EP1924876A2 - System and apparatus for increasing quality and efficiency of film capture and methods of use thereof - Google Patents

System and apparatus for increasing quality and efficiency of film capture and methods of use thereof

Info

Publication number
EP1924876A2
EP1924876A2 EP20060802320 EP06802320A EP1924876A2 EP 1924876 A2 EP1924876 A2 EP 1924876A2 EP 20060802320 EP20060802320 EP 20060802320 EP 06802320 A EP06802320 A EP 06802320A EP 1924876 A2 EP1924876 A2 EP 1924876A2
Authority
EP
Grant status
Application
Patent type
Prior art keywords
film
image
emulsion
stock
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20060802320
Other languages
German (de)
French (fr)
Other versions
EP1924876A4 (en )
Inventor
Craig Mowry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mediapod LLC
Original Assignee
Mediapod LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/18Motion-picture cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/06Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe involving anamorphosis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/2228Video assist systems used in motion picture production, e.g. video cameras connected to viewfinders of motion picture cameras or related video signal processing

Abstract

A system, apparatus, or method is provided for imaging and for capturing visuals to provide image manipulation options for increasing resolution of subject images. A system, apparatus or method for increasing resolution of subject images is provided using a camera to deliver unexposed photographic emulsion and to expose a variable size and dimension of the emulsion.

Description

SYSTEM AND APPARATUS FOR INCREASING QUALITY AND EFFICIENCY OF FILM CAPTURE AND METHODS OF USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is based on and claims priority to U.S. Provisional Application Serial No. 60/711,345, filed on August 25, 2005 and entitled "SYSTEM, METHOD APPARATUS FOR CAPTURING AND SCREENING VISUALS FOR MULTIDIMENSIONAL DISPLAY (ADDITIONAL DISCLOSURE)," U.S. Provisional Application Serial No. 60/710,868, filed on August 25, 2005 and entitled "A METHOD, SYSTEM AND APPARATUS FOR INCREASING QUALITY OF FILM CAPTURE," U.S. Provisional Application Serial No. 60/712,189, filed on August 29, 2005 and entitled "A METHOD, SYSTEM AND APPARATUS FOR INCREASING QUALITY AND EFFICIENCY OF FILM CAPTURE," U.S. Provisional Application Serial No. 60/727,538, filed on October 16, 2005 and entitled "A METHOD, SYSTEM AND APPARATUS FOR INCREASING QUALITY OF DIGITAL IMAGE CAPTURE," U.S. Provisional Application Serial No. 60/732,347, filed on October 31, 2005 and entitled "A METHOD, SYSTEM AND APPARATUS FOR INCREASING QUALITY AND EFFICIENCY OF FILM CAPTURE WITHOUT CHANGE OF FILM MAGAZINE POSITION," U.S. Provisional Application Serial No. 60/739,142, filed on November 22, 2005 and entitled "DUAL FOCUS," U.S. Provisional Application Serial No. 60/739,881, filed on November 25, 2005 and entitled "SYSTEM AND METHOD FOR VARIABLE KEY FRAME FILM GATE ASSEMBLAGE WITHIN HYBRID CAMERA ENHANCING RESOLUTION WHILE EXPANDING MEDIA EFFICIENCY," U.S.

Provisional Application Serial No. 60/750,912, filed on December 15, 2005 and entitled "A METHODrS YSTEM11WD''APMRA*TUS FOR INCREASING QUALITY AND EFFICIENCY OF (DIGITAL) FILM CAPTURE," the entire contents of which are hereby incorporated by reference.

[0002] This application further incorporates by reference in their entirety, U.S. Patent

Application Serial No. , filed July 27, 2006, entitled: SYSTEM, APPARATUS, AND

METHOD FOR CAPTURING AND SCREENING VISUAL IMAGES FOR MULTIDIMENSIONAL DISPLAY, a U.S. non-provisional application which claims the benefit of U.S. Provisional Application Serial No. 60/702,910, filed on July 27, 2005; U.S. Patent Application

Serial No. , filed July 24, 2006, entitled: SYSTEM, APPARATUS, AND METHOD

FOR INCREASING MEDIA STORAGE CAPACTTY, a U.S. non-provisional application which claims the benefit of U.S. Provisional Application Serial No. 60/701,424, filed on July 22, 2005; and U.S. Patent Application Serial No. , filed June 21, 2006, entitled: A METHOD,

SYSTEM AND APPARATUS FOR EXPOSING IMAGES ON BOTH SIDES OF CELLOID OR OTHER PHOTO SENSITVE BEARING MATERIAL, a U.S. non-provisional application which claims the benefit of U.S. Provisional Application No. 60/692,502, filed June 21, 2005; the entire contents of which are as if set forth herein in their entirety. This application further incorporates by reference in their entirety, U.S. Patent Application Serial No. 11/481,526, filed July 6, 2006, entitled "SYSTEM AND METHOD FOR CAPTURING VISUAL DATA AND NON- VISUAL DATA FOR MULTIDIMENSIONAL IMAGE DISPLAY", U.S. Patent Application Serial No. 11/473,570, filed June 22, 2006, entitled "SYSTEM AND METHOD FOR DIGITAL FILM SIMULATION", U.S. Patent Application Serial No. 11/472,728, filed June 21, 2006, entitled "SYSTEM AND METHOD FOR INCREASING EFFICIENCY AND QUALITY FOR EXPOSING IMAGES ON CELLULOID OR OTHER PHOTO SENSITIVE MATERIAL", U.S. Patent Application Serial No. 11/447,406, entitled "MULTIDIMENSIONAL IMAGING SYSTEM AND METHOD," filed on June 5, 2006, and U.S. Patent Application Serial No. 11/408,389, entitled "SYSTEM AND METHOD TO SIMULATE FJJLM OR OTHER IMAGING MEDIA" and filed on April 20, 2006, the entire contents of which are as if set forth herein in their entirety.

FIELD

[0003] The present invention relates to imaging and, more particularly, to capturing visuals to provide image manipulation options for increasing resolution of subject images. The present invention further relates to a system, apparatus or method for increasing resolution of subject images using a camera to deliver unexposed photographic emulsion and to expose a variable size and dimension of the emulsion. BACKGROUND

[0004] Problems exist in the art of cinematography which include the influx of digital origination systems and options for cinema and television, cutting into the film origination market. Film is the preferred artistic medium of many cinematographers, though the drawbacks including the expense of film and processing, the cumbersome and heavy aspects of the equipment, and the inability to see as definitely what is being captured as digital and video options provide, make film an increasingly difficult choice in today's imaging environment. Digital manufactures strive, and claim, to provide image recording means that rivals or surpasses the present potential of 35 mm filmed images. A need exists in the art for improved systems and methods for maintaining the quality of filmed images while employing the flexibility of digital origination systems to modify and enhance the filmed images.

SUMMARY

[0005] The present invention relates to a system, apparatus, or method for selectively increasing both quality and quantity of film images captured without significantly altering the capture equipment configuration(s) and without significantly altering the capture media, e.g., film stock. In one configuration, the present invention at least doubles the "amount" of emulsion available for recording or capturing visuals without increasing weight necessarily, as all remains on the same "amount" of celluloid or related emulsion supporting material. The present invention further provides a system, apparatus, or method for selectively increasing both quality and quantity of film images captured without significantly altering the capture equipment configuration(s) and without significantly altering the capture media, e.g., film stock The present invention provides a system, apparatus, or method that at least doubles the "amount" of emulsion available for recording or capturing visuals without increasing weight necessarily, as all remains on the same "amount" of celluloid or related emulsion supporting material.

[0006] A system for increasing resolution of subject images is provided which comprises a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within the camera to record visuals on said emulsion, said zone being of a variable size and dimension, and an electronic imaging module in said camera operable to record aspects of said visuals recorded by said camera on said emulsion. The system can further comprise an image data modification program for generating final images from information in visuals recorded by said emulsion and from information recorded in aspects of visuals by said electronic imaging module. An apparatus is provided for increasing resolution of subject images. "[0007] "A mStn'odlof increasing resolution of subject images is provided which comprises delivering unexposed photographic emulsion intermittently to at least one exposure zone within a camera to record visuals on said emulsion, said zone being of a variable size and dimension, and recording aspects of said visuals by an electronic imaging module in said camera. The method can further comprise generating final images with an image data modification program from information in visuals recorded by said emulsion and from information recorded in aspects of visuals by said electronic imaging module.

[0008] A system for increasing resolution of subject images is provided which comprises a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within a camera, said zone being of a selectable size and dimension, said exposure zone receiving said emulsion from the top or bottom of said zone with the emulsion existing through the top or bottom of said zone following exposure, or receiving said emulsion from any side of said zone to exit said zone from the other side, following exposure of said emulsion, and an image data modification program for generating final images from information recorded within said emulsion, said program being operable to infer a selected number of images, of selectable equivalent total image information, between available images recorded within said emulsion.

[0009] A method for increasing resolution of subject images is provided which comprises delivering unexposed photographic emulsion intermittently to at least one exposure zone within a camera to record visuals, said zone being of a selectable size and dimension, receiving said emulsion into said exposure zone from the top or bottom of said zone with the emulsion existing through the top or bottom of said zone following exposure, or receiving said emulsion from any side of said zone to exit said zone from the other side, following exposure of said emulsion, and generating final images from information recorded within said emulsion using an image data modification program, said program being operable to infer a selected number of images, of selectable equivalent total image information, between available images recorded within said emulsion.

[0010] Other features and advantages of the present invention will become apparent from the following description of the invention that refers to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] For the purpose of illustrating the invention, it being understood, that the invention is not limited to the precise arrangements and instrumentalities shown. The features and advantages of the present invention will become apparent from the following description of the invention that refers to the accompanying drawings, in which: [0012f " 'Figure 1 snows'lβmϊn film stock and 35mm film stock as it is delivered to a horizontally configured camera film gate mechanism by transport component (such as roller) exiting the gate as exposed film stock.

[0013] Figure 2 shows three frames of horizontally exposed film stock representative of a full second of camera operation time.

[0014] Figure 3 shows a hybrid imaging camera, related to an embodiment of the system, apparatus or method of the present invention.

[0015] Figure 4 shows the advantage of an embodiment of the system with regards to final image quality and efficiency.

[0016] Figure 5 shows a 16mm camera configuration, wherein a single horizontal 16mm key frame.

[0017] Figure 6 shows an optically or otherwise repositioned image as captured by a film or hybrid camera for recording horizontally onto selected emulsion type.

[0018] Figure 7 shows a drawing legend for figures 8 through 12.

[0019] Figure 8 shows a variable horizontal film gate in a camera.

[0020] Figure 9 shows data code referencing on film stock for post production reference.

[0021] Figure 10 shows configuration of high definition digital unit coupled to film camera for capture of same lens image.

[0022] Figure 11 shows top view and side view of horizontal film stock configuration in camera.

[0023] Figure 12 shows a top view of a dual gate to expose double sided film stock in a camera.

[0024] Figure 13 shows an over camera view of a double sided emulsion exposing camera.

[0025] Figure 14 shows enlarged 35 mm film stock.

DETAILED DESCRIPTION

[0026] The present invention relates to a system, apparatus, or method for selectively increasing both quality and quantity of film images captured without significantly altering the capture equipment configuration(s) and without significantly altering the capture media, e.g., film stock. Li one configuration, the present invention at least doubles the "amount" of emulsion available for recording or capturing visuals without increasing weight necessarily, as all remains on the same "amount" of celluloid or related emulsion supporting material. A system for incfeaSϊng resolution of subject linages is provided which comprises a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within the camera to record visuals on said emulsion, said zone being of a variable size and dimension, and an electronic imaging module in said camera operable to record aspects of said visuals recorded by said camera on said emulsion. The system can further comprise an image data modification program for generating final images from information in visuals recorded by said emulsion and from information recorded in aspects of visuals by said electronic imaging module. An apparatus is provided for increasing resolution of subject images. A method for increasing resolution of subject images is provided which comprises delivering unexposed photographic emulsion intermittently to at least one exposure zone within a camera to record visuals on said emulsion, said zone being of a variable size and dimension, and recording aspects of said visuals by an electronic imaging module in said camera. The method can further comprise generating final images with an image data modification program from information in visuals recorded by said emulsion and from information recorded in aspects of visuals by said electronic imaging module.

[0027] It is to be understood that this invention is not limited to particular methods, apparatus or systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural references unless the content clearly dictates otherwise. Thus, for example, reference to "a container" includes a combination of two or more containers, and the like.

[0028] The term "about" as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.

[0029] Unless defined otherwise, all technical and scientific terms or terms of art used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although any methods or materials similar or equivalent to those described herein can be used in the practice of the present invention, the methods or materials are described herein. In describing and claiming the present invention, the following terminology will be used. As used herein, the term, "module" refers, generally, to one or more discrete components that contribute to the effectiveness of the present invention. Modules can operate or, alternatively, depend upon one or more other modules in order to function. 100303 "Dβn'S'ϊinage" feϊeK"t'b any image or light stimulus, for example, images provided by lenses or other light delivery means existing or that will come to be in exposing image receptive media and elements to light or other simuli that are the focus of rendering displayable final images.

[0031] "At least one exposure zone" refers to within a camera, film, digital, otherwise electronic or of other types, a film gate, CCD chip or other image capture aspect or component occurs within a zone where an image, typically delivered through a lens, is manifest. This exposure zone is where light delivered typically related to an image from that lens related to the visual scene a camera user intends to capture, and typically systems of different capture zone sizes related to gauge size for film, for example, require optics and optic arrangements capable of covering larger image capture zones with a delivered image, such as 70mm film cameras relative to 35mm and 16mm cameras. Within hybrid cameras, including those with multiple electronic capture aspects or capture means involving different media, (film and digital for example,) more than on image capture zone occurs within and/or relative to a single camera (or capture system.) Film cameras with "video assists" are for example systems wherein a single lens image is delivered to a film capture zone and electronic capture zone, simultaneously.

[0032]The present invention relates to imaging and, more particularly, to a system, apparatus, or method for increasing resolution of subject images. A system and method is provided that provides records visuals and that records aspects of the visuals, such as captured by an electronic imaging module, in addition to a visual scene, referred to herein, generally as a "visual," that is captured by a camera. A visual as captured by the camera is referred to herein, generally, as an "image." Visual data and aspects of the visual data collectively provided such that data regarding variable size and dimension of the visual can be used, for example, during post-production processes.

[0033] Like VistaVision technology, film would be provided to the film gate horizontally, making the image size only limited "vertically" by the width of the film (gauge size,) such as 16mm or 35mm. In a further configuration, the film stock, (16mm in this example though 35 mm is equally exemplary,) the film stock itself would not need sprockets; with the registration technology options today, and transport options, sprockets are cumbersome and wasteful of potential image storing media. The present invention, in the 35mm configuration, would provide an image of a resolution and quality (original) that surpasses any digital originating information capturing means existing, providing the sole option today to capture a visual that only "tomorrow's" digital or other technology will have the ability to approach, during image capture. 10034J1" '"Film" can b'e'selectϊvBly provided by a conventionally positioned film magazine, (of the normal or "disposable" configuration disclosed herein, involving reusable magazines loaded and unloaded by the manufacturer only.). Film could be provided by a horizontally positioned magazine; meaning 90 degrees perpendicular to the normal upright position of film magazines. This precludes additional film management and positioning needs, such as rollers turning the film 90 degrees to get it into the horizontal position for the film gate, and then back 90 degrees again after exposure to replace within a vertical film magazine. This positioning of film stock is useful in the present configuration as described for the present invention.

[0035] Herein, the providing of film stock to a film gate which is selectively similar, and selectively variable, in dimension to a rectangular cinema display screen, such as 1.66, or 1.85, (or for the present configuration the width herein will be 2 to 1. The advantage is that, in the case of 16mm film, the visual can be selectively stored on an emulsion surface 16mm "high", or closer to 14mm if perforations are maintained on one side, and as wide as desired, in this instance, 33mm or wider, for example. Though, the width would be entirely selective, potentially, by virtue of the virtually unlimited left/right media space per visual.

[0036] The present invention, in part, thus provides means for generating 35mm, for example, wide visuals on 16mm film stock, and visuals in very close dimension to cinema and HD screening dimensions, requiring little adjustment or distortion in the processes of providing final images to these screens. And, as said, 35mm film stock would provide the critical means to originate material that surpasses the information capturing/storage means of any digital system, potentially for the foreseeable future. The emulsion surface area will approximately quadruple the visual information per image stored in the film stock. In fact, the use of 35 mm double-sided emulsion film stock and modified 35 mm film cameras, allow for an increase of emulsion area per visual of between 2 and 4 times, or more, than that typical to 35mm film capture, depending on the amount of overall recording time the magazine of film is selectively reduced to, for example, from 10 minutes.

[0037] In one configuration, a single visual is recorded horizontally onto the film stock, which is selectively positioned parallel to the horizon line, relative to the film recording plane, and the lens capturing the visual. The recorded single visual would selectively occupy the space once allocated to, for example, three frames of 35mm images. The dimension of such a recorded image is selectively very close to the horizontal dimension required for theatrical visuals, utilizing the increased emulsion made available, to a great degree and with minimal waste and "masking" needed to achieve the motion picture screen dimension, such as 1:85 to one, or even more rectangular in shape. of three typical film frames' emulsion area, would be compensated by the use of the opposite side of the film stock for recording as well, resulting in total recording time of a typical 1,000 foot roll of 35mm film, 10 minutes approximately at 24 frames per second, to just under 7 minutes, though with a total emulsion surface area per image increased to approximately 4 times what is conventional on 35mm, if not even greater recording surface area. Maintained as 10 minutes of material at 24 fps, the emulsion surface area over typical 35mm vertical, single side of stock standard,) still vastly increased without affecting the standard recording time of a "roll" of film.

[0039] Again, as films today typically reach a "digital intermediate" stage, the fact that the film exposed is not created with "projection" in mind is logical and inherent to this invention. In fact, sprocket holes are not necessary, in a film transport means based on a selected advancement distance; digital post production means may provide perfect registration of final images, (and matching of images by code or other means,) from one "side" or strip of the film stock and the other. The sprocket hole and other film area may thus be employed selectively entirely in the recording of visual and other data, either entirely in the emulsion or within selected other means provided in the stock, including, but not limited to, magnetic recording material.

[0040] After exposure of the double sided film stock, it is likely that after processing of the film, prior or selectively after being "split" and separated into two strips, the lengths of larger horizontal filmed visuals will be digitized by an adapted "data-cine" or "telecine" apparatus capable of scanning the larger film frames; following digitization, these "negatives" on the thinner strips, relative to conventional 35mm film, will be stored then for possible future "re- scan" when increased scanning and data storing means exist, beyond what today's technology can offer...These larger filmed frames thus contain the additional image data for future application, relative to conventional 35mm productions, or conventional digital cinema, e.g., digital origination, available today.

[0041] In a further aspect, the present invention provides selectively mirroring or related optics/image diversion means may relay the lens image to one film gate on one side of the film stock, for recording, and then the other gate, in a staggered delivery, prior to the film stock being advanced to the next horizontal frame of unexposed emulsion; in this configuration, the film stock would thus need only be advanced twelve frames per second, to achieve the 24 fps overall recording, both sides having been utilized. The image diversion means may selectively provide all, rotating mirroring or other means, or part of the lens image by beam splitting means, to each of the respective larger film gates. The lensing and hardware would be naturally adapted to άfccδninibΗatdine'selecfϊvely'w'rdtlϊ' variable film gates which now are closer in size to the old "70mm" film gates, in size,(which recorded visuals closer to 50mm in actual recorded image width, depth of field and related photographic aspects selectively being affected by the change in "gauge size" or gate size, to the degree that optics and related hardware would need to accommodate same.

[0042] The present invention thus provides means to expose both sizes of film of a selected gauge size, with the use of 35mm film, for example, providing filmed visuals of a resolution far superior to typical 35mm filmed recordings. These film recorded visuals would selectively provide more information per visual than conventional digital systems can deliver today, thus providing filmed visuals potentially more compatible with digital (and other imaging systems) of the future, as the larger emulsion area holds a vast amount of visual information, surpassing image origination data typical to even the newest digital cinema options.

[0043] Should the 16mm format be used to originate under the present invention, a final "print" from the "horizontally exposed" images to a conventional 35mm film stock in the conventional direction and format, might be affected by printing means to alter the exposure level and/or color aspects as the visuals are "printed" onto another film stock, such as an "internegative" stock.

[0044] The goal being, to end up with a high quality negative of the "larger" gauge size, embodying aesthetic adjustments chosen in the digital domain and also benefiting from the unconventional use of the smaller gauge format, for example, 16mm, to achieve visuals of, or nearing, those typically recorded by the larger gauge size, conventionally.

[0045] In total, the present invention provides means to originate with film using "smaller" lighter equipment while resulting in the comparable "original negative" surface area, and resolution and quality, to larger film gauge bases. Further, the present invention allows for origination with familiar 35 mm systems, including the lensing and housings familiar to the industry, while resulting in visuals with quality and resolution comparable to "70mm" originated visuals, thus achieving the goal of surpassing the amount of visual information captured and stored during original photography of any digital system presently available, even if the initial use and screening means does not employ larger than existing digital technology, such as 2k or 4k, as the "existence" of an original "negative" that future technology can extract vastly more visual information from, for example, 20k, renders that project "future ready" and in fact more in synch with the future of digital cinema and television than any existing digital origination means may provide. "[0046J"1" "Wlffi'the eή'd'Mδύ'δ" elpehse of making and releasing films, the availability of an original negative that may provide future applications in synch with the capture devices of the future, increases the potential for that project to be displayed more in the future, should systems upgrade to larger information management/display means, without' significantly changing the capture, weight and expense aspects of originating on film.

[0047] Further, the staggered relaying of the lens image to one side of the film emulsion and then the other allows for the double sided film emulsion to be advanced once for it's entire length, without employing the other options of reversing the direction of the film, or employing a continuous "loop" and reversal-of-side or twist, means to allow the camera to expose one side of the stock entirely and then the other, entirely. However, the present invention does not preclude those or other options being employed in the horizontal exposure of the film stock, on both sides.

[0048] In another configuration of the present invention, conventional film stock of any gauge size, is exposed horizontally. The "magazine" of film storage means, often placed behind, or above the camera's mechanism and film gate, is selectively placed behind the camera, as is common in cameras by Arriflex and Aaton; this positioning is however not essential.

[0049] The film in this storage, e.g., magazine, would be horizontal not the typical vertical position, and thus parallel with the horizon, if the shot being captured were of a sunset/horizon for example. Thus, the film would enter the camera mechanism or film gate area as with Arriflex cameras, in the horizontal position. In the case of 16mm film, the sprocket holes on single per stock, would selectively be occurring on top, or on the bottom of the stock, as it is presented to the camera film gate for exposure; without necessity, the present invention positions these sprocket holes on the bottom.

[0050] In the case of typical 35mm stock, the sprockets occur on top and bottom; the present invention in one configuration involves film stock with only one side bearing sprocket holes, or in a further configuration, no sprocket holes as the digital domain eliminates the issue of registration, such subsequent picture matching occurring selectively in digital post production reducing concern over exacting position of film stock through the mechanism and film gate of film cameras.

[0051] The optics of film camera(s) would be modified to be similar to those of a larger gauge camera, as the present invention provides for exposure of emulsion areas typical to the "next step up" in gauge size: 16mm cameras providing more like a 35mm exposure emulsion area and 35mm cameras of the present invention providing a remarkable gate and emulsion exp'όstrfeWea'^όt'efftillly s¥rp:ϊslfflϊg"that of typical 70mm stock exposure by known 70mm film cameras (and 65mm, and others related to this large gauge size.)

[0052] The distance of optics to the film plane as well would be adjusted to allow for proper exposure of the larger provided emulsion surface area.

[0053] The width of the exposure area would be, selectively variable and, typical to high definition television display, thus the ratio of width to height would selectively be the same or similar to that of the eventual intended display systems/units. However, though an important configuration of the present invention is for this important dimension (such as with plasma TV monitors providing high-def content,) the width of the gate size could be variable in the present invention. Thus, the actual amount of film intermittently moved through the gate area would change selectively based on the display system, or setting, intended for the material, potentially. For example, if the material is destined for conventional TV display, a 1:33 to 1 ratio of film would be exposed so the potential of the present invention in the 16mm camera configuration, would expose a negative image of approximately 14 mm X 18.6 mm. If the intended display were high definition TV, the negative exposed and amount of film moved into the gate area would change to be approximately 14 mm X 23 mm; and if the eventual display were a theatrical screen as wide as approximately 14 mm high X 33 mm wide. These dimensions are important, as with the theatrical screen shooting intent, it is important to note that the present 16mm configuration provides a significantly larger emulsion area for material that actually makes it to the screen, than today's typical 35 mm cameras, which for wide screen are often limited to capture emulsion dimensions for "live" material of approximately 14mm high X 21mm wide.

[0054] In this configuration, the film gate is in the same position basically, as all film cameras used conventionally. In a supplemented version of this configuration, the film gate could occur horizontally, or otherwise, to allow for the second film gate of the other configurations of this invention, wherein both sides of the stock are exposed.

[0055] Though in both versions, the single and double gate versions, the selective variability of the exposed frame width is a one aspect of the present invention, changing literally the length of film advanced into the film gate based on the desired width of negative selected. In this way, film negative is never "cropped" and wasted as oft happens with 35 mm photography, wherein cropping vertically allows for the negative dimension to match the very rectangular shape of some film screens; the present invention allows thus for a superior image quality for such screens, on 16mm for example, than 35mm is capable of rendering via the currently configured camera systems. TM FIlhi StocK"aM In-Caineifa Configurations

[0056] Embodiments of the invention that need not be in one particular configuration, include the double sided emulsion film stock and the double side exposing film camera:

[0057] The double film gate disclosure of the present invention and filings, may selectively not be perpendicular to the lens surface area, but positioned as typical film gates occur, though the two gates may be staggered (above and below, or at different points within the camera,) allowing for optics and selectively mirroring and/or other lens-image diversion means, to relay the lens image in it's totality, or a portion of it selectively if beam splitting is employed, to one gate and then the other.

[0058] In this configuration, reference information can be imprinted visually or by way of a data track or other recording means, to allow selectively the frames of film representing sequentially captured visuals, whether one exposed immediately after the other, or simultaneously, or later. Thus, film stock may undergo looping or other related in-camera management, via rollers and related components common to film cameras, in order to provide the reverse side of the same length of film stock for exposure. See U.S. Patent 5,687,011, incorporated herein by reference in its entirety.

[0059] The length of double-sided film, e.g., emulsion occurring on both sides as it moves through the camera, may be exposed in a staggered frame-by-frame approach, e.g., an image on one side, then the other and then advancing the film to the next unexposed portion of stock, or the entire length of film may be exposed by way of a single gate system, whether parallel or perpendicular to the image capture lens, or otherwise positioned, with the reverse side of the same length being provided via film direction reversal means, or continuous loop and mechanical turning of the film stock to provide the second side after exposure of the first, or other such physical approaches for providing same.

[0060] Also, it is important to reiterate that the double sided film stock can be employed as a recording "time" enhancement, not quality related, allowing for the two sides of the film stock to be recorded as discussed above, with a conventional "gate" and exposure dimension to typical film cameras. The advantage therein being that recording time is exactly doubled, and conventional digitizing and film printing and processing machinery is set to deal with those particular exposure sizes, the vertical position of the images and the number of "perforations" per visual (or sprocket holes,) thus requiring only the issue of the potentially (selectively) thinner strips of film, if double sided film is "split" in to two strips prior to digitizing and/or processing and/or film printing, etc. An objective of the present invention is to provide film stock, (whether single or both sides emulsioned,) that is the same or similar weight andtMekftdss totn^stSdk ffidf"d'mήeras typically manage today, though this is not essential or a limiting aspect.

[0061] Regarding the film stock of the present invention, in the single sided configurations of the horizontally provided film stock, one configuration would eliminate sprocket holes/perforations, allowing the film to the moved through the gate through the motion of the rollers (holding the stock and/or within the camera,) to allow the extra emulsion area lost with such sprocket holes to become media/image recording space. However, the present invention also works with the configuration of using typically available film wherein such sprocket holes occur. As both options may be provided in the future, the option of selectively adjusting the exposure area both with regards to width and height would be selectively provided in one configuration, to allow optimal use of emulsion area provided by a given stock's composition, for example, with or without perfs.

[0062] Therein, it is selective that film stock of the present invention that lacks sprocket holes may be transported roughly by the machinery of the camera, with subsequent perfecting of the "registration" of the pictures to each other occurring in the digital domain, or selectively markers occurring optically or on other data storage means, as an aspect of the film stock, may allow for laser or otherwise guided registration and film transport, such guidelines or markers also providing the means for a variable transport camera of the present invention, those moving a selectively adjustable length of film into a selectively wide gate area, to precisely quantify the transport of an amount of film per exposure.

[0063] Again, such cameras may operate ad variable speeds as with conventional cameras, however in the double sided configuration, wherein 24 fps is the anticipated final "digitizing" or display goal basis, even if altered in the video/digital real for digital display, the film need only be moved 12 time per second, in the configuration where the exposures are staggered (side 1, side 2, side 1, side 2 and so on), if the goal is to achieve a conventional 24 visuals per second of time.

[0064] The double sided, two sided emulsion coated film stock can be produced in a variety of configurations. In one non-limiting configuration, two lengths of "thinner" film stock are married to create a length of film stock that is a conventional weight and thickness for cameras, despite the emulsion occurring on two sides. Other configurations of doubled sided two sided emulsion coated film stock can be produced. Further, selectively, an opaque partition between the emulsions, on each respective side, such as a white celluloid, and/or plastic, or other reflective material, can provide that in the digitizing stage of the double sided emulsion, the film stock may be maintained, and created as, a single strip, as with conventional film stock: It would thuδ riie'an thaTin digitizmg HgM would be reflected back from the film emulsion, based on the opaque later behind allowing for such reflectivity, to allow for digitizing as with reflective art, rather than as with light typically being projected through the film stock.

[0065] If digitizing in this way were of sufficient quality, relative to the projected approach, the need to "split" the film for separate digitizing, or printing or other use, of each separate strip would be avoided. The film could be digitized, both sides, one after the other, or simultaneously by a digitizing unit configured for that purpose, and maintained and stored as a single strip of selectively the same thickness and weight as conventional stock, with the only difference being that this double sided stock contains twice the image recording area means.

[0066] In the management of visuals shot in this "double sided" configuration, data referencing, e.g., visual or other magnetically or otherwise recorded data, on the film itself, each side, would selectively allow for all stock to be scanned, and even though the "second strip" might be digitized some time after the first, in the "split" stock two-sided configuration, the time- code or visual reference information (the "data") would allow for computing means to automatically assemble the visuals in digital form into their proper sequence, as they were captured. Thus, though not limited by this, the present invention is most geared to film capture of visuals destined to be, at some point, digitized and/or managed in the digital domain; even if eventually returned to film ,f or display or other purposes.

Quality and Efficiency of Film Capture

[0067] Key filed frames can be exposed through the same lens as video/digital material, being used subsequently in the digital "recoloring" of that digitally originated material.

[0068] Aspects of the present invention are not limited by the term video, as digital visuals and digital visual data is indeed applicable, if digital origination was employed, e.g., for the "high definition" material. Further, high definition images stored on tape, does not preclude or is not limited in the present invention or that invention by how said digital (and/or video) images are stored, on tape, in a "drive", or on disc. The issue is the selectively simultaneous exposure of video and/or digital material and filmed visuals of the same or similar visuals (through the same lens, or lenses selectively positioned to capture similar material.

[0069] To provide new options affecting the quality and efficiency of film capture, herein is disclosed the selective further aspect of the system or method of exposing filmed visuals on any gauge size in conjunction with video and/or digitally originated images, and captured through the same lens or selectively by lenses separate but positioned for use by the present invention. 10070 J In 'one' tepek% WPGBh gauge is 16mm film and the video media is digital high definition, e.g., digital data, and/or video data captured by CCD or other electronic capture means.

[0071] In the 35mm configuration of the present invention, regardless of whether the film is exposed conventionally, horizontally, or on one side of film stock or on both sides of double-sided -emulsion on both sides-film stock, the opportunity is to capture, selectively, original visuals containing a vast amount of visual data surpassing today's standards, even surpassing old 70mm film capture systems. Again, this is relevant for potential future digital or other visual means that may utilize the extra visual data of this large negative area, such as future systems able to manage "20k" or higher.

[0072] A further aspect of the invention provides means to capture visuals on 16mm that surpass 35mm conventional image quality, and 35mm images that surpass any digital capture for cinema means conventionally available.

[0073] Herein, the selective option of capturing fewer than 24 fps of film originated images is provided. Further, the "video tap" is in fact a high-definition video (and or digital) capture and storage means. This accomplishes the dual goal of enhanced preview on set during capture, by way of the digitally captured visuals, providing material at conventional digital rates such as 24 fps, or 29.97, or 30 or other known options employed for digital origination. Further, the digitally originated visuals, would contain cross reference image data related to the filmed visuals, e.g., selectively captured through the same lens, by way of beam splitting and/or image diversion means, such as mirrors and known optics, for later cross referencing between digitally originated (and stored) visuals and the film originated visuals. Magnetic striping or visual reference, or other data recording means on film, may be provided to allow for easy and selectively automatic cross referencing between the two types of originated visual material. In this configuration the film camera is primary, the digital unit relative equal or secondary with regards to "on line" capture material.

[0074] The further use of the approach is expanded, to acknowledge filmed visuals not used solely in "re-coloring" digitally originated material. The combination of highly resolved filmed visuals, exposed by the usual means and with the usual care, typically handled by a director of photography, with the secondary capture and storing of digitally captured material of the same scenes, and or visuals, selectively at the same or similar points in time. "[0'075J TBe eipafϊclecl purpose, nerein, involves the desirable aesthetic and post production use of film originated material, potentially different from re-colored digitally originated material. Further, "morphing" and related image extrapolation e.g., inferring, technology may provide proprietary software to allow for the following:

[0076] Filmed material captured to be done so at a lesser frame rate than is conventional, such as 12 fps, or even fewer frames per second. Present technology employed as an aspect of the present invention, would thus allow for extrapolation of the "intermediary frames" not captured by film, to occur by way of digital approximation, based on inference of the digital data's position and shifting between available "film originated" frames, once digitized.

[0077] Further, exacting means to provide this "morphing" or creation of inferred visuals between available filmed ones, by way of the high definition digitally originated material. Therein, visuals indeed exist, highly resolved, to potentially aid in the creation of the inferred, and/or morphed visuals, which were not filmed, but are created from the filmed visual elements nonetheless. The positioning of aspects of the filmed visuals would be entirely referenceable within the digitally captured visuals, which doubled also as the visuals used for on-set preview, and initial editing.

[0078] Indeed, all editing of a project can begin and even be completed using the digitally originated materials, prior to receiving the filmed visuals, after processing, in digital form. In the "final edit," or creation of the digital master and/or related intermediates, the digitized filmed material would "replace" the digitally originated material, selectively as a final stage of post production, prior to selective additional adjustments of the visuals by a look manager system or related digital "look" refining means.

[0079] Visual code cross referencing data, carried through from the film negative to it's digitized version, relative to the high definition originated material, would selectively allow for immediate visual cross referencing exact to each frame.

[0080] Thus, several goals are accomplished:

[0081] 16mm film may provide conventional 16mm and super 16mm visuals, vertically exposed, either on one or both sides of film stock selectively, which may be exposed at a selectively slower frame rate, e.g., 12 fps, to allow for a longer record time from a single roll of film stock. Further, horizontally exposed visuals may provide emulsion areas per visual as large as approximately 14mm X 33mm, surpassing typical 35mm film origination quality, and selectively without changing, or even while increasing the overall record time a single roll of 16mm provides. td'082} !t "Selectively tewlilmed trames may actually provide a sufficient amount of filmed image data to infer digitally, with or without use of the digitally originated material. Further, the disclosure of dual film gates, allowing for exposure of both sides of a two-sided- emulsioned film stock, with optics relaying the lens image first to one gate, and then the other, would selectively double the available visual data recording area provided therein. In total, the present invention would selectively allow for a final result, in digital form, or other visual form including film final, of filmed visuals surpassing 35mm conventional filmed quality and/or resolution, while selectively maintaining all or even increasing the typical record time provided by a roll of 16mm film, such as approximately 10 minutes. In one configuration, the record time would at least be doubled to 20 minutes per roll, while gaining the approximate 35mm filmed quality emulsion area from a 16mm stock; digital extrapolation means and/or double sided film stock aiding the effort.

[0083] A further benefit of the horizontal exposure variable film gate and film advancing quantity would be selectively employed, allowing for filmed visuals of any gauge size)to maintain the full vertical available recording area of a film stock, such as 35 mm if 35mm sprocketless film were provided, while adjusting for the display ratio (1:33, 1:65, 1:66, 1:85, 2:35, all to 1) by providing a selectively larger (wider) amount of film stock for exposure per visual; thus affecting the length of each "advance" of the film stock, selectively intermittently, to provide the next portion of unexposed stock to the selectively varied film gate. Little or no waste occurs, or masking then, in providing a film stock ratio specific to a display ratio, all rectangular display systems, no matter how narrow or wide, being potentially serviced by visuals exposed based on the same screen ratio.

[0084] For 35 mm film stock, one configuration involves, as with 16mm camera configuration, film stock that no longer involves perforations/sprocket holes. However, accounting for same presently and still claiming the improved image recording area of one configuration when that is available, the present invention and the above means described, would allow for film capture of visuals superior to the old 70mm film originating, from 35mm film, while not reducing, in fact selectively increasing, the total record time provided by a 1,000 or other size or length of 35mm film. Thus, the filmed negative, of 24fps or fewer, may be stored and referred to in the future when that negative may provide image data for higher information management systems, such as 20k or higher, which present digital information would not be able to supply with visual data utilizing the capacity of such future, standard systems and options. [0085] Fύrϊner'j digitally originated material may be employed in affecting the final digital material, it's look or other aspects, selectively; the digitally originated material may provide improved resolution or aspects to the filmed images, inherent to such electronic capture, selectively able to be contributed to digital visuals created from referring to both digitally originated and film originated material.

[0086] So, in a further system configuration, a firm(s) can provide the film stock for the system, whether conventional or adapted from what is typical, the digital "look management" and frame "inferring" or morphing software, the digital cross referencing between digital and film originated visuals, selectively exposed through the same lens selectively at the same or similar times, means to process and scan selectively horizontally exposed film frames of potentially different widths, among other necessary aspects of configurations of the present invention.

[0087] An incomparably efficient film camera would thus, in certain aspects, provide filmed material for the best present and future resolution options, with the ideal "video assist" in the form of high definition digital material captured through the same lens as the film. The end result being a minimally changed shooting scenario and equipment scenario on-set, an improved or at the least minimally affected shooting time per quantity of film stock, and an uncompromised or improved final "film originated and film look" digital result, selectively equal to or superior to such results from typical film systems of the next "larger" gauge size, (16mm providing 35mm quality, 35mm providing 70mm quality, etc.)

[0088] The present uses do not limit, though, the fact that high quality filmed and digitally originated material then exists relative to the same scenes and production; options beyond what have been stated exist and will exist relative to the existence of superior film negative and high definition digital material relative to the same shots or lens visuals.

[0089] Whether applied to conventional film stock and conventional vertical exposing and frame sizes, or adapted stock and exposure approaches, as described herein, embodiments of the present invention improves the visual quality and/or efficiency of film capture.

Horizontally Positioned Film Gates

[0090] In providing the camera lens image to the film stock, herein a horizontally positioned gate, or gates, has been disclosed in creating options to increase image capture quality options. In a further aspect, optics (and/or mirroring means) may "turn" the lens image 90 degrees before providing it to a vertically positioned film stock, as with today's conventional film cameras, wherein a fixed or variable film gate, where the width of the exposure area on the filrti stock is selectible, is hot in the usual horizontal position relative to the lens and scene being captured, but offset 90 degrees.

[0091] Thus, film magazine(s) of cameras need not be repositioned and film stock need not be twisted or repositioned to achieve a horizontal film plane relative to the lens, as disclosed previously. Herein the lens image visual (light) is turned and/or bounced to be relayed at a 90 degree offset, as occurs with flatbed film editing tables, the film stock image being turned for display on the projection monitor. Again, the optics of a 16mm system would be that of a 35mm camera, or other option, including custom made option, to allow for the larger image area relay to the film stock. Again, the image area for exposure on the film stock would exceed that of the "next up" film gauge, as the film would be exposed horizontally on the stock, relative to it's length, to allow for the image height to be limited only by the gauge size, and the image width to be variable, limited only by the selected image ratio, based on selected final display system/option dimension or ratio. See drawing. In essence, the film gate is turned 90 degrees, is optionally of the variable type, as disclosed herein, and is provided with a lens image that has also been turned 90 degrees, to allow for proper exposure of the lens image in the ratio/dimension desired, though on film stock horizontally, as opposed to the typical film systems of today, wherein visuals are exposed vertically. The width of the visual is limited only by the gauge width of the film stock.

Hybrid Digital and Film Camera

[0092] Yet another embodiment related to the present invention is a hybrid digital and film camera, utilizing conventional 16mm negative motion picture film stock. This in no way limits the application of the following with regards to gauge size, and it should be noted that sprocketless versions of any film gauge size, (or sprockets on only one side as with single perf stocks,) would allow for proper application of the present option(s):

[0093] Herein, the conventional film gate (vertical) associated with 16mm motion picture cameras would be replaced by a modified "double sided gate," which would accommodate two strips of 16mm stock, emulsion out, facing the lens image, allowing the sprocket holes of the stock to be on the "outside" of both strips, thus also on the left and right sides of the double gate.

[0094] Separate, linked film transport means, would allow selectively one side to move down, while the other side or strip of film would move up. Intermittently, unexposed portions of film stock would be "side by side," with only the very small strip, or line, between the separate stocks interfering with the capture of the lens image. tθu95]"' '"Selectively", 'tne'le'ns'ϊmage delivered to the side-by-side strips of emulsion, would occupy 4 conventional 16mm or super 16mm frame areas. Thus, a single visual would be delivered to (selectively) approximately an area of emulsion, comprising the two separate strips, of more than conventional 3 perf 35mm image recording means/area; in fact, the actual area provided selectively by the present invention is 15mm high by 26mm wide, two vertical frames/perfs per strip, side by side, providing an overall area of 364 square mm. This is an improvement over the emulsion provided by 35mm 3 perf (1:85 to 1 image ratio) of over 5%, selectively.

[0096] Employing the "key frame" approach to utilizing filmed frames, whether captured as a single image or as a composite of separate captures, to improve resolution and/or aesthetics of digitally captured material, the present invention would allow 16mm film cameras, with selected modifications, to capture the image data necessary to infuse digitally captured visuals with over 6k of per-image data.

[0097] Proprietary software would allow for such image captures on two strips of emulsion, to be referenced by time code or other image coding referencing means, for application to the respective selected digitally originated visuals, captured selectively through the same lens at, or in and around the time said key frames were captures. This digitally originated material may be at a normal frame rate, such as 24 frames per second, selectively. The selectively flickerless and selectively high-definition digitally originated material, may selectively provide the image-zone (aspects') positioning data for proper allocation of the filmed key frame image data, in the creation of final visuals, (24 per second for example,) which embody in excess of 6k per visual image data, as a result of application of key frame data to more than one digitally originated visual.

[0098] Herein, magnetic and/or visual coding means on the film stock, (selectively restricted to the film area to the thin side or edge of the perforated side of stock, or to other areas not restricting the emulsion area for image recording will provide cross referencing data for easy and/or automatic referencing between digitally originated visuals and filmed key frame visuals, for post production applications.

[0099] Thus, the film stock in one configuration is from a single roll of unexposed stock, as with conventional film cameras, the lens image is selectively diverted to allow for recording of the full lens image by a digital capture and recording means, with the same lens image providing the full lens image for selectively exposure as a variable, e.g., 1:33, 1:85, 2:35, ratio image on film stock selectively providing an emulsion area larger than conventional 35mm capture, e.g., for cinema. "'[0100]""" ΥmϊΗlm' stock" would undergo a repositioning, e.g., by rollers of other means, after initial exposure by the left side of the gate, allowing for the "flipped" stock to be returned for exposure by the other side of the gate, with the "emulsion area" still facing out, toward the lens image. Selectively, "double sided film stock" could allow for film to be returned to either side, both sides containing film emulsion, with a final result of a single roll of film stock having both sides full exposed, embodying latent images within emulsion on both sides of a single celluloid strip. In the simple configuration, conventional single sided 16mm stock is described.

[0101] Selectively, each gate "side" would expose on, for example, two conventional "frame" areas, or emulsion related to two perforations of stock, and advance skipping the next two, as the other side can use that stock to expose the "other side" of the lens image, ongoing, intermittently. Time code reference for each and every perforation, or image portion, would make this jumble of visual parts easily sorted and allocated in post, automatically, selectively after a project has been edited from the digitally originated visuals, and final visuals are selected for affecting with the digitized filmed key frame visuals which are of improved resolution and/or aesthetic appearance.

[0102] In further aspects of the present invention, provides increase in visual quality, and also improvement in efficiency. As a single key frame per second, with appropriate post- production software, may be used to affect at least an entire "second" of digitally originated visuals, such as 24, a single roll of 16mm film typically providing only approximately 10 minutes of recording time, may in fact provide now 60 minutes, selectively, while also providing a final film originated "look" result of 4X the normal resolution provided by typical super 16mm systems. Selectively, more key frames per second may be exposed, and/or frames of different overall emulsion surface area, providing more or less recording time per roll of film. Should a roll provide 6 key frames per second, or one for every 4 digitally originated corresponding images, the recording time of a single roll of film still is not less than a conventional 16mm camera and recording system, at 24 fps.

[0103] The present invention can provide the film stock to a conventional "take up" spool, changing the mechanics of the film camera as little as possible or selectively necessary; the stock having traveled through the double sided gate twice, being the key modification and mechanical modification. Further, in a modified film camera, two rolls or two separate strips of film may be delivered to the double gate, allowing separate rolls to literally be transported in the same direction through the double sided film gate. In this configuration, the advantage would be the amount of film stock overall, increasing recording time even further, the fact that smaller stock, for example, 16mm as opposed to 35mm, may provide images with higher resolution than coriVe'ntiύri'al capture "by 35iήih"stδcE'j' and the further advantage is the elimination of the need for "twisting" the stock through various repositioning means to allow it to be exposed, and redelivered to the other side of the double sided film gate, for re-exposure, selectively in the same direction (up to down,) as before, or in the opposite direction (down to up,) before return of the exposed stock to the take-up reel.

[0104] Again, this system relates to a hybrid camera, selectively, wherein a digital image capture means captures through the same, or an adjacent, lens full conventional image captures at a selectively normal frame rate such as 24 fps, while the double-sided gate provides selectively very high quality filmed "reference" or key frames of the same or very similar lens image/visual.

[0105] It is very important to add, that the application of the horizontal aspects of film gate and film emulsion recording would provide an enormous gain in resolution, regardless of the film gauge size involved. Describing this improvement relative to 16mm stock, a 1:85 ratio intended display dimension, and thus image capture dimension, and wherein one key frame, from two strips of the same length of celluloid/stock, is generated per second:

[0106] The emulsion area exposed, with the two strips positioned now as "top and bottom," instead of left and right, is increased to selectively 24mm high X 45mm wide, each strip of 16mm stock from selectively the same length traveling selectively in opposite directions providing 12mm, or half, of the vertical recording/emulsion area of the full visual capture zone. This represents an overall final, digitized key frame containing over 18k of data from 16mm capture. Further, with one key per second being generated on film only, the overall recording area of a single 400 ft roll of conventional 16mm film stock is still increased to 20 minutes over conventional 24 fps below "2k" capture, doubling the overall film recording time while increasing image quality approximately 12 fold. This is indeed significant, as filmmaking logistics and methods are not compromised, equipment is not noticeably modified, in weight and selectively in configuration, and there is not only not a demand for more media in providing profound increases in visual quality, but a need for less, e.g., half in this example application.

[0107] Again, the horizontal gate configuration would place the strips of emulsion selectively in contact, or very close proximity to each other, one over the other. The selectively variable recording area of the horizontal gate area, would expose selectively images from 4 perforations wide (for TV ratio) to 6 wide, (for 1:85 cinema) and up to 8 perforations wide for providing images of 2:35 (wide screen) ratio, which is remarkably a final image data per visual result of approximately 23k, from 16mm stock with recording time still improved per roll, at nearly 16 minutes. "[0108]"'' it is important to mention, a key aspect of the proprietary software of the present invention would be the digital means to "eliminate" the fold or "missing data" of the small gap occurring between the two strips of film. The digitally originated images would contain all the data necessary, (at 2k resolution) for example, for seamless allocation of the "halves" of image data from the film stock, as a small line of "2k" image resolution marrying halves of much higher resolution, would not be jarring or noticeable. Further, an aspect of the present inventions software would selectively involve extrapolating acceptable "transition" image data between the separate halves of film stock, e.g., captures, for seamless final visuals from the system of the present invention.

[0109] An improved aspect is that to expose the emulsion areas detailed herein, no moving optics or moving "gate" aspects need be employed, as both strips of emulsion are exposed simultaneously: Herein 16mm double strip provides the resolution of single strip 35mm horiz. 8 perf.

Increasing Quality and Recording Time Of Digital Image Capture

[0110] A variety of configurations and options related to hybrid cameras are provided for imaging that allow for increased quality, recording time and other advantageous aspects for entertainment imaging, such as for cinema and television and other motion media.

[0111] In one aspect, one media captured selectively simultaneously with aspects of another media capture is used to affect the latter:

An all digital hybrid configuration is disclosed herein, for the purpose of extending the resolution, and amount of overall data per visual, possible to capture, for both still photography and motion media.

[0112] In a further aspect of the invention, a high definition digital camera captures selectively both a full visual capture of a lens image, and selectively through the same lens portions of the lens image in higher resolution, wherein said portions are captured for the purpose of affecting, or being affected by, said full visual capture, which was selectively of a lower initial resolution.

[0113] For example, one configuration of this invention involves a standard or "normal high definition" video (digital) capture of an image being delivered through a camera lens. This is selectively provided by "video tap" configuration, deriving the image capture from only a portion of the lens image, and selectively also this full visual may be captured through its own independent lens, as a part of a single camera with multiple lenses, or as a separate camera alto'gettter configured to work m tandem with the unit capturing the "higher definition portions of the visual for later applications with/by the full visual capture.

[0114] In a further configuration, wherein all visuals are delivered through a single lens, the full visual capture is garnered from a selectively minimal portion of the lens image, requiring only a small portion of the "light" or overall visual information gathered by that lens, for proper rendition of the lens visual in the aspect ratio selected, (such as 1:66 to 1, or 1:85 to

1.)

[0115] This initial full visual capture may occur via familiar CCD or other "chip" or other single or multiple electronic capture means familiar with digital image capture, and recorded on tape, on a drive, or relayed for electronic transmission or any selected means for recording and/or relaying the digital data captured.

[0116] Time code associated or other visual labeling/tracking data means is provided and maintained/recorded relative to each visual of the full visual captures, for later use as an aspect of the present invention, and the objective of the present invention to end with modified digital visuals representative of the full visuals captured, though with overall resolution, and/or overall image data per visual, beyond what is conventionally possible.

[0117] A "subsequent" image capture means from the lens image, selectively the same lens that provided the full visual captures described above, involves a selectively high definition capture means, such as a 4k digitizing chip(s) device(s,) or other means for capturing visuals of recognizably high photographic or cinema-graphic resolution. However, herein means for providing over a selective period of time, such as a second, only a portion of the lens image, not the full visual captured by the initial (or other image capture means of the present invention, ) to the chip(s)/digitizing means. And, this means for providing a portion of the lens image further comprises means to subsequently provide a separate, selectively overlapping or not, portion of the lens image.

[0118] In a configuration of the present invention, the "chip(s)" or digitizing plane/means is not flat, but is cylindrical or of a circular or round shape, to allow it to moved, relative to the lens. Further, more than one "chip" or imaging plan/means may be involved in this "cylinder", or unconventional digital capture surface/means, allowing a second "capture" or another portion of the lens image to occur seamlessly and quickly after a previous image portion capture, so that in the course of a second of time, for example, one or more moving "chips" or image capture means, may be provided with new portions of the lens image to provide, for example, a 4k capture means with a plurality of new lens image portions (of visual data) resulting in a series of visuals that in tandem, may, for example, represent a composite of image- portion'" captufes"δT"a sTriglelens'image that when "assembled" into a single visual, may represent a single visual with, for example, 20k, 40k or even 120k of digital data, selectively per visual and/or selectively per second of digital video.

[0119] Selectively, the full visual capture, itself, for example, a 4k, or even 2k, or even lesser amount of data per visual, may in post production, and by way of time-code reference, be used as a "template" for assemblage of the plurality of "4k", for example, captures of portions of the full lens image. This template provided by a full visual capture, selectively captured at 24, 29.97 or other typical digital video capture rate of visuals per second, thus contains useful image position data for an entire second of digital motion visual data, for the plurality of very high resolution image-portion captures to be "applied to." Reciprocally, this process can be stated as the high definition image portions being assembled into a seamless mosaic with image aspects informed, position wise, by the full visual captures, thus the image portion captures are affected, rather than the full visual captures being affected. In essence, how this interdependence of visual data is "stated" does not change the aspect that they are used in tandem to create final digital visuals, either for still photography, a single visual, or for motion video, at 24 fps frame rate, for example, that are of a very high level of digital data overall, such as 12k, 20k, 120k, employing morphing technology, selectively, and/or the full visual captures to "position" the image portion captures' position, and visual aspects therein, as those image portion captures precluded likely, in an among themselves, the proper capture of overall image-aspects positioning information that was captured, or potentially captured, by conventional full-visual captures, at 24 fps for example.

[0120] The lens image may be diverted in part to provide the full visuals' information for capture, prior to optical or other means for focusing ,enlarging and/or delivering, selectively smaller portions of the overall lens image to the secondary recording means, such as the 4k option mentioned above, and further with means to revise and/or move to deliver a new portion of the full lens image for subsequent capture.

[0121] Time code thus, in conjunction with "image zone" reference data, corresponding to the "zones" of the lens image a given capture represents, would result for example, in one second of image data, involving 24 digital visuals from the initial full visual captures, and selectively 24 "image portions" captured and referenced according to their image zone data, resulting in a "single" composite visual of, for example, 24 X 4k, or 96k; when this "single visual" of data, captured over the course of a second of time is applied to the 24 frames of full visual captures data, selectively employing morphing and/or other digital blending technology, and relying on the full visual captures to modify position of the very high definition visuals' aspects, such as selectively identifiable image zones representing objects and/or image portions distinguished lccbf ding to" selected "criteria such as color variation or other means to distinguish image zones, the result is a seamless second of modified digital visual data representing 24 visuals, each 96k, and all or most modified according to image-zones' position to allow the very high definition "composite" of image zones' data to selectively match the true image zone's position capture through the second of time, represented by the 24 frames of full visual data captured during the same second that the image portions were individually digitized. By making use of the highest information digitizing means, and means to reposition image data based on peripheral data, such as the corresponding full visual captures, a composite of available technologies combined with the new options herein, result in a significantly enhanced resolution capture means.

[0122] As with rotating drums in a photo-copying system, and other imaging systems, herein a selectively "moving" delivery of the lens image as opposed to a static delivery of a full lens image, to a selectively moving and/or selectively different capture means, such as 4k CCD(s), a single lens may provide all of the visual information necessary to capture an extreme level of visual information related to a single lens image- digital repositioning and modification means, (as proprietary software of the present invention, may provide new all-digital video camera systems with resolution and/or overall data captured being a selective aspect, based on "how many" separate image zone captures and how much data the capture means may handle. For example, a 2k image capture means wherein only three image zones are separately recorded each second, would result in a 6k imaging system, using said full visuals capture option to affect said 2k image portion captures, wherein only a maximum of 2k image capture technology is needed.

[0123] By focusing the maximum image capture means/technology to selectively changing portions of a single lens image, it is possible to provide the image data necessary for compatibility with the image management and/or screening systems of "tomorrow." Meaning, if 96k is the "projection" capacity of theatres in 10 years, today, in one aspect of the present invention, means exists to capture image data to allow for a final sequence of digital visuals, each containing and exploiting the 96k data means, and resolution, that will make projects "tomorrow" for use; naturally if a "film" exists as 4k, and the screening capacity in a few years is 96k, if a film were even possibly "assembled' or revised to contain more than 4k, such as 48k, or 96k, the use of that film or project and appeal of it technically will be enhanced in the future, increasing it's long-term value and possible application and viewing life. [0Ϊ24]1""11 '"Aή'"exώnβ'le"applicatϊOn, may involve as simple a scenario as a static, flat chip(s) or other image digitizing means, positioned in line with the capture lens; or selectively a digitizing means with limited repositioning means, such as "tilting" left to right, a selective amount relative to the lens image. As the lens image is provided to the image digitizing means, such as chip(s),) an optic element, mirroring, prism means or other image diversion/delivery affecting means, provides selectively 1/3 of the lens image, left to right for example, then the next third, then the next. Then, selectively, the thirds may be provided relative to the next second of visual data, for example, the in reverse direction, right to left. The image portion selecting or diverting/delivery means, may be a rotating mirror or prism, for example, which is returned to the "first third" of the image, automatically, by virtue of it's repeating motion and position; such as a prism being back to it's original position, after it rotates 360 degrees.

[0125] Thus, a selectively fluid, if both lens image diversion means and capture means move, capture of different, subsequent aspects of the same lens image, may occur. Or, if the image diversion means has an intermittent motion, stopping three times for example, as a new portion of image is delivered to a static image digitizer, such as a CCD for example, a 4k digitizing means may provide 12k of image data relating to the lens image, per second for example,(one complete visual composited, which may be used to affect 24 full frames of visual data, in essence "upgrading" the resolution of 24 "2k", or lesser resolution, visuals to 24 "12k" visuals, employing the single, composited/mosaic of 4k image data representing distinct portions of the lens image, all occurring in lesser resolution within the full visual data of the conventional, e.g., "video assist" or primary capture stage of the invention, digital images captured.

[0126] Aspects of the invention include: How many distinct image portions of the lens image are digitized per second; How much they overlap with each other; How many conventional full visual digital images are captured per second; whether the lens, secondary optics and/or the digitizing means, chips or other means, move, are all selective options. The primary issue affecting the choice of these options is the eventual display system(s,) both in regard to resolution, aspect ratio and frame rate.

[0127] The objective is to create digital visuals of resolution exceeding the capture resolution of available "full visual" digitizing means. The software options making this feasible include means to affect visuals of the same, or similar, images, by way of time code, and other data options, cross referencing and in regard to image aspects that are identified to correlate: Lips moving over the course of a second, in a the continuous full visual images captured, 24 of them for example, may be enhanced in resolution in all 24 visuals thus, as though each portion of the visual has only a single high-high resolution reference, it is possible to extrapolate that the lips movϊrig1; £ϊs the^ '"smile"' maintain trie" additional digital data in the high-high resolution composite visual, or mosaic, only in slightly revised positions, informed by the actual position shifts of visual aspects recorded in the conventional full visual digital images.

[0128] Again, the mosaic of high-high definition data, creating for example a single frame of visual data per second, may upgrade all 24 frames of corresponding video captured, full visuals, during the second that "single frame" of high-high definition information was captured, resulting in the single reference, or "key frame" of visual data.

[0129] The selective capture of a key frame of visual data from a portion of the lens image diverted from another portion, used to capture more conventional digital data, such as 24 fps of 2k digital visuals' data, is created at a selectively lesser capture rate, such as 1 overall total visual per second, for the express purpose of being used in affecting and modifying the more conventional digital material captured for a specific objective/reason, to "recolor" aspects/zones of the visuals to correspond to the "filmed color rendition" of those same image zone aspects; in the invention herein, to upgrade the more conventional full visual captures to a higher resolution, even a resolution higher than any full- visual capture means existing may allow, through digital application of the assembled key frame "mosaic" representing a single visual captured during the time a number of visuals were captured by the more conventional full visual means.

[0130] Again, digital image zone correlation and modification means, and even familiar morphing technology, make the present invention timely, feasible and logical; hybrid technology points the way to modified digital visuals, both in the simulation of preferred "looks", acting-as- if a selected film stock had been the original recording media overall, and in the simulation of enhanced resolution, acting-as-if a very high resolving digitizer had been used to capture the full visuals, even one surpassing by far those presently existing.

Quality and Resolution of Hybrid Film and Digital Cameras

[0131] In a further embodiment a hybrid film and digital cameras are provided wherein the media is configured in tandem for the purpose of capturing visuals with the visual quality of film and with a resolution amount of visual information surpassing conventional image capture utilized today:

[0132] A film camera capturing a visual through a single lens, which is "split", visually fragmented by a beam splitter of other lens-light diverting/dividing means, remains in the conventional film configuration of film stock and magazine containment. With regards to a 35mm motion picture camera, such as PanaVision units, this means a magazine positioned on top of me''eamerarϊttmlvxϊich'Ts Η'eHvereff vertically to a gate for exposure and returned to the "take up" reel of the film magazine containment.

[0133] What is altered in the present configuration, related selectively to the optics and/or gate, or exposure area, of the film camera. Further, the digital or electronic picture capture aspect of the hybrid camera is high defintion digital, with image quality similar to that of digital cinema units, such as the Sony CineAlta camera.

[0134] Herein, selectively variable aspects of the optics occurring selectively after the lens image has been in part diverted to the digital capture unit, or other flickerless "video assist" aspect allowing for electronic capture of the lens image, focus a portion of the lens image only to the film plane, for film emulsion recording intermittently within the film gate. Selectively the digital visual capture may occur through a separate lens, or other stage of the single lens capture process, in this configuration however a portion of the lens image is diverted for digitizing prior to the secondary aspect/process of the present system method's optics. However, conventional "video assist" options, such as the relaying of the lens image during the intermittent motion of the film, when the film plane is not receiving the lens image, may be employed selectively herein, allowing for conventional flick-free digital capture to couple with selectively conventional film capture process.

[0135] The difference herein, toward the objective of increased capture resolution, involves the delivery of a selectively different portion of the lens image to the film plane, to subsequent unexposed portions of emulsion (moved into the gate intermittently, as is conventional. As with a "zoom lens" where focal changes deliver a selectively different portion of the total possible lens image or scene to the film plane, herein at a selectively conventional 24 fps, or slower rate, even 2 fps, for example, selectively different portions of the overall lens image are delivered automatically to the film for recording, frame after frame. For example, in a simple configuration of the present invention, an image being originally captured at a given focal setting is delivered by lens optics toward the film plane for recording. Herein, selectively variable and/or moving optical elements, provide an amplification of what would have been the normal visual headed for the film plane, providing selectively half of the full lens image to the 35mm film plane, and then after intermittent transport of the film to the next portion of unexposed motion picture film, selectively the other half of the lens image is provided to the gate and film plane for recording.

[0136] In this system and method, instead of a single lens visual being recorded at one instant onto a selected piece of emulsion, the lens image is delivered in stages two in this example to separate pieces of emulsion, allow for distinctly different recorded visuals to occur withiif Wo' sequential frames of film emulsion, overlapping in visual content. Herein, digital means or other means, may be employed in post production to create a single visual, representative of the full lens image (delivered to these variable optic aspects, or other electronic image delivery and varying means,) from the sequential film frames.

[0137] What is gained, herein, is visual quality. When a wide-screen cinematic visual is initially recorded by a 35 mm camera, for example, the emulsion available for the visual is limited by the width of the film stock. Typically, in a camera not anamorphically altering the scene captured, the wide visual occupies less film emulsion, than even a typical filmed television show capture means; this is because the ratio of the display means for a television show is more "square" allowing for more of the "4 perf ' emulsion area to be utilized in capturing a single visual. Thus, ironically, significantly less emulsion is used per original scene/image area, when capturing a visual for a large screen display means, such as a 1:85 to 1 cinema screen, than is used when capturing a visual for a small screen (1:33 to 1) television display intent.

[0138] The entire emulsion surface area found within 4 perforations (vertically) of 35 mm film, may be utilized in recording a selected portion of the lens visual that would have been delivered in it's entirety to a single frame of film. So, in one example, the variable optics may provide 12 or less representation of the "left side" of the lens image that would be have been recorded on a single frame of film, and 12 or less representative of the "right side" of said lens image. Thus, in this example, a visual of as wide or wider than the cinema screen ration 2:35 to 1, may be captured within two subsequent frames of 35mm motion picture film, providing a final visual, if the "sides" are married in digital post production, for such wide screen display means stored initially within an overall emulsion surface area many fold that which would have been utilized in capturing such a lens image, conventionally. This affects image quality.

[0139] Further, not being limited to horizontal, or left to right, partitions of lens images, sophisticated variable optic means may provide, for example, 12 separate portions of a lens image, or less, or more, with portions of the lens image coming from different areas both horizontally and vertically within the original lens image. Such a capture system then provides, from a single second of recording for example, 24 frames of high definition, or regular definition, digital visuals captured by the electronic capture aspect of the hybrid camera, such as the well known "video assist" aspect, and 24 frames of 35mm picture film, wherein selectively the configuration capturing two frames of 4 perf visuals for each overall framed scene visual, resulted in a visual quality, e.g. ,emulsion, more like 70mm film capture. In a scenario where in 12 frames of film, if running at 12 fps, wherein a selectively unique portion of the lens image is delϊ'veTed'tό eaclϊ'ϊrame1,' an"ϋnapng result may exceed any currently known approach to capturing images for entertainment.

[0140] In that scenario, the mosaic of captures from portions of the overall image, provides a final emulsion surface area, per visual, that is enormous; in essence, as large as all 12 frames' recording area pasted together, more like still photography's 2 1A" negatives.

[0141] In post production, by way of existing morphing technology and selective digital replacement means, the digital images or video captured may selectively provide all of the image elements' positioning data necessary to apply the filmed image, once assembled as one, digitally for example, per second, to the 24 frame of originated digital material. As a result, for future display, and current very high resolution display means, the large "key frames" of data, created by different subsequent frames of film that in tandem represent a single "scene" being photographed, provide all of the original visual data necessary for display systems of the future, that may exceed even 30k, for example.

[0142] In one aspect of the invention is disclosed a relatively unchanged camera configuration, with optics including means to isolate distinct portions of a scene, through a lens, for subsequent recording on a film stock. When digital assembled, and selectively utilizing conventional digital visuals originated of the full scene framed, the image "portions" recorded on film provide an increased emulsion recording size of a selected amount, for selective digitizing and assemblage, in association with the digitally originated material, or not.

[0143] In a further aspect, 24 frames of digital material captured, may be selectively applied to the extremely high resolution overall visual resulting from (even 24) distinct 35mm frames representative of a single "scene" framed by the cinematographer. Therein, though somewhat absurd at the present, perhaps less so in the future, morphing and image aspect repositioning means may provide post production software to allow those 24 distinct captures from a single scene to result in 24 frames of the full scene, provide by the full frame original digital captures, with the potentially more than 6k of data per film frame resulting in 24 overall frames of motion media, each and every of those 24 frames containing potentially over 140k of data.

[0144] Though the uses for 140k images may be limited today, the availability of the ability to extract such image quality from entertainment projects shot today may affect such projects' compatibility and use in the future- wherein projects limited to 4k, for example, may be less desirable for systems and audiences geared to much higher quality future systems of viewing. [0145]"" "Αgaihϊin the simplest configuration, a single 2:35 to 1 ratio visual, for example, may be captured within 24 frames of 35 mm emulsion as 12 "left side" portions of the framed scene, and 12 "right side" portions, (recorded in staggered order, left, right, left, right, selectively.

[0146] 24 frames of video material captured in tandem with said filmed images, even "video assist material", may be referenced or employed in allocating the "sides" of filmed visual data, once digitized for example, to assemble 24 final digital images with selectively an image quality exceeding 12k, and likely approaching 20 k, considering the efficient use of the 4 perf emulsion area.

[0147] In essence, the 35 mm cameras of today may provide approximately 70mm originated cinema images, meaning images similar to those captured with 65mm or 70 mm "equipment" and film stock.

[0148] 16mm cameras, for example, with the hybrid configuration, purpose and means herein, may provide final visuals well in excess of conventional 35mm cameras today. And, in any gauge size, while selectively extending the recording time of the film media. For example, if a lens image or scene is captured on film as 6 distinct areas, or portions, totaling the full scene, that is 6fps. So, the net effect is while increasing image quality by at least 6 times, over conventional 16mm capture, the recording time of a single roll of film is quadrupled, as film is running at ιΛ the normal frame rate; as film is capturing reference frames, while the digital aspect of the hybrid unit is capturing full frame visual data, including critical image data relating to the shifting or changing or repositioning of elements recorded during a single second, that may have been "missed" by the filmed frames.

[0149] Thus, digital technology allows for the higher resolution of the single assembled film frame, to not be compromised in repositioning those higher resolution "elements" relative to their counterparts within the digitally originated visuals. Thus, nothing is compromised in resulting in digital images, with the "look" of film, with virtually unlimited resolution and wherein film recording time is simultaneously extended dramatically.

[0150] Figure 1 shows 16mm film stock, 112, and 35mm film stock 114, as it is delivered to a horizontally configured camera film gate mechanism, 116, by transport component (such as roller) 102, exiting the gate as exposed film stock 110.

[0151] Gate 116 provides unique versatility and image capture quality potential for each of the gauge sizes featured, single perf/sprocketed 16mm film stock 112 and double perf/sprocketed film stock 115. The capture ratio options, selectively slaved to available screening dimensions potentially selectable for a project, include for example 1:33 (standard TV) 1:65 φla'smathϋnϊfόf 'hign""aeϊ,')'"T':'83"'(standard cinema) and 2:35 (a wide screen cinema ratio,) though options are in no way limited to these sizes or dimensions.

[0152] Lens (or otherwise conveyed) image target zone 104 provides represents a dramatically larger image manifest zone than conventional 35mm film capture for cinema or TV, which has a typical ceiling of information at 6k, based on the 3 perf vertical stock (delivery to gate configuration) film emulsion size. Limited only by edge to edge, edge to sprockets or sprockets to sprockets space when in the horizontal exposure position, an image delivered by modified optics arrangement to the larger image target area within a 16mm camera, will result in one option, with a 3 perf horizontal key frame image capable of providing higher image quality and resolution than standard 35mm cinema capture, involving 3 perf exposure areas on vertically exposed stock, and thus 72 perf of film per second. Herein, the 3 perf horizontal film exposure hybrid 16mm camera, can provide key frames (one per second for example,) providing the data basis for imparting they high res key frame generated image data within final images, (as informed selectively by 24 frames per second of digital or the electronic image or related data record.) Thus only 3 perf in the 16mm format, allows for better final image quality of final images while increasing media efficiency of 16mm (for example) from 10 minutes per roll to 80 minutes; this has obvious benefit and savings on a number of important levels. Further the ability to select image ratio without any distortion or compromise to the image as captured by emulsion means one will not be "compressing" images as the use of highly resolved key frames and image aspect position references provided from a video record of the same visual, basically, means that full resolution, uncompressed capturing remains entirely not data capture intensive, one "file" affecting as few as 1 and as many as over 24 final images, every second.

[0153] Similarly, 35 mm can provide image resolution and available per-image data in the range of 70mm stock and 24 fps capture, with a single 10+ perf horizontal capture on conventional 35mm film stock, per second. The number of key frames captures depending much on the end-user's objectives and creative/logistic priorities.

[0154] Figure 2 shows three frames of horizontally exposed film stock, 202, representative of a full second of camera operation time. Also illustrated are 24 frames of corresponding video in groups of 8 data files related to images, 214, 216 and 218, such as digital image information, captured by an electronic capture module working in tandem with the film frame exposures, as an aspect of the same camera, thus a hybrid camera. [0155]"'' data track, such as magnetic recordable stripe though not limited to being such, for recording corresponding non image data to provide image reference data between filmed images, 202, and the electronically captured images, 214, 216 and 218, among potentially other system function data beyond this image linking reference data.

[0156] Film 202 has sprockets 204 indicated, though one configuration involves film stock that does not feature sprockets, as images are digitized and sprocket transport is not necessary for proper subsequent registration to be accomplished in the digital domain (for example,) and thus image exposure area would be selectively increased to allow the full 35mm height of the stock (in this instance, though any gauge size is exemplary of the system/method herein,) to record image information.

[0157] Frames 1, 9 and 17 of digitally captured information, for example, are in this example, captured at the time, or close enough to the time of the filmed images, that they are substantially identical to their corresponding filmed images, 202, with regards to the position of aspects of the images captured.

[0158] Though morphing or other inferring image generation means can allow all images between the "key frames" 1, 2 and 3 represented by film frames 202, is one configuration of the present invention, herein an approach to the fluid image aspect positioning reference data available from the 24 frames per second of video captured during the same one second of image capture time, (214, 216 and 218) allow an prepared image data transform program to reference the 24 frames of video capture for actual image aspect position data, not inferred, in allocating the potentially far more resolved, and rich in image information, image data resulting from the filmed key frames, for example, when they are digitized. Thus, these electronically captured images, will match the image position aspects of final images generated by way of this invention, however, the final images will optionally have resolution of a selectable overall amount, and overall per image data amount, higher than each of the electronic captures, for example 208, though not higher than any of the individual filmed key frames can provide, such as Frame 1 in 202, the corresponding filmed image to electronically captured image 208.

[0159] Figure 3 shows a hybrid imaging camera, related to an embodiment of the present invention. An image, 302 enters through lens to be dispersed temporally or literally, by beam splitter, by image diversion component 304. It is important to mention, image delivery means need not be a lens, as the issue is a light or other image related stimulus being delivered for capture by more than one capture component, in this case, including an emulsion capture aspect. OϋLάøp -FiHa"! έte"3ϋ6 ϊ§"ar'h0ϊizontally positioned gate, receiving film stock, unlike the familiar Pana Vision top mounted magazine camera threading, wherein stock enters the gate from the top, exposure is between two rows of sprockets when 35mm film is the gauge size, existing the bottom of the gate, herein a rear mounted film magazine provides stock already in the horizontal position for exposure, much as a still film camera typically provides stock horizontally for exposure.

[0161] Image diversion means sends all or a portion of the image to electronic capture component 308 stored within tape or other data storage means 310, also storing corresponding time code data recorded onto the film stock. See figure 2, component 206. After processing of film stock, non image system data recorded on 206, selectively corresponding to electronically captured images, may be provided within the same final electronic media representation, such as scan and DVD, tape or digital store, though not limited to these, alongside and linked to the information relating to the original images recorded within emulsion.

[0162] Unexposed stock is delivered to the gate, 314, and returned to the magazine or other containment as 316. In this configuration, key frames are captured, one per second, 8 sprockets wide, counting one side. Thus providing key frames of at least a final image data potential of 15k, and with one per second being exposed, the 1,000 feet of conventional 35mm film typically allowing for 10 minutes of recording time approximately, at 24 fps, now providing a total recording time of approximately 2 hours; while by the operation of the present invention, resulting in final electronic images embodying selective aspects of the film stock images, each with a total image information threshold in excess of 15k selectively, despite the 2k capture maximum in this configuration of the electronically generated images, captured by component 308 and stored within 310, employed by the present system's computer program (software) aspect if not all, mostly for image-aspect shifting position information between available, more highly resolved, filmed key frames.

[0163] The present camera need not provide emulsion in the conventional, strip celluloid configuration, 312. The present invention includes a further configuration option for key frame and even full 24 fps exposure on emulsion) involving emulsion contained in a "feed" container within 312, no longer a film stock container but just and emulsion supply and take up storage component, being provided to the exposure area, or modified gate 306, in an unfixed state. Rather than a solid attached to celluloid, liguid, gel or in this configuration, a "dust", or powdered solid, may be "blown" in and/or magnetically guided into proper position within the selectably sized exposure area. Such "smart emulsion dust" may be maintained for exposure by an external influence, such as a magnetic force, though not limited as such. Like toner in a prifffeϊ''taΗ:fid|b7'fc'5Mpύter''(iatalnf5rnis the dispersal of particles creating an acceptable image. Herein, the toner is replaced by fragments of film emulsion or other light sensitive recording material, transported for exposure randomized relative to other fragments.

[0164] Now, the emulsion can be fixed at this point to a separate component, for further operations and return for storing; though one configuration involves particles of recordable "dust" that have secondary data recording means included therein. For example, modified emulsion or visually influenced recordable particles, may have received a coating of magnetic or other recordable matter prior being rendered into a the dust, or "partical-ized" form. Such a magnetic or other data recording medium might result on each particle like chocolate on a strawberry after being dipped, covering only a portion of the strawberry.

[0165] Once intermittently influenced by a magnetic force in the exposure area, for example, such particles, some if not all, may shift position to allow the magnetic material to face down, and image recording emulsion, or other material, to face up, toward the coming visual influence, such as light related to a visual from a lens of other component, including laser units that record on to film and other such potential image providing influences.

[0166] Before, during or after the image data is captured, one configuration provides the other recordable aspect of the dust, such as magnetic coating, to be influenced by a data providing magnetic or otherwise data influencing electronic means; while the dust is fixed in place in the exposure area. Such data may record and be maintained on some, if not all, such dust particles prepared for this purpose. Thus, when re-randomized and "blown" or otherwise, such as magnetically, removed from the exposure area and placed into a containment or other area no longer maintaining the image receiving position of the particles within the gate or exposure area, the position data of each particle is maintained selectively on each particle that appropriately recorded the data, which logically would provide "which image" and "where in the gate or exposure area" that particle rested during exposure. Thus, unlike computer toner that is limited to being dispersed based on external data imposed, this "smart dust" knows it's own location relative to the images it relates to. Naturally, relating to toner itself or printing and related processes, this smart dust technology may allow printing to involve toner that does not have a limit on how discreet it might be color wise, such as three colors provided resulting in a dispersal of those three based on computer data imposed. If toner too were of the "millions of colors" option, like emulsion can record, and "knew" where it belonged independently, (down to the individual dust particle size,) that would have clear advantages. A toner cartridge holding in fact potentially many "images" just as colored dust, or dust that later may render color after a partϊcMai* intmen"cS"cause§"Sucn"a"cnange in the "toner" or otherwise evolving color material provided in dust, powder or otherwise granulated form.

[0167] In processing such granulated emulsion, it may be fixed into place, such as onto a familiar film-like strip, or otherwise secured for those post production phases. Though, in digitizing or other image manifesting phases, the actually final images may not result until a system re-assembles the image "puzzle" after, for example, scanning the dust after it manifests it's color reaction to the original image stimulus, and the system then places that pixel or other bit of image data into the image and image position the "granule" of emulsion, or "smart emulsion dust," tells the system it belongs, from the distinct magnetic or otherwise recorded non- image data information maintained selectively within the granule itself on an added property or encoded aspect of the existing visual recording ability of the image receptive piece of a selectively small size or granule.

[0168] Image data as small as a single pixel, or equivalent, of image information may be maintained by each such granule, though not necessarily. As long as the piece of emulsion or other recordable, unfixed media "knows" where it belongs, all image data it provides will thus be able to be "placed" electronically into the correct image zone and visual it corresponds to, in post production.

[0169] Figure 4 shows an advantage of an embodiment of the system with regards to final image quality and efficiency. 402 illustrates a conventionally captured, industry standard, 35mm image recorded within color negative film stock. For cinema, 3 sprockets vertically of emulsion area provide the total available image recording area, which tests have revealed can provide not more than 6k of distinct digital image data, after selective scanning to electronic data form after film processing.

[0170] 406 illustrates a horizontally captured key frame of the same visual, provided by a camera with optics, or other image providing components, configured more similarly to familiar 70mm motion picture cameras, as the image target area must be larger of the same visual to expose this much larger emulsion area. Herein, the 8 sprocket width example is a key frame taken every one-second, which will be used to influence 24 final images providing a whole second of final image data. This image, based on the 6k tests of 3 sprocket images, thus provides over 2.65 times the image information, or more than 16k of data per image. Further, as only 8 sprockets of film, counting one side have been involved in this image, unlike the 4 perf that occur 24 time per second of conventional cinema capture today, 3 perf or sprocket exposures typically still involve 4 perf transport by cameras, which utilizes 96 perf, or sprockets of film, every second to provide those 6k images. [OΪ71]"" Ηereinj' the system program provides the efficiency that allows uncompressed captures of over 16k to occur, while resulting the in attributes and goals of compression and other data volume managing approaches, while in fact increasing available image quality and media use efficiency. For example, the 8 perf filmed key frames by way of the present invention will provide resolution and overall image data to "up-res" 24 images captured by an electronic aspect capture, such as a video assist unit working in tandem with the film capture aspect of the camera, to over 16k per image. Thus, 384 k of image data per second versus the 144k that 24 frames of conventional 35mm film stock can provide in electronic form; while in this systems configuration, increasing the recording time of the same 10 minutes roll of 35mm film stock from 10 minutes approximately, to 2 hours approximately. The advantages and costs savings potential are evident and in synch with the industry goals of increasing image quality while reducing weight, costs, media usage and equipment size. The latter being addressed by resulting 16mm camera systems providing image quality in excess of conventional 35mm motion picture film capture, and 35mm systems now able to exceed once often used 70mm film capture quality while in fact still reducing the amount of media (by weight) dramatically in doing so.

[0172] 404 illustrates a wide screen cinema key frame capture requiring no anamorphic distortion to fit the full image ratio onto film for recording; a procedure not only once used to "fit" images onto film stock restricted from left to right due to vertical film configuration for cinema during capture and projection, but the issues of using more than 1,000 feet of film to capture 10 minutes of material made recording images of such large emulsion size, such as Vistavision horizontal capturing, logistically problematic. This not only from the "amount of media" necessary issues, but also from performances being interrupted by camera "roll out" after just a few minutes of operation. 404 illustrates a 22k film captured image, surpassing the image quality of 70mm conventional capture, though herein while increasing film roll recording time from 10 minutes to more than 87 minutes. The result, provided by the software affected (program) reallocation of data rich image zone information within image 404 to 24, for example, electronically captured images, during the same second of time, will result in final images indistinguishable from a system that may have been exposing 24 of such 11 perf horizontal image per second, as Vistavision' s approach was designed to do, in part. Further, the color and image attributes of film emulsion are further provided to final images, (such as the filmic color response versus the color response found within the electronic captures,) is among the other aspects brought to the final images by the key frames to maintain the filmic response preferred in the industry and by viewers. [0173]'"" ""A."fu'ither"a(ivan"(a!ge" clearly, is that film cameras need not be reconfigured radically, necessarily. 35mm and 16mm cameras may maintain their current profiles, optics experiencing a revision to provide larger image target areas toward the improved quality emulsion area captures. Thus, directors of photography preferring film capture options and approaches, including different stocks, filters and artistic options for film capture not typical to digital capture, maintain essentially all of the aspects of a "film shoot," despite the option of fewer exposure per second on film, even 1 or fewer than that, (potentially 1 for a period of time exceeding one second.) However, as the key image aspects come from the key frames, it remains a film shoot.

[0174] Again, enough key frames, 4 per second, for example, can eliminate the need for secondary electronic images to be captured, morphing or other image inferring program technology providing the inferred images between such key frames. But, with video assists being typical to film capture, the dual use or improved video assist configuration of this invention, (potentially allowing such electronic capture to cover multiple purposes, such as those video assists are designed to address and to allow such video images to actually play a roll in the creation of the final images.

[0175] Figure 5 shows a 16mm camera configuration, wherein a single horizontal 16mm key frame of 3 perf size, 504,for cinema and/or television ration images, such as plasma TV high def, results in a key frame image superior to conventional 35mm 6k capture, while reducing the amount of film potentially shot from 24 perf, or 16mm sprockets, per second to 3; again increasing film roll recording time from approximately the 10 minutes a 400 foot roll of film provides, to 80 minutes while resulting in 24 images per second, each of over 6k image data size potentially, as opposed to conventional 16mm images, 502, that can be restricted approximately to a 2k size, single sprocket vertical exposures in a conventional 16mm camera, such as the Arriflex SR cameras.

[0176] Figure 6 shows an optically or otherwise repositioned image as captured by a film (or hybrid) camera 602, for recording onto selected emulsion type 608 horizontally, despite vertical delivery of the stock from magazine containment 606 to the film gate 616.

[0177] In one configuration, a lens delivers a visual as image 620 to an in-camera target area 604 selectively of the size necessary to expose the volume of emulsion properly, desired. Optic element(s) and/or mirroring or other image affecting means relays said image while affecting a repositioning, for example, a 90 degree repositioning. This allows visual 612 conveyed through the camera as image 620 to become modified image 614 prior to affecting (exposing) film stock 608 within modified film gate 616, the image being recorded as vertically repόsitiorie'd iinage15r8 hell wimϊrfth'e selected emulsion prior to intermittent advancement to the next length of unexposed emulsion within stock 608, perhaps one time per second.

[0178] This configuration allows a type of film camera conventionally designed to provide film stock for exposure to a film gate from a top mounted, vertical film delivering format, to benefit from the present inventions larger, horizontally relative to a length of stock recorded key frame image onto film for affecting a plurality of final images with each key frame recorded within the emulsion.

[0179] Optionally, electronic, e.g., video, digital video, or other medium, capture unit 610 may capture selectively 24 frames of video per second, and further provide film camera "video assist" functions and benefits, while capturing the same (selectively) lens image, or other capture aspect, providing the visual stimulus intermittently to the emulsion for recording. This use of the same visual for electronic and emulsion capture may involve a diversion of all or a selected amount of the lens image temporarily to provide the light stimulus for electronic capture, or a beam splitting component may selectively extract a small portion of the lens image for separate relaying to the electronic capture aspect, reducing overall lens image light selectively used to expose the emulsion.

[0180] The electronic capture unit can be a part of the camera, 602, or working at least in tandem with the film capture aspect should the same lens or related image capture element relay the visual to the electronic capture unit within the same prescribed time period as the emulsion receives related image(s,) for example one second of time.

[0181] As before mentioned, time code data may be recorded or otherwise tracked from added or existing media information provided within the film stock and/or electronic capture media storage means, for subsequent automatic and other reference between corresponding images related to the same visual(s) to be modified by the present invention's software/program aspect.

[0182] Figure 13 shows an over camera view of a double sided emulsion exposing camera. A: Original lens image; B. Mirror or other relaying means to send diverted of divided lens image toward offset gate to expose one side of the film strip; C. Camera housing; D. Roller for returning film to magazine, selectively twisting the film 90 degrees, to reposition it as film coming out of a non-offset gate would foe provided by a film magazine; E. Selective optional secondary optics and/or exposure means to affect the lens image, including the ability to focus the lens image uniquely; F. Lens image or portion thereof selectively affected or not by secondary optics and affecting means; G. Additional selective lens image diversion means, such as a mirror, toward exposing film within an effect film gate; H. Film gate; I. Offset film coriϊam'm'ent and' management, optional; J. Film being returned to the magazine, exposed; K. Roller to selectively repositioning film for return to film magazine; L. Diverted and/or divided lens image, after mirror or beam splitter affect on lens image; M. Lens image after primary optics, such as "zooming" are imposed; N. Beam splitter and/or variable mirror for relaying all or part of the lens image to more than one location, for selectively intermittent (or continual) relaying to media; O. Primary optics, such as zooming; P. Film from magazine moves toward roller and gate; Q. Film twisted 90° by roller means (or other)

[0183] Figure 14 shows enlarged 35 mm film stock. R. Enlarged 35 mm film stock, Vertical as it approaches film gate for exposure in conventional film camera; S. Image recording area for a selected cinema dimension; T. 3mm film (enlarged) in the horizontal position as it approaches film gates (both sides) of the present invention; U. Image recording area more than 4x that of conventional 35mm filmed recording. Total recording time of 1,000 ft of 35mm, double sided stock, in this configuration is minutes.

[0184] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Claims

What is Claimed:
1. A system for increasing resolution of subject images comprising, a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within the camera to record visuals on said emulsion, said zone being of a variable size and dimension, and an electronic imaging module in said camera operable to record aspects of said visuals recorded by said camera on said emulsion.
2. The system of claim 1 further comprising an image data modification program for generating final images from visual information recorded within said emulsion and from aspects of visual information captured and stored by said electronic imaging module.
3. The system of claim 2 wherein said program generates data related to more than one final image from information related to a single visual recorded within said emulsion.
4. The system of claim 1, wherein a single visual recorded within said emulsion contains more image information than any single image generated by said module.
5. The system of claim 2 wherein the number of final images is at least equal to the number of visuals or aspects of visuals recorded originally by said module.
6. The system of claim 2 wherein said aspects of visuals recorded by said module provide at least one type of image information for modifying information derived from visuals originally recorded within said emulsion.
7. The system of claim 6 wherein said image information in said module relates to positioning information of at least a single selectively distinguished image zone.
8. The system of claim 7 wherein said image data modification program provides at least two final images generated, said at least two final images with an equivalent amount of image information greater than any single image generated by said module though not greater than information derived from any single visual stored within said emulsion.
9. The system of claim 2 wherein said emulsion is provided on a containment strip as photographic film.
10 The system of claim y wherein said containment strip comprises celluloid.
11. The system of claim 9 wherein said film is provided and exposed horizontally to a lens image, limiting the recorded image size on said emulsion by the image height as recorded on said film, said lens image parallel with the film edges and any existing sprocket hole row relative to the image horizon line or equivalent framing aspect indicating correct positioning of at least any one side of said lens image.
12. The system of claim 11 wherein said film stock with emulsion is provided without sprocket holes providing an entire width of the film stock strip for vertical image information, said entire width of said film stock defining the maximum vertical image size recordable on said emulsion with the image width and ratio remaining selectable and unrestricted by any film stock perimeter.
13. The system of claim 12 wherein a selectable length of the film stock strip restricts image width recordable size.
14. The system of claim 2 wherein said entire recordable emulsion width is the width of the film gauge size, and the stock is provided without sprockets or other emulsion interruptions.
15. The system of claim 14 wherein the entire recordable emulsion is the width of the uninterrupted vertical emulsion distance between interruptions in the recordable emulsion, including sprocket holes and the perimeter of the strip as determined by the stock gauge size.
16. The system of claim 1 further comprising said unexposed photographic emulsion in an unfixed state wherein independent recordable media portions of said medium are repositionable relative to each other, said independent recordable media portions capable of storing image data pertaining to a single pixel of displayable image information; a dispersal of said image recording medium intermittently over a selectively large image exposure area prior to exposure to a stimulus, secondary non image information recorded on said independent recordable media portions of said medium, a secondary stimulus applied to said medium affecting at least one aspect of said secondary non image information recorded on said media portions during a period of time said medium is stationary within said exposure area, and a containment area for storing said recordable media portions of said medium after exposure to light separate from a containment area for storing said unexposed image recording medium.
17. 'Α"metHbcTfδr lricreasϊng'fe's'όl'ϋtion of subject images comprising, delivering unexposed photographic emulsion intermittently to at least one exposure zone within a camera to record visuals on said emulsion, said zone being of a variable size and dimension, and recording aspects of said visuals by an electronic imaging module working in tandem with aspects of said camera.
18. The method of claim 17 further comprising generating final images with an image data modification program at least in part from information derived from visuals recorded by said emulsion and from information recorded in aspects of visuals by said electronic imaging module.
19. The method of claim 18 wherein said program generates data related to more than one final image from at least information related to visuals recorded within said emulsion.
20. The method of claim 18 wherein the number of final images is not less than the number of visuals or aspects of visuals recorded originally by said module.
21. The method of claim 18 wherein said aspects of visuals recorded by said module provide at least one type of image information for modifying information in visuals originally recorded within said emulsion in creating final images.
22. The method of claim 21 wherein said image information in said module relates to positioning information of at least one selectively distinguished image zone.
23. The method of claim 22 wherein said image data modification program provides at least two final images, each generated with as much image information as available within a single image as recorded within said emulsion.
24. The method of claim 18 wherein said final image is generated without reference to image information other than related to images recorded within said emulsion.
25. TRd' m'etrϊόd'of claim 1« wherein said image data modification program further comprises image inferring functionality to generate anticipated images of a selectable number that would potentially have occurred between available images recorded within said emulsion, said anticipated images having as much image information as any one image recorded within said emulsion.
26. The method of claim 18 wherein said emulsion is provided on a celluloid strip as photographic film.
27. The method of claim 26 wherein said film is provided and exposed horizontally to a lens image, film edge perimeters and any sprocket hole rows being parallel with the top edge of the image as framed, limiting the recorded image size on said emulsion by the maximum image height as recordable without physical interruptions within said emulsion, including sprocket hole interruptions, as it occurs within said film parallel with the film edges and any existing sprocket hole row.
28. The method of claim 27 wherein said film stock with emulsion is provided without sprocket holes providing the entire width of the film stock strip for vertical image information.
29. The method of claim 27 wherein said exposure zone is offset relative to the lens image.
30. The method of claim 18 wherein said entire width is 35 mm when the gauge size of stock is 35 mm.
31. The method of claim 17 further comprising providing independent recordable media portions of an unexposed photographic emulsion in an unfixed state, repositioning said recordable media portions relative to each other, storing image data pertaining to a single pixel of displayable image information on said independent recordable media portions, dispersing said unexposed photographic emulsion intermittently over a selectively large image exposure area prior to exposure to a stimulus, recording secondary non-image information on said recordable media portions of said photographic emulsion, applying a secondary stimulus to said photographic emulsion to affect at least one aspect of said secondary non image information recorded on said media portions during a period of time said emulsion is stationary within said exposure area, and storing said recordable media portions of said photographic emulsion after exposure to iigMiai' a-coniaintnem-area separated from a containment area for storing said unexposed photographic emulsion.
32. An apparatus for increasing resolution of subject images comprising, a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within the camera to record visuals, said zone being of a variable size and dimension, and an electronic imaging module in said camera operable to record aspects of said visuals recorded by said camera within said emulsion.
33. The apparatus of claim 32 wherein said exposure zone receives photographic emulsion as a fixed aspect of recordable media, including film stock, wherein said zone positions said recordable media to receive image stimuli related to said visual for vertical or offset recording of said stimuli, relative to at least a horizontal image framing indicator, including a horizon line or top edge of the image.
34. The apparatus of claim 32 further comprising an image data modification program for generating final images from visual information recorded within said emulsion and from aspects of visual information captured and stored by said electronic imaging module.
35. The apparatus of claim 34 wherein said program generates data related to more than one final image from information related to a single visual recorded within said emulsion.
36. The apparatus of claim 32, wherein a single visual recorded within said emulsion contains more image information than any single image generated by said module.
37. The apparatus of claim 34 wherein the number of final images is at least equal to the number of visuals or aspects of visuals recorded originally by said module.
38. A system for increasing resolution of subject images comprising, a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within a camera, said zone being of a selectable size and dimension, said exposure zone receiving said emulsion from the top or bottom of said zone with the emulsion existing through the top or bottom of said zone following exposure, or receiving said emulsion tiOm any side oϊ said zone to exit said zone from the other side, following exposure of said emulsion, and an image data modification program for generating final images from information recorded within said emulsion, said program being operable to infer a selected number of images, of selectable equivalent total image information, between available images recorded within said emulsion.
39. The system of claim 38 wherein said emulsion is provided as an aspect of media comprising emulsion and an information recording medium.
40. The system of claim 39 wherein said media component comprises celluloid.
41. The system of claim 39 wherein said media includes a light transmissible material to which said emulsion is joined.
42. The system of claim 39 wherein said media includes an opaque aspect, said media fixing said emulsion into place for at least the emulsion to be exposed.
43. The system of claim 39 wherein said emulsion is exposed intermittently to a lens image that has been offset relative to the initial light entering said camera.
44. The system of claim 43 wherein said offset is approximately 90 degrees, providing a horizontal visual relative to the camera for recording on a vertically positioned emulsion.
45. The system of claim 43 wherein said offset is effected by at least one optical component.
46. The system of claim 43 wherein said optical component comprises a mirror.
47. The system of claim 38 further comprising said unexposed photographic emulsion in an unfixed state wherein independent recordable media portions of said medium are repositionable relative to each other, said independent recordable media portions capable of storing image data pertaining to a single pixel of displayable image information; a dispersal of said image recording medium intermittently over a selectively large image exposure area prior to exposure to a stimulus, secondary non image information recorded on said independent recordable media portions of said medium, a secondary stimulus applied to said medium affecting at least one as]i!ut«oiusaia."SeeoHctary non-image iniormation recorded on said media portions during a period of time said medium is stationary within said exposure area, and a containment area for storing said recordable media portions of said medium after exposure to light separate from a containment area for storing said unexposed image recording medium.
48. A method for increasing resolution of subject images comprising, delivering unexposed photographic emulsion intermittently to at least one exposure zone within a camera to record visuals, said zone being of a selectable size and dimension, receiving said emulsion into said exposure zone from the top or bottom of said zone with the emulsion existing through the top or bottom of said zone following exposure, or receiving said emulsion from any side of said zone to exit said zone from the other side, following exposure of said emulsion, and generating final images from information recorded within said emulsion using an image data modification program, said program being operable to infer a selected number of images, of selectable equivalent total image information, between available images recorded within said emulsion.
49. The method of claim 48 wherein said emulsion is provided as an aspect of media comprising emulsion and an information recording medium.
50. The method of claim 49 wherein said media component comprises celluloid.
51. The method of claim 49 wherein said media includes a light transmissible material to which said emulsion is joined.
52. The method of claim 49 wherein said media includes an opaque aspect, said media fixing said emulsion into place for at least the emulsion to be exposed.
53. The method of claim 50 further comprising exposing said emulsion intermittently to a lens image that has been offset relative to the initial light entering said camera.
54. The method of claim 52 wherein said offset is approximately 90 degrees, providing a horizontal visual relative to the camera for recording on a vertically positioned emulsion.
55. The method of claim 52 wherein said offset is effected by at least one optical component.
56. - Trie" metHod'ofclaim 52" wh'efein said optical component comprises a mirror.
57. The method of claim 48 further comprising providing independent recordable media portions of an unexposed photographic emulsion in an unfixed state, repositioning said recordable media portions relative to each other, storing image data pertaining to a single pixel of displayable image information on said independent recordable media portions, dispersing said unexposed photographic emulsion intermittently over a selectively large image exposure area prior to exposure to a stimulus, recording secondary non-image information on said recordable media portions of said photographic emulsion, applying a secondary stimulus to said photographic emulsion to affect at least one aspect of said secondary non image information recorded on said media portions during a period of time said emulsion is stationary within said exposure area, storing said recordable media portions of said photographic emulsion after exposure to light in a containment area separated from a containment area for storing said unexposed photographic emulsion.
58. An apparatus for increasing resolution of subject images comprising, a camera operable to deliver unexposed photographic emulsion intermittently to at least one exposure zone within a camera, said zone being of a selectable size and dimension, said exposure zone receiving said emulsion from the top or bottom of said zone with the emulsion existing through the top or bottom of said zone following exposure, or receiving said emulsion from any side of said zone to exit said zone from the other side, following exposure of said emulsion, and an image data modification program for generating final images from information recorded within said emulsion, said program being operable to infer a selected number of images, of selectable equivalent total image information, between available images recorded within said emulsion.
59. The apparatus of claim 58 wherein said emulsion is provided as an aspect of media comprising emulsion and an information recording medium.
60. The apparatus of claim 59 wherein said media component comprises celluloid.
61. The apparatus of claim 59 wherein said media includes a light transmissible material to which said emulsion is joined.
62J The appafatwoi ciaim wwnerein saiα media includes an opaque aspect, said media fixing said emulsion into place for at least the emulsion to be exposed.
63. The apparatus of claim 59 wherein said emulsion is subjected intermittently to a lens image that has been offset relative to the initial light entering said camera.
64. The apparatus of claim 63 wherein said offset is approximately 90 degrees, providing a horizontal visual relative to the camera for recording on a vertically positioned emulsion.
EP20060802320 2005-08-25 2006-08-25 System and apparatus for increasing quality and efficiency of film capture and methods of use thereof Withdrawn EP1924876A4 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US71134505 true 2005-08-25 2005-08-25
US71086805 true 2005-08-25 2005-08-25
US71218905 true 2005-08-29 2005-08-29
US72753805 true 2005-10-16 2005-10-16
US73234705 true 2005-10-31 2005-10-31
US73914205 true 2005-11-22 2005-11-22
US73988105 true 2005-11-25 2005-11-25
US75091205 true 2005-12-15 2005-12-15
PCT/US2006/033223 WO2007025131A3 (en) 2005-08-25 2006-08-25 System and apparatus for increasing quality and efficiency of film capture and methods of use thereof

Publications (2)

Publication Number Publication Date
EP1924876A2 true true EP1924876A2 (en) 2008-05-28
EP1924876A4 true EP1924876A4 (en) 2012-05-16

Family

ID=37772435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060802320 Withdrawn EP1924876A4 (en) 2005-08-25 2006-08-25 System and apparatus for increasing quality and efficiency of film capture and methods of use thereof

Country Status (3)

Country Link
EP (1) EP1924876A4 (en)
JP (1) JP2009511938A (en)
WO (1) WO2007025131A3 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143439A (en) * 1993-11-16 1995-06-02 Konica Corp Picture image pickup device and picture processing unit
US6014165A (en) * 1997-02-07 2000-01-11 Eastman Kodak Company Apparatus and method of producing digital image with improved performance characteristic
US6505003B1 (en) * 2001-10-12 2003-01-07 Eastman Kodak Company Hybrid cameras that revise stored electronic image metadata at film unit removal and methods
US20050057687A1 (en) * 2001-12-26 2005-03-17 Michael Irani System and method for increasing space or time resolution in video

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584281B2 (en) * 2000-09-22 2003-06-24 Fuji Photo Film Co., Ltd. Lens-fitted photo film unit and method of producing photographic print
US7260323B2 (en) * 2002-06-12 2007-08-21 Eastman Kodak Company Imaging using silver halide films with micro-lens capture, scanning and digital reconstruction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143439A (en) * 1993-11-16 1995-06-02 Konica Corp Picture image pickup device and picture processing unit
US6014165A (en) * 1997-02-07 2000-01-11 Eastman Kodak Company Apparatus and method of producing digital image with improved performance characteristic
US6505003B1 (en) * 2001-10-12 2003-01-07 Eastman Kodak Company Hybrid cameras that revise stored electronic image metadata at film unit removal and methods
US20050057687A1 (en) * 2001-12-26 2005-03-17 Michael Irani System and method for increasing space or time resolution in video

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007025131A2 *

Also Published As

Publication number Publication date Type
EP1924876A4 (en) 2012-05-16 application
JP2009511938A (en) 2009-03-19 application
WO2007025131A3 (en) 2008-10-30 application
WO2007025131A2 (en) 2007-03-01 application

Similar Documents

Publication Publication Date Title
US5973700A (en) Method and apparatus for optimizing the resolution of images which have an apparent depth
US5457491A (en) System for producing image on first medium, such as video, simulating the appearance of image on second medium, such as motion picture or other photographic film
US5046792A (en) Holographic printer
US3865738A (en) Method of making motion pictures
Ascher et al. The filmmaker's handbook: A comprehensive guide for the digital age
US5140414A (en) Video system for producing video images simulating images derived from motion picture film
US5870642A (en) Panoramic support for camera permits horizontal-format and vertical-format image recordings
US5717844A (en) Method and apparatus for producing 3D pictures with extended angular coverage
US5940641A (en) Extending panoramic images
US6587159B1 (en) Projector for digital cinema
US6052539A (en) Camera that produces a special effect
Enticknap Moving image technology: from zoetrope to digital
US5841512A (en) Methods of previewing and editing motion pictures
US5687011A (en) System for originating film and video images simultaneously, for use in modification of video originated images toward simulating images originated on film
US20040184763A1 (en) Video to film flat panel digital recorder and method
US5619738A (en) Pre-processing image editing
US5801811A (en) 3D photographic printer using a matrix display for exposure
US5704061A (en) Method and apparatus for creating cylindrical three dimensional picture
US5534954A (en) Motion picture system
US20060038879A1 (en) System and apparatus for recording, transmitting, and projecting digital three-dimensional images
US6865023B2 (en) System for collecting and displaying images to create a visual effect and methods of use
US5727242A (en) Single-lens multiple aperture camera for 3D photographic/video applications
US5625435A (en) Non-scanning 3D photographic printer with a partitioned aperture
JPH0843881A (en) camera
US20040202445A1 (en) Component color flat panel digital film recorder and method

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent to

Countries concerned: ALBAHRMKRS

17P Request for examination filed

Effective date: 20080226

R17D Search report (correction)

Effective date: 20081030

RIC1 Classification (correction)

Ipc: G03B 17/00 20060101ALI20081107BHEP

Ipc: G03B 17/48 20060101AFI20081107BHEP

Ipc: H04N 7/18 20060101ALI20081107BHEP

RBV Designated contracting states (correction):

Designated state(s): CH DE FR GB LI

DAX Request for extension of the european patent (to any country) deleted
A4 Despatch of supplementary search report

Effective date: 20120417

RIC1 Classification (correction)

Ipc: H04N 7/18 20060101ALI20120411BHEP

Ipc: G03B 17/48 20060101AFI20120411BHEP

Ipc: G03B 17/00 20060101ALI20120411BHEP

Ipc: G03B 37/06 20060101ALI20120411BHEP

Ipc: G03B 35/00 20060101ALI20120411BHEP

Ipc: H04N 5/222 20060101ALI20120411BHEP

Ipc: G03B 19/18 20060101ALI20120411BHEP

Ipc: G03B 37/00 20060101ALI20120411BHEP

18D Deemed to be withdrawn

Effective date: 20120201