EP1920389A1 - Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire - Google Patents

Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire

Info

Publication number
EP1920389A1
EP1920389A1 EP06778887A EP06778887A EP1920389A1 EP 1920389 A1 EP1920389 A1 EP 1920389A1 EP 06778887 A EP06778887 A EP 06778887A EP 06778887 A EP06778887 A EP 06778887A EP 1920389 A1 EP1920389 A1 EP 1920389A1
Authority
EP
European Patent Office
Prior art keywords
pump
stage
charge pump
output
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778887A
Other languages
German (de)
English (en)
Inventor
Pierre Rizzo
Christophe Moreaux
David Naura
Ahmed Kari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1920389A1 publication Critical patent/EP1920389A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0713Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a power charge pump
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the invention relates to contactless integrated circuits and in particular contactless integrated circuits of passive type powered electrically by signals supplied by an antenna circuit.
  • Contactless integrated circuits or RFID (Radio Frequency Identification) integrated circuits are used in various applications such as the production of electronic tags and the production of contactless smart cards, including electronic purses and access control cards. , transport cards, etc.
  • the invention relates more particularly to the non-contact UHF integrated circuits, designed to operate in the presence of a UHF (ultra-high frequency) electric field oscillating at a frequency of several hundred MHz, generally between 800 MHz and 100 GHz.
  • a UHF ultra-high frequency
  • FIG. 1 schematically represents a contactless integrated circuit ICI of the UHF type.
  • the circuit ICI comprises an antenna circuit ACT, a primary charge pump PMP, a modulation circuit MCT and a demodulation circuit DCT, together forming a contactless communication interface.
  • the integrated circuit also comprises a control unit CTU and a non-volatile memory MEM.
  • the memory is for example a memory EEPROM (erasable and electrically programmable), allowing the integrated circuit to store transaction and / or identification data.
  • the CTU controls memory access by executing read and write commands to the memory.
  • the antenna circuit ACT comprises two conductors W1, W2 forming a dipole.
  • antenna signals S1, S2 appear on the conductors W1, W2.
  • These antenna signals S1, S2 are low amplitude alternating signals, only a few tenths of a volt, and are in phase opposition.
  • the primary charge pump PMP is driven by the signals S1, S2, used as pump signals, and supplies a DC voltage Vcc.
  • the voltage Vcc is typically of the order of Volt at a few volts, for example 1.8 V, and provides the power supply of the integrated circuit if it is entirely passive (that is to say without a power source). autonomous power supply, like a battery).
  • the MCT circuit receives from the control unit CTU DTx data to be transmitted via the antenna circuit, and modulates the impedance of the antenna circuit ACT according to these data.
  • the circuit MCT applies to the charge pump PMP a modulation signal Sm (DTx) which contains the data DTx in an encoded form.
  • the signal Sm (DTx) has by default an inactive value, for example 0, and has during the modulation periods an active value, for example 1, which has the effect of short-circuiting the charge pump.
  • the antenna circuit ACT absorbs all of an incident electric power Pi emitted by the reader RDI and sensed by the antenna circuit ACT whose impedance is adapted for this purpose.
  • the short circuit of the charge pump causes a modulation of the impedance of the antenna circuit and consequently a modulation of its reflection coefficient.
  • the antenna circuit is then mismatched and returns a reflected wave of power Pr.
  • the reflected wave is received by the RDI reader and results in the appearance, in its own antenna circuit, of a modulated signal which is the image of the signal Sm (DTx).
  • FIG. 2 represents the conventional structure of the charge pump PMP and also represents a modulation switch SW1 controlled by the signal Sm (DTx) and arranged to short circuit the charge pump.
  • the PMP charge pump comprises three stages of pumping in series. Each stage comprises two diodes and two capacitors, the latter being connected to the conductors W1, W2 of the antenna circuit to receive the signals S1, S2.
  • the switch SW1 When the switch SW1 is in the ON state, the output of the charge pump is short-circuited and the voltage Vcc is no longer produced.
  • a holding capacitor Ch is added to the output of the charge pump.
  • the capacitor Ch is connected to the output of the charge pump by an isolation diode Di arranged in reverse.
  • an auxiliary switch SW2 driven by a signal / Sm (DTx) provided by an inverting gate IG1, is arranged in parallel with the diode Di.
  • the switch SW1 is in the OFF state, the switch SW2 is in the ON state and the diode Di is short-circuited.
  • the capacitor Ch is charged to the voltage Vcc without loss of voltage across the diode Di.
  • Such a method of modulating the impedance of the antenna circuit ACT although essential for sending data by "backscattering", has the disadvantage of totally neutralizing the production of the DC voltage Vcc by the charge pump.
  • the voltage Vcc drops rapidly when the integrated circuit sends data.
  • the data transmission periods are therefore critical periods for the reception of the energy, and define the maximum distance of communication with the RDI reader.
  • the invention aims a method for modulating the impedance of a UHF antenna circuit without completely inhibiting the production of DC voltage by the primary charge pump.
  • a method for modulating the impedance of an antenna circuit providing pump signals to a charge pump comprising at least a first pump stage and a last pump stage, the last pump stage providing a DC voltage, comprising a step of - short-circuiting the charge pump, wherein the short circuit is applied to the output of the first pump stage, so as to allow the last pump stage to continue pumping electrical charges and supply the DC voltage.
  • the charge pump comprises at least one pumping stage intermediate between the first and the last pumping stage, and the short circuit of the charge pump is applied to the output of the first pumping stage in such a way that to allow the intermediate pumping stage to continue pumping electrical charges.
  • the short circuit is applied to an output capacitor of the first pumping stage.
  • the method is applied to a charge pump in which each pumping stage comprises an input diode and an input capacitor, an output diode and an output capacitor, the cathode of the diode. the input being connected to the anode of the output diode and to a first terminal of the input capacitor, a second terminal of which receives a first antenna signal as the first pump signal, the cathode of the output diode being connected to a first terminal of the output capacitor having a second terminal receiving a second antenna signal as a second pump signal.
  • the short circuit is applied by means of a modulation switch which has a low intrinsic series resistance and has no additional series impedance.
  • the invention also relates to a contactless integrated circuit comprising an antenna circuit, a charge pump driven by pumping signals supplied by the antenna circuit, the charge pump comprising at least a first pumping stage and a last floor pumping stage, the last pumping stage providing a DC voltage, and at least one modulation switch of the impedance of the antenna circuit, arranged to short circuit the charge pump when it is in the on state, in wherein the modulation switch is arranged to short-circuit the output of the first stage of the charge pump, so as to allow the last stage of the charge pump to continue pumping electrical charges and supply the DC voltage.
  • the charge pump comprises at least one pumping stage intermediate the first and the last pumping stage, which continues to pump electrical charges when the modulation switch bypasses the output of the first stage of the pump. the charge pump.
  • the modulation switch is arranged to short circuit an output capacitor of the first stage of the charge pump.
  • each pumping stage comprises an input diode and an input capacitor, an output diode and an output capacitor, the cathode of the input diode being connected to the anode of the diode at a first terminal of the input capacitor, a second terminal of which receives a first antenna signal as the first pump signal, the cathode of the output diode being connected to a first terminal of the output capacitor having a second terminal receives a second antenna signal as a second pump signal.
  • the integrated circuit is electrically powered by the DC voltage supplied by the last stage of the charge pump.
  • the modulation switch has a low intrinsic series resistance and has no additional series impedance, to apply a total short circuit to the output of the first stage of the charge pump.
  • FIG. 1 schematically represents the structure of a contactless integrated circuit
  • FIG. 2 represents a primary charge pump and conventional means for modulating the impedance of the antenna circuit to which the charge pump is connected
  • FIG. 3 represents a primary charge pump and means according to the invention for modulating the impedance of the antenna circuit to which the charge pump is connected
  • FIG. 4 represents the appearance of a voltage supplied by the pump.
  • FIG. 2 shows the charge voltage of the charging pump of FIG. 3 when a permanent short circuit is applied to each of the charging pumps, and FIG. a voltage supplied by the charge pump of FIG. 2 and a voltage supplied by the charge pump of FIG. 3 when an intermittent short circuit is applied to each of the charge pumps. . .
  • the invention is based on the observation that the short circuit intended to modulate the impedance of the antenna circuit ACT, applied by the switch SW1 to the output of the charge pump PMP, is the output of the last stage of the charge pump may be applied to another stage of the charge pump while obtaining an equivalent and at least sufficient effect as regards the modulation of the reflection coefficient of the antenna circuit .
  • the invention provides for applying the impedance modulation short-circuit at the output of a stage of the charge pump other than the last stage, and preferably at the output of the first stage of the charge pump in order to the number of stages downstream of the short-circuit region is maximum and the voltage loss Vcc is minimal.
  • Figure 3 illustrates the application of the invention to the PMP charge pump already shown in Figure 2, whose structure will now be described in more detail.
  • the PMP charge pump comprises three stages of pumping in series.
  • the first stage comprises an input diode D1, an input capacitor C1, an output diode D2 and an output capacitor C2.
  • the second stage comprises an input diode D3, an input capacitor C3, an output diode D4 and an output capacitor C4.
  • the third and last floor includes a 66
  • the cathode of the input diode D1, D3, D5 is connected to a first terminal of the input capacitor C1, C3, C5 and to the anode of the output diode D2, D4, D6, whose cathode is connected to a first terminal of the output capacitor C2, C4, C6.
  • the second terminal of the input capacitor C1, C3, C5 is connected to the antenna conductor W1 and receives the first antenna signal S1.
  • the second terminal of the output capacitor C2, C4, C6 is connected to the antenna conductor W2 and receives the second antenna signal S2.
  • the three stages of the charge pump are arranged in cascade, the cathode of the diode D2 being connected to the anode of the diode D3 and the cathode of the diode D4 connected to the anode of the diode D6.
  • the anode of the diode D1 is connected to the conductor W2.
  • the capacitor C6 supplies the voltage Vcc. In order for the voltage Vcc not to be floating, the conductor W1-W2 is connected to the ground of the integrated circuit.
  • each capacitor Ci of even rank is brought to an electric potential V (S2) higher than the potential V (Sl) that the second terminal of the odd-rank capacitor receives. next Ci + 1, so that the capacitor Ci transfers electrical charges in the next capacitor Ci + 1, through the corresponding Di di connection diode, while the di-I diode of previous rank is blocked.
  • the second terminal of each capacitor Ci-I of odd rank is brought to an electric potential V (Sl) higher than the potential V (S2) that receives the second terminal of the even-rank capacitor Ci following , so that the capacitor Ci-I transfers electrical charges in the capacitor Ci, through the corresponding Di-I connection diode, while the Di-2 diode of previous rank is blocked.
  • Vs is the voltage difference in rms value between the antenna signals S1, S2 and Vd the threshold voltage of the diodes
  • the voltage gain of each stage of the charge pump is equal to 2Vs-2Vd either by example 0.6 Volt if Vs is equal to 0.5 Volt and Vd equal to 0.2 Volt.
  • the switch SW1 is arranged at the output of the first stage of the charge pump, in parallel with the capacitor C2.
  • the switch SW1 is for example an NMOS transistor whose drain terminal D is connected to the first terminal of the capacitor C2 (cathode of the diode D2) and whose source terminal S is connected to the conductor W1 of the antenna circuit ACT , ie the mass of the integrated circuit.
  • the gate of the NMOS transistor receives the modulation signal Sm (DTx).
  • the switch SW1 When the signal Sm (DTx) is at 0, the switch SW1 is in the OFF state and the respective voltage gains of the three stages of the charge pump accumulate to supply the voltage Vcc. When the signal Sm (DTx) is at 1 (Vcc), the switch SW1 is in the ON state and the output of the first stage of the charge pump is short-circuited.
  • the short circuit also has the effect of connecting the input of the second stage of the charge pump (anode of the diode D3) to the conductor W1. The input of the second stage thus receives the signal Sl.
  • the second stage of the charge pump then functions as a first charge pump stage. In others In other words, the charge pump operates as a two-stage charge pump instead of three.
  • FIG. 4 shows the profile of the voltage Vcc when the charge pump is permanently short-circuited by the switch SW1.
  • the curve C1 illustrates the variations of the voltage Vcc in the configuration illustrated in FIG. 2, when the switch SW1 is arranged in accordance with the prior art.
  • Curve C2 illustrates the variations of the voltage Vcc in the configuration illustrated in FIG. 3, when the switch SW1 is arranged in accordance with the invention.
  • the voltage Vcc according to the invention (curve C2), provided here by the capacitor C6, decreases less rapidly thanks to the pumping ensured by the second and third stages of the charge pump, then tends to a value different from zero which is equal to 2/3 of the nominal voltage Vn
  • FIG. 5A shows the profile of the voltage Vcc when the signal Sm (DTx) is a pulsed signal as represented in FIG. 5B.
  • the curve C3 illustrates the variations of the voltage Vcc in the configuration illustrated in FIG. 2, when the switch SW1 is arranged in accordance with the prior art.
  • the curve C4 illustrates the variations of the voltage Vcc in the configuration illustrated in FIG. 3, when the switch SW1 is arranged in accordance with the invention.
  • the voltage Vcc decreases each time the signal Sm (DTx) is at 1 and rises substantially each time the signal Sm (DTx) is at 0, so that the curves C3, C4 have a profile in. zigzag".
  • the voltage Vcc according to the invention (curve C4) drops less at each pulse at 1 of the signal Sm (DTx) and increases more rapidly at each return to 0 of the signal Sm (DTx).
  • the average value of the voltage Vcc according to the invention decreases less rapidly than the average value of the voltage Vcc according to the prior art.
  • the invention applies to any type of contactless integrated circuit having a primary charge pump supplying a DC voltage from antenna signals, such as the integrated circuit ICI of FIG. 1.
  • a primary charge pump supplying a DC voltage from antenna signals
  • ICI integrated circuit
  • the integrated circuit ICI can be produced according to the industrial specifications EPCTM-GEN2
  • the invention offers various advantages, notably a greater communication distance between the integrated circuit ICI and the reader RDI, the suppression of the capacitor Ch, the diode Di and the switch SW2. Also, the impedance modulation periods (Passes to 1 of the signal Sm (DTx)) may be provided of longer duration for a better reception of DTx data by the reader RDI.
  • the reader RDI sends data DTr to the integrated circuit ICI by modulating the electric field E, for example an amplitude modulation.
  • This amplitude modulation is reflected on the antenna signals S1, S2 which are demodulated by the DCT circuit to extract the received data DTr, which are then supplied to the control unit CTU.
  • the CTU controls the various elements present in the integrated circuit, supervises the communications and the execution of the possible security protocols (eg verification of the passwords), as well as the execution of commands sent by the reader RDI ( in the form of data DTr), in particular commands for reading or writing the memory MEM.
  • the control unit also sends responses to commands via the MCT modulation circuit as DTx data.
  • the integrated circuit ICI may comprise a secondary charge pump, not shown in FIG. 1, in order to provide an erase and programming voltage of the memory MEM.
  • a secondary charge pump is electrically powered by the voltage Vcc supplied by the primary charge pump and provides a boosted voltage.
  • the short circuit applied to the charge pump may be “total” or “partial".
  • the short-circuit is “total” if the switch SW1 has a very low resistance series, and is “partial” if the switch has a significant series resistance (for example the drain-source resistance Rdson of a MOS transistor in the on state).
  • a partial short circuit can also be obtained by adding in series with the switch any resistive, capacitive or inductive element necessary to obtain the impedance value of the target antenna circuit during the modulation periods.
  • the term “short circuit” means the fact of connecting two points via a link which may comprise an impedance of low or high value, simple or complex.
  • the invention is initially intended for passive type non-contact integrated circuits, the invention is also applicable to integrated circuits equipped with an independent power source.
  • the voltage Vcc supplied by the charge pump is used as an auxiliary supply voltage, for example in case of malfunction of the autonomous power source, or to supply certain parts of the integrated circuit, or for recharge the autonomous power source.
  • An integrated circuit according to the invention makes it possible to produce any type of portable electronic object comprising a portable medium on which the integrated circuit is fixed or in which it is incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

L'invention concerne un procédé pour moduler l'impédance d'un circuit d'antenne (ACT, Wl, W2) fournissant des signaux de pompage (Sl, S2) à une pompe de charge (PMP) comprenant au moins un premier étage de pompage (Dl, D2, Cl, C2) et un dernier étage de pompage (D5, D6, C5, C6) , le dernier étage de pompage fournissant une tension continue (Vcc) . Selon l'invention, la sortie du premier étage de pompage (Dl, D2, Cl, C2) est court-circuitée au moyen d'un interrupteur (SW1) et le dernier étage de pompage continue à pomper des charges électriques et fournir la tension continue (Vcc). Application notamment aux transpondeurs passifs RFID.

Description

CIRCUIT INTEGRE SANS CONTACT PASSIF COMPRENANT UN
INTERRUPTEUR DE MODULATION D'IMPEDANCE D'ANTENNE
N'INHIBANT PAS UNE POMPE DE CHARGE PRIMAIRE
L'invention concerne les circuits intégrés sans contact et notamment les circuits intégrés sans contact de type passif alimentés électriquement par des signaux fournis par un circuit d'antenne. Les circuits intégrés sans contact ou circuits intégrés RFID (Radio Frequency Identification) sont utilisés dans diverses applications comme la réalisation d'étiquettes électroniques et la réalisation de cartes à puce sans contact, notamment des porte-monnaie électroniques, des cartes de contrôle d'accès, des cartes de transport, etc ..
L'invention concerne plus particulièrement les circuits intégrés sans contact UHF, prévus pour fonctionner en présence d'un champ électrique UHF (ultra haute fréquence) oscillant à une fréquence de plusieurs centaines de MHz, généralement comprise entre 800 MHz et 100 GHz.
La figure 1 représente schématiquement un circuit intégré sans contact ICI de type UHF. Le circuit ICI comprend un circuit d'antenne ACT, une pompe de charge primaire PMP, un circuit de modulation MCT et un circuit de démodulation DCT, formant ensemble une interface de communication sans contact . Le circuit intégré comprend également une unité de contrôle CTU et une mémoire non volatile MEM. La mémoire est par exemple une mémoire EEPROM (effaçable et programmable électriquement) , permettant au circuit intégré de mémoriser des données de transaction et/ou d'identification. L'unité CTU contrôle 1 ' accès à la mémoire en exécutant des commandes de lecture et d'écriture de la mémoire.
Le circuit d'antenne ACT comprend deux conducteurs Wl, W2 formant un dipôle. En présence d'un champ électrique E émis par un lecteur RDI représenté schématiquement sur la figure, des signaux d'antenne Sl, S2 apparaissent sur les conducteurs Wl, W2. Ces signaux d'antenne Sl, S2 sont des signaux alternatifs de faible amplitude, quelques dixièmes de Volt seulement, et sont en opposition de phase.
La pompe de charge primaire PMP est entraînée par les signaux Sl, S2, utilisés en tant que signaux de pompage, et fournit une tension continue Vcc. La tension Vcc est typiquement de l'ordre du Volt à quelques Volt, par exemple 1,8 V, et assure l'alimentation électrique du circuit intégré si celui-ci est entièrement passif (c'est-à-dire dépourvu de source d'alimentation autonome, telle une pile) .
Le circuit MCT reçoit de l'unité de contrôle CTU des données DTx à émettre via le circuit d'antenne, et module l'impédance du circuit d'antenne ACT en fonction de ces données. A cet effet, le circuit MCT applique à la pompe de charge PMP un signal de modulation Sm(DTx) qui contient les données DTx sous une forme codée. Le signal Sm(DTx) présente par défaut une valeur non active, par exemple 0, et présente pendant les périodes de modulation une valeur active, par exemple 1, qui a pour effet de court-circuiter la pompe de charge.
Lorsque le signal Sm(DTx) est inactif, le circuit d'antenne ACT absorbe la totalité d'une puissance électrique incidente Pi émise par le lecteur RDI et captée par le circuit d'antenne ACT dont l'impédance est adaptée à cet effet. Lorsque le signal Sm(DTx) est à 1, le court-circuit de la pompe de charge entraîne une modulation de l'impédance du circuit d'antenne et par conséquent une modulation de son coefficient de réflexion. Le circuit d'antenne est alors désadapté et renvoie une onde réfléchie de puissance Pr. L'onde réfléchie est reçue par le lecteur RDI et se traduit par l'apparition, dans son propre circuit d'antenne, d'un signal modulé qui est l'image du signal Sm(DTx) . Le lecteur extrait le signal modulé de son circuit d'antenne, au moyen de filtres appropriés, et en déduit les données DTx, après démodulation et décodage. Cette technique de transmission passive de données est généralement appelée "backscattering" . La figure 2 représente la structure classique de la pompe de charge PMP et représente également un interrupteur de modulation SWl contrôlé par le signal Sm(DTx) et agencé pour court-circuiter la pompe de charge . La pompe de charge PMP comprend trois étages de pompage en série. Chaque étage comprend deux diodes et deux condensateurs, ces derniers étant connectés aux conducteurs Wl, W2 du circuit d'antenne pour recevoir les signaux Sl, S2. L'interrupteur de modulation SWl est agencé en parallèle avec la sortie du dernier étage de la pompe de charge. L'interrupteur est dans l'état ON (passant) lorsque Sm(DTx) = 1 et est dans l'état OFF (non passant) lorsque Sm(DTx) ≈ 0.
Lorsque l'interrupteur SWl est dans l'état ON, la sortie de la pompe de charge est court-circuitée et la tension Vcc n'est plus produite. Afin d'éviter une rupture totale dans la fourniture de la tension Vcc, un condensateur de maintien Ch est ajouté à la sortie de la pompe de charge. Le condensateur Ch est relié à la sortie de la pompe de charge par une diode d'isolement Di agencée en inverse. Ainsi, lorsque l'interrupteur SWl court-circuite la sortie de la pompe de charge, la diode Di se bloque et le condensateur Ch assure seul le maintien de la tension Vcc au-dessus d'un seuil critique en deçà duquel le circuit intégré cesse de fonctionner.
Accessoirement, un interrupteur auxiliaire SW2, piloté par un signal /Sm(DTx) fourni par une porte inverseuse IGl, est agencé en parallèle avec la diode Di. Lorsque l'interrupteur SWl est dans l'état OFF, 1 ' interrupteur SW2 est dans l ' état ON et la diode Di est court-circuitée. Ainsi, le condensateur Ch est chargé à la tension Vcc sans perte de tension aux bornes de la diode Di .
Une telle méthode de modulation de l ' impédance du circuit d'antenne ACT, bien qu'indispensable pour envoyer des données par "backscattering" , présente l'inconvénient de neutraliser totalement la production de la tension continue Vcc par la pompe de charge. Ainsi, malgré la prévision du condensateur de maintien Ch, la tension Vcc chute rapidement quand le circuit intégré envoie des données. Les périodes d'émission de données sont donc des périodes critiques en ce qui concerne la réception de l'énergie, et définissent la distance maximale de communication avec le lecteur RDI . Ainsi, l'invention vise un procédé permettant de moduler l'impédance d'un circuit d'antenne UHF sans inhiber totalement la production de tension continue par la pompe de charge primaire.
Cet objectif est atteint par un procédé pour moduler l'impédance d'un circuit d'antenne fournissant des signaux de pompage à une pompe de charge comprenant au moins un premier étage de pompage et un dernier étage de pompage, le dernier étage de pompage fournissant une tension continue, comprenant une étape consistant - à appliquer un court-circuit à la pompe de charge, dans lequel le court-circuit est appliqué à la sortie du premier étage de pompage, de manière à permettre au dernier étage de pompage de continuer à pomper des charges électriques et fournir la tension continue. Selon un mode de réalisation, la pompe de charge comprend au moins un étage de pompage intermédiaire entre le premier et le dernier étage de pompage, et le court- circuit de la pompe de charge est appliqué à la sortie du premier étage de pompage de manière a permettre à l ' étage de pompage intermédiaire de continuer à pomper des charges électriques .
Selon un mode de réalisation, le court-circuit est appliqué à un condensateur de sortie du premier étage de pompage. Selon un mode de réalisation, le procédé est appliqué à une pompe de charge dans laquelle chaque étage de pompage comprend une diode d'entrée et un condensateur d'entrée, une diode de sortie et un condensateur de sortie, la cathode de la diode d'entrée étant connectée à l ' anode de la diode de sortie et à une première borne du condensateur d'entrée dont une seconde borne reçoit un premier signal d'antenne en tant que premier signal de pompage, la cathode de la diode de sortie étant connectée à une première borne du condensateur de sortie dont une seconde borne reçoit un second signal d'antenne en tant que second signal de pompage.
Selon un mode de réalisation, le court-circuit est appliqué au moyen d'un interrupteur de modulation qui présente une faible résistance série intrinsèque et ne comporte aucune impédance série additionnelle.
L'invention concerne également un circuit intégré sans contact comprenant un circuit d'antenne, une pompe de charge entraînée par des signaux de pompage fournis par le circuit d'antenne, la pompe de charge comprenant au moins un premier étage de pompage et un dernier étage de pompage, le dernier étage de pompage fournissant une tension continue, et au moins un interrupteur de modulation de l'impédance du circuit d'antenne, agencé pour court-circuiter la pompe de charge lorsqu'il est dans l'état passant, dans lequel l'interrupteur de modulation est agencé pour court-circuiter la sortie du premier étage de la pompe de charge, de manière à permettre au dernier étage de la pompe de charge de continuer à pomper des charges électriques et fournir la tension continue.
Selon un mode de réalisation, la pompe de charge comprend au moins un étage de pompage intermédiaire entre le premier et le dernier étage de pompage, qui continue à pomper des charges électriques lorsque l ' interrupteur de modulation court-circuite la sortie du premier étage de la pompe de charge.
Selon un mode de réalisation, l ' interrupteur de modulation est agencé pour court-circuiter un condensateur de sortie du premier étage de la pompe de charge .
Selon un mode de réalisation, chaque étage de pompage comprend une diode d'entrée et un condensateur d'entrée, une diode de sortie et un condensateur de sortie, la cathode de la diode d'entrée étant connectée à l ' anode de la diode de sortie et à une première borne du condensateur d'entrée dont une seconde borne reçoit un premier signal d'antenne en tant que premier signal de pompage, la cathode de la diode de sortie étant connectée à une première borne du condensateur de sortie dont une seconde borne reçoit un second signal d'antenne en tant que second signal de pompage.
Selon un mode de réalisation, le circuit intégré est alimenté électriquement par la tension continue fournie par le dernier étage de la pompe de charge. Selon un mode de réalisation, 1 ' interrupteur de modulation présente une faible résistance série intrinsèque et ne comporte aucune impédance série additionnelle, pour appliquer un court-circuit total à la sortie du premier étage de la pompe de charge.
L'invention concerne également un objet portatif électronique comprenant un support portable et un circuit intégré selon 1 ' invention, fixé sur ou incorporé dans le support portable. Ces objets, caractéristiques et avantages ainsi que d'autres de l'invention seront exposés plus en détail dans la description suivante d'un exemple de mise en œuvre du procédé de l'invention, faite à titre non limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 représente schématiquement la structure d'un circuit intégré sans contact, la figure 2 représente une pompe de charge primaire et des moyens classiques de modulation de l'impédance du circuit d'antenne auquel la pompe de charge est connectée, la figure 3 représente une pompe de charge primaire et des moyens selon 1 ' invention de modulation de l'impédance du circuit d'antenne auquel la pompe de charge est connectée, la figure 4 représente l'aspect d'une tension fournie par la pompe de charge de la figure 2 et d'une tension fournie par la pompe de charge de la figure 3 lorsqu'un court-circuit permanent est appliqué à chacune des pompes de charge, et la figure 5 représente l'aspect d'une tension fournie par la pompe de charge de la figure 2 et d'une tension fournie par la pompe de charge de la figure 3 lorsqu'un court-circuit intermittent est appliqué à chacune des pompes de charge . . . En référence à la figure 2 , 1 ' invention se fonde sur la constatation que le court-circuit visant à moduler l'impédance du circuit d'antenne ACT, appliqué par l'interrupteur SWl à la sortie de la pompe de charge PMP, soit la sortie du dernier étage de la pompe de charge, peut être appliqué à un autre étage de la pompe de charge tout en obtenant un effet équivalent et à tout le moins suffisant en ce qui concerne la modulation du coefficient de réflexion du circuit d'antenne. Un autre constat sur lequel 1 ' invention se fonde est que, si un tel court-circuit est appliqué à un étage de la pompe de charge autre que son dernier étage, les étages se trouvant en aval de la région de court-circuit continuent de fonctionner. Ainsi, la sortie de la pompe de charge continue à fournir la tension continue Vcc, bien que celle-ci soit affaiblie par l'absence des étages se trouvant en amont de la région de court-circuit.
Ainsi, l'invention prévoit d'appliquer le court- circuit de modulation d'impédance à la sortie d'un étage de la pompe de charge autre que le dernier étage, et préférentiellement à la sortie du premier étage de la pompe de charges afin que le nombre d'étages en aval de la région de court-circuit soit maximal et que l'affaiblissement de la tension Vcc soit minimal. La figure 3 illustre l'application de l'invention à la pompe de charge PMP déjà représentée en figure 2, dont la structure va maintenant être décrite plus en détail .
La pompe de charge PMP comprend trois étages de pompage en série. Le premier étage comprend une diode d'entrée Dl, un condensateur d'entrée Cl, une diode de sortie D2 et un condensateur de sortie C2. Le deuxième étage comprend une diode d'entrée D3 , un condensateur d'entrée C3, une diode de sortie D4 et un condensateur de sortie C4. Le troisième et dernier étage comprend une 66
diode d' entrée D5, un condensateur d' entrée C5 , une diode de sortie D6 et un condensateur de sortie C6.
Dans chaque étage, la cathode de la diode d'entrée Dl, D3 , D5 , est connectée à une première borne du condensateur d' entrée Cl, C3 , C5 et à l ' anode de la diode de sortie D2, D4, D6, dont la cathode est connectée à une première borne du condensateur de sortie C2, C4, C6. La seconde borne du condensateur d'entrée Cl, C3 , C5 est reliée au conducteur d'antenne Wl et reçoit le premier signal d'antenne Sl. La seconde borne du condensateur de sortie C2, C4 , C6 est reliée au conducteur d'antenne W2 et reçoit le second signal d'antenne S2.
Les trois étages de la pompe de charge sont agencés en cascade, la cathode de la diode D2 étant connectée à 1 ' anode de la diode D3 et la cathode de la diode D4 connectée à l ' anode de la diode D6. A l ' entrée de la pompe de charge, l'anode de la diode Dl est connectée au conducteur W2. A la sortie de la pompe de charge, le condensateur C6 fournit la tension Vcc . Pour que la tension Vcc ne soit pas flottante, le conducteur Wl—W2 est relié à la masse du circuit intégré.
A chaque demi-cycle des signaux Sl, S2, la seconde borne de chaque condensateur Ci de rang pair est portée à un potentiel électrique V(S2) plus élevé que le potentiel V(Sl) que reçoit la seconde borne du condensateur de rang impair suivant Ci+1, de sorte que le condensateur Ci transfère des charges électriques dans le condensateur suivant Ci+1, à travers la diode de liaison Di correspondante, tandis que la diode Di-I de rang précédent est bloquée. A chaque demi-cycle suivant, la seconde borne de chaque condensateur Ci-I de rang impair est portée à un potentiel électrique V(Sl) plus élevé que le potentiel V(S2) que reçoit la seconde borne du condensateur de rang pair suivant Ci, de sorte que le condensateur Ci-I transfère des charges électriques dans le condensateur Ci, à travers la diode de liaison Di-I correspondante, tandis que la diode Di-2 de rang précédent est bloquée.
Ainsi, si Vs est la différence de tension en valeur efficace entre les signaux d'antenne Sl, S2 et Vd la tension de seuil des diodes, le gain en tension de chaque étage de la pompe de charge est égal à 2Vs-2Vd soit par exemple 0,6 Volt si Vs est égale à 0,5 Volt et Vd égale à 0,2 Volt. En cumulant les gains en tension des trois étages, le dernier étage fournit alors une tension de 1,8 Volt.
Conformément au procédé de l ' invention, 1 ' interrupteur SWl est agencé à la sortie du premier étage de la pompe de charge, soit en parallèle avec le condensateur C2.
L'interrupteur SWl est par exemple un transistor NMOS dont la borne de drain D est connectée à la première borne du condensateur C2 (cathode de la diode D2) et dont la borne de source S est connectée au conducteur Wl du circuit d'antenne ACT, soit la masse du circuit intégré. La grille du transistor NMOS reçoit le signal de modulation Sm(DTx) .
Quand le signal Sm(DTx) est à 0, l'interrupteur SWl est dans l'état OFF et les gains en tension respectifs des trois étages de la pompe de charge se cumulent pour fournir la tension Vcc. Quand le signal Sm(DTx) est a 1 (Vcc) , l'interrupteur SWl est dans l'état ON et la sortie du premier étage de la pompe de charge est court- circuitée. Le court-circuit a également pour effet de relier l ' entrée du deuxième étage de la pompe de charge (anode de la diode D3) au conducteur Wl. L'entrée du deuxième étage reçoit de ce fait le signal Sl. Le deuxième étage de la pompe de charge fonctionne alors comme un premier étage de pompe de charge. En d'autres termes, la pompe de charge fonctionne comme une pompe de charge à deux étages au lieu de trois .
La figure 4 représente le profil de la tension Vcc lorsque la pompe de charge est court-circuitée de façon permanente par 1 ' interrupteur SWl . La courbe Cl illustre les variations de la tension Vcc dans la configuration illustrée en figure 2, lorsque l'interrupteur SWl est agencé conformément à 1 ' art antérieur . La courbe C2 illustre les variations de la tension Vcc dans la configuration illustrée en figure 3, lorsque l'interrupteur SWl est agencé conformément à l'invention. Lorsque l'interrupteur SWl est ouvert (SWl= OFF), la tension Vcc atteint dans les deux cas un plateau égal à la tension nominale Vn d'alimentation du circuit intégré. Après fermeture de l'interrupteur SWl (SWl=ON), la tension Vcc selon l'art antérieur (courbe Cl) diminue et tend vers zéro au fur et à mesure que le condensateur Ch perd les charges électriques qu'il a accumulées. La tension Vcc selon l'invention (courbe C2) , fournie ici par le condensateur C6 , diminue moins vite grâce au pompage assuré par les deuxième et troisième étages de la pompe de charge, puis tend vers une valeur différente de zéro qui est égale à 2/3 de la tension nominale Vn
(valeur théorique ne tenant pas compte de la dêsadaptation du circuit d'antenne) . Cette valeur théorique serait de 3/4 de la tension nominale si la pompe de charge comprenait quatre étages, de 4/5 de la tension nominale si la pompe de charge contenait cinq étages ... Un court-circuit permanent tel qu'illustré en figure 4 ne correspond toutefois pas à l'utilisation normale de l'interrupteur de modulation SWl, le signal Sm(DTx) étant en pratique un signal puisé porteur de données présentant des alternances de courte durée entre l'état actif 1 et l'état par défaut 0. La figure 5A représente le profil de la tension Vcc lorsque le signal Sm(DTx) est un signal puisé tel que représenté sur la figure 5B. La courbe C3 illustre les variations de la tension Vcc dans la configuration illustrée en figure 2, lorsque l'interrupteur SWl est agencé conformément a l ' art antérieur . La courbe C4 illustre les variations de la tension Vcc dans la configuration illustrée en figure 3, lorsque l'interrupteur SWl est agencé conformément à l'invention. Dans les deux cas, la tension Vcc diminue chaque fois que le signal Sm(DTx) est à 1 et remonte sensiblement chaque fois que le signal Sm(DTx) est à 0, de sorte que les courbes C3 , C4 ont un profil en "zigzag". Toutefois, la tension Vcc selon l'invention (courbe C4) chute moins à chaque impulsion à 1 du signal Sm(DTx) et croit plus rapidement à chaque retour à 0 du signal Sm(DTx) . Ainsi, la valeur moyenne de la tension Vcc selon l ' invention diminue moins vite que la valeur moyenne de la tension Vcc selon 1 ' art antérieur . L'invention s'applique à tout type de circuit intégré sans contact ayant une pompe de charge primaire fournissant une tension continue à partir de signaux d'antenne, tel le circuit intégré ICI de la figure 1. L'architecture détaillée d'un tel circuit intégré, connue de l'homme de l'art, ne sera pas décrite en détail ici.
En particulier, le circuit intégré ICI peut être réalisé conformément aux spécifications industrielles EPCTM-GEN2
("Radio-Freqαency Ident±ty Protocols Class-1 Génération-2
- UHF RFID Protocol for Communications at 860 MHz - 960 MHz") en cours de normalisation.
L'invention offre divers avantages, notamment une plus grande distance de communication entre le circuit intégré ICI et le lecteur RDI, la suppression du condensateur Ch, de la diode Di et de l'interrupteur SW2. Egalement, les périodes de modulation d'impédance (passages à 1 du signal Sm(DTx)) peuvent être prévues de plus longue durée pour une meilleure réception des données DTx par le lecteur RDI.
Au cours d'une communication entre le circuit intégré ICI et le lecteur RDI, le lecteur RDI envoie des données DTr au circuit intégré ICI en modulant le champ électrique E, par exemple une modulation d'amplitude. Cette modulation d'amplitude se répercute sur les signaux d'antenne Sl, S2 qui sont démodulés par le circuit DCT pour extraire les données reçues DTr, qui sont ensuite fournies à l'unité de contrôle CTU.
L'unité CTU contrôle des divers éléments présents dans le circuit intégré, supervise les communications et l'exécution des éventuels protocoles de sécurité (par ex. vérification des mots de passe), ainsi que l'exécution de commandes envoyées par le lecteur RDI (sous forme de données DTr) , notamment des commandes de lecture ou d'écriture de la mémoire MEM. L'unité de contrôle envoie également des réponses à des commandes, via le circuit de modulation MCT, sous forme de données DTx.
Le circuit intégré ICI peut comprendre une pompe de charge secondaire, non représentée en figure 1, afin de fournir une tension d'effacement et de programmation de la mémoire MEM. Une telle pompe de charge secondaire est alimentée électriquement par la tension Vcc fournie par la pompe de charge primaire et fournit une tension survoltée .
Selon les objectifs visés en ce qui concerne la modulation de l'impédance du circuit d'antenne, notamment le coefficient de réflexion souhaité, le court-circuit appliqué à la pompe de charge peut être "total" ou "partiel". Le court-circuit est "total" si l'interrupteur SWl présente une très faible résistance série, et est "partiel" si l'interrupteur présente une résistance série non négligeable (par exemple la résistance drain-source Rdson d'un transistor MOS dans l'état passant) . Un court- circuit partiel peut également être obtenu en ajoutant en série avec l'interrupteur tout élément résistif, capacitif ou inductif nécessaire à l'obtention de la valeur d'impédance du circuit d'antenne visée pendant les périodes de modulation. Ainsi, dans la présente demande, le terme "court-circuit" signifie le fait de relier deux points par l'intermédiaire d'une liaison pouvant comporter une impédance de faible ou de forte valeur, simple ou complexe.
Enfin, bien que l'invention soit initialement destinée à des circuits intégrés sans contact de type passif, l'invention est également applicable à des circuits intégrés équipés d'une source d'alimentation autonome. Dans ce cas, la tension Vcc fournie par la pompe de charge est utilisée en tant que tension d'alimentation auxiliaire, par exemple en cas de dysfonctionnement de la source d'alimentation autonome, ou pour alimenter certaines parties du circuit intégré, ou encore pour recharger la source d'alimentation autonome .
Un circuit intégré selon l'invention permet de réaliser tout type d'objet portatif électronique comprenant un support portable sur lequel le circuit intégré est fixé ou dans lequel il est incorporé.

Claims

REVENDICATIONS
1. Procédé pour moduler l'impédance d'un circuit d'antenne (ACT, Wl, W2) fournissant des signaux de pompage (Sl, S2) à une pompe de charge (PMP) comprenant au moins un premier étage de pompage (Dl, D2, Cl, C2) et un dernier étage de pompage (D5, D6, C5, C6) , le dernier étage de pompage fournissant une tension continue (Vcc) , comprenant une étape consistant à appliquer un court- circuit à la pompe de charge, caractérisé en ce que le court-circuit est appliqué à la sortie du premier étage de pompage (Dl, D2, Cl, C2) , de manière à permettre au dernier étage de pompage de continuer à pomper des charges électriques et fournir la tension continue (Vcc) .
2. Procédé selon la revendication 1, dans lequel la pompe de charge (PMP) comprend au moins un étage de pompage intermédiaire (D3, D4, C3, C4) entre le premier et le dernier étage de pompage, et dans lequel le court- circuit de la pompe de charge est appliqué à la sortie du premier étage de pompage (Dl, D2, Cl, C2) de manière à permettre à l ' étage de pompage intermédiaire de continuer à pomper des charges électriques .
3. Procédé selon l'une des revendications 1 et 2, dans lequel le court-circuit est appliqué à un condensateur de sortie (C2) du premier étage de pompage.
4. Procédé selon l'une des revendications 1 à 3, appliqué à une pompe de charge dans laquelle chaque étage de pompage comprend une diode d'entrée (Dl, D3 , D5) et un condensateur d'entrée (Cl, C3, C5) , une diode de sortie (D2, D4, D6) et un condensateur de sortie (C2, C4, C6) , la cathode de la diode d'entrée étant connectée à l'anode de la diode de sortie et à une première borne du condensateur d'entrée dont une seconde borne reçoit un premier signal d'antenne (Sl) en tant que premier signal de pompage, la cathode de la diode de sortie étant connectée à une première borne du condensateur de sortie dont une seconde borne reçoit un second signal d'antenne
(S2) en tant que second signal de pompage.
5. Procédé selon l 'une des revendications 1 à 4 , dans lequel le court-circuit est appliqué au moyen d'un interrupteur de modulation (SWl) qui présente une faible résistance série intrinsèque et ne comporte aucune impédance série additionnelle.
6. Circuit intégré sans contact (ICI) comprenant : - un circuit d'antenne (ACT, Wl, W2) ,
- une pompe de charge (PMP) entraînée par des signaux de pompage (Sl, S2) fournis par le circuit d'antenne, la pompe de charge comprenant au moins un premier étage de pompage (Dl, D2 , Cl, C2) et un dernier étage de pompage (D5, D6, C5, C6) , le dernier étage de pompage fournissant une tension continue (Vcc) , et au moins un interrupteur (SWl) de modulation de l'impédance du circuit d'antenne, agencé pour court- circuiter la pompe de charge lorsqu'il est dans l'état passant, caractérisé en ce que l ' interrupteur de modulation
(SWl) est agencé pour court-circuiter la sortie du premier étage (Dl, D2, Cl, C2) de la pompe de charge, de manière à permettre au dernier étage de la pompe de charge de continuer à pomper des charges électriques et fournir la tension continue.
7. Circuit intégré selon la revendication 6, dans lequel la pompe de charge (PMP) comprend au moins un étage de pompage intermédiaire (D3 , D4, C3, C4) entre le premier et le dernier étage de pompage, qui continue à pomper des charges électriques lorsque l ' interrupteur de modulation (SWl) court-circuite la sortie du premier étage de la pompe de charge.
8. Circuit intégré selon l'une des revendications 6 et 7, dans lequel l'interrupteur de modulation (SWl) est agencé pour court-circuiter un condensateur de sortie (C2) du premier étage de la pompe de charge.
9. Circuit intégré selon l'une des revendications 6 à 8 , dans lequel chaque étage de pompage comprend une diode d'entrée (Dl, D3, D5) et un condensateur d'entrée (Cl, C3, C5) , une diode de sortie (D2, D4, D6) et un condensateur de sortie (C2, C4, C6) , la cathode de la diode d' entrée étant connectée à l ' anode de la diode de sortie et à une première borne du condensateur d'entrée dont une seconde borne reçoit un premier signal d'antenne (Sl) en tant que premier signal de pompage, la cathode de la diode de sortie étant connectée à une première borne du condensateur de sortie dont une seconde borne reçoit un second signal d'antenne (S2) en tant que second signal de pompage.
10. Circuit intégré selon l'une des revendications 6 à 9, alimenté électriquement par la tension continue (Vcc) fournie par le dernier étage de la pompe de charge.
11. Circuit intégré selon l'une des revendications 6 à 10, dans lequel l'interrupteur de modulation (SWl) présente une faible résistance série intrinsèque et ne comporte aucune impédance série additionnelle, pour appliquer un court-circuit total à la sortie du premier étage de la pompe de charge.
12. Objet portatif électronique comprenant un support portable et un circuit intégré selon l'une des revendications 6 à 11 fixé sur ou incorporé dans le support portable.
EP06778887A 2005-09-02 2006-07-19 Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire Withdrawn EP1920389A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508982A FR2890501A1 (fr) 2005-09-02 2005-09-02 Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire
PCT/FR2006/001766 WO2007028866A1 (fr) 2005-09-02 2006-07-19 Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire

Publications (1)

Publication Number Publication Date
EP1920389A1 true EP1920389A1 (fr) 2008-05-14

Family

ID=36498929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778887A Withdrawn EP1920389A1 (fr) 2005-09-02 2006-07-19 Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire

Country Status (5)

Country Link
US (1) US8022889B2 (fr)
EP (1) EP1920389A1 (fr)
CN (1) CN101253518B (fr)
FR (1) FR2890501A1 (fr)
WO (1) WO2007028866A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222628B2 (ja) * 2007-05-31 2013-06-26 株式会社半導体エネルギー研究所 半導体装置
US8836512B2 (en) * 2008-07-28 2014-09-16 Symbol Technologies, Inc. Self tuning RFID
JP5762723B2 (ja) 2009-11-20 2015-08-12 株式会社半導体エネルギー研究所 変調回路及びそれを備えた半導体装置
US7944279B1 (en) * 2009-12-31 2011-05-17 Nxp B.V. Charge pump stage of radio-frequency identification transponder
FR2967538B1 (fr) 2010-11-16 2013-11-01 St Microelectronics Rousset Procede pour moduler l'impedance d'un circuit d'antenne

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750227B1 (fr) * 1996-06-19 1998-09-04 Inside Technologies Dispositif pour stabiliser la tension d'alimentation d'un microcircuit
DE19924568B4 (de) * 1999-05-28 2014-05-22 Qimonda Ag Ladungspumpe
EP1327958B1 (fr) * 2000-08-15 2008-04-23 Omron Corporation Support et systeme de communication sans contact
TW595128B (en) * 2002-04-09 2004-06-21 Mstar Semiconductor Inc Radio frequency data communication device in CMOS process
US7561866B2 (en) * 2005-02-22 2009-07-14 Impinj, Inc. RFID tags with power rectifiers that have bias

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007028866A1 *

Also Published As

Publication number Publication date
WO2007028866A1 (fr) 2007-03-15
CN101253518A (zh) 2008-08-27
FR2890501A1 (fr) 2007-03-09
CN101253518B (zh) 2010-05-19
US20080212346A1 (en) 2008-09-04
US8022889B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
EP2016537B1 (fr) Procede et dispositif de transmission de donnees par modulation de charge
EP1617550B1 (fr) Circuit d'alimentation adaptable
EP1688870B1 (fr) Brouillage de la signature en courant d'un circuit intégré
EP1922733B1 (fr) Cellule memoire volatile remanente
FR2833785A1 (fr) Lecteur de circuit integre sans contact comprenant un mode de veille active a faible consommation electrique
EP2098981A1 (fr) Dispositif de communication sans contact
FR2891639A1 (fr) Moyen pour desactiver un dispositif sans contact.
EP0846273A1 (fr) Dispositif d'interface radiofrequence pour transpondeur
WO2007028866A1 (fr) Circuit integre sans contact passif comprenant un interrupteur de modulation d'impedance d'antenne n'inhibant pas une pompe de charge primaire
EP2088540A1 (fr) Objet portable à dispositif d'auto-commutation
EP2070018B1 (fr) Dispositif d'identification par radio fréquence (rfid) apposé sur un objet à identifier
FR2953314A1 (fr) Prolongateur d'antenne rfid auto-parametrable
EP3001575A1 (fr) Procédé de gestion du fonctionnement d'un objet capable de communiquer sans contact avec un lecteur, dispositif et objet correspondants
EP1688869A1 (fr) Alimentation sécurisée d'un circuit intégré
FR2801745A1 (fr) Transpondeur electromagnetique a desaccord en frequence
EP1796023B1 (fr) Circuit intégré sans contact comprenant un circuit d'alimentation électrique à haut rendement
WO1998006056A1 (fr) Circuit integre a fonctionnement sans contact, comportant une pompe de charges
EP1986136B1 (fr) Circuit transpondeur à unité à double extracteur d'horloge
EP3012980B1 (fr) Procédé de gestion du fonctionnement, en particulier de la modulation de charge, d'un objet capable de communiquer sans contact avec un lecteur, dispositif et objet correspondants
EP1559066B1 (fr) Circuit integre rfid-uhf
FR2835328A1 (fr) Circuit de demarrage et de protection contre les chutes de tension d'alimentation pour un circuit sans contact
EP1039408A1 (fr) Telealimentation d'un transpondeur électromagnétique
WO2016091829A1 (fr) Procede de communication radiofrequence avec discrimination de lecteur radiofrequence
FR2987962A1 (fr) Dispositif d'emission de donnees par couplage inductif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203