur 12 de chaleur interne, sur le circuit principal 1-y du cycle, qui réalise alors une étape 6-7 de refroidissement, de préférence, isobare de la fraction massique 1-y de CO2 à haute pression, sortant du compresseur haute pression 18 et du refroidisseur de gaz 19 associé. Une telle étape permet de faire descendre la température du CO2 en dessous de la température de source chaude TC, jusqu'à atteindre sensiblement la température de source froide TF, soit 0°C.
  • Une étape 7-8 de détente isenthalpique ou isentropique est ensuite réalisée, sur le circuit principal 1-y du cycle, par l'intermédiaire du système de détente 16 principal, afin de faire passer le CO2 de la valeur de pression haute PHP à une valeur de pression basse PBP.
  • Enfin, le fluide passe dans l'évaporateur 17, fonctionnant à basse pression, afin de terminer le cycle par une étape 8-1 d'évaporation isobare, jusqu'à atteindre le point 1, point de départ du cycle, à la température de source froide TF.
  • Ainsi, c'est le mélange du CO2 à basse pression en sortie de l'évaporateur 17 du circuit principal 1-y et du CO2 à basse pression en sortie du système de détente 15 auxiliaire du circuit de refroidissement auxiliaire y, qui est chauffé au départ du cycle dans l'échangeur 12 de chaleur interne, avant d'être entraîné dans le compresseur basse pression 13.
  • À titre d'exemple, pour une température de source froide TF de l'ordre de 0°C, pour une température de source chaude TC de 35°C et pour une pression critique Pcrit de l'ordre de 7,5MPa, la pression moyenne PMP est de l'ordre de 5,5MPa et la pression haute PHP est de l'ordre de 8,4MPa (figures 6 et 7).
  • Un tel procédé de réalisation d'un cycle transcritique de CO2 au moyen d'un tel dispositif à compression de vapeur 11 (figure 5) permet donc de faire fonctionner le cycle principal de réfrigération à une pression haute PHP supérieure à la pression critique Pcrit, alors que le circuit de refroidissement auxiliaire fonctionne à une pression moyenne PMP, inférieure à la pression haute PHP.
  • Par ailleurs, un tel dispositif à compression de vapeur 11, avec un système de compression étagée formé par le compresseur basse pression 13 et le compresseur haute pression 18, est très simple à mettre en oeuvre avec simplement l'ajout de deux éléments sur le circuit principal 1-y du cycle (compresseur et refroidisseur de gaz fonctionnant à haute pression). Un tel dispositif à compression de vapeur 11 permet donc d'obtenir un cycle transcritique de fluide, plus particulièrement de CO2, avec une meilleure efficacité de l'échangeur 12 de chaleur interne, notamment grâce à l'utilisation d'un fluide monophasique, ce qui permet un écart minimum de température entre le côté à basse pression et le côté à haute pression du dispositif à compression de vapeur 11 selon l'invention.
  • En effet, la figure 7 représente un graphique illustrant la variation du coefficient de performance COP en fonction de la valeur de pression haute PHP, pour différents cycles transcritiques, à savoir selon Evans-Perkins (courbe en trait plein simple), selon Lorentzen (courbe avec des triangles), selon Meunier (courbe avec des carrés) et selon l'invention (courbe avec des ronds). Il ressort de la figure 7 qu'il est possible d'optimiser la performance du cycle transcritique en fonction de la pression haute PHP, pour les valeurs de température de source chaude TC de 35°C et de source froide TF de 0°C.
  • En regardant la courbe correspondant au cycle selon l'invention (courbe avec les ronds), le COP passe par un maximum (rond noir) à une pression PHP de l'ordre de 8.4MPa, offrant ainsi une amélioration relative notamment par rapport au cycle de base d'Evans-Perkins (courbe en trait plein simple) de l'ordre de 34.4% et par rapport au cycle de Lorentzen (courbe avec des triangles) de l'ordre de 3,9%.
  • L'invention n'est pas limitée aux différents modes de réalisation décrits ci-dessus. D'une façon générale, il existe plusieurs chemins possibles, pour passer d'un point à un autre du cycle transcritique selon l'invention, le fluide pouvant suivre les courbes isobares, les courbes isothermes, les courbes isenthalpiques ou les courbes isentropiques, sur le diagramme enthalpique comme représenté sur la figure 6. De façon générale, le procédé peut notamment comporter une simple étape 2-4 de compression du fluide, pour atteindre le pression moyenne PMP et pour atteindre la température de source chaude TC, et une simple étape 4-6 de compression du fluide, pour atteindre la pression haute maximale PHP, supérieure à la pression critique Pcrit du fluide, et pour atteindre la température de source chaude TC.
  • Les compresseurs basse pression 13 et haute pression 18 et les refroidisseurs de gaz basse pression 14 et haute pression 19 peuvent être tout système de compression de vapeur et tout système de refroidissement de gaz pouvant fonctionner à haute pression et/ou à basse pression, en fonction de leurs places dans le circuit associé au dispositif à compression de vapeur 11.
  • Le dispositif à compression de vapeur 11 selon l'invention peut notamment comporter tout type de système à compression de vapeur, tout type de système de refroidissement isobare, tout type de système de refroidissement simultané à une compression, tout type de distributeur de fluide, tout système de détente auxiliaire, pour le circuit de refroidissement auxiliaire, et tout système de détente principal, pour le circuit principal, tant que le dispositif à compression de vapeur permet notamment d'avoir un fluide monophasé des deux côtés de l'échangeur 12 de chaleur interne, afin de réduire les irréversibilités dans l'échangeur 12 de chaleur interne, tout en maintenant la température du fluide à haute pression en sortie de l'échangeur 12 la plus proche possible de la température de source froide TF.

Claims (15)

  1. Dispositif à compression de vapeur (11), pour un cycle transcritique de fluide, comportant au moins :
    - un échangeur (12) de chaleur interne,
    - un premier système de compression de vapeur (13), relié à la sortie de l'échangeur (12) de chaleur interne,
    - un premier système de refroidissement isobare (14), relié à la sortie du premier système de compression de vapeur (13),
    - un distributeur de fluide, placé à la sortie du premier système de refroidissement isobare (14) et séparant le fluide dans un circuit principal (1-y) du cycle et dans un circuit de refroidissement auxiliaire (y) du cycle,
    - un système de détente (15) auxiliaire, placé sur le circuit (y) de refroidissement auxiliaire entre le distributeur de fluide et l'entrée de l'échangeur (12) de chaleur interne,
    - un système de détente (16) principal, placé sur le circuit principal (1-y) et relié à la sortie de l'échangeur (12) de chaleur interne,
    - un évaporateur (17) fonctionnant à basse pression, placé entre la sortie du système de détente (16) principal et l'entrée de l'échangeur (12) de chaleur interne,
    dispositif caractérisé en ce qu'il comporte un deuxième système de compression de vapeur (18) et un deuxième système de refroidissement isobare (19), relié à la sortie du deuxième système de compression de vapeur (18), placés sur le circuit principal (1-y) du cycle après le distributeur de fluide et avant l'entrée de l'échangeur (12) de chaleur interne.
  2. Dispositif selon la revendication 1, caractérisé en ce que le fluide est du dioxyde de carbone (CO2).
  3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que les systèmes de refroidissement isobare (14, 19) sont des refroidisseurs de gaz.
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le système de détente (16) principal est associé à un système principal de récupération de travail.
  5. Dispositif selon la revendication 4, caractérisé en ce qu'il comporte des moyens de couplage mécaniques et/ou électriques entre ledit système principal de récupération de travail et le premier système de compression de vapeur (13) et/ou le deuxième système de compression de vapeur (18).
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le système de détente (15) auxiliaire est associé à un système auxiliaire de récupération de travail.
  7. Dispositif selon la revendication 6, caractérisé en ce qu'il comporte des moyens de couplage mécaniques et/ou électriques entre ledit système auxiliaire de récupération de travail et le premier système de compression de vapeur (13) et/ou le deuxième système de compression de vapeur (18).
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'échangeur (12) de chaleur interne est relié à la sortie du deuxième système de refroidissement isobare (19) et à l'entrée du système de détente (16) principal sur le circuit principal (1-y) du cycle.
  9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la pression dans le circuit principal (1-y) du cycle est une pression haute maximale (PHP) supérieure à la pression critique (Pcrit) du fluide.
  10. Dispositif selon la revendication 9, caractérisé en ce que la pression dans le circuit de refroidissement auxiliaire (y) du cycle est une pression moyenne (PMP) du fluide, inférieure à ladite pression haute maximale (PHP).
  11. Procédé de réalisation d'un cycle transcritique de fluide, entre une température de source chaude (TC) et une température de source froide (TF), au moyen du dispositif à compression de vapeur (11) selon l'une quelconque des revendications 1 à 10, comportant au moins les étapes de :
    - chauffage (1-2) du fluide dans l'échangeur (12) de chaleur interne, jusqu'à atteindre la température de source chaude (TC),
    - compression (2-4) du fluide, pour atteindre une pression moyenne (PMP) et pour atteindre la température de source chaude (TC),
    - séparation (4) du fluide par le distributeur de fluide dans un circuit principal (1-y) du cycle et dans un circuit de refroidissement auxiliaire (y) du cycle,
    - détente (4-1) du fluide sur le circuit de refroidissement auxiliaire (y), par le système de détente (15) auxiliaire, jusqu'à atteindre la température de source froide (TF),
    - détente (7-8) du fluide sur le circuit principal (1-y), par le système de détente (16) principal, jusqu'à atteindre la température de source froide (TF),
    - évaporation isobare (8-1) du fluide sur le circuit principal (1-y),
    procédé caractérisé en ce qu'il comporte sur le circuit principal (1-y) du cycle, après l'étape de séparation (4) du fluide et avant l'étape de détente (7-8) associée, une étape de compression (4-6) du fluide, pour atteindre une pression haute maximale (PHP), supérieure à une pression critique (Pcrit) du fluide, et pour atteindre sensiblement la température de source chaude (TC), et une étape de refroidissement (6-7) du fluide, pour atteindre sensiblement la température de source froide (TF).
  12. Procédé selon la revendication 11, caractérisé en ce que ladite étape de compression (2-4) du fluide, pour atteindre une pression moyenne (PMP) et pour atteindre la température de source chaude (TC), comporte les étapes de :
    - compression isentropique (2-3) du fluide, par le premier système de compression de vapeur (13), pour atteindre ladite pression moyenne (PMP),
    - refroidissement isobare (3-4) du fluide, par le premier système de refroidissement isobare (14), pour atteindre la température de source chaude (TC).
  13. Procédé selon l'une des revendications 11 et 12, caractérisé en ce que ladite étape de détente (4-1) du fluide sur le circuit de refroidissement auxiliaire (y) du cycle est isenthalpique ou isentropique.
  14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que ladite étape de détente (7-8) du fluide sur le circuit principal (1-y) du cycle est isenthalpique ou isentropique.
  15. Procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que ladite étape de compression (4-6) du fluide, pour atteindre une pression haute maximale (PHP), supérieure à une pression critique (Pcrit) du fluide, et pour atteindre sensiblement la température de source chaude (TC), comporte une étape de compression isentropique (4-5) du fluide, suivie d'une étape de refroidissement isobare (5-6) du fluide.
EP07354062.7A 2006-12-01 2007-11-16 Dispositif à compression de vapeur et procédé de réalisation d'un cycle transcritique associé Not-in-force EP1927816B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0610507A FR2909439B1 (fr) 2006-12-01 2006-12-01 Dispositif a compression de vapeur et procede de realisation d'un cycle transcritique associe

Publications (2)

Publication Number Publication Date
EP1927816A1 EP1927816A1 (fr) 2008-06-04
EP1927816B1 true EP1927816B1 (fr) 2016-05-04

Family

ID=38442032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07354062.7A Not-in-force EP1927816B1 (fr) 2006-12-01 2007-11-16 Dispositif à compression de vapeur et procédé de réalisation d'un cycle transcritique associé

Country Status (4)

Country Link
US (1) US7818978B2 (fr)
EP (1) EP1927816B1 (fr)
JP (1) JP5231002B2 (fr)
FR (1) FR2909439B1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2675569C (fr) * 2007-02-14 2015-06-30 Heleos Technology Gmbh Procede et dispositif pour transferer de la chaleur d'un premier milieu vers un second milieu
CN101970953B (zh) * 2008-01-17 2013-11-13 开利公司 二氧化碳制冷剂蒸汽压缩系统
AU2009265652B2 (en) * 2008-07-04 2015-10-29 Heleos Technology Gmbh Process and apparatus for transferring heat from a first medium to a second medium
CN102414522B (zh) * 2009-04-29 2014-03-05 开利公司 跨临界热激活的冷却、加热和制冷系统
US9970696B2 (en) 2011-07-20 2018-05-15 Thermo King Corporation Defrost for transcritical vapor compression system
US9718553B2 (en) 2013-03-14 2017-08-01 Rolls-Royce North America Technologies, Inc. Adaptive trans-critical CO2 cooling systems for aerospace applications
US10132529B2 (en) 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
US10288325B2 (en) 2013-03-14 2019-05-14 Rolls-Royce Corporation Trans-critical vapor cycle system with improved heat rejection
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
EP2994385B1 (fr) 2013-03-14 2019-07-03 Rolls-Royce Corporation Systèmes de refroidissement à co2 transcritique adaptatifs pour applications aérospatiales
US9676484B2 (en) * 2013-03-14 2017-06-13 Rolls-Royce North American Technologies, Inc. Adaptive trans-critical carbon dioxide cooling systems
EP2889558B1 (fr) 2013-12-30 2019-05-08 Rolls-Royce Corporation Système de refroidissement avec machine à expansion et éjecteur
US9739200B2 (en) * 2013-12-30 2017-08-22 Rolls-Royce Corporation Cooling systems for high mach applications
DE102014004846A1 (de) * 2014-04-03 2015-10-08 Martin Braun Niedertemperaturhochdruckwärmeumformung
EP3859235A1 (fr) * 2020-01-31 2021-08-04 WEISS UMWELTTECHNIK GmbH Chambre d'essai et procédé de commande

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533755C2 (de) * 1994-09-13 1998-07-02 Josef Ing Grad Lechner Vorrichtung und Verfahren zur Erzeugung von Wärme und Kälte
JP4442068B2 (ja) * 2001-09-12 2010-03-31 三菱電機株式会社 冷凍空調装置
US6698214B2 (en) * 2002-02-22 2004-03-02 Thar Technologies, Inc Method of refrigeration with enhanced cooling capacity and efficiency
JP4107926B2 (ja) * 2002-09-19 2008-06-25 三洋電機株式会社 遷臨界冷媒サイクル装置
JP4410980B2 (ja) * 2002-09-19 2010-02-10 三菱電機株式会社 冷凍空調装置
NO317847B1 (no) * 2002-12-23 2004-12-20 Sinvent As Metode for regulering av et dampkompresjonssystem
US6923011B2 (en) * 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
JP4595654B2 (ja) * 2005-04-27 2010-12-08 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
US20080127672A1 (en) 2008-06-05
JP5231002B2 (ja) 2013-07-10
JP2008139014A (ja) 2008-06-19
US7818978B2 (en) 2010-10-26
FR2909439A1 (fr) 2008-06-06
FR2909439B1 (fr) 2009-02-13
EP1927816A1 (fr) 2008-06-04

Similar Documents

Publication Publication Date Title
EP1927816B1 (fr) Dispositif à compression de vapeur et procédé de réalisation d'un cycle transcritique associé
FR2476240A1 (fr) Appareil de recuperation d'energie pour installation de compresseur de gaz
EP0117793B1 (fr) Procédé et installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel
EP4038326B1 (fr) Dispositif de motorisation, véhicule volant et procédé de refroidissement d'un moteur
EP3191693B1 (fr) Système de production d'énergie basée sur un cycle de rankine
WO2010116067A2 (fr) Procede et systeme frigorifique pour la recuperation de la froideur du methane par des fluides frigorigenes
WO2022171485A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
EP3438422B1 (fr) Dispositif et procédé de régulation de la charge fluidique en circulation dans un système basé sur un cycle de rankine
FR3043759A1 (fr) Circuit de conditionnement thermique et procede d'utilisation d'un tel circuit de conditionnement thermique
WO2022171392A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
WO2024120762A1 (fr) Procédé et installation de refroidissement d'un flux de fluide utilisateur
WO2023180391A1 (fr) Procédé de liquéfaction d'un gaz d'alimentation riche en méthane, et installation correspondante
WO2023135223A1 (fr) Dispositif et procédé de réchauffement puis détente d'un gaz
WO2024069074A1 (fr) Procédé et système de solidification d'un gaz à la pression atmosphérique
EP4445084A1 (fr) Procédé de liquéfaction d'un gaz à traiter riche en méthane, et installation correspondante
WO2022263754A1 (fr) Systeme de recuperation d'energie de compression d'un gaz, liquefacteur comprenant un tel systeme et procede de recuperation d'energie de compression d'un gaz
WO2022268830A1 (fr) Procede de stockage et de recuperation d'energie avec stockage de chaleur indirect a la compression
FR3147357A3 (fr) Installation et procédé de production d’hydrogène liquéfié comprenant
FR3140671A1 (fr) Pompe a chaleur reversible a co2 et procede de fonctonnement
FR2944095A1 (fr) Procede de liquefaction de gaz naturel utilisant des turbines a gaz a basse temperature d'echappement
FR3067099A1 (fr) Dispositif de separation de melange gazeux
FR3068772A1 (fr) Dispositif et procede de liquefaction d’un gaz naturel ou d’un biogaz
FR3068771A1 (fr) Dispositif et procede de liquefaction d’un gaz naturel ou d’un biogaz
BE489030A (fr)
FR2767190A1 (fr) Cycle frigorifique de pompe a chaleur a melange non aziotropique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081113

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150327

INTG Intention to grant announced

Effective date: 20150331

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 797283

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007046118

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160504

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 797283

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007046118

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007046118

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

Effective date: 20180327

Ref country code: FR

Ref legal event code: RN

Effective date: 20180316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071116

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180309

Year of fee payment: 11

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20180618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130