EP1910302A1 - Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors - Google Patents

Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors

Info

Publication number
EP1910302A1
EP1910302A1 EP06776259A EP06776259A EP1910302A1 EP 1910302 A1 EP1910302 A1 EP 1910302A1 EP 06776259 A EP06776259 A EP 06776259A EP 06776259 A EP06776259 A EP 06776259A EP 1910302 A1 EP1910302 A1 EP 1910302A1
Authority
EP
European Patent Office
Prior art keywords
dihydro
phenyl
alkyl
group
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06776259A
Other languages
English (en)
French (fr)
Inventor
Helmut H. Buschmann
Antonio Torrens Jover
Jose Mas Prio
Jordi Ramón Quintana Ruiz
Alberto Dordal Zueras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Esteve Pharmaceuticals SA
Original Assignee
Laboratorios del Dr Esteve SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP05384018A external-priority patent/EP1743888A1/de
Priority claimed from EP06008580A external-priority patent/EP1849775A1/de
Priority claimed from EP06008581A external-priority patent/EP1849784A1/de
Priority claimed from EP06008579A external-priority patent/EP1849783A1/de
Priority claimed from EP06008612A external-priority patent/EP1849776A1/de
Application filed by Laboratorios del Dr Esteve SA filed Critical Laboratorios del Dr Esteve SA
Priority to EP06776259A priority Critical patent/EP1910302A1/de
Publication of EP1910302A1 publication Critical patent/EP1910302A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/06Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to substituted pyrazoline compounds, methods for their preparation, medicaments comprising these compounds as well as their use for the preparation of a medicament for the treatment of humans and animals.
  • Cannabinoids are compounds, which are derived from the cannabis sativa plant which is commonly known as marijuana.
  • the most active chemical compound of the naturally occurring cannabinoids is tetrahydrocannabinol (THC), particularly ⁇ 9 -THC.
  • cannabinoids as well as their synthetic analogues promote their physiological effects via binding to specific G-coupled receptors, the so-called cannabinoid-receptors.
  • CBi and CB2 are involved in a variety of physiological or pathophysiological processes in humans and animals, e. g. processes related to the central nervous system, immune system, cardiovascular system, endocrinous system, respiratory system, the gastrointestinal tract or to reproduction, as described for example, in Hollister, Pharm. Rev. 38, 1986, 1-20; Reny and Singha, Prog. Drug. Res., 36, 71-114, 1991 ; Consroe and Sandyk, in Marijuana/Cannabinoids, Neurobiology and Neurophysiology, 459, Murphy L. and Barthe A. Eds., CRC Press, 1992.
  • the CBi-receptor is involved in many different food-intake related disorders such as bulimia or obesity, including obesity associated with type Il diabetes (non-insulin-dependent diabetes) and thus, compounds suitable for regulating this receptor may be used in the prophylaxis and/or treatment of these disorders.
  • bulimia or obesity
  • type Il diabetes non-insulin-dependent diabetes
  • compounds suitable for regulating this receptor may be used in the prophylaxis and/or treatment of these disorders.
  • these active substances should be suitable for the modulation of cannabinoid receptors, more particularly for the modulation of cannabinoid 1 (CB-i) receptors.
  • these compounds have a high affinity for cannabinoid receptors, particularly for the CB-i-receptor, and that they act as modulators e. g. antagonists, inverse agonists or agonists on these receptors. They are therefore suitable for the prophylaxis and/or treatment of various disorders related to the central nervous system, the immune system, the cardiovascular system, the endocrinous system, the respiratory system, the gastrointestinal tract or reproduction in humans and/or animals, preferably humans including infants, children and grownups.
  • the present invention relates to substituted pyrazoline compounds of general formula I 1
  • R 1 represents an unsubstituted or at least mono-substituted phenyl radical
  • R 2 represents an unsubstituted or at least mono-substituted phenyl radical
  • R 3 represents an unsubstituted or at least mono-substituted radical selected from the group consisting of cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)- dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetrahydrothiopyranyl
  • R 4 represents a hydrogen atom or a saturated or unsaturated, unsubstituted or at least mono-substituted aliphatic radical
  • R 5 represents an unsubstituted or at least mono-substituted radical selected from the group consisting of 2-pentyl, 3-pentyl, neo-pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3- heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2- ( ⁇ -methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, -O-methyl, -O-ethyl, -O-n-propyl, -O-isopropyl, -O-n-butyl, -O-isobutyl, -O-tert-butyl, -O-n-pentyl and
  • an unsubstituted or at least mono-substituted radical selected from the group consisting of adamantyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)- dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetrahydrothi
  • R 6 represents an unsubstituted or at least mono-substituted C 5 -i 6 alkyl radical, C 2 - i 6 alkenyl radical or C 2 - 1 6 alkinyl radical;
  • R 7 represents a hydrogen atom or a saturated or unsaturated, unsubstituted or at least mono-substituted aliphatic radical
  • R 8 represents an unsubstituted or at least mono-substituted radical selected from the group consisting of 2-pentyl, 3-pentyl, neo-pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)- heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, - O-methyl, -O-ethyl, -O-n-propyl, -O-isopropyl, -O-n-butyl, -O-isobutyl, -O-tert-butyl, - O-n-pentyl and
  • an unsubstituted or at least mono-substituted radical selected from the group consisting of cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)- dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)-dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetrahydrothiopyranyl, t
  • alkenylene group or alkinylene group may be condensed with an unsubstituted or at least mono- substituted mono- or polycyclic ring system and/or may be bridged by at least one unsubstituted or at least mono-substituted alkylene group;
  • R 9 , R 10 , R 11 and R 12 independently of one another, in each case represent a saturated or unsaturated, unsubstituted or at least mono-substituted aliphatic radical;
  • an unsubstituted or at least mono-substituted aryl or heteroaryl radical which may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bonded via an unsubstituted or at least mono-substituted alkylene group, alkenylene group or alkinylene group;
  • R A and R B independently of one another, in each case represent -C 1-6 -alkyl or R A and R B in each case together with the bridging nitrogen atom form a radical selected from the group consisting of pyrrolidinyl, imidazolidinyl, piperazinyl, piperidinyl, thiomorpholinyl, morpholinyl, azepanyl and diazepanyl which may be at least mono- substituted with one or more identical or different C- ⁇ - 6 alkyl radicals;
  • stereoisomers optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof.
  • R ⁇ , R L , R ⁇ and R F independently of one another, represent hydrogen or -Ci- 6 -alkyl or R ⁇ and R L in each case together with the bridging nitrogen atom form a radical selected from the group consisting of pyrrolidinyl, imidazolidinyl, piperazinyl, piperidinyl, thiomorpholinyl, morpholinyl, azepanyl and diazepanyl which may be at least mono-substituted with one or more identical or different Ci -6 alkyl radicals
  • phenyl, aryl and heteroaryl radicals may optionally be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting of -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , -CH 2 CI, -CHCI 2 , -C 2 H 4 CI, methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, 2-butyl, tert-butyl, n-pentyl, 2-pentyl, n-hexyl, - CH 2 -OH, -CH 2 -CH 2 -OH, -CH 2 -CH 2 -CH 2 -OH, -0-CH 2 -O-CH 3 , -0-CH 2 -CH 2 -O-CH 3 , -O- CH 2 -O-C 2 H 5 , -C(
  • Preferred aryl radicals which are optionally at least mono-substituted are phenyl and naphthyl (1- and 2-naphthyl).
  • heteroatoms which are present as ring members in the heteroaryl radical may, unless defined otherwise, independently be selected from the group consisting of nitrogen, oxygen and sulfur. More preferably a heteroaryl radical is 5- to 14-membered and may comprise 1 , 2, 3 or 4 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur.
  • Preferred heteroaryl radicals which are unsubstituted or at least mono-substituted are pyridinyl, furyl (furanyl), thienyl (thiophenyl), pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, triazolyl, pyridazinyl, indolyl, isoindolyl, pyrimidinyl, pyrazinyl, quinolinyl, isoquinolinyl, benzo[b]furanyl, benzo[b]thiophenyl, benzo[2,1 ,3]thiadiazolyl, [1 ,2,3]-benzothiadiazolyl, [2,1 ,3]-benzoxadiazolyl, [1 ,2,3]-benzoxadiazolyl, benzox
  • Preferred aryl and heteroaryl radicals which are condensed with a mono- or polycyclic ring system are [1 ,3]-benzodioxolyl, [1 ,4]-benzodioxanyl, [1 ,2,3,4]- tetrahydronaphthyl, (2,3)-dihydro-1 H-cyclopenta[b]indolyl, [1 ,2,3,4]- tetrahydroquinolinyl, [1 ,2,3,4]-tetrahydroisoquinolinyl, [1 ,2,3,4]-tetrahydroquinazolinyl and [3,4]-dihydro-2H-benzo[1 ,4]oxazinyl.
  • residues R 1 to R 12 or R A , R B , R c and R D represents or comprises a saturated or unsaturated, optionally at least one heteroatom as a ring member containing cycloaliphatic radical, preferably a C 3-18 cycloaliphatic radical, a heterocyclic ring, preferably a 4- to 10-membered heterocyclic ring, a C 3 -i 6 cycloalkyl radical, a C 4-16 cycloalkenyl radical, a C 4-16 heterocycloalkyl radical, or a C 5-16 heterocycloalkenyl radical, which may be substituted, unless defined otherwise, preferably said cycloaliphatic radical, heterocyclic ring, C 3- i 6 cycloalkyl radical, C 4-16 cycloalkenyl radical, C4-16 heterocycloalkyl radical, or C 5 - 16 heterocycloalkenyl radical, may in each case optionally be substituted with 1 , 2, 3, 4 or
  • cyclic moieties cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperidinyl, phenyl, thiophenyl, phenoxy and benzyl can optionally be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting of F, Cl, Br, I 1 -OH, -CF 3 , -CN 1 -NO 2 , -C 1-6 -alkyl, -0-C L6 - alkyl, -0-CF 3 and -S-CF 3 and
  • R ⁇ , R L , R E and R F independently of one another, represent hydrogen or -Ci- 6 -alkyl or R ⁇ and R L in each case together with the bridging nitrogen atom form a radical selected from the group consisting of pyrrolidinyl, imidazolidinyl, piperazinyl, piperidinyl, thiomorpholinyl, morpholinyl, azepanyl and diazepanyl which may be at least mono-substituted with one or more identical or different Ci -6 alkyl radicals
  • residues R 1 to R 12 or R A , R B , R c and R D represents or comprises a cycloaliphatic radical, preferably a C 3- i 6 cycloaliphatic radical, which contains one or more heteroatoms as ring members, unless defined otherwise, each of these heteroatoms may preferably be selected from the group consisting of nitrogen, oxygen and sulfur. More preferably a cycloaliphatic group may optionally contain 1 , 2, 3 or 4 heteroatom(s) independently selected from the group consisting of N, O and S as ring members.
  • Suitable saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloaliphatic radicals may preferably be selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, morpholinyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl
  • Suitable saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloaliphatic radicals which are condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system may preferably be selected from the group consisting of indolinyl, isoindolinyl, decahydronaphthyl, (1 ,2,3,4)- tetrahydroquinolinyl, (1 ,2,3,4)-tetrahydroisoquinolinyl, (1 ,2,3,4)-tetrahydronaphthyl, octahydro-cyclopenta[c]pyrrolyl, (1 ,3,4,7,9a)-hexahydro-2H-quinolizinyl F (1 ,2,3,5,6,8a)-hexahydro-indolizinyl, decahydroquinolinyl, dodecahydro-carbazolyl, 9H-carbazolyl
  • a cycloaliphatic radical, a C 3 -i 6 cycloalkyl radical, a C4-i 6 cycloalkenyl radical, a C-n ⁇ heterocycloalkyl radical or a C 5 . 16 heterocycloalkenyl radical may be bridged by 1 , 2 or 3 unsubstituted or at least mono-substituted alkylene group(s).
  • Suitable saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloaliphatic radicals which are bridged by at least one unsubstituted or at least mono-substituted alkylene group may preferably be selected from the group consisting of adamantyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, norbornenyl and 8- aza-bicyclo[3.2.1]octyl.
  • a suitable saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloaliphatic radical which together with a saturated or unsaturated, unsubstituted or at least mono-substituted cycloaliphatic radical forms a spirocyclic residue via a common ring atom is 8-aza-spiro[4.5]decanyl.
  • a mono- or polycyclic ring system according to the present invention - if not defined otherwise - means a mono- or polycyclic hydrocarbon ring system, preferably a mono- or bicyclic ring system, that may be saturated, unsaturated or aromatic. Each of its different rings may show a different degree of saturation, i.e. they may be saturated, unsaturated or aromatic.
  • each of the rings of the mono- or bicyclic ring system may contain one or more, preferably 1 , 2 or 3, heteroatom(s) as ring member(s), which may be identical or different and which can preferably be selected from the group consisting of nitrogen, oxygen and sulfur.
  • the rings of the mono- or bicyclic ring system are preferably 5-, 6- or 7-membered.
  • condensed means that a ring or ring system is attached to another ring or ring system, whereby the terms “annulated” or “annelated” are also used by those skilled in the art to designate this kind of attachment.
  • cyclic moieties cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperidinyl, phenyl, thiophenyl, phenoxy and benzyl can optionally be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting of F, Cl, Br 1 I, -OH, -CF 3 , -CN, -NO 2 , -C 1-6 -alkyl, -0-C 1 ⁇ - alkyl, -0-CF 3 and -S-CF 3 and
  • R ⁇ , R L , R E and R F independently of one another, represent hydrogen or -Ci- 6 -alkyl or R ⁇ and R L in each case together with the bridging nitrogen atom form a radical selected from the group consisting of pyrrolidinyl, imidazolidinyl, piperazinyl, piperidinyl, thiomorpholinyl, morpholinyl, azepanyl and diazepanyl which may be at least mono-substituted with one or more identical or different C 1-6 -alkyl radicals
  • residues R 4 to R 12 represent or comprise a saturated or unsaturated, unsubstituted or at least mono-substituted aliphatic radical, preferably a C- I- - I6 aliphatic radical, said aliphatic radical may be linear or branched.
  • Suitable alkyl radicals are selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)- heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, 2-(6-methyl)-oc
  • Suitable at least mono-substituted alkyl radicals are selected from the group consisting of -CF 3 , -CH 2 F, -CF 2 H, -CH 2 -O-CH 3 , -C 2 F 5 , -CH 2 -CH 2 -F, -CH 2 -CN, -CH 2 - OH, -CH 2 -CH 2 -CN, -CH 2 -CH 2 -OH, -CH 2 -CH 2 -OCH 3 , -CH 2 -CH 2 -CH 2 -CN, -CH 2 -CH 2 - CH 2 -OH, -CH 2 -CH 2 -CH 2 -O-CH 3 , -CH 2 -CH 2 -CH 2 -CH 2 -O-CH 3 , -CH 2 -NH 2 , -CH 2 - N(CHs) 2 , -CH 2 -N(C 2 H 5 ) 2 , -CH 2 -CH
  • An alkenyl radical according to the present invention comprises at least one carbon- carbon double bond.
  • Suitable alkenyl radicals preferably C 2- i ⁇ alkenyl radicals, are selected from the group consisting of vinyl, n-propenyl, n-butenyl, n-pentenyl, n- hexenyl, n-heptenyl, n-octenyl, n-nonenyl, n-decenyl, n-undecenyl, n-dodecenyl, n- tridecenyl, n-tetradecenyl, n-pentadecenyl and n-hexadecenyl.
  • An alkinyl radical comprises at least one carbon-carbon triple bond.
  • Suitable alkinyl radicals are selected from the group consisting of ethinyl, propinyl, n-butinyl, n-pentinyl, n-hexinyl, n-octinyl, n-noninyl, n-decinyl, n- undecinyl, n-dodecinyl, n-tridecinyl, n-tetradecinyl, n-pentadecinyl and n-hexadecinyl.
  • any of the substituents represents an alkylene group, an alkenylene group or an alkinylene group, which may be substituted, said alkylene group, alkenylene group or alkinylene group may - if not defined otherwise - be unsubstituted or substituted by one or more substituents, preferably unsubstituted or substituted with 1 , 2 or 3 substituent(s).
  • Said substituent(s) may preferably be selected independently from the group consisting of -O-C 1-6 -alkyl, -S-C 1-6 -alkyl, -F, Cl, Br, I, -CN, -CF 3 , -OCF 3 , -SCF 3 , -OH, -SH, -SO 3 H, -NH 2 , -NH(C 1-6 -alkyl), -N(C 1-6 -alkyl) 2 and phenyl.
  • said substituent(s) may be selected from the group consisting of -F, Cl, Br, I, -CN, - CF 3 , -OCF 3 , -SCF 3 , -OH, -SH, -SO 3 H, -NH 2 , -NH-CH 3 , -N(CH 3 J 2 , -0-CH 3 and -O- C 2 H 5 .
  • An alkenylene group comprises at least one carbon-carbon double bond
  • an alkinylene group comprises at least one carbon-carbon triple bond.
  • R 1 represents an unsubstituted or at least mono-substituted phenyl radical
  • R 2 represents an unsubstituted or at least mono-substituted phenyl radical
  • R 3 represents an unsubstituted or at least mono-substituted radical selected from the group consisting of cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)- dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetrahydrothiopyranyl
  • R 4 represents a hydrogen atom or an unsubstituted or at least mono-substituted C 1-I6 alkyl radical, C 2-16 alkenyl radical or C 2-16 alkinyl radical;
  • R 5 represents an unsubstituted or at least mono-substituted radical selected from the group consisting of 2-pentyl, 3-pentyl, neo-pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3- heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2- (5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, -O-methyl; -O-ethyl, -O-n-propyl, -O-isopropyl, -O-n-butyl, -O-isobutyl, -O-tert-butyl, -O-n-pentyl and -
  • an unsubstituted or at least mono-substituted radical selected from the group consisting of adamantyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)- dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetrahydrothi
  • an unsubstituted or at least mono-substituted C 3- I 6 cycloalkyl radical or C4-1 6 cycloalkenyl radical which in each case is bonded via an unsubstituted or at least mono-substituted Ci -5 alkylene group, C 2-5 alkenylene group or C 2-5 alkinylene group and/or may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bridged by at least one unsubstituted or at least mono-substituted Ci -5 alkylene group;
  • R 6 represents an unsubstituted or at least mono-substituted C 5- i 6 alkyl radical, C 2 . i 6 alkenyl radical or C 2 .i ⁇ alkinyl radical;
  • an unsubstituted or at least mono-substituted C 3-I6 cycloalkyl radical or C4-1 6 cycloalkenyl radical which in each case may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bridged by at least one unsubstituted or at least mono-substituted Ci-5 alkylene group;
  • an unsubstituted or at least mono-substituted C4-1 6 heterocycloalkyl radical or C 5- - I6 heterocycloalkenyl radical which in each case may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bridged by at least one unsubstituted or at least mono-substituted Ci -5 alkylene group;
  • R 7 represents a hydrogen atom or an unsubstituted or at least mono-substituted Ci-i 6 alkyl radical, C 2- i 6 alkenyl radical or C 2-16 alkinyl radical;
  • R 8 represents an unsubstituted or at least mono-substituted radical selected from the group consisting of 2-pentyl, 3-pentyl, neo-pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3- heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2- (5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, -O-methyl, -O-ethyl, -O-n-propyl, -O-isopropyl, -O-n-butyl, -O-isobutyl, -O-tert-butyl, -O-n-pentyl and -
  • an unsubstituted or at least mono-substituted radical selected from the group consisting of cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)- dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)-dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetrahydrothiopyranyl, t
  • alkinylene group and/or may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bridged by at least one unsubstituted or at least mono-substituted C 1 - 5 alkylene group;
  • R 9 , R 10 , R 11 and R 12 independently of one another, in each case represent an optionally at least mono-substituted C 5- - I6 alkyl radical, C 2 .i 6 alkenyl radical or C 2- - I6 alkinyl radical;
  • an unsubstituted or at least mono-substituted 6- or 10-membered aryl radical which may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bonded via an unsubstituted or at least mono- substituted Ci- 5 alkylene group, C 2-5 alkenylene group or C 2-5 alkinylene group;
  • an unsubstituted or at least mono-substituted 5- to 14-membered heteroaryl radical which may be condensed with an unsubstituted or at least mono-substituted mono- or polycyclic ring system and/or may be bonded via an unsubstituted or at least mono-substituted Ci -5 alkylene group, C 2-5 alkenylene group or C 2-5 alkinylene group;
  • R A and R B independently of one another, in each case represent hydrogen or -Ci. 6 - alkyl or R A and R B in each case together with the bridging nitrogen atom form a radical selected from the group consisting of pyrrolidinyl, imidazolidinyl, piperazinyl, piperidinyl, thiomorpholinyl, morpholinyl, azepanyl and diazepanyl which may be at least mono-substituted with one or more identical or different Ci -6 alkyl radicals;
  • the rings of the aforementioned ring system are in each case independently of one another 5- 6- or 7-membered and may in each case independently of one another optionally contain 1 , 2 or 3 heteroatom(s) independently selected from the group consisting of nitrogen, oxygen and sulfur;
  • heteroaryl radicals in each case optionally contain 1 , 2, 3 or 4 heteroatom(s) independently selected from the group consisting of nitrogen, oxygen and sulfur as ring member(s);
  • heterocycloalkyl radicals and heterocycloalkenyl radicals in each case optionally contain 1 , 2, 3 or 4 heteroatom(s) independently selected from the group consisting of nitrogen, oxygen and sulfur as ring member(s);
  • stereoisomers optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof.
  • substituted pyrazoline compounds of general formula I given above wherein R 1 and R 2 , independently of one another, in each case represent a phenyl radical which may be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting of -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , -CH 2 CI, -CHCI 2 , - C 2 H 4 CI, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, 2-butyl, tert-butyl, n- pentyl, 2-pentyl, n-hexyl, -CH 2 -OH, -CH 2 -CH 2 -OH, -CH 2 -CH 2 -CH 2 -OH, -0-CH 2 -O- CH 3 , -0-CH 2 -CH 2 -O-CHCH 2
  • R 3 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R 3 represents a radical selected from the group consisting of cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)- dihydrothiophenyl, (2,3)-dihydrofuranyl, (2,3)-dihydrofuranyl, (2,5)-dihydro-1 H- pyrrolyl, (2,3)-dihydro-1 H-pyrrolyl, tetra
  • R 1 , R 2 , R 4 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • substituted pyrazoline compounds of general formula I given above wherein R 4 represents a hydrogen atom or a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)- heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl,
  • R 1 to R 3 , R 5 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • substituted pyrazoline compounds of general formula I given above wherein R 5 represents a radical selected from the group consisting of 2-pentyl, 3- pentyl, neo-pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4- octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, -O-methyl, -O-ethyl, -O-n-propyl, -O-isopropyl, - O-n-butyl, -O-isobutyl, -O-tert-butyl, -O-n-penty
  • R 1 to R 4 , R 6 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R 6 represents a radical selected from the group consisting of n- pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3- heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)- heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-
  • R 1 to R 5 , R 7 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • substituted pyrazoline compounds of general formula I given above wherein R 7 represents a hydrogen atom or a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)- heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl,
  • R 1 to R 6 , R 8 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R 8 represents a radical selected from the group consisting of 2- pentyl, 3-pentyl, neo-pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-octyl, 3- octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5-methyl)-hexyl, 2-(4- methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, -O-methyl, -O-ethyl, -O-n-propyl, -O-isopropyl, -O-n-butyl, -O-isobutyl, -O-tert-butyl, -O-n-
  • R 1 to R 7 , R 9 to R 12 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R 9 , R 10 , R 11 and R 12 independently of one another, in each case represent a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, vinyl, n-propenyl, n-butenyl, n-pentenyl, n-hexenyl, ethinyl, propinyl,
  • a radical selected from the group consisting of phenyl, naphthyl, pyridinyl, furyl (furanyl), thienyl (thiophenyl), pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, triazolyl, pyridazinyl, indolyl and isoindolyl, which may be bonded via a -(CH 2 )-, -(CH 2 HCH 2 )-, -(CH 2 )-(CH 2 )-(CH 2 )- or -CH CH-group and/or may optionally be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting Of -CF 3 , methyl, ethyl, n-propyl, isopropyl, n-CF
  • R 1 to R 8 and R A , R B , R c and R D have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R A and R B independently of one another, in each case represent hydrogen or methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and tert-butyl or R A and R B in each case together with the bridging nitrogen atom form a radical selected from the group consisting of pyrrolidinyl, imidazolidinyl, piperazinyl, piperidinyl, thiomorpholinyl, morpholinyl, azepanyl and diazepanyl;
  • R 1 to R 12 have the meaning given above, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R 1 and R 2 independently of one another, in each case represent a phenyl radical which may be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting Of -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , -CH 2 CI, -CHCI 2 , -C 2 H 4 CI, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, 2-butyl, tert-butyl, n-pentyl, 2- pentyl, n-hexyl, -CH 2 -OH, -CH 2 -CH 2 -OH, -CH 2 -CH 2 -CH 2 -OH, -0-CH 2 -O-CH 3 , -O-CH 2 - CH 2 -O-CH 3 , -0-CH 2 -O-C 2 H 5 ,
  • R 3 represents a radical selected from the group consisting of cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)- dihydrofuranyl, (2,3)-dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H- pyrrolyl, tetrahydrothiopyranyl, tetrahydropyranyl, (3,4)
  • R 4 represents a hydrogen atom or a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2- pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4- heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5- methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, n-n
  • R 6 represents a radical selected from the group consisting of n-pentyl, 2-pentyl, 3- pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n- octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5-methyl)- hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, n-nonyl, n-decyl, n- undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-penta
  • R 7 represents a hydrogen atom or a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2- pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4- heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, 2-(6-methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5- methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7-methyl)-octyl, 2-(6-methyl)-octyl, n-n
  • R 8 represents a radical selected from the group consisting of 2-pentyl, 3-pentyl, neo- pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-(6- methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7- methyl)-octyl, 2-(6-methyl)-octyl, -O-methyl, -O-ethyl, -O-n-propyl, -O-isopropyl, -O-n- butyl, -O-isobutyl, -O-tert-butyl, -O-n-pentyl, -O-n-hexyl, -CH 2
  • R 9 , R 10 , R 11 and R 12 independently of one another, in each case represent a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, vinyl, n-propenyl, n-butenyl, n-pentenyl, n-hexenyl, ethinyl, propinyl, n-butinyl, n- pentinyl and n
  • R 1 represents a phenyl radical which may be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting of -OH, F, Cl 1 Br, I, - O-CH 3 and -0-C 2 H 5 ;
  • R 2 represents a phenyl radical which may be substituted with 1 , 2, 3, 4 or 5 substituent(s) independently selected from the group consisting of F, Cl, Br and I;
  • R 3 represents a radical selected from the group consisting of aziridinyl, azetidinyl, imidazolidinyl, thiomorpholinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, azepanyl, diazepanyl, azocanyl, (2,5)-dihydrofuranyl, (2,5)-dihydrothiophenyl, (2,3)- dihydrofuranyl, (2,3)-dihydrofuranyl, (2,5)-dihydro-1 H-pyrrolyl, (2,3)-dihydro-1 H- pyrrolyl, tetrahydrothiopyranyl, tetrahydropyranyl, (3,4)-dihydro-2H-pyranyl, (3,4)- dihydro-2H-thiopyranyl, (1 ,2,3,6)-tetrahydropyridinyl, (1 ,2,3,4)-
  • R 4 represents a hydrogen atom
  • R 5 represents a radical selected from the group consisting of 2-pentyl, 3-pentyl, neo- pentyl, 2-hexyl, 3-hexyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-(6- methyl)-heptyl, 2-(5-methyl)-heptyl, 2-(5-methyl)-hexyl, 2-(4-methyl)-hexyl, 2-(7- methyl)-octyl, 2-(6-methyl)-octyl, -CH 2 -N(CH 3 ) 2 , -CH 2 -N(C 2 H 5 ) 2 , -CH 2 -CH 2 -N(CH 3 ) 2 , - CH 2 -CH 2 -N(C 2 H 5 ) 2 , -CH 2 -CH 2 -CH 2 -N(CHs) 2
  • R 9 , R 10 , R 11 and R 12 independently of one another, in each case represent a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, neo-pentyl, n-hexyl, 2-hexyl, 3-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, vinyl, n-propenyl, n-butenyl, n-pentenyl, n-hexenyl, ethinyl, propinyl, n-butinyl, n- pentinyl and n
  • stereoisomers optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof.
  • R 1 represents a phenyl radical that is substituted with a hydroxy, fluorine, chlorine, bromine or iodine atom or a -O-CH 3 -group in the para-(4-)-position of the phenyl radical;
  • R 2 represents a (2,4)-dichloro-phenyl radical
  • R 3 represents a radical selected from the group consisting of
  • radicals which is in each case bonded to the pyrazoline compound of general formula I in any position of the cyclic part of the aforementioned radicals including the NH-groups, preferably said radicals are bonded to the pyrazoline compound of general formula I at the nitrogen atom of the cyclic part of the aforementioned radicals;
  • R 4 represents a hydrogen atom
  • R 5 represents a radical selected from the group consisting of 2-heptyl, 3-heptyl, 4- heptyl, 2-octyl, 3-octyl, 4-octyl, -CH 2 -N(CH 3 ) 2 , -CH 2 -N(C 2 H 5 ) 2 , -CH 2 -CH 2 -N(CHa) 2 , - CH 2 -CH 2 -N(C 2 H 5 ) 2 , -CH 2 -CH 2 -CH 2 -N(CH 5 ) 2 and -CH 2 -CH 2 -CH 2 -CH 2 -N(C 2 Hs) 2 ;
  • a substituted radical selected from the group consisting of cyclopentyl, cyclohexyl and cycloheptyl which is substituted with a -O-Benzyl radical;
  • radicals which is in each case bonded to the pyrazoline compound of general formula I in any position of the cyclic part of the aforementioned radicals including the NH-groups, preferably said radicals are bonded to the pyrazoline compound of general formula I at the nitrogen atom of the cyclic part of the aforementioned radicals;
  • stereoisomers optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof.
  • substituted pyrazoline compounds of general formula L, M or N are particularly preferred. Also mor particularly preferred are substituted pyrazoline compounds of general formula L, M or N,
  • R 1 represents a phenyl radical that is substituted with a hydroxy, fluorine, chlorine, bromine or iodine atom or a -O-CH 3 -group in the para-(4-)-position of the phenyl radical;
  • R 2 represents a (2,4)-dichloro-phenyl radical
  • substituted pyrazoline compounds of general formula I given above selected from the group consisting of
  • the present invention relates to a compound selected from the group consisting of
  • stereoisomers optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof.
  • Another object of the present invention is a compound selected from the group consisting of
  • the present invention relates to a compound selected from the group consisting of
  • afore mentioned compounds e. g. the afore mentioned carboxylic acids and carboxylic esters, are intermediates in the synthesis of compounds of general formula I and in addition exhibit the same pharmacological activity as the compounds of general formula I.
  • the present invention also provides a process for the preparation of substituted pyrazoline compounds of general formula I given above, wherein at least one compound of general formula II,
  • R 2 III or a corresponding salt thereof, wherein R 2 has the meaning given above, in a reaction medium, optionally in an inert atmosphere, optionally in the presence of at least one acid, to yield at least one compound of general formula IV,
  • R 1 and R 2 have the meaning given above, which is optionally isolated and/or purified,
  • At least one compound of general formula V is reacted with at least one compound of general formula R 3 -H, wherein R 3 has the meaning given above, in a reaction medium, optionally in an inert atmosphere, optionally in the presence of at least one base selected from the group consisting of diisopropylethylamine, triethylamine, pyridine, dimethylaminopyridine and N-methylmorpholine, to yield at least one compound of general formula I, wherein R 1 , R 2 and R 3 have the meaning given above, which is optionally purified and/or isolated;
  • At least one compound of general formula IV is reacted with at least one compound of general formula R 3 -H, wherein R 3 represents a -NR 4 R 5 moiety, wherein R 4 and R 5 have the meaning given above, in a reaction medium, in the presence of at least one coupling agent, optionally in the presence of at least one base, to yield at least one compound of general formula I, wherein R 1 and R 2 have the meaning given above and R 4 represents a -NR 4 R 5 moiety, which is optionally purified and/or isolated.
  • R 1 represents a linear or branched C 1-6 -alkyl radical, a potassium cation or a sodium cation, in a reaction medium, optionally in an inert atmosphere, optionally in the presence of at least one base, to yield at least one compound of general formula
  • R 1 has the meaning given above, which is optionally purified and/or isolated
  • R 1 has the meaning given above and A represents a leaving group, which is optionally purified and/or isolated,
  • At least one compound of general formula VIII is reacted with at least one compound of general formula R 3 -H, wherein R 3 has the meaning given above, in a reaction medium, optionally in an inert atmosphere, optionally in the presence of at least one base selected from the group consisting of diisopropylethylamine, triethylamine, pyridine, dimethylaminopyridine and N-methylmorpholine, to yield at least one compound of general formula IX,
  • At least one compound of general formula Il is reacted with at least one compound of general formula R 3 -H, wherein R 3 represents a -NR 4 R 5 moiety, wherein R 4 and R 5 have the meaning given above, in a reaction medium, in the presence of at least one coupling agent, optionally in the presence of at least one base, to yield at least one compound of general formula IX, wherein R 3 represents a -NR 4 R 5 moiety, which is optionally purified and/or isolated,
  • R 2 has the meaning given above, in a reaction medium, optionally in an inert atmosphere, optionally in the presence of at least one acid, to yield at least one compound of general formula I, wherein R 1 , R 2 and R 3 have the meaning given above, which is optionally purified and/or isolated.
  • step 1 a compound of general formula Vl is reacted with a compound of general formula VII in a protic reaction medium, preferably in a reaction medium selected from the group consisting of methanol, ethanol, isopropanol, n-butanol, water and mixtures thereof, in the presence of at least one base, preferably in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an alkali metal methoxide such as sodium methoxide, as described, for example, in Synthetic Communications, 26(11), 2229-33, (1996).
  • a protic reaction medium preferably in a reaction medium selected from the group consisting of methanol, ethanol, isopropanol, n-butanol, water and mixtures thereof, in the presence of at least one base, preferably in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an alkali metal methoxide such as sodium methoxide, as described, for example
  • Preferred reaction temperatures range from -10 0 C to the boiling point of the reaction medium. Suitable reaction times may vary for example from several minutes to several hours.
  • the reaction between a compound of general formula Vl and general formula VII can also be carried out under acid catalysed conditions, more preferably by refluxing the above mentioned compounds in dichloromethane in the presence of copper(ll)trifluoromethanesulfonate as described, for example, in Synlett, (1 ), 147- 149, 2001.
  • the respective description is hereby incorporated by reference and forms part of the disclosure.
  • a compound of general formula Il is reacted with a compound of general formula III in a reaction medium, preferably in a reaction medium selected from the group consisting of methanol, ethanol, isopropanol, n-butanol, dieethylether, tert- butyl-methylether, dioxane, tetrahydrofuran or mixtures of at least two of these afore mentioned reaction media.
  • said reaction may be carried out in the presence of an acid, whereby the acid may be organic such as acetic acid and/or inorganic such as hydrochloric acid.
  • the reaction may also be carried out in the presence of a base such as piperidine, piperazine, sodium hydroxide, potassium hydroxide, sodium methoxide or sodium ethoxide or mixtures of at least two of these bases.
  • Reaction temperature as well as the duration of the reaction may vary over a broad range. Suitable reaction temperatures range from room temperature, i.e. approximately 25 0 C to the boiling point of the reaction medium. Suitable reaction times may vary for example from several minutes to several hours.
  • step 3 the carboxylic group of the compound of general formula IV may be activated for further reactions by the introduction of a suitable leaving group according to conventional methods well known to those skilled in the art.
  • the compounds of general formula IV are transferred into an acid chloride, an acid anhydride, a mixed anhydride, a Ci -4 alkyl ester or an activated ester such as p- nitrophenylester.
  • Suitable activating agent therefore are selected from the group consisting of thionyl chloride, oxalyl chloride and ethylchloroformate.
  • said activated compound of general formula V is an acid chloride, wherein A represents a chlorine atom
  • that compound is preferably prepared by the reaction of the corresponding acid of general formula IV with thionyl chloride or oxalyl chloride, whereby said chlorinating agent is also used as the reaction medium, in the presence of at least one base, preferably in the presence of a base selected from the group consisting of triethylamine, N-methylmorpholine, pyridine, dimethylaminopyridine and diisopropylethylamine.
  • a base selected from the group consisting of triethylamine, N-methylmorpholine, pyridine, dimethylaminopyridine and diisopropylethylamine.
  • an additional reaction medium may be used.
  • Suitable reaction media include hydrocarbons such as benzene, toluene or xylene, halogenated hydrocarbons such as dichloromethane, chloroform or carbon tetrachloride, ethers such as diethyl ether, dioxane, tetrahydrofuran or dimethoxyethane or dimethylformamide and mixtures thereof. More preferably toluene in the presence of a catalytic amount of dimethylformamide is used as reaction medium.
  • Preferred reaction temperature range from 0° C to the boiling point of the solvent and reaction times vary from several minutes to several hours.
  • said anhydride may preferably be prepared, for example, by reaction of the corresponding acid of general formula IV with ethylchloroformate in the presence of a base such as triethylamine, pyridine or diisopropylethylamine, in a suitable solvent such as dichloromethane, optionally in an inert atmosphere, at a temperature between -50 0 C and 50 0 C.
  • step 4 the reaction between a compound of general formula V with a compound of general formula H-R 3 to yield a compound of general formula I, wherein R 3 represents a -NR 4 R 5 moiety, is preferably carried out in the presence of a base such as triethylamine in a reaction medium such as methylenchloride.
  • a base such as triethylamine
  • a reaction medium such as methylenchloride.
  • the temperature is preferably in the range from 0 0 C to the boiling point of the reaction medium.
  • the reaction time may vary over a broad range, e.g. from several hours to several days.
  • reaction of a compound of general formula V with a compound of general formula H-R 3 to yield compounds of general formula I may be carried out according to conventional methods well known to those skilled in the art, e.g. from Pascual, A., J. Prakt Chem., 1999, 341(7), 695-700; Lin, S. et al., Heterocycles, 2001 , 55(2), 265-277; Rao, P. et al., J. Org. Chem., 2000, 65(22), 7323-7344, Pearson D. E and Buehler, CA. , Synthesis, 1972, 533-542 and references cited therein. The respective descriptions are hereby incorporated by reference and form part of the present disclosure.
  • reaction is carried out in the presence of a Lewis acid, which is preferably selected from the group consisting of FeCb, ZnCb and AICb, in a suitable reaction medium such as toluene, benzene, tetrahydrofuran or similar reaction media.
  • a Lewis acid which is preferably selected from the group consisting of FeCb, ZnCb and AICb
  • a suitable reaction medium such as toluene, benzene, tetrahydrofuran or similar reaction media.
  • the temperature is preferably in the range from 0° C to the boiling point of the reaction medium, more preferably from 15 to 25 °C.
  • the reaction time may vary over a broad range, e.g. from several minutes to several hours.
  • step 5 a compound of general formula IV is reacted with a compound of general formula H-R 3 , wherein R 3 represents a -NR 4 R 5 moiety, in a reaction medium, preferably in a reaction medium selected from the group consisting of diethylether, tetrahydrofuran, acetonitrile, methanol, ethanol, (1 ,2)-dichlorethane, dimethylformamide, dichlormethane and mixtures therof, in the presence of at least one coupling agent, preferably in the presence of a coupling agent selected from the group consisting of 1-benzotriazolyloxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP), dicyclohexylcarbodiimide (DCC), N'-(3- dimethylaminopropyl)-N-ethylcarbodiimide (EDCI), diisoproylcarbodiimide, 1 ,1'- carbonyl
  • reaction is carried out in the presence of EDCI and HOBt, optionally in the presence of N-methylmorpholine or triethylamine, in an aprotic reaction medium such as dimethylformamide or tetrahydrofuran, at a temperature between 20 0 C and 30 0 C for 15 to 24 hours as described in Tetrahedron Lett. 2004, 45, 4977.
  • aprotic reaction medium such as dimethylformamide or tetrahydrofuran
  • reaction can be carried out by using HBTU in the presence of a base such as diisopropylethylamine in an aprotic solvent, such as acetonitrile, preferably at a temperature between 20 and 30 0 C for 15 to 24 hours.
  • a base such as diisopropylethylamine
  • an aprotic solvent such as acetonitrile
  • step 1 a compound of general formula Xl, wherein R 1 has the meaning given above and R" represents a hydrogen atom or a C 1-6 -alkyl radical, is reacted with a compound of general formula HS-R'", wherein R'" represents an unsubstituted or at least mono-substituted phenyl radical, in a reaction medium, preferably in an dry aprotic reaction medium, more preferably in toluene, optionally in the presence of an organic base, preferably in the presence of an organic base selected from the group consisting of triethylamine, pyridine, diisopropylethylamine, dimethylaminopyridine and N-methylmorpholine, preferably at a temperature between - 50 0 C and 50 0 C 1 preferably for 4 to 24 hours, to yield a compound of general formula XII, wherein R 1 , R" and R'" have the meaning given above.
  • step 2 a compound of general formula XII is reacted with a compound of general formula III, wherein R 2 has the meaning given above, in a reaction medium, preferably in a protic reaction medium, more preferably in methanol, optionally in the presence of an inorganic base, preferably in the presence of KHSO 4 , preferably at a temperature between 0 0 C and 100 0 C, preferably for 4 to 15 hours, to yield a compound of general formula XIII, wherein R 1 , R 2 , R" and R'" have the meaning given above.
  • step 3 the compound of general formula XIII is cyclized intramolecularly in a reaction medium, preferably in a dry aprotic reaction medium, more preferably in dimethylformamide, preferably under an inert atmosphere, in the presence of a base, preferably in the presence of a metal hydride salt, more preferably in the presence of sodium hydride and/or potassium hydride to yield a compound of general formula IV.
  • a reaction medium preferably in a dry aprotic reaction medium, more preferably in dimethylformamide, preferably under an inert atmosphere
  • a base preferably in the presence of a metal hydride salt, more preferably in the presence of sodium hydride and/or potassium hydride
  • R" represents a d- 6 -alkyl radical
  • the compound of general formula IV, wherein R" represents a hydrogen atom is obtained after saponification of the cyclized compound according to methods known to those skilled in the art.
  • a compound of general formula IV can also be obtained as described in scheme III given below.
  • a compound of general formula XIV is reacted with bromine in the presence of an aprotic solvent, preferably in the presence of dichloromethane, at ambient temperature for 1 to 2 hours.
  • the compound of general formula XIV is reacted with a compound of general formula III, wherein R 2 has the meaning given above, and cyclized intramolecularly in a reaction medium, preferably in a dry aprotic reaction medium, more preferably in dimethylformamide or in a mixture of dioxane, water and acetic acid, at a temperature between 0 0 C and 250 0 C to yield a compound of general formula IV as described in Chemistry of Heterocyclic Compounds 1997, 33(6); Indian J. Chem. 2OB, 1981 , 1090; Indian J. Chem. 29B, 1990, 887 and J. Indian Chem. Soc. 1997, 74(3), 202 - 205.
  • R" represents a d -6 -alkyl radical
  • the compound of general formula IV, wherein R" represents a hydrogen atom is obtained after saponification of the cyclized compound according to methods known to those skilled in the art.
  • a compound of general formula IV can also be obtained by the process described in scheme IV.
  • R" represents a C 1-6 -alkyl radical
  • the compound of general formula IV, wherein R" represents a hydrogen atom is obtained after saponification of the cyclized compound according to methods known to those skilled in the art.
  • a compound of general formula VII, wherein R 1 has the meaning given above, is reacted with a phosphonate of general formula XVIII, wherein R"" represents a C h alky! radical, preferably an ethyl radical, and a compound of general formula XIX, wherein R" represents a hydrogen atom or a C 1-6 -alkyl radical to yield a compound of general formula Xl, wherein R 1 and R" have the meaning given above.
  • the process is described in J. Chem. Soc. Perkin Trans 1 , 1995, 741-742.
  • the reaction is carried out by the addition of phosphonate of general formula XVIII to a solution of n-butyllithium in a dry reaction medium, preferably in tetrahydrofuran, at a temperature between -100 0 C and - 50 0 C, followed by the addition of N- phenylalcoxycarbonylacetimidoyl chloride of general formula XIX and aldehyde of general formula VII and stirring at a temperature between 0 0 C and 30 0 C for several hours.
  • a dry reaction medium preferably in tetrahydrofuran
  • a compound of general formula IV can also be obtained according to the process described in scheme Vl.
  • the compound of general formula XXI is converted into the compound of general formula IV in a reaction medium, preferably in ethanol and/or water, in the presence of an acid, preferably in the presence of hydrochloric acid, at a temperature between 50 0 C and 120 0 C to yield a compound of general formula IV.
  • a reaction medium preferably in ethanol and/or water
  • an acid preferably in the presence of hydrochloric acid
  • a compound of general formula IV can also be obtained according to the process described in scheme VII.
  • regioisomers are obtained during the reaction, these regioisomers can be separated by conventional chromatographic techniques.
  • the compound of general formula IV, wherein R"" represents a C 1-6 -alkyl radical is converted into the corresponding acid by using standard methods which are known to those skilled in the art. The process is disclosed in Bull. Chem. Soc. Japan 1984, 57 (3), 787 - 790 and Chem. Lett. 1982, 543 - 546. The respective descriptions are hereby incorporated by reference and form part of the disclosure.
  • the compound of general formula XXIII can also be prepared by the reaction of a compound of general formula XXVI, wherein R"" represents a C 1-6 -alkyl radical, with a compound of general formula XXVII, wherein R 2 has the meaning given above and subsequent bromination of the resulting compound of general formula XXVIII, wherein R 2 has the meaning given above and R"" represents a C 1-6 -alkyl radical, by using bromine in the presence of acetic acid as described in Synthesis 1975, 333 and J. Chem. Soc. Perkin Trans. 1 , 1977, 2092. The respective descriptions are hereby incorporated by reference and form part of the disclosure.
  • the diazonium salt of general formula XXVII can preferably be obtained by the addition of an aqueous solution of sodium nitrite to a compound of general formula R 2 -NH 2 in aqueous hydrochloride acid, wherein R 2 has the meaning given above.
  • this transformation can also be achieved in the presence of a compound of general formula XXVI by adjusting the pH of the reaction medium to 4 by the addition of sodium acetate at a temperature between 0 0 C and 30 0 C.
  • the compound of general formula XXIII can also be prepared by the reaction of a compound of general formula XXIX, wherein X has the meaning given above, R"" represents a Ci. ⁇ -alkyl radical and Y represents a chlorine or bromine atom, with dimethylsulfide, in a reaction medium, preferably in ethanol, at a temperature between 70 0 C and 120 0 C.
  • a reaction medium preferably in ethanol
  • the dimethylsulfonium salt is isolated and further reacted with a compound of general formula XXVII, wherein R 2 has the meaning given above, in the presence of sodium acetate and acetic acid at a temperature between 0 0 C and 30 0 C as described in Heterocycles 1991 , 32(6), 1101 - 1107.
  • R 2 has the meaning given above
  • the compound of general formula XXIII can also be prepared by the reaction of a compound of general formula XXXXVIII, wherein X has the meaning given above, R"" represents a C 1-6 -alkyl radical and Y represents a leaving group, preferably a leaving group selected from the group consisting of chlorine and bromine, with a compound of general formula XXVII, wherein R 2 has the meaning given above, in the presence of a protic solvent, preferably in the presence of a protic solvent selected from the group consisting of methanol and ethanol, or in the presence of an aprotic solvent, preferably in the presence of tetrahydrofuran, in the presence of a base, preferably in the presence of sodium acetate, or in the presence of an acid, preferably in the presence of acetic acid.
  • a protic solvent preferably in the presence of a protic solvent selected from the group consisting of methanol and ethanol
  • an aprotic solvent preferably in the presence of te
  • a compound of general formula XXX wherein R 2 has the meaning given above, Z represents an unsubstituted or at least mono-substituted phenyl radical, preferably an unsubstituted phenyl radical, and R"" represents a C 1-6 -alkyl radical, preferably an ethyl radical, is reacted with a compound of general formula XXII, wherein R 1 has the meaning given above, in a reaction medium, preferably in xylene, at a temperature between 50 0 C and 200 0 C for 2 to 30 hours to yield a compound of general formula IV.
  • the process is described in Chem. Lett. 1983, 507 - 510 and Bull. Chem. Soc.
  • the compound of general formula XXXIII is reacted with phosphorous pentachloride or POCI 3 in a reaction medium, preferably in toluene, at a temperature between 0 0 C and 50 0 C, followed by the addition of a phenolic compound, preferably O-trimethylsilyl-p-cresol, in refluxing toluene to yield a compound of general formula XXX.
  • a reaction medium preferably in toluene
  • a reagent selected from the group consisting of perbenzoic acid, preferably m-chloro-perbenzoic acid, sodium peroxocarbonate, hydrogen peroxide, dioxirane and hydroperoxide.
  • a compound of general formula XXXVII, wherein R 2 has the meaning given above, is reacted with a compound of general formula XXXVIII, wherein R" represents a hydrogen atom or a C 1-6 -alkyl radical, and a compound of general formula VII, wherein R 1 has the meaning given above, to yield a compound of general formula XXXIX, wherein R 1 and R 2 have the meaning given above and R" represents a hydrogen atom or a C 1-6 -alkyl radical.
  • the compound of general formula XXXIX is converted into the compound of general formula XXXX by using O-substituted hydroxylamines according to the method described in J. Org. Chem.
  • the compound of general formula Xl is without isolation and/or purification further reacted with a compound of general formula III, wherein R 2 has the meaning given above, at a temperature between 20 0 C and 120 0 C for 5 to 10 hours.
  • R 2 has the meaning given above
  • the process is described in Angew. Chem. Int. Ed. 2000, 39(7), 1253-1256. The respective description is hereby incorporated by reference and forms part of the disclosure.
  • R" represents a C 1-6 -alkyl radical
  • the compound of general formula IV is obtained after saponification of the cyclized compound according to methods known to those skilled in the art.
  • step 1 a compound of general formula V is reacted with hydrazine hydrate in the presence of an aprotic or protic solvent, preferably in the presence of ethanol, at reflux temperature to yield a compound of general formula XXXXIII, wherein R 1 , R 2 and X have the meaning as defined above.
  • step 2 a compound of general formula XXXXIII is reacted with a compound of general formula XXXXIV, wherein R represents a hydrogen atom or a linear or branched Ci_i 2 alkyl radical and n is 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10, in the presence of benzotriazole to yield a compound of general formula XXXXV, wherein R, n, R 1 , R 2 and X have the meaning as defined above and Bt represents a benzotriazolyl radical.
  • a compound of general formula XXXXV can be transformed into a compound of general formula XXXXVI, wherein R, n, R 1 , R 2 and X have the meaning as defined above, in the presence of a reducing agent, preferably in the presence of sodium borohydride, in the presence of an aprotic solvent, preferably in the presence of tetrahydrofuran.
  • a reducing agent preferably in the presence of sodium borohydride
  • an aprotic solvent preferably in the presence of tetrahydrofuran.
  • the benzotriazole moiety in compounds of general formula XXXXV can be replaced by a linear or branched C1.- 10 alkyl group via reaction with the respective alkyl Grignard reagents
  • the process is disclosed J. Org. Chem. 1990, 55, 3205-3209. The respective description is hereby incorporated by reference and forms part of the disclosure.
  • step 1 a compound of general formula XXXXIII is reacted with a compound of general formula XXXXIV, wherein R represents a hydrogen atom or a linear or branched C 1 - 12 alkyl radical and n is 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10, in the presence of a reducing agent, preferably in the presence of a reducing agent selected from the group consisting of sodium borohydride, sodium cyanoborohydride or triacetoxyborohydride, to yield a compound of general formula XXXXVI, wherein R, n, R 1 , R 2 and X have the meaning as defined above.
  • step 2 a compound of general formula XXXXIII is reacted with a compound of general formula XXXXVII, wherein R represents a hydrogen atom or a linear or branched Ci- ⁇ alkyl radical, n is 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10 and LG represents a leaving group, preferably a leaving group selected from the group consisting of chlorine and bromine, more preferably LG represents bromine, in the presence of a base, preferably in the presence of potassium carbonate, to yield a compound of general formula XXXXVI, wherein R, n, R 1 , R 2 and X have the meaning as defined above.
  • the afore mentioned reactions involving the synthesis of the 4,5-dihydro-pyrazole ring or the reaction of a compound comprising said ring are preferably carried out under an inert atmosphere, preferably under a nitrogen or argon atmosphere, to avoid oxidation of the ring-system.
  • the protection of sensitive or reactive groups may be necessary and/or desirable.
  • This can be performed by using conventional protective groups like those described in Protective groups in Organic Chemistry, ed. J. F. W. McOmie, Plenum Press, 1973; T.W. Greene & P.G.M. Wuts and Protective Groups in Organic Chemistry, John Wiley & sons, 1991.
  • the respective parts of the description is hereby incorporated by reference and forms part of the disclosure.
  • the protective groups may be eliminated when convenient by means well-known to those skilled in the art.
  • substituted pyrazoline compounds of general formula I are obtained in form of a mixture of stereoisomers, particularly enantiomers or diastereomers, said mixtures may be separated by standard procedures known to those skilled in the art, e.g. chromatographic methods or crystallisation with chiral reagents. It is also possible to obtain pure stereoisomers via stereoselective synthesis.
  • the present invention also provides a process for the preparation of salts of substituted pyrazoline compounds of general formula I and stereoisomers thereof, wherein at least one compound of general formula I having at least one basic group is reacted with at least one inorganic and/or organic acid, preferably in the presence of a suitable reaction medium.
  • suitable reaction media include, for example, any of the ones given above.
  • Suitable inorganic acids include hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, nitric acid, suitable organic acids are e.g.
  • the present invention also provides a process for the preparation of salts of substituted pyrazoline compounds of general formula I or stereoisomers thereof, wherein at least one compound of general formula I having at least one acidic group is reacted with one or more suitable bases, preferably in the presence of a suitable reaction medium.
  • suitable bases are e.g. hydroxides, carbonates or alkoxides, which include suitable cations, derived e.g.
  • reaction media are, for example, any of the ones given above.
  • Solvates, preferably hydrates, of the substituted pyrazoline compounds of general formula I 1 of corresponding stereoisomers, of corresponding N-oxides or of corresponding salts thereof may also be obtained by standard procedures known to those skilled in the art.
  • Substituted pyrazoline compounds of general formula I which comprise nitrogen- atom containing saturated, unsaturated or aromatic rings may also be obtained in the form of their N-oxides by methods well known to those skilled in the art.
  • the compounds of general formula I given above may also act as prodrugs, i.e. they represent a drug precusor, which following administration to a patient releases a drug in vivo via some kind of chemical and/or physiological process (e.g., a prodrug on being brought to a physiological pH and/or through an enzyme action is converted to a desired drug form; see, e.g., R. B. Silverman, 1992, "The Organic Chemistry of Drug Design and Drug Action", Academic Press, Chp. 8).
  • the compounds of general formula I give rise to a compound of general formula I, wherein R 3 represents a -OH moiety, upon administration to a patient.
  • Prodrugs can be used to alter the biodistribution (e.g., to allow compounds which would not typically enter the reactive site of the protease) or the pharmacokinetics for a particular compound.
  • a hydroxyl group can be esterified, e.g., with a carboxylic acid group to yield an ester.
  • the ester is administered to a subject, the ester is cleaved, enzymatically or non-enzymatically, reductively or hydrolytically, to reveal the hydroxyl group.
  • substituted pyrazoline compounds of general formula I given above their stereoisomers, corresponding N-oxides, corresponding salts thereof and corresponding solvates are toxicologically acceptable and are therefore suitable as pharmaceutical active substances for the preparation of medicaments.
  • substituted pyrazoline compounds of general formula I given above, stereoisomers thereof, N-oxides thereof, corresponding salts and corresponding solvates have a high affinity to cannabinoid receptors, particularly cannabinoid 1 (CB- ⁇ )-receptors, i.e. they are selective ligands for the (CB- ⁇ )-receptor and act as modulators, e.g. antagonists, inverse agonists or agonists, on these receptors.
  • CB- ⁇ cannabinoid 1
  • these pyrazoline compounds show little or no development of tolerance during treatment, particularly with respect to food intake, i.e. if the treatment is interrupted for a given period of time and then continued afterwards, the inventively used pyrazoline compounds will again show the desired effect. After ending the treatment with the pyrazoline compounds, the positive influence on the body weight is found to continue.
  • substituted pyrazoline compounds show relatively weak Herg channel affinity, thus a low risk of prolongation of the QT-interval is to be expected for these compounds.
  • inventively used substituted pyrazoline compounds are distinguished by a broad spectrum of beneficial effects, while at the same time showing relatively little undesired effects, i.e. effects which do not positively contribute to or even interfere with the well being of the patient.
  • an other aspect of the present invention relates to a medicament comprising at least one substituted pyrazoline compound of general formula I, optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof, and optionally at least one physiologically acceptable auxiliary agent.
  • said medicament is suitable for the modulation (regulation) of cannabinoid-receptors, preferably cannabinoid 1 (CBi) receptors, for the prophylaxis and/or treatment of disorders of the central nervous system, disorders of the immune system, disorders of the cardiovascular system, disorders of the endocrinous system, disorders of the respiratory system, disorders of the gastrointestinal tract or reproductive disorders.
  • cannabinoid-receptors preferably cannabinoid 1 (CBi) receptors
  • Particularly preferably said medicament is suitable for the prophylaxis and/or treatment of psychosis.
  • said medicament is suitable for the prophylaxis and/or treatment of food intake disorders, preferably bulimia, anorexia, cachexia, obesity and/or type Il diabetus mellitus (non-insuline dependent diabetes mellitus), more preferably obesity.
  • the inventive medicament also seems to be active in the prophylaxis and/or treatment of appetency disorders, e.g. the pyrazoline compounds of general formula I also reduce the desire for sweets.
  • pyrazoline compounds as defined herein and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the treatment of metabolic syndrome.
  • the metabolic syndrome and definitions thereof are described in detail by Eckel et al., The Lancet, Vol. 365 (2005), 1415-1428, included herewith by reference.
  • One of the respective definitions was established by the WHO in 1998 (as described in Alberti et al., Diabet. Med. 1998, 15, pages 539-53, the respective description thereof is herewith incorporated by reference and forms part of the present disclosure).
  • the metabolic syndrome is characterized by an interaction of several physiological parameters such as triglycerides, lipids, blood pressure, glucose levels and insuline levels.
  • Another aspect of the invention is the use of one or more pyrazoline compounds as defined herein for the manufacture of a medicament for improvement of cardiovascular and/or metabolic risk factors, such as one or more of the following factors:
  • Elevated triglycerides whereby elevated levels of triglycerides are preferably understood as being > 150 mg/dl,
  • Low HDL cholesterol whereby low levels of HDL cholesterol are preferably understood as being ⁇ 40 mg/dl in men and ⁇ 50 mg/dl in women
  • Hypertension whereby hypertension is preferably understood as being > 130/85 mnnHg
  • Impaired fasting glucose whereby impaired fasting glucose levels are preferably understood as being > 110 mg/dl,
  • Another aspect of the invention is the use of one or more pyrazoline compounds as defined herein for the manufacture of a medicament for the treatment of the weight independent aspects of metabolic syndrome.
  • Another aspect of the invention is a method for improving cardiovascular and/or metabolic risk factors, such as one or more of the following factors:
  • Elevated triglycerides whereby elevated levels of triglycerides are preferably understood as being > 150 mg/dl,
  • Low HDL cholesterol whereby low levels of HDL cholesterol are preferably understood as being ⁇ 40 mg/dl in men and ⁇ 50 mg/dl in women,
  • Hypertension whereby hypertension is preferably understood as being > 130/85 mmHg,
  • Impaired fasting glucose whereby impaired fasting glucose levels are preferably understood as being > 110 mg/dl,
  • Another aspect of the invention is a method for treating of the weight independent aspects of metabolic syndrome.
  • said medicament is suitable for the prophylaxis and/or treatment of cancer, preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of brain cancer, bone cancer, lip cancer, mouth cancer, esophageal cancer, stomach cancer, liver cancer, bladder cancer, pancreas cancer, ovary cancer, cervical cancer, lung cancer, breast cancer, skin cancer, colon cancer, bowel cancer and prostate cancer, more preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of colon cancer, bowel cancer and prostate cancer.
  • cancer preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of colon cancer, bowel cancer and prostate cancer.
  • Particularly preferably said medicament is suitable for the prophylaxis and/or treatment of alcohol abuse and/or alcohol addiction, nicotine abuse and/or nicotine addiction, drug abuse and/or drug addiction and/or medicament abuse and/or medicament addiction, preferably drug abuse and/or drug addiction and/or nicotine abuse and/or nicotine addiction.
  • the inventive medicament is active in the treatment of abstinence, craving reduction and relapse prevention of alcohol intake.
  • the inventive medicament can also be used in the prophylaxis and/or treatment of smoking addiction, cessation and/or dependence including treatment for craving reduction and relapse prevention of tobacco smoking.
  • Medicaments and/or drugs which are frequently the subject of misuse include opioids, barbiturates, cannabis, cocaine, amphetamines, phencyclidine, hallucinogens and benzodiazepines.
  • the medicament is also suitable for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of bone disorders, preferably osteoporosis (e.g. osteoporosis associated with a genetic predisposition, sex hormone deficiency, or ageing), cancer-associated bone disease or Paget's disease of bone; schizophrenia, anxiety, depression, epilepsy, neurodegenerative disorders, cerebellar disorders, spinocerebellar disorders, cognitive disorders, cranial trauma, head trauma, stroke, panic attacks, peripheric neuropathy, inflammation, glaucoma, migraine, Morbus Parkinson, Morbus Huntington, Morbus Alzheimer, Raynaud's disease, tremblement disorders, compulsive disorders, senile dementia, thymic disorders, tardive dyskinesia, bipolar disorders, medicament-induced movement disorders, dystonia, endotoxemic shock, hemorrhagic shock, hypotension, insomnia, immunologic disorders, sclerotic plaques, vomiting, diarrho
  • the medicament is also suitable for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of dementia and related disorders, preferably for the prophylaxis and/or treatment of one or more types of dementia selected from the group consisting of memory loss, vascular dementia, mild cognitive impairment, frontotemporal dementia and Pick's disease; binge eating disorders; juvenile obesity; drug induced obesity; atypical depression; behavioural addictions; attention deficit disorders; Tourette's syndrome; suppression of reward-related behaviours; e. g.
  • conditioned place avoidance such as suppression of cocaine- and morphine induced conditioned place preference; impulsivity; sexual dysfunction; preferably for the prophylaxis and/or treatment of one or more types of sexual dysfunction selected from the group consisting of erectile difficulty and female sexual dysfunction; seizure disorders; nausea; emesis; neuroinflammatory disease, preferably for the prophylaxis and/or treatment of one or more types of neuroinflammatory diseases selected from the group consisting of multiple sclerosis, demyelinisation related disorders, Guillan-Barre syndrome, viral encephalitis and cerebrovascular accidents; neurological disorders; muscle spasticity; traumatic brain injury; spinal cord injury; inflammation and immunomodulatory disorders, preferably for the treatment and/or prophylaxis of one or more types of inflammation and immunomodulatory disorders selected from the group consisting of cutaneous T-cell lymphoma, rheumatoid arthritis, systemic lupus erythematosus, sepsis, sarcoidosis, idiopathic pulmonary
  • Another aspect of the present invention is the use of at least one substituted pyrazoline compound of general formula I given above as suitable active substances, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the modulation of cannabinoid-receptors, preferably cannabinoid 1 (CBi) receptors, for the prophylaxis and/or treatment of disorders of the central nervous system, disorders of the immune system, disorders of the cardiovascular system, disorders of the endocrinous system, disorders of the respiratory system, disorders of the gastrointestinal tract or reproductive disorders.
  • cannabinoid-receptors preferably can
  • At least one of the respective substituted pyrazoline compounds optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of psychosis.
  • At least one of the respective substituted pyrazoline compounds optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of food intake disorders, preferably bulimia, anorexia, cachexia, obesity and/or type Il diabetus mellitus (non-insuline dependent diabetes mellitus), more preferably obesity.
  • the use of at least one of the respective substituted pyrazoline compounds optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of cancer, preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of brain cancer, bone cancer, lip cancer, mouth cancer, esophageal cancer, stomach cancer, liver cancer, bladder cancer, pancreas cancer, ovary cancer, cervical cancer, lung cancer, breast cancer, skin cancer, colon cancer, bowel cancer and prostate cancer, more preferably for the prophylaxis and
  • At least one of the respective substituted pyrazoline compounds optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of alcohol abuse and/or alcohol addiction, nicotine abuse and/or nicotine addiction, drug abuse and/or drug addiction and/or medicament abuse and/or medicament addiction, preferably drug abuse and/or drug addiction and/or nicotine abuse and/or nicotine addiction.
  • Medicaments/drugs which are frequently the subject of misuse include opioids, barbiturates, cannabis, cocaine, amphetamines, phencyclidine, hallucinogens and benzodiazepines.
  • the use of at least one of the respective substituted pyrazoline compounds optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of bone disorders, preferably osteoporosis (e.g.
  • At least one of the respective substituted pyrazoline compounds optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of dementia and related disorders, preferably for the prophylaxis and/or treatment of one or more types of dementia selected from the group consisting of memory loss, vascular dementia, mild cognitive impairment, frontotemporal dementia and Pick's disease; binge eating disorders; juvenile obesity; drug induced obesity; atypical depression; behavioural addictions; attention deficit disorders; Tourette's syndrome; suppression of reward-related behaviours; e.
  • conditioned place avoidance such as suppression of cocaine- and morphine induced conditioned place preference; impulsivity; sexual dysfunction; preferably for the prophylaxis and/or treatment of one or more types of sexual dysfunction selected from the group consisting of erectile difficulty and female sexual dysfunction; seizure disorders; nausea; emesis; neuroinflammatory disease, preferably for the prophylaxis and/or treatment of one or more types of neuroinflammatory diseases selected from the group consisting of multiple sclerosis, demyelinisation related disorders, Guillan-Barre syndrome, viral encephalitis and cerebrovascular accidents; neurological disorders; muscle spasticity; traumatic brain injury; spinal cord injury; inflammation and immunomodulatory disorders, preferably for the treatment and/or prophylaxis of one or more types of inflammation and immunomodulatory disorders selected from the group consisting of cutaneous T-cell lymphoma, rheumatoid arthritis, systemic lupus erythematosus, sepsis, sarcoidosis, idiopathic
  • Dementia is a disease characterized by the progressive deterioration in cognitive and social adaptive functions that can eventually interfere with the patient's ability to live independently. Dementia also constitutes of impairment in short- and long-term memory plus additional symptoms, such as problems with abstract thinking, judgment, or personality. An estimated 18 million patients suffer from dementia worldwide. The most common forms of dementia include Alzheimer's disease and vascular dementia. Other forms are frontotemporal dementia and Pick's disease.
  • Vascular dementia is considered to be the second most common dementia of late life, affecting approximately 10-15% of all cases. AD and vascular dementia can exist in isolation or together (mixed dementia). In vascular dementia, atherosclerotic changes in cerebral vessels can lead to reduced local blood flow that results in multiple small strokes (multi-infarct dementia). Vascular dementia is pharmacologically treated by stroke prophylaxis, and by treatment of the cognitive deficit.
  • AD Alzheimer's disease
  • AD the most common and important form of dementia
  • cognitive functions such as abstract reasoning and memory.
  • AD is a neurodegenerative disorder that is characterized by progressive impairment of cognitive functions, such as abstract reasoning and memory.
  • AD is one of the most prevalent illnesses in the elderly.
  • the majority of AD patients are in their sixties or older. More than 5% of all persons over the age of 70 have significant memory loss due to AD.
  • AD Alzheimer's disease
  • other failures in cerebral function become increasingly apparent. This includes impairment of speech, writing, and arithmetic skills. Visiospacial orientation, such as parking the car, dressing property, and giving and understanding directions to a location, can become defective or impaired.
  • Visiospacial orientation such as parking the car, dressing property, and giving and understanding directions to a location, can become defective or impaired.
  • patients forget how to use common objects and tools while retaining necessary motor power and co-ordination for these activities.
  • Schizophrenia is characterized by profound disruption in cognition and emotion, affecting the most fundamental human attributes: language, thought, perception, affect, and sense of self.
  • Positive symptoms include psychotic manifestations, such as hearing internal voices or experiencing other sensations not connected to an obvious source (hallucinations) and assigning unusual significance or meaning to normal events or holding fixed false personal beliefs (delusions).
  • Negative symptoms are characterized by affective flattening and lack of initiative or goals (avolition), loss of usual interests or pleasures (anhedonia), disturbances of sleep and eating, dysphoric mood (depressed, anxious, irritable, or angry mood) and difficulty concentrating or focusing attention.
  • Major depression is a multifaceted disorder characterized by primarily by dysphoric mood and loss of interest or pleasure in activities that were once enjoyable. Other physical and psychological symptoms include inability to concentrate, motor disturbances (psychomotor retardation or agitation), feelings of worthlessness, inappropriate guilt, thoughts of suicide, and disturbances in appetite and sleep.
  • Anxiety disorders are a group of syndromes that include generalized anxiety disorder, panic disorder, phobias, obsessive-compulsive disorder, and post traumatic stress disorder. Although each disorder has its own distinct features, all share common symptoms of excessive worrying, intense fears and dread, hypervigilance and/or somatic symptoms, in the absence of a dangerous situation.
  • Normal sexual function requires, among others, the ability to achieve and maintain penile erection.
  • Major anatomic structures of the penis that are involved in erectile function include the corpus cavernosum, corpus spinosum, and the tunica albuginea (a collagenous sheath that surrounds each corpus).
  • Thecorpora are composed of a mass of smooth muscle (trabecule) which contains a network of endothelial-lined vessels (lacunar spaces). Penile tumescence and erection is caused by relaxation of the arteries and corporal smooth muscles, while closing emissary veins, leading to increased blood flow into the lacunar network. Central and peripheral innervation contributes to regulation of the erectile response.
  • Erectile dysfunction may result from failure to initiate, fill, or store adequate blood volume within the lacunar network of the penis.
  • ED may be vasculogenic, neurogenic, endocrinologic, diabetic, psychogenic, or medication-related.
  • ED affects 10-25% of middle-aged and elderly men, and has a profound impact on the well-being of affected men. It is currently treated using PDE5 inhibitors such as vardenafil, tadalifil, and sildenafil, lntraurethral alpostadil (prostaglandin El) may be used in patients that fail on oral agents.
  • PDE5 inhibitors such as vardenafil, tadalifil, and sildenafil, lntraurethral alpostadil (prostaglandin El) may be used in patients that fail on oral agents.
  • VCD vacuum constriction devices
  • Female sexual dysfunction (FSD) is highly prevalent, age-related, and progressive. It affects 30 to 50% of women.
  • FSD denotes a range of medical problems and is categorized according to disorders of (1 ) desire, (2) arousal, (3) orgasm and (4) sexual pain, and symptoms include diminished vaginal lubrication, pain and discomfort with intercourse, decreased arousal, and difficulty achieveing orgasm.
  • VIP vasoactive intestinal peptide
  • NO nitic oxide
  • sex hormones such as estrogens and androgens have been suggested to be important in female sexual function.
  • Current treatment approaches include estrogen replacement therapy, methyl testosterone, PDE5 inhibitors such as sildenafil, the NO-donor L- arginine, prostaglandin El, phentolamine, and the dopamine agonists apomorphine.
  • the medicament according to the present invention may be in any form suitable for the application to humans and/or animals, preferably humans including infants, children and adults and can be produced by standard procedures known to those skilled in the art.
  • the medicament can be produced by standard procedures known to those skilled in the art, e.g. from the table of contents of "Pharmaceutics: The Science of Dosage Forms", Second Edition, Aulton, M.E. (ED. Churchill Livingstone, Edinburgh (2002); “Encyclopedia of Pharmaceutical Technology", Second Edition, Swarbrick, J. and Boylan J.C. (Eds.), Marcel Dekker, Inc. New York (2002); "Modern Pharmaceutics", Fourth Edition, Banker G.S. and Rhodes CT.
  • composition of the medicament may vary depending on the route of administration.
  • the medicament of the present invention may for example be administered parentally in combination with conventional injectable liquid carriers, such as water or suitable alcohols.
  • conventional pharmaceutical excipients for injection such as stabilising agents, solubilizing agents, and buffers, may be included in such injectable compositions.
  • These medicaments may for example be injected intramuscularly, intraperitoneally, or intravenously.
  • Medicaments according to the present invention may also be formulated into orally administrable compositions containing one or more physiologically compatible carriers or excipients, in solid or liquid form. These compositions may contain conventional ingredients such as binding agents, fillers, lubricants, and acceptable wetting agents.
  • compositions may take any convenient form, such as tablets, pellets, granules, capsules, lozenges, aqueous or oily solutions, suspensions, emulsions, or dry powdered forms suitable for reconstitution with water or other suitable liquid medium before use, for immediate or retarded release.
  • the multiparticulate forms, such as pellets or granules may e.g. be filled into a capsule, compressed into tablets or suspended in a suitable liquid.
  • Suitable controlled release formulations, materials and methods for their preparation are known from the prior art, e.g. from the table of contents of "Modified-Release Drug Delivery Technology", Rathbone, M.J. Hadgraft, J. and Roberts, M.S. (Eds.), Marcel Dekker, Inc., New York (2002); "Handbook of Pharmaceutical Controlled Release Technology”, Wise, D.L. (Ed.), Marcel Dekker, Inc. New York, (2000); "Controlled Drug Delivery", VoI, I 1 Basic Concepts, Bruck, S. D. (Ed.), CRD Press Inc., Boca Raton (1983) y de Takada, K.
  • Medicaments according to the present invention may also comprise an enteric coating, so that their dissolution is dependent on pH-value. Due to said coating the medicament can pass the stomach undissolved and the respective pyrazoline compound of general formula I is liberated in the intestinal tract.
  • the enteric coating is soluble at a pH value of 5 to 7.5. Suitable materials and methods for the preparation are known from the prior art.
  • the medicaments according to the present invention may contain 1-60 % by weight of one or more substituted pyrazoline compounds as defined herein and 40- 99 % by weight of one or more auxiliary substances (additives).
  • the liquid oral forms for administration may also contain certain additives such as sweeteners, flavoring, preservatives, and emulsifying agents.
  • Non-aqueous liquid compositions for oral administration may also be formulated, containing edible oils. Such liquid compositions may be conveniently encapsulated in e.g., gelatin capsules in a unit dosage amount.
  • compositions of the present invention may also be administered topically or via a suppository.
  • the daily dosage for humans and animals may vary depending on factors that have their basis in the respective species or other factors, such as age, sex, weight or degree of illness and so forth.
  • the daily dosage for humans may preferably be in the range fromi to 2000, preferably 1 to 1500, more preferably 1 to 1000, even more preferably 1 to 150 milligrams of active substance to be administered during one or several intakes per day.
  • Binding affinity to CB1 receptor was evaluated according to a modification of the method described by Govaerts et al., Eur J Pharmac Sci 23, 233-243 (2004). The respective parts of the description is hereby incorporated by reference and forms part of the present disclosure.
  • cerebellum from male wistar rats 250-30Og were carefully dissected on ice and homogenates were prepared with Potter-Helveheim in a cold 50 mM Tris-HCI solution containing 5 mM MgCI 2 , 1 mM EDTA and 0.25 M sucrose, pH 7.4. The suspension was centrifuged at 1 ,000 x g for 5 minutes. The supernatants were collected and centrifuged 50,000 x g for 15 minutes. The resulting pellets were then resuspended in Tris-HCI buffer without sucrose, homogenized and incubated for 15 min at 37 0 C in an orbital shaker bath and centrifuged again at 50,000 x g for 15 min.
  • Pellets were weighted, resuspended in Tris-HCI buffer without sucrose, homogenized with Ultraturrax at 13,500 rpm for 3 x 5 seconds and alicuoted in 0.9 ml volumes in Eppendorf tubes. Alicuotes were centrifuged at 20,800 x g for 5 minutes, supernatants discarded and pellets were frozen at -8O 0 C until use. Total protein concentration was determined using the Bio-Rad Lowry method based kit.
  • Binding data were analyzed by non-linear regression with the software GraphPad Prism Version 3.03.
  • Substances with affinity for cannabinoid receptors are known to produce a wide range of pharmacological effects. It is also known that intravenous administration of a substance with affinity for cannabinoid receptors in mice produces analgesia , hypothermia, sedation and catalepsy. Individually, none of these effects can be considered as proof that a tested substance has affinity for cannabinoid-receptors, since all of these effects are common for various classes of centrally active agents. However, substances, which show all of these effects, i.e. substances that are active in this so-called tetrad model are considered to have affinity for the cannabinoid receptors. It has further been shown that cannabinoid receptor antagonists are highly effective in blocking the effects of a cannabinoid agonist in the mouse tetrad model.
  • mice with a weight of 20-30 g Male NMRI mice with a weight of 20-30 g (Harlan, Barcelona, Spain) are used in all of the following experiments.
  • mice are acclimatised to the experimental setting.
  • Pre-treatment control values are determined for analgesia hot plate latency (in seconds), rectal temperature, sedation and catalepsy.
  • mice In order to determine the agonistic activity of the substance to be tested, the mice are injected intravenously with the substance to be tested or the vehicle alone. 15 minutes after injection, latency in hot plate analgesia is measured. Rectal temperature, sedation and catalepsy are measured 20 minutes after injection.
  • the hot plate analgesia is determined according to the method described in Woolfe D. et al. ,,The evaluation of analgesic action of pethidine hydrochloride (Demerol)", J. Pharmacol. Exp. Ther. 80, 300-307,1944. The respective description is hereby incorporated by reference and forms part of the present disclosure.
  • mice are placed on a hot plate (Harvard Analgesimeter) at 55 ⁇ 0.5 0 C until they show a painful sensation by licking their paws or jumping and the time for these sensations to occur is recorded. This reading is considered the basal value (B).
  • B basal value
  • PC cut-off time
  • mice Fifteen minutes after the administration of the substance to be tested, the mice are again placed on the hot plate and the afore described procedure is repeated. This period is called the post-treatment reading (PT).
  • PT post-treatment reading
  • the degree of analgesia is calculated from the formula :
  • % MPE of Analgesia ( PT- B) / (PC-B) x 100
  • Sedation and ataxia is determined according to the method described in Desmet L. K. C. et al. ..Anticonvulsive properties of Cinarizine and Flunarizine in Rats and Mice", Arzneim. -Forsch. (Frug Res) 25, 9, 1975.
  • the respective description is hereby incorporated by reference and forms part of the present disclosure.
  • the chosen scoring system is
  • the percentage of sedation is determined according to the formula:
  • % of sedation arithmetic mean / 3 X 100 Hypothermia:
  • hypothermia is determined according to the method described in David R. Compton et al. ,,ln-vivo Characterization of a Specific Cannabinoid Receptor Antagonist (SR141716A) Inhibition of Tetrahydrocannbinol- induced Responses and Apparent Agonist Activity", J. Pharmacol Exp Ther. 277 , 2, 586-594, 1996. The respective description is hereby incorporated by reference and forms part of the present disclosure.
  • the base-line rectal temperatures are determined with a thermometer (YeIIo Springs Instruments Co., Panlabs) and a thermistor probe inserted to 25mm before the administration of the substance to be tested. Rectal temperature is again measured 20 minutes after the administration of the substances to be tested. The temperature difference is calculated for each animal, whereby differences of ⁇ -2 0 C are considered to represent activity.
  • Catalepsy is determined according to the method described in Alpermann H. G. et al. ..Pharmacological effects of Hoe 249: A new potential antidepressant", Drugs Dev. Res. 25, 267-282. 1992. The respective description is hereby incorporated by reference and forms part of the present disclosure.
  • the cataleptic effect of the substance to be tested is evaluated according to the duration of catalepsy, whereby the animals are placed head downwards with their kinlegs upon the top of the wooden block.
  • the chosen scoring system is:
  • the percentage of catalepsy is determined according to the following formula:
  • % Catalepsy arithmetic mean / 6 X 100
  • CB1 Chinese hamster ovary (CHO) cells stably expressing recombinant human cannabinoid 1 receptor (CB1 ) were cultured in nutrient mixture Ham's F 12 supplemented with 10 % heat-inactivated fetal bovine serum, 2 mM L-glutamine, 50 U/ml penicillin, 50 U/ml streptomycin and 0.5 mg/ml geneticin. In order to obtain cells, culture flasks were washed twice with phosphate buffered saline and scraped. Then, cells were collected by centrifugation (200 x g, 10 min) and stored dry at -8O 0 C.
  • Cells were homogenized in ice-cold 20 mM HEPES, 10 mM EDTA (pH 7.5) and centrifuged at 40,000 x g for 15 min at 4 0 C.
  • the membrane pellet was resuspended in 20 mM HEPES, 0.1 mM EDTA (pH 7.5) and centrifuged for 15 min at 4 0 C.
  • the final membrane pellet was resuspended in 20 mM HEPES, 0.1 mM EDTA (pH 7.5), and divided in aliquots and stored at -8O 0 C until use.
  • the reaction was performed in 96-well plates. Membranes (15 ⁇ g protein/well) were incubated for 60 min at 30 0 C in buffer (50 mM HEPES, 100 mM KCI, 5 mM MgCI 2 , 1 mM EDTA, 0.1 % wt/vol bovine serum albumin, 5 ⁇ M GDP, saponin (10 ⁇ g/ml), 0.5 nM [ 35 S]GTP ⁇ S, pH 7.4) with compound at a final concentration of 1 ⁇ M in either the absence or presence of agonist WIN 55,212-2 between 3 nM and 3 ⁇ M.
  • buffer 50 mM HEPES, 100 mM KCI, 5 mM MgCI 2 , 1 mM EDTA, 0.1 % wt/vol bovine serum albumin, 5 ⁇ M GDP, saponin (10 ⁇ g/ml), 0.5 nM [ 35 S]GTP ⁇ S, pH 7.4
  • P alcohol preferring
  • the following protocol may be used to evaluate the effects of alcohol intake in alcohol preferring (P) female rats (e.g. bred at Indiana University) with an extensive drinking history.
  • P rats Lumeng, L, et al..”Different sensitivities to ethanol in alcohol-preferring and- nonpreferring rats,"Pharmacol, Biochem Behav., 16, 125-130 (1982).
  • mice Female rats are given 2 hours of access to alcohol (10% v/v and water, 2-bottle choice) daily at the onset of the dark cycle. The rats are maintained on a reverse cycle to facilitate experimenter interactions. The animals are initially assigned to four groups equated for alcohol intakes: Group 1 -vehicle; Group 2-positive control (e. g. 5.6 mg/kg AM251 ; Group3-low dose test compound; and Group 4-high dose of test compound. Test compounds are generally mixed into a vehicle of 30% (w/v) - cyclodextrin in distilled water at a volume of 1-2 ml/kg. Vehicle injections are given to all groups for the first two days of the experiment.
  • mice upon arrival mice are individually housed and given unlimited access to powdered rat chow, water and a 10 % (w/v) alcohol solution. After 2-3 weeks of unlimited access, water is restricted for 20 hours and alcohol is restricted to only 2 hours access daily. This is done in a manner that the access period was the last 2 hours of the dark part of the light cycle.
  • mice are considered stable when the average alcohol consumption for 3 days is 20% of the average for all 3 days.
  • Day 1 of test consists of all mice receiving vehicle injection (sc or ip). Thirty to 120 minutes post injection access is given to alcohol and water. Alcohol consumption for that day is calculated (g/kg) and groups are assigned so that all groups have equivocal alcohol intake.
  • day 2 and 3 mice are injected with vehicle or drug and the same protocol as the previous day is followed.
  • Day 4 iss wash out and no injections are given. Data is analyzed using repeated measures ANOVA. Change in water or alcohol consumption is compared back to vehicle for each day of the test. Positive results would be interpreted as a compound that was able to significantly reduce alcohol consumption while having no effect on water
  • the chambers are opened and the animals are administered a single dose of compound (the usual dose range is 0.001 to 10 mg/kg) by oral gavage (or other route of administration as specified, i. e. , sc, ip, iv).
  • Drugs are prepared in methylcellulose, water or other specified vehicle (examples include PEG400, 30% beta-cyclo dextran and propylene glycol).
  • Oxygen consumption and ambulatory activity are measured every 10 minutes for an additional 1-6 hours post-dosing.
  • the Oxymax calorimeter software calculates the oxygen consumption (ml/kg/h) based on the flow rate of air through the chambers and difference in oxygen content at inlet and output ports.
  • the activity monitors have 15 infrared light beams spaced one inch apart on each axis, ambulatory activity is recorded when two consecutive beams are broken and the results are recorded as counts.
  • An intravenous nicotine self-administration model or place preference model may be used to assess the effects of a test compound on nicotine dependence (see, e.g., Vastola, et al. Physiol. Behav. 77:107-114, 2002; Brower, et al., Brain Res. 930:12- 20, 2002).
  • Sprague-Dawley rats are used in this study (Vastola, et al., 2002). Animals are housed in a temperature-controlled, 12h/12h illumination cycle with ad libitum access to food and water. Conditioning and testing are conducted in a chamber divided into two compartments with a door separating the two compartments. Behavior of the animals is recorded by video camera. Animals are habituated to the injection procedure for several days. The animals are then placed into the test chamber and given free access to both compartments. The initial preference for a particular compartment is determined. For the conditioning trials, animals are injected with nicotine and restricted to the nonpreferred compartment, or the animals are injected with saline and restricted to the preferred compartment. On test day, the door separating the compartments is removed, the animal is placed in the center of the chamber and allowed to move freely between compartments. Time spent in each compartment is scored. Preferential occupancy of the nicotine compartment follows from the conditioned reinforcing effects of nicotine.
  • Self-administration in animals is a predictor of a compound's abuse potential in humans. Modifications to this procedure may also be used to identify compounds that prevent or block the reinforcing properties of drags that have abuse potential. A compound that extinguishes the self- administration of a drag may prevent that drag's abuse or its dependence.
  • Sprague-Dawley rats are used in this study. Initially, animals are housed in a temperature-controlled, 12h/12h illumination cycle with ad libitum access to food and water. The animals are then implanted with jugular catheters which exit through the animal's back, and each animal is placed in an individual operant chamber (Brower, et al., 2002). The catheters are connected to a computer-driven syringe pump which is located outside of the chamber. The chamber contains two levers with a green light located above each lever. The light is illuminated when nicotine is available.
  • a self-administration test animals are placed in the operant chambers and the levers are randomly designated as an active and inactive lever. Each response on the active lever produces an infusion of nicotine. Presses on the inactive lever have no effect, but are also recorded. Animals are then trained to self -administer nicotine over a set period of time by having drag access during each daily session. Illumination of the chamber house light signals the beginning of the session and the availability of nicotine. When the session ends, the house light is turned off. Initially, a nicotine infusion occurs with every press of the active lever. Once lever-pressing behavior has been established, the number of presses to produce a nicotine infusion is increased. After stable nicotine self-administration is obtained, the effect of a test compound on the nicotine- reinforced behavior may be evaluated. Administration of this test compound prior to the session can either potentiate, extinguish, or produce no change to the self-administrating behavior. Tests are conducted every two days, and the order of the administration of the test compound doses is controlled.
  • the Morris water maze is a behavioral in vivo test to measure spatial orientation learning and memory through a complex learning task. It is highly suitable for testing compounds that enhance learning and memory.
  • a circular water tank or pool (diameter 2 m, height 0.7 m) is filled with water, and a 10 cm2 platform is placed 1- 1.5 cm below the water surface at a defined location within the pool. The escape platform is not visible for an animal swimming in the water tank. For the experiment, a rat or mouse is placed into the pool to swim freely.
  • the animals have the task to localize the submerged platform, and the time and distance required for successful retrieval is measured.
  • Multiple extra-maze cues are provided by the furniture in the room, including desks, computer equipment, a second water tank, the presence of the experimenter, and by a radio on a shelf that is playing softly.
  • test compounds are administered orally or intraperitoneally on the day of the experiment at a defined time (e.g., 30 minutes before the first swim test). Control animals are dosed with the corresponding vehicle not containing test compound. Active compounds yield shorter times and distances to localize the platform (i.e., the better the animal remembers the location of the platform, the shorter the distance covered and the faster the platform is reached).
  • the test can also be carried out using transgenic or cognitively impaired animals.
  • Cognitive impairment is induced either by old age or experimentally through brain lesions, such as bilateral lesions of the entorhinal cortex in rats. Such lesions can be induced by intracerebral injections of the excitotoxin ibotenic acid.
  • the object recognition task is used to assess the effects of compounds on the cognitive performance of rodents.
  • a rat is placed in an open field, in which two identical objects are located. The rats inspects both objects during the initial trial of the test. After a certain retention interval (e.g., 24 hours), a second trial is carried out.
  • a certain retention interval e.g. 24 hours
  • a second trial is carried out.
  • one of the two objects used in the first trial (the 'familiar 1 object) and a novel object are placed in the open field, and the inspection time at each of the objects is measured. Good retention is reflected by higher exploration times towards the novel compared with the 'familiar 1 object.
  • Administration of the putative cognition enhancer prior to the first trial predominantly allows assessment of the effects on acquisition, and on the consolidation processes.
  • Administration of the test compound after the first trial allows to assess the effects on consolidation processes, whereas administration before the second trial allows to measure effects on retrieval processes.
  • the passive avoidance task assesses memory performance in rats and mice.
  • the inhibitory avoidance uses an apparatus consisting of a box with two compartments separated by a guillotine door that can be operated by the experimenter. One compartment is illuminated with bright light, and the other compartment is dark. A threshold of 2 cm separates the two compartments when the guillotine door is 15 raised. When the door is open, the illumination in the dark compartment is about 2 lux. The light intensity is about 500 lux at the center of the floor of the light compartment.
  • Two habituation sessions, one shock session, and a retention session are given, separated by inter-session intervals of 24 hours.
  • the rat is allowed to explore the apparatus for 300 seconds.
  • the rat is placed in the light compartment, facing the wall opposite to the guillotine door. After an accommodation period of 15 seconds, the guillotine door is opened so that all parts of the apparatus can be visited freely. Rats normally avoid brightly lit areas and will enter the dark compartment within a few seconds.
  • the guillotine door between the compartments is lowered as soon as the rat has entered the dark compartment with all paws, and a scrambled 1 mA footshock is administered for 2 seconds. Then the rat is removed from the apparatus and returned into its home cage. The procedure during the retention session is identical to that of the habituation sessions.
  • the step-through latency that is, the first latency of entering the dark compartment (in seconds) during the retention session is an index of the memory performance of the animal: a better retention is assumed if the latency to enter the dark compartment is longer.
  • a test compound is given 30 minutes before the shock session, together with 1 mg/kg scopolamine. Scopolamine impairs the memory performance during the retention session 24 hours later. If the test compound increases the enter latency compared with the scopolamine-treated controls, it is considered to possess cognition enhancing activity.
  • the T-maze spontaneous alternation task assesses the spatial memory performance in mice.
  • the start arm and the two goal arms of the T-maze are provided with guillotine doors that can be operated manually by the experimenter.
  • a mouse is put into the start arm at the beginning of training.
  • either the left or right goal arm is blocked by lowering the respective guillotine door (forced trial).
  • the mouse After the mouse has been released from the start arm, it will explore the maze, eventually entering the open goal arm, and return to the start position, where it will be confined for 5 seconds, by lowering the guillotine door. Then, the animal can choose freely between the left and right goal arm (all guillotine-doors opened) during 14 additional trials (free choice trials). As soon as a mouse has entered one goal arm, the other arm is closed. The mouse eventually returns to the start arm and is free to visit whichever arm it wants after having been confined to the start arm for 5 seconds. After completion of 14 free choice trials in one session, the animal is removed from the maze.
  • a forced swim or tail suspension model may be used to assess the efficacy of antidepressant compounds (see , e.g., Porsolt, et al., Nature 266:730-732, 1977; Stem, et al., Psychopharmacology 85:367-370, 1985).
  • Rats or mice are placed in a cylinder filled with water 23-25 0 C from which no escape is possible. Initially, animals struggle and try to escape, but eventually adopt a characteristic immobile posture and make no further attempts to escape except for small movements needed their head above water. Animals are dosed with a compound and the activity (swimming or climbing) or immobility is measured by an observer. The immobility is considered by some to reflect a 'behavioral despair 1 in which animals cease to struggle to escape the aversive situation.
  • TCAs clinically used antidepressants
  • MAOIs MAOIs
  • SSRIs atypicals
  • At least two distinct active behavioral patterns are produced by pharmacologically selective antidepressant drugs. Serotonin-selective reuptake inhibitors increase swimming behavior, whereas drugs acting primarily to increase extracellular levels of norepinephrine or dopamine increase climbing behavior. There are false positives (psychostimulants) but relatively few false negatives ([beta]-adrenergic agonists).
  • test is sensitive to muscle-relaxant (benzodiazepines) and sedative (neuroleptics) effects, leading to enhanced immobility. False positives and false negatives can often be screened by measuring if the compound produces locomotor stimulation or sedation.
  • mice When suspended by the tail, mice will initially struggle and try to escape and then alternate between active escape attempts and immobililty. In this test, animals are dosed with a compound and the immobility is measured by an observer for 6 min. Porsolt describes the immobile behavior as 'behavioral despair' which animals cease to struggle to escape the aversive situation.
  • a large variety of clinically antidepressants tricyclics, MAOIs, SSRIs, and atypicals reduce immobility in this model. The test has a good predictive validity for antidepressant activity and works for most antidepressant classes including but has some false positives (psychostimulants).
  • the test is sensitive to muscle-relaxant (benzodiazepines) and sedative (neuroleptics) effects, which lead to enhanced immobility. False positives and false negatives can often be screened by measuring if the compound produces locomotor stimulation or sedation. Strain differences in the tail suspension test have been found in mice. The tail suspension test has some face validity but its construct validity is rather weak.
  • a prepulse inhibition model may be used to assess the efficacy of antipsychotic compounds (see Swerdlow and Geyer, Schizophrenia Bulletin 24: 285-301 , 1998).
  • Prepulse inhibition is the process whereby a relatively mild stimulus, the prepulse, suppresses the response to a strong, startle-eliciting stimulus when the prepulse precedes the startle stimulus by a brief duration (about 10 to 500 milliseconds).
  • Prepulse inhibition is a cross-species phenomenon (ie, it is present in mammals ranging from mice to humans), yet it is relatively absent among schizophrenic patients.
  • the deficit in PPI in schizophrenic patients is thought to reflect the loss of sensorimotor gating that may lead to sensory flooding and cognitive fragmentation.
  • mice or rats are administered compounds and individually placed into a holder on a transducer platform to measure whole body startle.
  • the holder is housed in a startle chamber with background white noise. Following a brief habituation period, animals are given multiple trials of a weak auditory prepulse stimululs, followed by a strong auditory startle stimulus. Four types of trials are given: prepulse plus startle, prepulse alone, startle alone, and no stimulation. PPI is measured as the amount of inhibition of startle following the prepulse and is expressed as the percentage of basic startle. As a control, measurements are taken in the no stimulation and prepulse alone trials. PPI is considered a test with good predictive, face and construct validity for schizophrenia. Putative antipsychotics can be tested alone to determine if they enhance PPI.
  • antipsychotics can be screened to determine if they block various agents that disrupt PPI (apomorphine, d- amphetamine, PCP, ketamine, DOI).
  • PPI apomorphine, d- amphetamine, PCP, ketamine, DOI.
  • mutant mice with or without drugs can be screened using the PPI procedure.
  • An elevated plus maze model may be used to assess the efficacy of anxiolytic compounds (see Pellow and File, Pharm. Biochem. Behav. 24, 525-529, 1986).
  • the elevated plus maze is widely used as an anxiety paradigm that examines the conflict between the drive to explore and the aversiveness of heights and open spaces of rats or mice.
  • the maze is a cross made up of two open and two closed arms that is raised above the ground. The combination of light, the open arms, and the height is thought to produce unconditioned fear or anxiety responses in mice or rats.
  • the test apparatus is an open top maze constructed of opaque plastic with alternating open and enclosed arms. For rats, each arm is 45-55 cm long and 8-12 cm wide, with the sides of the enclosed arms 35-45 cm high, the juncture approximately 10 x 10 cm, and the maze is elevated 45-55 cm above the floor.
  • the mouse elevated plus maze consists of two closed arms (15 x 6 x 30 cm) and two open arms (1 x 6 x 30 cm) forming a cross, with a quadrangular center (6 x 6cm).
  • the maze is placed 50 cm above the floor. Testing is performed in a room free of noise and distraction. On test days animals are administered drug or vehicle. If a pretreatment period is necessary, the animals are returned to the home cage for the duration of the pretreatment time; otherwise, the animals are placed in a clear plastic holding chamber singly or with cage mates for 1-10 minutes prior to test time. Rats are then placed in the center of the maze always oriented in the same direction, either consistently facing an open arm or an enclosed arm.
  • Drugs affecting erectile function may be tested by measuring the effect on apomo ⁇ hine- evoked increases in intracavernous pressure in the awake rat as described by Andersson, et al., (J. Urol. 161 : 1707-17 ] 2, 1999).
  • One end of a polyethylene tubing is implanted into the cavernosal space of the penis of male Sprague-Dawley rats. After recovery from the surgery, intracavemous pressure is recorded using a pressure transducer connected to a multichannel pen-recorder. Erections are induced by administration of apomorphine (100-250 ug/kg s.c.) with or without test compound, and the results are compared for the treated group and the non-treated group.
  • Systems to test compounds for the treatment of female sexual dysfunction include in vitro and in situ models using vaginal or clitoral smooth muscle preparations, histological evaluation, and vaginal blood flow assessments.
  • In vivo studies of sexual responses focus on behavioral paradigms involving lordotic posturing and receptivity, as well as indices of motivation using a dual chamber pacing method (see, e.g., Hale, et al., Int. J. Impot. Res. 15 Suppl 5: S75-79, 2003).
  • IR (KBr, cnr ⁇ 1 ) 3500-2500, 1719,3, 1686,5, 1603,4, 1587,8, 1081 ,9.
  • N-Aminopiperidine (0.6 ml_, 5.6 mmol) and triethylamine (4 mL) were dissolved in methylene chloride (25 mL) under nitrogen atmosphere.
  • the resulting mixture was - cooled to 0 0 C and a solution of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro- pyrazole-3-carboxylic acid chloride in methylene chloride (15 mL) was added drop wise.
  • the resulting reaction mixture was stirred at room temperature (approximately 25 0 C) overnight.
  • the reaction mixture was washed with water, followed by a saturated aqueous solution of sodium bicarbonate, again with water, dried over sodium sulfate, filtered and evaporated to dryness in a rotavapor.
  • the resulting crude solid was crystallised from ethanol.
  • the crystallised solid was removed via filtration and the mother liquors were concentrated to yield a second fraction of crystallised product.
  • the two fractions were combined to give a total amount of 1.7 g (57% of theoretical yield) of the title compound having a melting point of 183-186°C.
  • N-piperidinyl-5-(4-chlorophenyl)-1-(2,4- dichlorophenyl)-4,5-dihydropyrazole-3-carboxamide (0.15 g, 0.33 mmol) was dissolved in 7 mL of dichloromethane. The resulting solution was ice-cooled to 0 0 C and m-chloroperbenzoic acid (0.204 g, 0.83 mmol) was added in several portions. After stirring for 15 minutes a control via thin layer chromatography showed that no starting material was present. A saturated solution of sodium bicarbonate was then slowly added, the organic phase separated, washed with water, dried over sodium sulfate and filtered.
  • This compound was obtained following the same method described in Example 1 starting from p-bromobenzaldehyde.
  • This compound was obtained following the same method described in Example 1 starting from 5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3- carboxylic acid chloride and azepan-1 -amine.
  • Example 96 1-(2,4-Dichloro-phenyl)-5-(4-fluoro-phenyl)-4,5-dihydro-1H- pyrazole-3-carboxylic acid azepan-1-ylamide
  • Example 106 1 -(2,4-Dichloro-phenyl)-5-(4-methoxy-phenyl)-4,5-dihydro-1 H- pyrazole-3-carboxylic acid piperidin-1-ylamide hydrochloride
  • Example 109 1-(2,4-Dichloro-phenyl)-5-(4-methoxy-phenyl)-4,5-dihydro-1 H- pyrazole-3-carboxylic acid (hexahydro-cyclopenta[c]pyrrol-2-yl)-amide hydrochloride
  • Example 172 1-(2,4-Dichloro-phenyl)-5-(4-hydroxy-phenyl)-4,5-dihydro-1 H- pyrazole-3-carboxylic acid piperidin-1-ylamide hydrochloride
  • Example 174 1-(2,4-Dichloro-phenyl)-5-(4-hydroxy-phenyl)-4,5-dihydro-1 H- pyrazole-3-carboxylic acid (hexahydro-cyclopenta[c]pyrrol-2-yl)-amide hydrochloride
  • the antagonism of the pyrazoline compounds of general formula I to the CB1- receptor was determined according to the method described in Pharmacological methods, part V (table 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP06776259A 2005-07-15 2006-07-15 Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors Withdrawn EP1910302A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06776259A EP1910302A1 (de) 2005-07-15 2006-07-15 Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP05384018A EP1743888A1 (de) 2005-07-15 2005-07-15 Carbonyl-substituierte Pyrazolin-Verbindungen zur Verwendung als CB1-Rezeptor Modulatoren
US70543305P 2005-08-05 2005-08-05
EP06008580A EP1849775A1 (de) 2006-04-26 2006-04-26 Cycloalkan substituierte Pyrazolin-Verbindungen, ihre Herstellung und Verwendung als Medikamente.
EP06008581A EP1849784A1 (de) 2006-04-26 2006-04-26 Indolin-substituierte Pyrazolinderivate, ihre Herstellung und Anwendung als Arzneimittel
EP06008579A EP1849783A1 (de) 2006-04-26 2006-04-26 Octahydropentalen substituierte Pyrazolin-Verbindungen, ihre Herstellung und Verwendung als Medikamente.
EP06008612A EP1849776A1 (de) 2006-04-26 2006-04-26 Azepan- oder Azocan-substituierte Pyrazolinderivate, deren Herstellung und Anwendung als Arzneimittel
PCT/EP2006/006961 WO2007009687A1 (en) 2005-07-15 2006-07-15 Carbonyl substituted pyrazoline compounds, their preparation and use as cb1 receptor modulators
EP06776259A EP1910302A1 (de) 2005-07-15 2006-07-15 Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors

Publications (1)

Publication Number Publication Date
EP1910302A1 true EP1910302A1 (de) 2008-04-16

Family

ID=37036823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06776259A Withdrawn EP1910302A1 (de) 2005-07-15 2006-07-15 Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors

Country Status (2)

Country Link
EP (1) EP1910302A1 (de)
WO (1) WO2007009687A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236821B2 (en) * 2008-05-19 2012-08-07 Jenrin Discovery, Inc. Substituted N-phenyl-5-phenyl-pyrazolin-3-yl amides as cannabinoid receptor antagonists/inverse agonists useful for treating obesity
CN107663159A (zh) * 2016-07-29 2018-02-06 上海迪诺医药科技有限公司 多环化合物、其药物组合物及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563651C (zh) * 2004-01-30 2009-12-02 索尔瓦药物有限公司 具有cb1-拮抗活性的1,3,5-三取代的4,5-二氢-1h-吡唑衍生物
TW200533657A (en) * 2004-02-17 2005-10-16 Esteve Labor Dr Substituted pyrazoline compounds, their preparation and use as medicaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007009687A1 *

Also Published As

Publication number Publication date
WO2007009687A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US7829581B2 (en) Prodrugs of pyrazoline compounds, their preparation and use as medicaments
EP1910299B1 (de) Substituierte pyrazolinverbindungen, deren herstellung und verwendung als medikamente
US8044053B2 (en) Sulfonamide substituted pyrazoline compounds, their preparation and use as CB1 modulators
US20070073056A1 (en) 4-Substituted Pyrazoline Compounds, their Preparation and Use as Medicaments
US8207156B2 (en) Substituted pyrazoline compounds, their preparation and use as medicaments
US7968582B2 (en) 5(S)-substituted pyrazoline compounds, their preparation and use as medicaments
EP1910302A1 (de) Carbonylsubstituierte pyrazolinverbindungen, ihre herstellung und ihre verwendung als modulatoren des cb1-rezeptors
EP1743888A1 (de) Carbonyl-substituierte Pyrazolin-Verbindungen zur Verwendung als CB1-Rezeptor Modulatoren
WO2007009688A1 (en) Thiocarbonyl-substituted pyrazoline compounds, their preparation and use as cb1 modulators
EP1743894A1 (de) Heterocyclyl-substituierte Pyrazolinverbindungen, ihre Herstellung und Verwendung als Medikamente
WO2007009690A1 (en) Heterocyclyl-substituted pyrazoline compounds, their preparation and use as medicaments
WO2007009697A1 (en) Quaternary ammonium salts of substituted pyrazoline compounds, their preparation and use as medicaments
EP1944293A1 (de) Alpha-polymorph eines substituierten Pyrazolins, seine Herstellung und Verwendung als Medikament
EP1944294A1 (de) Gamma-Polymorph eines substituierten Pyrazolins, seine Herstellung und Verwendung als Medikament
EP1944296A1 (de) Amorphe Phase eines substituierten Pyrazolins, seine Herstellung und Verwendung als Medikament
EP1743887A1 (de) Thiocarbonyl-Substituierte Pyrazolin-Verbindungen zur Verwendung als CB1-Rezeptor Modulatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090814

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130201