EP1918548A2 - Dynamische Versiegelungsanordnung zur Anpassung der differenziellen Wärmezunahme von Bauteilen eines Brennstoffinjektors - Google Patents

Dynamische Versiegelungsanordnung zur Anpassung der differenziellen Wärmezunahme von Bauteilen eines Brennstoffinjektors Download PDF

Info

Publication number
EP1918548A2
EP1918548A2 EP07016373A EP07016373A EP1918548A2 EP 1918548 A2 EP1918548 A2 EP 1918548A2 EP 07016373 A EP07016373 A EP 07016373A EP 07016373 A EP07016373 A EP 07016373A EP 1918548 A2 EP1918548 A2 EP 1918548A2
Authority
EP
European Patent Office
Prior art keywords
fuel
fuel injector
recited
annular flange
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07016373A
Other languages
English (en)
French (fr)
Other versions
EP1918548A3 (de
EP1918548B1 (de
Inventor
Daniel Haggerty
Troy Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Collins Engine Nozzles Inc
Original Assignee
Delavan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delavan Inc filed Critical Delavan Inc
Publication of EP1918548A2 publication Critical patent/EP1918548A2/de
Publication of EP1918548A3 publication Critical patent/EP1918548A3/de
Application granted granted Critical
Publication of EP1918548B1 publication Critical patent/EP1918548B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2211/00Thermal dilatation prevention or compensation

Definitions

  • the subject invention is directed to an apparatus to compensate for differential growth of fuel injector components due to thermal expansion, and more particularly, to an apparatus for accommodating thermal growth of a fuel injector body relative to a fuel delivery tube disposed within the fuel injector body during engine operation.
  • Fuel injectors are important components of gas turbine engines and they play a critical role in determining engine performance.
  • a typical fuel injector includes an external support body having an inlet fitting at one end for receiving fuel and an atomizer nozzle at the other end for issuing atomized fuel into the combustor of a gas turbine engine.
  • the inlet fitting is in fluid communication with the atomizer nozzle by way of an internal fuel delivery tube.
  • the external support body of the fuel injector is surrounded by high-temperature compressor air, while the internal fuel delivery tube carries liquid fuel to the atomizer nozzle at a much lower temperature than the compressor air. Because of the temperature difference, the injector support body experiences thermal expansion differently than the fuel delivery tube. More specifically, the injector support body will experience thermal growth to a greater extent than the fuel delivery tube.
  • the fuel delivery tubes are rigidly connected to the injector support body at one end adjacent the inlet fitting and to the atomizer nozzle on the other end, using a welded or brazed joint.
  • the injector support and the fuel delivery tube high stress concentrations can develop at the joint locations. These stress concentrations can lead to the formation and propagation of cracks, eventually leading to fuel leaks, resulting in injector failures.
  • the subject invention provides a cost-effective solution to mitigate the problems associated with differential thermal expansion of injector components, and an improvement over prior art devices employing helical fuel tubes. More particularly, the subject invention provides an apparatus to compensate for thermal growth of the injector support body relative to the fuel delivery tube during engine operation.
  • the subject invention is directed to a new and useful fuel injector for a gas turbine engine that overcomes many of the deficiencies of the prior art by providing a novel dynamic seal assembly for the fuel delivery tube of the injector.
  • This novel fuel injector includes an inlet fitting portion for receiving fuel from a fuel source, an outlet nozzle portion for issuing fuel into the gas turbine engine, an injector support body extending between the inlet fitting portion and the outlet nozzle portion and having an interior bore or cavity extending therethrough, and an elongated fuel tube disposed within the interior bore of the injector body for delivering fuel from the inlet fitting to the nozzle.
  • the fuel delivery tube has an inlet section dynamically associated with the inlet fitting portion and an outlet section joined or otherwise rigidly connected to the outlet nozzle portion.
  • the inlet section of the fuel delivery tube includes an adapter for retaining at least one dynamic sealing member, and the inlet fitting portion defines a reception bore or sleeve for accommodating the adapter in a manner that permits thermal growth of the injector body relative to the fuel tube.
  • the seal adapter is integrally formed with the fuel delivery tube.
  • the seal adapter is joined to the inlet end of the fuel delivery tube.
  • the dynamic sealing member is an O-ring type seal and is retained in an annular seal retention channel formed between two axially spaced apart annular flanges associated with an upper end portion of the adapter.
  • Each annular flange of the adapter includes a first annular flange portion adjacent the annular seal retention channel and a second annular flange portion axially spaced from the first annular flange portion.
  • an annular debris catching groove is defined between the first and second annular flange portions of each annular flange to protect the seal.
  • each annular flange has a reduced diameter with respect to the second annular flange portion of each annular flange, so that an axially extending zone is formed adjacent the dynamic sealing member where there is no contact between the first annular flange portion of each annular flange and an interior surface of the reception bore.
  • An annular rib is associated with a lower end portion of the adapter to form a heat barrier at a lower end portion of the reception bore to protect the dynamic sealing member.
  • the dimensional ratio between the axial length extending from the mid-line of the annular sealing member to the mid-line of the annular rib and the inner diameter of the cylindrical reception bore is preferably not less than about 1.5.
  • the reception bore of the inlet fitting defines the seal adapter for retaining at least one dynamic sealing member and the inlet section of the fuel delivery tube is dynamically accommodated therein.
  • the dimensional ratio between the axial length extending from the mid-line of the annular sealing member to the mid-line of the annular heat barrier rib and the outer diameter of the inlet section of the fuel tube is preferably not less than about 1.5.
  • Fig. 1 a fuel injector constructed in accordance with a preferred embodiment of the subject invention and designated generally by reference numeral 100.
  • Fuel injector 100 is adapted and configured to issue atomized fuel into the combustion chamber 12 of a gas turbine engine 10.
  • fuel injector 100 includes an inlet end portion 110 including a fuel inlet fitting 112 for receiving fuel from a distribution manifold (not shown), an elongated body portion or support strut 114 extending from the inlet end portion 110, and a fuel atomization nozzle 116 for issuing fuel into the combustion chamber 12.
  • a mounting flange 115 is provided at the upper end of the support strut 114 below the fuel inlet fitting 112 for securing the fuel injector 100 to the outer casing 14 of gas turbine engine 10 with threaded fasteners 18 or the like.
  • the support strut 114 of fuel injector 100 is surrounded by high-temperature compressor air flowing through the outer casing 14 and combustion chamber 12 of gas turbine 10.
  • the fuel delivery components within the support strut 114 carry fuel to the nozzle 116 at a much lower temperature than the compressor air. Consequently, the injector support strut 114 experiences thermal expansion differently than the fuel delivery components housed therein. More specifically, the injector support strut 114 will experience thermal growth to a greater extent than the fuel delivery components housed within the support strut 114.
  • the inlet end portion 110 of fuel injector 100 includes the fuel inlet fitting 112 shown in Fig. 1, and a radially enlarged engagement flange 118 for rigidly joining the inlet end portion 110 to the upper flange 114a of support strut 114 along a weld joint 117, during assembly of the fuel injector 100 (see Fig. 4).
  • Inlet end portion 110 further includes a downwardly projecting body section 119 for retaining a sealed insert 121 that defines a trim orifice 121 a for regulating the amount of fuel flowing from the fuel inlet fitting 112 to the fuel nozzle 116, as best seen in Fig. 4.
  • a sealed insert 121 that defines a trim orifice 121 a for regulating the amount of fuel flowing from the fuel inlet fitting 112 to the fuel nozzle 116, as best seen in Fig. 4.
  • inlet end portion 110 also includes a cylindrical heat shield or sleeve 120 having an interior bore 120a.
  • Heat shield sleeve 120 extends into the interior bore 122 of support strut 114, to accommodate a dynamic seal assembly 125, as shown in Fig. 4.
  • the dynamic seal assembly 125 is operatively associated with the inlet section 124a of an elongated fuel delivery tube 124 that extends through the interior bore or cavity 122 of support strut 114.
  • Fuel delivery tube 124 defines a central fuel passage 127.
  • the outlet section 124b of fuel delivery tube 124 is brazed or otherwise joined to interior components of the fuel atomization nozzle 116, as best seen in Fig. 4.
  • the outlet section 124b of fuel delivery tube 124 can be joined to a fuel swirler component of the atomization nozzle 116.
  • the inlet section 124a of fuel delivery tube 124 defines an integrally formed adapter 128 for supporting an O-ring type seal 130 or a similar sealing member.
  • the seal 130 may be formed from Viton TM , Perflourocarbon, Kalrez TM , CEC26222TM or a similar material.
  • seal 130 is retained in an annular seal retention channel 132 formed in the adapter 128 between two axially spaced apart annular flanges 134, 136 associated with an upper end portion of the adapter 128.
  • the seal 130 can be installed in retention channel 132 with a lubricant to extend its service life.
  • the seal 130 can be lubricated, replaced or otherwise serviced by cutting the inlet end portion 110 from the upper end of the support body 114 along the weld joint 117 between flanges 118 and 114a. While not shown, it is also envisioned that the O-ring seal 130 can be cooled to increase its service life by flowing cooling fluid through or otherwise in close proximity to the seal retention channel 132.
  • each annular flange 134, 136 of the adapter 128 includes a first annular flange portion 134a, 136a adjacent the annular seal retention channel 132 and a second annular flange portion 134b, 136b axially spaced from the first annular flange portion 134a, 136a.
  • an annular debris catching groove 134c, 136c is defined between the first annular flange portions 134a, 136a and second annular flange portions 134b, 136b of each annular flange 134, 136 to protect the seal 130 from debris that can result from internal components interfering with one another (e.g., from metal-to-metal scratching or galling). In the absence of the debris catching grooves, particulate debris could abrade or otherwise damage the seal 130, compromising its ability to maintain a fluid tight seal.
  • the first annular flange portion 134a, 136a of each annular flange 134, 136 has a reduced diameter with respect to the second annular flange portion 134b, 136b of each annular flange 134, 136.
  • This dimensional difference creates a gap G so that a zone is formed adjacent the dynamic sealing member 130 wherein there is no contact between the first annular flange portion 134a, 136a of each annular flange 134, 136 and an interior surface of the reception bore 120a of heat shield 120.
  • the interior surface of the reception bore 120a and at least the radially outer surfaces of the flange portion 134b, 136b of adapter 128 have a controlled (32 ⁇ in.) surface finish to ensure that the metallic interface between the adapter flange surfaces 128 and the reception bore 120a is smooth. Most preferably, it is as smooth as is mechanically possible for such an application.
  • the zone of no contact is created by providing the first annular flange portion 134a, 136a of each annular flange 134, 136 with a diameter that is approximately 0.003 inches less than the diameter of the second annular flange portions 134b, 136b.
  • the zone of no contact should be greater than the extent of thermal displacement or travel experienced by the adapter 128 to ensure that the seal member does not come into contact with any scratches or other surface artifacts on the interior surface of the heat shield 120.
  • a rounded annular rib 138 is associated with a lower end portion of the adapter 128 to form a heat barrier at a lower end portion of the reception bore 120a of heat shield 120 to protect the dynamic sealing member 130 from thermal damage caused by high temperature compressor air drawn into the interior bore 122 of support strut 114.
  • the smooth radius or roundness of annular rib 138 it designed to prevent drag forces that can arise when the fuel delivery tube experiences slippage due to thermal growth of the support strut 114.
  • the outer surfaces of flange portions 134b, 136b which are farthest way from the O-ring seal 130 are also rounded in order to minimize drag, wear and galling, as shown in Figs. 5 and 6.
  • the adapter 128 has a dimensionally controlled length. More particularly, it is preferred that the dimensional ratio between the axial length L extending from the mid-line of the annular sealing member 130 to the mid-line of the annular rib 138 and the inner diameter D i of the cylindrical reception bore 120a of heat shield sleeve 120 is not less than about 1.5. As a result, there is a reduced likelihood that the adapter flange portions 134b, 136b contacting the reception bore 120a will bind so as to scratch or gall the smooth interior surface of reception bore 120a, when the adapter 128 undergoes thermal displacement or slippage. This dimensional relationship essentially reduces the resistance or drag forces of the dynamic sealing system.
  • Fig. 6a there is illustrated another embodiment of the subject invention, wherein the inlet section 424a of the fuel delivery tube 424 has a constant outer diameter with a controlled (32 ⁇ in.) surface finish and the dynamic seal assembly 425 is associated with the interior surface of the reception bore 420a of heat shield 420. More particularly, the seal retention channels 432 that accommodates the annular sealing member 430 and the associated annular flanges 434a, 434b and 436a, 436b are formed with the interior surface of reception bore 420a, along with the debris catching grooves 434c, 436c and the rounded heat barrier annular rib 438.
  • the dynamic seal assembly 425 forms a zone adjacent the dynamic sealing member 430 where there is no metal-to-metal contact between the first annular flange portion 434a, 436a of each annular flange 434, 436 and the outer surface of the inlet end portion 424a of fuel tube 424.
  • the dimensional ratio between the axial length L extending from the mid-line of the annular sealing member 430 to the mid-line of the annular heat barrier rib 438 and the outer diameter Do of the cylindrical inlet section of the fuel tube 424 is not less than about 1.5.
  • Dynamic sealing assembly 250 includes an adapter 228 formed integrally with the inlet section of fuel delivery tube 224 for supporting two O-ring type seals 230a, 230b or similar sealing members in two axially spaced apart annular seal retention channels 232a, 232b.
  • Upper seal retention channel 232a is formed between upper annular flange 234 and intermediate flange portion 235.
  • Lower seal retention channel 232b is formed between lower annular flange 236 and intermediate flange portion 235.
  • the upper annular flange 234 of adapter 228 includes a first annular flange portion 234a adjacent the upper annular seal retention channel 232a and a second annular flange portion 234b axially spaced from the first annular flange portion 234a.
  • the lower annular flange 236 of adapter 228 includes a first annular flange portion 236a adjacent the lower annular seal retention channel 232b and a second annular flange portion 236b axially spaced from the first annular flange portion 236a.
  • annular debris catching groove 234c, 236c is defined between the first annular flange portions 234a, 236a and second annular flange portions 234b, 236b of each annular flange 234, 236 to protect the seals 230a, 230b.
  • first annular flange portion 234a, 236a of each annular flange 234, 236 and the intermediate flange portion 235 have a reduced diameter with respect to the second annular flange portion 234b, 236b of each annular flange 234, 236 to create a clearance gap G.
  • the clearance gap forms a zone adjacent the dynamic sealing members 230a, 230b where there is no contact between the annular flange portions 234a, 236a and 235 and an interior surface of the reception bore 220a of heat shield 220.
  • a rounded annular rib 238 is associated with a lower end portion of the adapter 228 to form a heat barrier at a lower end portion of the reception bore 220a of heat shield sleeve 220 to protect the dynamic sealing members 230a, 230b from thermal damage.
  • the axial length of the heat shield sleeve 220 (as compared to sleeve 120) should be sized to accommodate the longer O-ring adapter 228.
  • Fuel injector 300 is a dual fuel injector adapted and configured to issue either liquid fuel or gaseous fuel into the combustion chamber 12 of a gas turbine engine 10.
  • fuel injector 300 includes an inlet end portion 310 including a first fuel inlet fitting 312a for receiving liquid fuel from a liquid fuel distribution manifold (not shown) and a second fuel inlet fitting 312b for receiving gaseous fuel from a gaseous fuel distribution manifold (not shown).
  • the liquid fuel is delivered to the outlet end of the injector 300 through a fuel delivery tube 324 within the interior bore 322 of support strut 314 (see Fig.
  • a dual fuel injector is employed with an industrial gas turbine engine used for power generation.
  • the type of fuel used with the injector i.e., liquid or gaseous depends upon economics and availability.
  • Fuel injector 300 has an elongated body portion or support strut 314 extending from the inlet end portion 310, and a dual fuel nozzle 316 for issuing liquid or gaseous fuel into the combustion chamber 12.
  • a mounting flange 315 is provided at the upper end of the support strut 314 below the inlet fittings 312b for securing the fuel injector 300 to the outer casing 14 of gas turbine engine 10 by threaded fasteners 18 or the like.
  • the inlet end portion 310 of fuel injector 300 includes a removable locking nut 380 having an internally threaded bore 380a that is adapted and configured to mate with an externally threaded section 310a of inlet end portion 310.
  • the threaded locking nut 380 facilitates the ready access to the O-ring adapter 330 housed within the inlet end portion 310 of fuel injector 300.
  • the O-ring or sealing member 330 can be easily lubricated to increase its service life or replaced if it becomes worn without having to cut open the inlet end portion 310, as is the case with fuel injector 100.
  • the dynamic sealing assembly 325 is located external to the casing of turbine engine 10 and thus the O-ring or sealing member 330 does not experience the same high temperature operating environment as the dynamic sealing assembly of the previously described embodiments of the invention.
  • a fuel injector having a single fuel circuit such as the fuel injector shown in Fig. 1, could be configured with an external dynamic sealing assembly (i.e., external to the engine casing) and a removable inlet fitting as shown in Fig. 10, to provide ready access to the dynamic sealing assembly.
  • an external dynamic sealing assembly i.e., external to the engine casing
  • a removable inlet fitting as shown in Fig. 10
  • the adapter 328 of dynamic sealing assembly 325 has a fuel passage 328b that communicates with the fuel delivery tube 324 and a neck portion 328a, which is brazed or otherwise joined to the inlet end 324a of fuel delivery tube 324.
  • the outlet section 324b of fuel delivery tube 324 is brazed or otherwise joined to interior components of the fuel atomization nozzle 316, as best seen in Fig. 12.
  • adapter 328 is accommodated within a reception bore 320 defined in part by the interior bore 320a of inlet fitting 312a and in part by the interior bore 320b of inlet end portion 310.
  • seal 330 is retained in an annular seal retention channel 332 formed between two axially spaced apart annular flanges 334, 336 associated with an upper end portion of the adapter 328.
  • Each annular flange 334, 336 of the adapter 328 includes a first annular flange portion 334a, 336a adjacent the annular seal retention channel 332 and a second annular flange portion 334b, 336b axially spaced from the first annular flange portion 334a, 336a.
  • an annular debris catching groove 334c, 336c is defined in each annular flange 334, 336.
  • the first annular flange portion 334a, 336a of each annular flange 334, 336 has a reduced diameter with respect to the second annular flange portion 334b, 336b of each annular flange 334, 336 so that a clearance gap G is formed adjacent the dynamic sealing member 330.
  • the gap creates a zone where there is no contact between the first annular flange portion 334a, 336a of each annular flange 334, 336 and an interior surface of the reception bore 320a of inlet fitting 312a.
  • a rounded annular rib 338 is formed near the lower end portion of the adapter 328 to form a heat barrier at a lower end portion of the reception bore 320b of inlet end portion 310 to protect the dynamic sealing members 330 from thermal damage caused by high temperature air.
  • the adapter 328 has a dimensionally controlled length, whereby the dimensional ratio between the axial length L extending from the mid-line of the annular sealing member 330 to the mid-line of the annular rib 338 and the inner diameter D i of the cylindrical reception bore 320 (320a, 320b) is preferably not less than about 1.5.
  • the metering valve assembly includes O-ring seals 394a, 394b and is adapted and configured to control the flow of fuel from inlet fitting 312a to the fuel delivery tube 324.
  • dynamic sealing assembly of the subject invention can be used in a variety of fuel injector configurations other than those expressly described herein.
  • the assembly can be employed as a dynamic seal between two or more concentric fuel circuits (e.g., in a fuel injector having a main fuel circuit and one or more pilot fuel circuits), a fuel circuit and an air filled cavity, a fuel circuit and a gas filled cavity (e.g., an argon filled cavity) or a fuel circuit and an evacuated cavity.
  • a fuel injector for a gas turbine engine which includes an inlet fitting for receiving fuel, a nozzle for issuing fuel into the gas turbine engine, an injector body extending between the inlet fitting and the nozzle and having and interior bore extending therethrough, and an elongated fuel tube disposed within the interior bore of the injector body for delivering fuel from the inlet fitting to the nozzle.
  • the fuel tube has an inlet end portion dynamically associated with the inlet fitting and an outlet end portion rigidly connected to the nozzle.
  • An adapter is operatively associated with either the inlet end section of the fuel tube or a reception bore formed with the inlet fitting of the injector for accommodating a seal member in a manner that permits thermal growth of the injector body relative to the fuel tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Gasket Seals (AREA)
EP07016373.8A 2006-10-31 2007-08-21 Dynamische Versiegelungsanordnung zur Anpassung der differenziellen Wärmezunahme von Bauteilen eines Brennstoffinjektors Active EP1918548B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/590,301 US7703287B2 (en) 2006-10-31 2006-10-31 Dynamic sealing assembly to accommodate differential thermal growth of fuel injector components

Publications (3)

Publication Number Publication Date
EP1918548A2 true EP1918548A2 (de) 2008-05-07
EP1918548A3 EP1918548A3 (de) 2015-08-12
EP1918548B1 EP1918548B1 (de) 2020-03-18

Family

ID=38515565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016373.8A Active EP1918548B1 (de) 2006-10-31 2007-08-21 Dynamische Versiegelungsanordnung zur Anpassung der differenziellen Wärmezunahme von Bauteilen eines Brennstoffinjektors

Country Status (3)

Country Link
US (1) US7703287B2 (de)
EP (1) EP1918548B1 (de)
JP (1) JP2008116197A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039142A2 (en) * 2007-09-17 2009-03-26 Delavan Inc Flexure seal for fuel injection nozzle
US8196845B2 (en) 2007-09-17 2012-06-12 Delavan Inc Flexure seal for fuel injection nozzle
WO2016079720A1 (en) * 2014-11-21 2016-05-26 A.S.EN. ANSALDO SVILUPPO ENERGIA S.r.l. Lance injector for injecting fuel into a combustion chamber of a gas turbine

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7966819B2 (en) * 2006-09-26 2011-06-28 Parker-Hannifin Corporation Vibration damper for fuel injector
US8413444B2 (en) * 2009-09-08 2013-04-09 Siemens Energy, Inc. Self-contained oil feed heat shield for a gas turbine engine
US20120180494A1 (en) * 2011-01-14 2012-07-19 General Electric Company Turbine fuel nozzle assembly
US9127844B2 (en) * 2011-08-02 2015-09-08 General Electric Company Fuel nozzle
US9771818B2 (en) 2012-12-29 2017-09-26 United Technologies Corporation Seals for a circumferential stop ring in a turbine exhaust case
WO2014113468A1 (en) * 2013-01-15 2014-07-24 United Technologies Corporation Seal for dual fuel nozzle of a gas turbine engine
WO2014197072A2 (en) * 2013-03-15 2014-12-11 United Technologies Corporation Fuel nozzle for a gas turbine engine
US10731861B2 (en) 2013-11-18 2020-08-04 Raytheon Technologies Corporation Dual fuel nozzle with concentric fuel passages for a gas turbine engine
US10619856B2 (en) * 2017-03-13 2020-04-14 Rolls-Royce Corporation Notched gas turbine combustor cowl
US10612784B2 (en) 2017-06-19 2020-04-07 General Electric Company Nozzle assembly for a dual-fuel fuel nozzle
US10955141B2 (en) 2017-06-19 2021-03-23 General Electric Company Dual-fuel fuel nozzle with gas and liquid fuel capability
US10612775B2 (en) 2017-06-19 2020-04-07 General Electric Company Dual-fuel fuel nozzle with air shield
US10663171B2 (en) 2017-06-19 2020-05-26 General Electric Company Dual-fuel fuel nozzle with gas and liquid fuel capability
US11230976B2 (en) 2017-07-14 2022-01-25 General Electric Company Integrated fuel nozzle connection
US11098900B2 (en) 2017-07-21 2021-08-24 Delavan Inc. Fuel injectors and methods of making fuel injectors
US10865714B2 (en) 2018-03-22 2020-12-15 Woodward. Inc. Gas turbine engine fuel injector
US10982852B2 (en) 2018-11-05 2021-04-20 Rolls-Royce Corporation Cowl integration to combustor wall
US11754288B2 (en) * 2020-12-09 2023-09-12 General Electric Company Combustor mixing assembly
US11285571B1 (en) * 2021-01-25 2022-03-29 Delavan Inc. Fuel nozzle seal removal tool
FR3140352A1 (fr) * 2022-09-30 2024-04-05 Airbus Ensemble propulsif pour aéronef

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129891A (en) 1964-04-21 Fuel nozzle
US2687330A (en) * 1951-06-29 1954-08-24 Dowty Equipment Ltd Spill burner unit for continuous combustion turbine engines
US4186877A (en) 1976-06-25 1980-02-05 Delavan Manufacturing Company By-pass nozzles
US4258544A (en) 1978-09-15 1981-03-31 Caterpillar Tractor Co. Dual fluid fuel nozzle
US4649950A (en) 1985-11-27 1987-03-17 Ex-Cell-O Corporation Fuel nozzle assembly with integral valve assembly and inlet wash filter and primary fuel take-off
US5423178A (en) 1992-09-28 1995-06-13 Parker-Hannifin Corporation Multiple passage cooling circuit method and device for gas turbine engine fuel nozzle
EP0886744B1 (de) * 1996-03-13 2001-05-23 Parker Hannifin Corporation Düse mit innerem wärmeschutzschild
US6761035B1 (en) * 1999-10-15 2004-07-13 General Electric Company Thermally free fuel nozzle
US6357222B1 (en) 2000-04-07 2002-03-19 General Electric Company Method and apparatus for reducing thermal stresses within turbine engines
US6755024B1 (en) * 2001-08-23 2004-06-29 Delavan Inc. Multiplex injector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039142A2 (en) * 2007-09-17 2009-03-26 Delavan Inc Flexure seal for fuel injection nozzle
WO2009039142A3 (en) * 2007-09-17 2010-04-15 Delavan Inc Flexure seal for fuel injection nozzle
US8196845B2 (en) 2007-09-17 2012-06-12 Delavan Inc Flexure seal for fuel injection nozzle
WO2016079720A1 (en) * 2014-11-21 2016-05-26 A.S.EN. ANSALDO SVILUPPO ENERGIA S.r.l. Lance injector for injecting fuel into a combustion chamber of a gas turbine
CN107110504A (zh) * 2014-11-21 2017-08-29 安萨尔多能源公司 用于将燃料喷射到燃气涡轮机的燃烧室中的喷杆喷射器
RU2693202C2 (ru) * 2014-11-21 2019-07-01 Ансальдо Энергия С.П.А. Трубчатый инжектор для впрыска топлива в камеру сгорания газовой турбины
CN107110504B (zh) * 2014-11-21 2019-11-26 安萨尔多能源公司 用于将燃料喷射到燃气涡轮机的燃烧室中的喷杆喷射器

Also Published As

Publication number Publication date
EP1918548A3 (de) 2015-08-12
US7703287B2 (en) 2010-04-27
JP2008116197A (ja) 2008-05-22
US20080098737A1 (en) 2008-05-01
EP1918548B1 (de) 2020-03-18

Similar Documents

Publication Publication Date Title
EP1918548B1 (de) Dynamische Versiegelungsanordnung zur Anpassung der differenziellen Wärmezunahme von Bauteilen eines Brennstoffinjektors
JP6461129B2 (ja) ガスタービンエンジンにおける燃焼器装置
US7524167B2 (en) Combustor spring clip seal system
CN100478079C (zh) 机械密封的可调气体喷嘴
US8220272B2 (en) Combustor housing for combustion of low-BTU fuel gases and methods of making and using the same
US6351948B1 (en) Gas turbine engine fuel injector
US20100050645A1 (en) Fuel distribution manifold system for gas turbine engines
US7942002B2 (en) Fuel conveying member with side-brazed sealing members
US8136359B2 (en) Gas turbine fuel nozzle having improved thermal capability
EP2188569B1 (de) Flexurdichtung für kraftstoffeinspritzdüse
CA2733916C (en) Fuel injector sans support/stem
JP6058174B2 (ja) ガスタービンエンジンにおける燃焼器装置
US20120145273A1 (en) Multiple circuit fuel manifold
US6354085B1 (en) Fuel injector with a fuel filter arrangement for a gas turbine engine
US20080308654A1 (en) Fuel injector nozzle with macrolaminate fuel swirler
US9772054B2 (en) Concentric flexible hose assembly
US20120145247A1 (en) Flexible hose assembly with multiple flow passages
US10344983B2 (en) Assembly of tube and structure crossing multi chambers
US11486278B2 (en) Extended orifice plug for a fluid system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/28 20060101ALI20150706BHEP

Ipc: F02C 7/22 20060101AFI20150706BHEP

17P Request for examination filed

Effective date: 20160212

AKX Designation fees paid

Designated state(s): DE FR GB IT

AXX Extension fees paid

Extension state: MK

Extension state: AL

Extension state: BA

Extension state: RS

Extension state: HR

17Q First examination report despatched

Effective date: 20180418

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007059981

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007059981

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201221

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 17

Ref country code: GB

Payment date: 20230720

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 17

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17