EP1910096B1 - Marked member made of transparent material and method of manufacture - Google Patents

Marked member made of transparent material and method of manufacture Download PDF

Info

Publication number
EP1910096B1
EP1910096B1 EP06721193.8A EP06721193A EP1910096B1 EP 1910096 B1 EP1910096 B1 EP 1910096B1 EP 06721193 A EP06721193 A EP 06721193A EP 1910096 B1 EP1910096 B1 EP 1910096B1
Authority
EP
European Patent Office
Prior art keywords
set forth
nanoparticles
microholes
matrix
electromagnetic radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06721193.8A
Other languages
German (de)
French (fr)
Other versions
EP1910096A2 (en
Inventor
Christian Teissl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D Swarovski KG
Original Assignee
D Swarovski KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D Swarovski KG filed Critical D Swarovski KG
Publication of EP1910096A2 publication Critical patent/EP1910096A2/en
Application granted granted Critical
Publication of EP1910096B1 publication Critical patent/EP1910096B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/06Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/08Designs or pictures characterised by special or unusual light effects characterised by colour effects
    • B44F1/10Changing, amusing, or secret pictures

Definitions

  • the laying invention relates to a body of transparent material having the features of the preamble of claim 1.
  • the markings may have the purpose of indicating a particular origin of the body.
  • such markers are also referred to as counterfeit protection.
  • the markers can also have an artistic purpose, for example, in the form of appealing graphics.
  • markers were usually generated by laser ablation or by mechanical or chemical action on the transparent material. Such markings have the disadvantage that they are constantly visible and thus influence the appearance of the body. Furthermore, it has been difficult to produce multicolor markers. In order to make the markers multicolored, different chemical compounds had to be introduced into the marking for each individual color. In order to produce the multicolored impression, it was then necessary to use illumination sources which emit electromagnetic radiation of different wavelengths, wherein each wavelength had to be adapted to one of the chemical compounds used.
  • the WO 97/03846 A1 shows a method for invisibly marking a diamond.
  • the markings are perceptible by means of dark microscopy or an interference microscope.
  • the object of the invention is to provide a body of transparent material with a marker, which on the one hand affects the visual appearance of the body only under certain conditions and also in a simple manner spatially and color highly resolved feasible.
  • Nanoparticles are nanoscale particles (that is, their dimensions are in the nanometer range).
  • the term nanoparticles is understood to mean a particle which, due to its dimensions, essentially does not scatter any electromagnetic radiation in the visible spectral range.
  • the dimensions of the particle should be less than about 1/10, preferably less than 1/20 of the wavelength of the electromagnetic radiation. With respect to the shortest wavelength in the visible spectral range (blue) of about 400 nm, this results in an upper limit for the diameter of about 40 nm, preferably about 20 nm.
  • these nanoparticles have dimensions of only a few atomic diameters and thus consist of only a few 10 to 1000 atoms or molecules.
  • the use of nanoparticles is of great importance for the achievement of the object according to the invention for various reasons:
  • nanoparticles do not scatter light in the visible spectral range due to their small size.
  • the nanoparticles can be formed such that they emit electromagnetic radiation in the visible spectral range when illuminated with electromagnetic radiation whose wavelength is in the non-visible spectral range.
  • the nanoparticles can be designed such that they convert higher-energy electromagnetic radiation, such as ultraviolet radiation (UV), into low-energy electromagnetic radiation in the visible spectral range, ie light.
  • UV ultraviolet radiation
  • photoexcitation can be achieved by means of non-visible electromagnetic radiation, for example in the near UV range or in the infra-red (IR) range.
  • excitation by a combination of UV and IR radiation would be possible.
  • nanoparticles for example those made of semiconductor materials, which are also known as semiconductor quantum dots
  • quantum effects play a role, which cause a low emission bandwidth of the emitted radiation. This leads to a high color saturation of the emitted light.
  • the strong spatial constraint can also result in an increase in energy conversion efficiency (quantum efficiency).
  • the UV content in indirect daylight lighting is comparatively low, however.
  • This residual absorption can be minimized by selecting nanoparticles whose absorption maxima are in the non-visible spectral range, preferably in the ultraviolet range.
  • the energy gap between the maximum of the absorption and the maximum of the emission in the luminescence spectrum for the same electronic transition can be increased with the aid of the Stokes shift. Since the Stokes shift in nanoparticles can be greater than that of macroscopic particles, the residual absorption in the visible spectral range and thus the basic color can be further greatly reduced or eliminated altogether.
  • nanoparticles in which absorption and emission take place decoupled from one another and are thus far away from each other in spectrums (for example FRET).
  • nanoparticles Another advantage of nanoparticles is the tunability of the emitted wavelength by changing the particle size. For example, on the particle size, the aspect ratio or the particle surface with the same nanoparticle material, so with the same chemical conditions, a large wavelength range of the emitted light (and thus the associated Color impression) are generated, and this with the use of only one excitation wavelength. Furthermore, the wavelength of the emitted light can be controlled by the geometry of the nanoparticles having only a few atoms or molecules.
  • a first group of nanoparticles is designed such that they emit visible electromagnetic radiation having a first spectral color when illuminated with electromagnetic radiation having a wavelength in the non-visible spectral range and that a second group of nanoparticles is designed so that they are visible electromagnetic when illuminated with the same non-visible electromagnetic radiation Emit radiation having a second spectral color that is different from the first spectral color.
  • a further advantageous embodiment of the invention provides that a first group of nanoparticles is designed such that it emits red light a second group of nanoparticles is adapted to emit green light and a third group of nanoparticles is formed to emit blue light.
  • thermosetting resins can be used as the matrix material.
  • Nanoparticle-doped matrices are already commercially available. A source of supply is, for example, the firm Evident Technologies, USA (http://www.evidenttech.com). In order to reduce the basic coloration described at the outset, it is possible to suitably determine the optical density of the doped matrix, for example via the doping or the Layer thickness, reduce.
  • the marking comprises microholes formed in the transparent material, in which the nanoparticles are located.
  • the diameter of the microholes sufficiently little, the light scattering cross section of the microholes can be reduced.
  • the light scattering cross section can be further reduced by avoiding edges, ie by forming round microholes.
  • the viscosity of the matrix provided with the nanoparticles can be adjusted to the selected dimensioning of the microholes and the material parameters of the transparent medium in order to ensure a wetting filling of the holes with the doped matrix.
  • a particular advantage of the production of the marking by means of microholes lies in the fact that markings on non-planar (ie curved) surfaces can be realized in a particularly simple manner.
  • markers according to the invention can also be realized on curved surfaces by other production methods (for example lithography or imprint technology), This is associated with such manufacturing process with a much greater effort.
  • the diameter is between 50-10 -6 m and 5-10 -6 m. This would correspond to an assumed viewing distance of about 0.2 m of an angular size of 1 arc minute and thus be below the resolution limit of the human eye.
  • a marking comprises a plurality of approximately regularly arranged microholes.
  • the microholes are arranged at different distances from one another to avoid diffraction effects.
  • the microholes can generally be produced by various methods known in the art. It would be conceivable, for example, to stamp the microholes in the transparent material of the body (nano- or micro-imprint technology) as it is already used today in the production of CDs. Likewise, a generation by photo-structuring, z. B. possible by dry etching. Another suitable method is to create the microholes by laser bombardment (eg laser ablation) of the transparent material of the body.
  • laser bombardment eg laser ablation
  • the body In order to produce microholes in the interior of the transparent material of the body, provision may be made, for example, for the body to comprise at least two layers of transparent material which are arranged on one another, preferably adhesively bonded to one another in a transparent manner.
  • This embodiment of the invention has the further advantage that it allows a spatially coded color information in a simple manner.
  • the first of the at least two layers has nanoparticles that can emit a first spectral color
  • the second of the at least two layers can have nanoparticles that emit a second spectral color.
  • the color addition required, for example, in the RGB model can be achieved by arranging the differently colored nanoparticles of the at least two layers along the surface normals of the layers substantially one above the other.
  • a comparable method, in which the gray level of a color component is defined by the number (volume) of the color pigments, is the continuous tone method. Although this method has been used for many decades, it can still be used today for sophisticated image reproduction by the modern half-tone techniques (such as those used in inkjet printers) are not replaced.
  • color coding could be differently colored by arrangement emissive nanoparticles in the same or adjacent microholes.
  • the marking is made up of individual pixels, each pixel having at least one micro hole.
  • the marking comprises at least two microholes, wherein in a first of the at least two micro-holes nanoparticles are arranged, which can emit a first spectral color, and in a second of the at least two micro-holes nanoparticles are arranged can emit a second spectral color different from the first spectral color.
  • the individual pixels are arranged at different distances from one another to avoid diffraction effects.
  • the body of transparent material may be, for example, a body of glass or plastic.
  • a very large part of the color spectrum can be realized via an additively weighted combination of at least three colors (for example RGB model).
  • the weighting can be used to take into account the spectral perception of brightness for daytime and nighttime viewing.
  • One possibility now is to code one color information per half of a glass.
  • the third color information is placed in an intermediate layer.
  • This can be z. B. be another thin glass plate.
  • the information can also be in a nanoparticle-doped matrix layer with a thickness of a few micrometers ( ⁇ m). This is z. B. applied via a spray process, the spatial coding can, for. B. via a mask.
  • these color layers can also be realized with the known production methods, such as inkjet printers, screen printing, lithography.
  • the body comprises at least two layers of transparent material.
  • the at least two layers of transparent material may be joined to transparent UV adhesive, wherein the refractive index of the UV adhesive is matched to that of the transparent material of the body. This has the effect that any remaining low light scattering disappears at the edges of the doped matrix layer.
  • microholes The high spatial resolution is achieved here by means of microholes.
  • Each microhole has a diameter which is below the resolution limit of the eye (below 50 x 10 -6 m at 200 mm distance or 1 arc minute).
  • the microholes are filled with a nanoparticle-doped matrix.
  • one level may correspond to one of the three RGB colors.
  • the respective weighting in one location is determined by the volume of the microhole. It can be coded in 2 dimensions, namely over the area and over the depth of the micro hole. However, a minimum depth should be maintained, which depends, for example, on the waviness of the glass. The maximum depth depends inter alia on the optical density of the doped matrix (for a dense matrix, a depth of about one wavelength may be sufficient).
  • RGB or four colors can be expanded with consistent resolution.
  • the excitation source for example UV LED chip (s)
  • UV LED chip directly or indirectly (via reflection, total reflection, refraction).
  • the weighting or the brightness can be determined by screening, for example taking into account the error diffusion (see Floyd and Steinberg, Adaptive Algorithm for Spatial Gray Scale, Society for Information Display 1975, Symposia Digest of Technical Papers 1975, page 36 ).
  • the color quality can be further increased by using a plurality of mask-specific color systems.
  • Another method of applying spatially coded color information is lithography.
  • the nanoparticles are in this embodiment in a UV-curable matrix.
  • the few micrometers thin layer of nanoparticle-doped matrix is covered by a mask. Only those layer areas are cured which are UV-transparent in the mask. The excess matrix material can be removed carefully.
  • This method is particularly suitable for large-area markings with a lower requirement for color-spatial coding. For example, single-color fonts, patterns or transparent segment displays can be produced on or in a transparent medium (eg glass) in this way.
  • a body according to the invention of particularly high optical quality results if it is provided that the body is free of structures which absorb or scatter electromagnetic radiation in the visible spectral range.
  • the microholes can be stamped, for example, into the transparent material, produced by laser bombardment of the transparent material or by dry etching.
  • a particularly simple embodiment of the second method step results if it is provided that the matrix doped with nanoparticles is first applied over a large area to the surface of the body, for example sprayed on. In this case, can be dispensed with a targeted application of the matrix in the microholes. This embodiment avoids the problem of having to apply the doped matrix with pinpoint accuracy to the surface.
  • the matrix provided with nanoparticles is printed on the surface of the body with an inkjet printer. This can be done either over a large area or in a targeted manner with pinpoint accuracy.
  • the matrix consists of a curable material.
  • a curable material for example, it is possible to choose a substance that cures on UV irradiation.
  • This can be done without the UV radiation being deliberately used only in the area of each micro-hole.
  • Another possibility is to precisely cure the matrix located in the microholes by means of UV lasers.
  • a non-stick coating for the doped matrix (which is transparent in the visible spectral range) may be provided.
  • a non-stick coating reduces the adhesion between the part of the matrix which is outside the microholes, which makes it easier to remove that part.
  • a stable or flexible material is placed on the coated surface and pressed, the material having a plurality of preferably continuous pores.
  • the surface tension of the material and the diameter of the pores is to be chosen such that no capillary effect impinges, otherwise material would be sucked out of the microholes.
  • the plurality of pores form channels into which the excess matrix located on the surface of the material can penetrate. After curing, the material can be easily removed together with the invaded matrix.
  • the pores do not extend in the direction of the surface normal of the surface but obliquely thereto. This results in an advantageous geometric shading effect, which causes at most a small part of the matrix located in the channels to harden in the region of the micropores. Furthermore, will by an inclination of the pores when removing the material achieves its knife action when the layer is first moved laterally before lifting from the surface.
  • Fig. 1a schematically shows an embodiment of a body according to the invention 1 of transparent material, on the surface 2 a marker 3 is arranged in the form of an artistic representation.
  • This marker 3 is visible only when irradiated by electromagnetic radiation in a non-visible spectral range. The source required for this is in Fig. 1a not shown. Without the irradiation, the viewer has the impression of a transparent body 1, which has no mark 3.
  • Fig. 1b shows a further embodiment of a body 1 according to the invention in the form of a cylinder, wherein the marking 3 on the curved lateral surface (surface 2) of the cylinder is arranged.
  • Fig. 2 shows a further embodiment of a body 1 according to the invention, which consists of two layers 4, 5, which are interconnected via an adhesive layer 6. Inside the body 1 a realized in this embodiment as a writing mark 3 is arranged. Also in this embodiment, the mark 3 is visible only when irradiated by an electromagnetic radiation having a wavelength in the non-visible spectral range.
  • Fig. 3a shows a first detail of the in Fig. 2 It can be seen that the nanoparticle-doped matrix 9 is arranged in microholes 8 in each of the two layers 4, 5. Each of the dashed areas 7 represents a pixel of the mark 3.
  • the adhesive used here for the layer 6 is permeable to the exciting wavelength.
  • two different colors are realized, wherein in one layer 4 only nanoparticles of a first color are arranged and in the other layer 5 only nanoparticles of a different color are arranged.
  • a three-color variant 10 is in the Fig. 3b which shows an alternative embodiment of the in Fig. 2 shown body in the region of the mark 3 shows. The third color has been sprayed on the layer 4 in this embodiment using a mask. Thereafter, the two layers 4, 5 were interconnected by the layer 6 transparent.
  • Fig. 4a-fi St a first embodiment of an inventive method for producing a body 1 according to the invention shown. It can - as in Fig. 1 shown - be provided to form the mark 3 shown on the surface 2 of the body 1. Alternatively, it can also be provided, a first layer 4 and a second layer 5 after in the Fig. 4a-f and to connect these together by an adhesive layer 6, as shown in Fig. 2 is shown.
  • Fig. 4a shows the initial state of the process, in which on the body 1 optionally a thin UV-reflecting layer 12, which is transparent in the visible spectral range, has been applied. Likewise, optionally, a layer 13 was applied, which represents a non-stick coating for the matrix 9 doped with nanoparticles.
  • the microholes 8 are first generated. As a result, of course, both the layer 12 and the layer 13 in the region of the microholes 8 are removed.
  • the nanoparticle-doped matrix 9 is applied to the surface of the body 1. This can be done either by spraying, dipping or by greasing, for example. This results in the in Fig.
  • the body 1 in the in Fig. 4c state is exposed to a vacuum for some time.
  • any remaining in the micro holes 8 air bubbles can evaporate.
  • the next step is done as in Fig. 4d Curing of the matrix 9 in the region of the microholes 8. This is done in this embodiment by irradiation with UV radiation from the side of the body 1 facing away from the surface provided with microholes 8.
  • the curing of the matrix 9, which is restricted primarily to the areas of the microholes 8, is reinforced in the embodiment shown by the additional measure of the layer 12, which reflects the UV radiation away from the matrix 9 everywhere except in the area of the microholes 8. If a matrix 9 is used, which cures poorly upon contact with oxygen, this process can take place in an atmosphere of pure oxygen. As in Fig. 4e shown, the remainder of the uncured matrix material 9 can be removed by a slider. Subsequently, a post-curing of the matrix material 9 in the region of the surfaces of the microholes 8 take place. This can be done, for example, in a nitrogen atmosphere, if a matrix is used, which preferably hardens on contact with nitrogen.
  • the embodiment of the Fig. 5a-e is different from that after the Fig. 4a-f only in that an additional layer 14 is used, which is provided with a plurality of pores 15 formed by channels. As shown, these channels may also be formed as slanted pores 16. Is recognizable in particular in Fig. 5c in that the oblique pores 16 have the advantage that a smaller part of the material of the matrix 9 cures. This is only the part that can be achieved geometrically by UV radiation and by scattering. In the case of straight pores 15, it may happen that the entire material of the matrix 9 that has penetrated into the pores 15 in the area of the microholes 8 cures. As in Fig. 5d shown, the inclined pores 16 additionally have the advantage of a knife action, if it is provided during the removal of the layer 14, these first laterally along the body 1 and then only from the body 1 to move away.
  • a flexible layer 14 was used. This could, for example, be a membrane to be used once.

Landscapes

  • Laminated Bodies (AREA)
  • Printing Methods (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

Die verlegende Erfindung betrifft einen Körper aus transparentem Material mit den Merkmalen des Oberbegriffs des Anspruchs 1.The laying invention relates to a body of transparent material having the features of the preamble of claim 1.

Es kann aus verschiedenen Gründen gewünscht sein, derartige Körper mit Markierungen zu versehen, welche zumindest unter gewissen Umständen und unter Zuhilfenahme geeigneter Geräte erkennbar sein sollen. Beispielsweise können die Markierungen den Zweck haben, eine bestimmte Herkunft des Körpers anzuzeigen. In diesem Zusammenhang werden derartige Markierungen auch als Fälschungsschutz bezeichnet. Die Markierungen können jedoch auch einen künstlerischen Zweck haben, indem sie beispielsweise in Form von ansprechenden Grafiken ausgebildet sind.It may be desired for various reasons to provide such bodies with markings which should be recognizable at least under certain circumstances and with the aid of suitable devices. For example, the markings may have the purpose of indicating a particular origin of the body. In this context, such markers are also referred to as counterfeit protection. However, the markers can also have an artistic purpose, for example, in the form of appealing graphics.

Bisher wurden derartige Markierungen meist durch Laserablation oder durch mechanische oder chemische Einwirkung auf das transparente Material erzeugt. Solche Markierungen haben den Nachteil, dass sie ständig sichtbar sind und somit das Erscheinungsbild des Körpers beeinflussen. Des Weiteren war es bisher schwierig, mehrfarbige Markierungen zu erzeugen. Um die Markierungen mehrfarbig auszubilden, mussten für jede einzelne Farbe unterschiedliche chemische Verbindungen in die Markierung eingebracht werden. Zur Erzeugung des mehrfarbigen Eindrucks mussten dann Beleuchtungsquellen, welche elektromagnetische Strahlung mit unterschiedlichen Wellenlängen emittieren, verwendet werden, wobei jede Wellenlänge einer der verwendeten chemischen Verbindungen angepasst sein musste.So far, such markers were usually generated by laser ablation or by mechanical or chemical action on the transparent material. Such markings have the disadvantage that they are constantly visible and thus influence the appearance of the body. Furthermore, it has been difficult to produce multicolor markers. In order to make the markers multicolored, different chemical compounds had to be introduced into the marking for each individual color. In order to produce the multicolored impression, it was then necessary to use illumination sources which emit electromagnetic radiation of different wavelengths, wherein each wavelength had to be adapted to one of the chemical compounds used.

Die WO 97/03846 A1 zeigt ein Verfahren zum unsichtbaren Markieren eines Dieamanten. Die Markierungen sind mit Hilfe der Dunkel-Mikroskopiertechnik oder einem Interferenzmikroskop wahrnehmbar.The WO 97/03846 A1 shows a method for invisibly marking a diamond. The markings are perceptible by means of dark microscopy or an interference microscope.

Ein gattungsgemäßer Körper geht aus der GB 2 383 012 A hervor.A generic body goes out of the GB 2 383 012 A out.

Aufgabe der Erfindung ist es, einen Körper aus transparentem Material mit einer Markierung zu schaffen, welche einerseits das optische Erscheinungsbild des Körpers nur unter bestimmten Bedingungen beeinflusst und zusätzlich auf einfache Weise räumlich und farblich hoch aufgelöst realisierbar ist.The object of the invention is to provide a body of transparent material with a marker, which on the one hand affects the visual appearance of the body only under certain conditions and also in a simple manner spatially and color highly resolved feasible.

Diese Aufgabe wird durch einen Körper mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a body having the features of claim 1.

Bei Nanopartikel handelt es sich um nanoskalige Partikel (d. h. ihre Abmessungen liegen im Nanometerbereich). Im Zusammenhang mit der vorliegenden Anmeldung wird unter der Bezeichnung Nanopartikel ein Partikel verstanden, das auf Grund seiner Abmessungen im Wesentlichen keine elektromagnetische Strahlung im sichtbaren Spektralbereich streut. Damit die Streuung von elektromagnetischer Strahlung vernachlässigbar ist, sollten die Abmessungen des Partikel geringer als etwa 1/10, vorzugsweise geringer als 1/20 der Wellenlänge der elektromagnetischen Strahlung sein. In Bezug auf die kürzeste Wellenlänge im sichtbaren Spektralbereich (blau) von etwa 400 nm ergibt sich somit eine Obergrenze für den Durchmesser von etwa 40 nm, vorzugsweise etwa 20 nm.Nanoparticles are nanoscale particles (that is, their dimensions are in the nanometer range). In the context of the present application, the term nanoparticles is understood to mean a particle which, due to its dimensions, essentially does not scatter any electromagnetic radiation in the visible spectral range. In order for the scattering of electromagnetic radiation to be negligible, the dimensions of the particle should be less than about 1/10, preferably less than 1/20 of the wavelength of the electromagnetic radiation. With respect to the shortest wavelength in the visible spectral range (blue) of about 400 nm, this results in an upper limit for the diameter of about 40 nm, preferably about 20 nm.

Im Extremfall besitzen diese Nanopartikel Dimensionierungen von nur einigen atomaren Durchmessern und bestehen somit lediglich aus einigen 10 bis 1000 Atomen oder Molekülen. Die Verwendung von Nanopartikel ist für die Lösung der erfindungsgemäßen Aufgabe aus verschiedenen Gründen von großer Bedeutung:In extreme cases, these nanoparticles have dimensions of only a few atomic diameters and thus consist of only a few 10 to 1000 atoms or molecules. The use of nanoparticles is of great importance for the achievement of the object according to the invention for various reasons:

Einerseits streuen Nanopartikel aufgrund ihrer geringen Größe kein Licht im sichtbaren Spektralbereich.On the one hand, nanoparticles do not scatter light in the visible spectral range due to their small size.

Andererseits können die Nanopartikel derart ausgebildet werden, dass sie bei Beleuchtung mit elektromagnetischer Strahlung, deren Wellenlänge im nicht-sichtbaren Spektralbereich liegt, elektromagnetische Strahlung im sichtbaren Spektralbereich emittieren. Beispielsweise können die Nanopartikel derart ausgebildet sein, dass sie höherenergetische elektromagnetische Strahlung, wie beispielsweise ultraviolette Strahlung (UV), in niederenergetische elektromagnetische Strahlung im sichtbaren Spektralbereich, also Licht, umwandeln. Mit anderen Worten kann eine Fotoanregung mittels nicht-sichtbarer elektromagnetischer Strahlung, beispielsweise im nahen UV-Bereich oder im Infrafrot-(IR)-Bereich, erfolgen. Ebenso wäre eine Anregung durch eine Kombination aus UV- und IR-Strahlung möglich.On the other hand, the nanoparticles can be formed such that they emit electromagnetic radiation in the visible spectral range when illuminated with electromagnetic radiation whose wavelength is in the non-visible spectral range. For example, the nanoparticles can be designed such that they convert higher-energy electromagnetic radiation, such as ultraviolet radiation (UV), into low-energy electromagnetic radiation in the visible spectral range, ie light. In other words, photoexcitation can be achieved by means of non-visible electromagnetic radiation, for example in the near UV range or in the infra-red (IR) range. Likewise, excitation by a combination of UV and IR radiation would be possible.

Bei Verwendung bestimmter Nanopartikel (zum Beispiel solcher aus Halbleitermaterialien, welche auch unter der Bezeichnung Halbleiter-Quantum-Dots bekannt sind) bewirkt die geringe Dimensionierung, dass Quanteneffekte eine Rolle spielen, welche eine geringe Emissionsbandbreite der emittierten Strahlung bewirken. Dies führt zu einer hohen Farbsättigung des emittierten Lichts.When using certain nanoparticles (for example those made of semiconductor materials, which are also known as semiconductor quantum dots) causes the small dimensioning that quantum effects play a role, which cause a low emission bandwidth of the emitted radiation. This leads to a high color saturation of the emitted light.

Des Weiteren kann die starke räumliche Einschränkung auch eine Erhöhung der Energie-Umwandlungs-Effizienz (Quanten-Effizienz) zur Folge haben.Furthermore, the strong spatial constraint can also result in an increase in energy conversion efficiency (quantum efficiency).

An sich wird die Transparenz der Nanopartikel bei Tageslicht, also ohne zusätzlicher Fotoanregung, lediglich durch eine geringfügige Restabsorption von elektromagnetischer Strahlung im sichtbaren Spektralbereich beeinträchtigt (Grundfärbung). Der UV-Anteil bei indirekter Tageslicht-Beleuchtung ist allerdings vergleichsweise gering. Diese Restabsorption kann dadurch minimiert werden, dass Nanopartikel gewählt werden, deren Absorptionsmaxima im nicht-sichtbaren Spektralbereich, vorzugsweise im ultravioletten Bereich liegen. Zusätzlich oder alternativ kann mit Hilfe der Stokesverschiebung der Energieabstand zwischen dem Maximum der Absorption und dem Maximum der Emission im Lumineszenzspektrum für den gleichen elektronischen Übergang vergrößert werden. Da die Stokesverschiebung bei Nanopartikel über jener von makroskopischen Partikel liegen kann, können die Restabsorption im sichtbaren Spektralbereich und damit die Grundfärbung weiter stark reduziert oder gänzlich eliminiert werden.By itself, the transparency of the nanoparticles in daylight, ie without additional photo-excitation, only affected by a slight residual absorption of electromagnetic radiation in the visible spectral range (basic color). The UV content in indirect daylight lighting is comparatively low, however. This residual absorption can be minimized by selecting nanoparticles whose absorption maxima are in the non-visible spectral range, preferably in the ultraviolet range. Additionally or alternatively, the energy gap between the maximum of the absorption and the maximum of the emission in the luminescence spectrum for the same electronic transition can be increased with the aid of the Stokes shift. Since the Stokes shift in nanoparticles can be greater than that of macroscopic particles, the residual absorption in the visible spectral range and thus the basic color can be further greatly reduced or eliminated altogether.

Es existieren aber auch Nanopartikel, bei denen Absorption und Emission entkoppelt voneinander stattfinden und so spektral weit voneinander entfernt sind (zum Beispiel FRET).However, there are also nanoparticles in which absorption and emission take place decoupled from one another and are thus far away from each other in spectrums (for example FRET).

Ein weiterer Vorteil von Nanopartikel stellt die Durchstimmbarkeit der emittierten Wellenlänge durch Veränderung der Partikelgröße dar. Zum Beispiel kann über die Partikelgröße, dem Aspektverhältnis oder die Partikeloberfläche bei gleichem Nanopartikelmaterial, also bei gleichen chemischen Voraussetzungen ein großer Wellenlängenbereich des emittierten Lichts (und somit der damit verbundene Farbeindruck) erzeugt werden, und dies bei Verwendung von nur einer Anregungswellenlänge. Weiters kann die Wellenlänge des emittierten Lichts durch die Geometrie der nur wenige Atome oder Moleküle aufweisenden Nanopartikel gesteuert werden.Another advantage of nanoparticles is the tunability of the emitted wavelength by changing the particle size. For example, on the particle size, the aspect ratio or the particle surface with the same nanoparticle material, so with the same chemical conditions, a large wavelength range of the emitted light (and thus the associated Color impression) are generated, and this with the use of only one excitation wavelength. Furthermore, the wavelength of the emitted light can be controlled by the geometry of the nanoparticles having only a few atoms or molecules.

Es kann also bei einer vorteilhaften Ausführungsform der Erfindung vorgesehen sein, dass eine erste Gruppe von Nanopartikel derart ausgebildet ist, dass sie bei Beleuchtung mit elektromagnetischer Strahlung mit einer Wellenlänge im nicht-sichtbaren Spektralbereich sichtbare elektromagnetische Strahlung mit einer ersten Spektralfarbe emittieren und dass eine zweite Gruppe von Nanopartikel derart ausgebildet ist, dass sie bei Beleuchtung mit derselben nicht-sichtbaren elektromagnetischen Strahlung sichtbare elektromagnetische Strahlung mit einer zweiten Spektralfarbe emittieren, die verschieden von der ersten Spektralfarbe ist.It can thus be provided in an advantageous embodiment of the invention that a first group of nanoparticles is designed such that they emit visible electromagnetic radiation having a first spectral color when illuminated with electromagnetic radiation having a wavelength in the non-visible spectral range and that a second group of nanoparticles is designed so that they are visible electromagnetic when illuminated with the same non-visible electromagnetic radiation Emit radiation having a second spectral color that is different from the first spectral color.

Da ein sehr großer Teil des Farbspektrums über eine additiv gewichtete Kombination von zumindest drei Farben realisiert werden kann (zum Beispiel RGB-Modell), sieht eine weitere vorteilhafte Ausführungsform der Erfindung vor, dass eine erste Gruppe von Nanopartikel derart ausgebildet ist, dass sie rotes Licht emittieren kann, eine zweite Gruppe von Nanopartikel derart ausgebildet ist, dass sie grünes Licht emittieren kann und eine dritte Gruppe von Nanopartikel derart ausgebildet ist, dass sie blaues Licht emittieren kann.Since a very large part of the color spectrum can be realized via an additively weighted combination of at least three colors (for example RGB model), a further advantageous embodiment of the invention provides that a first group of nanoparticles is designed such that it emits red light a second group of nanoparticles is adapted to emit green light and a third group of nanoparticles is formed to emit blue light.

Es ist erfindungsgemäß vorgesehen, die Nanopartikel in eine Matrix einzubetten, wobei der resultierende Brechungsindex der Matrix (natürlich im optischen Spektralbereich) im Wesentlichen gleich dem Brechungsindex des transparenten Materials ist. Diese Maßnahme ermöglicht eine einfache Aufbringung der Nanopartikel (bzw. der mit Nanopartikel dotierten Matrix) ohne Beeinträchtigung der optischen Güte des transparenten Körpers. Als Matrixmaterial können beispielsweise aushärtbare Harze verwendet werden. Mit Nanopartikel dotierte Matrizen sind bereits kommerziell erhältlich. Eine Bezugsquelle stellt beispielsweise die Firm Evident Technologies, USA (http://www.evidenttech.com) dar. Zur Reduzierung der eingangs beschriebenen Grundfärbung kann vorgesehen sein, die optische Dichte der dotierten Matrix in geeigneter Weise, zum Beispiel über die Dotierung oder die Schichtdicke, zu reduzieren.It is inventively provided to embed the nanoparticles in a matrix, wherein the resulting refractive index of the matrix (of course in the optical spectral range) is substantially equal to the refractive index of the transparent material. This measure enables a simple application of the nanoparticles (or the matrix doped with nanoparticles) without impairing the optical quality of the transparent body. For example, thermosetting resins can be used as the matrix material. Nanoparticle-doped matrices are already commercially available. A source of supply is, for example, the firm Evident Technologies, USA (http://www.evidenttech.com). In order to reduce the basic coloration described at the outset, it is possible to suitably determine the optical density of the doped matrix, for example via the doping or the Layer thickness, reduce.

Die Erfindung sieht vor, dass die Markierung im transparenten Material ausgebildete Mikrolöcher umfasst, in denen sich die Nanopartikel befinden. Durch eine genügend keine Ausbildung des Durchmessers der Mikrolöcher kann der Lichtstreuquerschnitt der Mikrolöcher verringert werden. Weiters kann der Lichtstreuquerschnitt durch die Vermeidung von Kanten, also durch die Ausbildung runder Mikrolöcher, weiter verringert werden. Die Viskosität der mit den Nanopartikel versehenen Matrix kann auf die gewählte Dimensionierung der Mikrolöcher und die Materialparameter des transparenten Mediums abgestellt werden, um eine benetzende Füllung der Löcher mit der dotierten Matrix sicherzustellen. Ein besonderer Vorteil der Herstellung der Markierung mittels Mikrolöcher liegt darin, dass auf besonders einfache Weise Markierungen auf nichtplanen (also gekrümmten) Oberflächen realisierbar sind, Obwohl erfindungsgemäße Markierungen auch durch andere Herstellungsverfahren (zum Beispiel Lithografie oder Imprint-Technologie) auf gekrümmten Oberflächen realisierbar sind, ist dies bei solchen Herstellungsverfahren mit einem weit größeren Aufwand verbunden.The invention provides that the marking comprises microholes formed in the transparent material, in which the nanoparticles are located. By forming the diameter of the microholes sufficiently little, the light scattering cross section of the microholes can be reduced. Furthermore, the light scattering cross section can be further reduced by avoiding edges, ie by forming round microholes. The viscosity of the matrix provided with the nanoparticles can be adjusted to the selected dimensioning of the microholes and the material parameters of the transparent medium in order to ensure a wetting filling of the holes with the doped matrix. A particular advantage of the production of the marking by means of microholes lies in the fact that markings on non-planar (ie curved) surfaces can be realized in a particularly simple manner. Although markers according to the invention can also be realized on curved surfaces by other production methods (for example lithography or imprint technology), This is associated with such manufacturing process with a much greater effort.

Es ist erfindungsgemäß vorgesehen, dass der Durchmesser zwischen 50-10-6 m und 5-10-6 m liegt. Dies würde bei einem angenommenen Betrachterabstand von etwa 0,2 m einer Winkelgröße von 1 Bogenminute entsprechen und somit unter der Auflösungsgrenze des menschlichen Auges liegen.It is inventively provided that the diameter is between 50-10 -6 m and 5-10 -6 m. This would correspond to an assumed viewing distance of about 0.2 m of an angular size of 1 arc minute and thus be below the resolution limit of the human eye.

Prinzipiell kann vorgesehen sein, dass eine Markierung eine Vielzahl von annähernd regelmäßig angeordneten Mikrolöchern umfasst. In diesem Fall kann vorteilhafterweise vorgesehen sein, dass die Mikrolöcher zur Vermeidung von Beugungseffekten mit unterschiedlichen Abständen zueinander angeordnet sind.In principle, it can be provided that a marking comprises a plurality of approximately regularly arranged microholes. In this case, it can advantageously be provided that the microholes are arranged at different distances from one another to avoid diffraction effects.

Die Mikrolöcher können ganz allgemein durch verschiedene Verfahren nach dem Stand der Technik erzeugt werden. Denkbar wäre es beispielsweise, die Mikrolöcher in das transparente Material des Körpers einzustempeln (Nano- bzw. Mikro-Imprint-Technologie) wie es heute schon bei der Herstellung von CDs angewandt wird. Ebenso wäre eine Erzeugung durch Fotostrukturierung, z. B. durch Trockenätzen möglich. Ein anderes geeignetes Verfahren stellt die Erzeugung der Mikrolöcher durch Laserbeschuss (zum Beispiel Laser-Ablation) des transparenten Materials des Körpers dar.The microholes can generally be produced by various methods known in the art. It would be conceivable, for example, to stamp the microholes in the transparent material of the body (nano- or micro-imprint technology) as it is already used today in the production of CDs. Likewise, a generation by photo-structuring, z. B. possible by dry etching. Another suitable method is to create the microholes by laser bombardment (eg laser ablation) of the transparent material of the body.

Um Mikrolöcher im Inneren des transparenten Materials des Körpers zu erzeugen, kann beispielsweise vorgesehen sein, dass der Körper wenigstens zwei Schichten aus transparentem Material umfasst, die aufeinander angeordnet - vorzugsweise miteinander transparent verklebt - sind. Diese Ausführungsform der Erfindung hat den weiteren Vorteil, dass sie auf einfache Weise eine räumlich kodierte Farbinformation ermöglicht. Beispielsweise kann vorgesehen sein, dass die erste der wenigstens zwei Schichten Nanopartikel aufweist, die eine erste Spektralfarbe emittieren können, und dass die zweite der wenigstens zwei Schichten Nanopartikel aufweist, die eine zweite Spektralfarbe emittieren, können. Die beispielsweise im RGB-Modell benötigte Farbaddition kann erzielt werden, indem die unterschiedlich farbigen Nanopartikel der wenigstens zwei Schichten entlang der Flächennormalen der Schichten betrachtet im Wesentlichen übereinander angeordnet werden.In order to produce microholes in the interior of the transparent material of the body, provision may be made, for example, for the body to comprise at least two layers of transparent material which are arranged on one another, preferably adhesively bonded to one another in a transparent manner. This embodiment of the invention has the further advantage that it allows a spatially coded color information in a simple manner. For example, it can be provided that the first of the at least two layers has nanoparticles that can emit a first spectral color, and that the second of the at least two layers can have nanoparticles that emit a second spectral color. The color addition required, for example, in the RGB model can be achieved by arranging the differently colored nanoparticles of the at least two layers along the surface normals of the layers substantially one above the other.

Ein vergleichbares Verfahren, bei dem über die Anzahl (das Volumen) der Farbpigmente der Grauwert eines Farbanteils definiert wird, stellt das Continuous-Tone-Verfahren dar. Obwohl dieses Verfahren schon seit vielen Jahrzehnten angewandt wird, kann es bis heute für anspruchsvolle Bildwiedergaben von den modernen Half-Tone-Verfahren (wie sie zum Beispiel bei Tintenstrahldruckern zum Einsatz kommen) nicht ersetzt werden.A comparable method, in which the gray level of a color component is defined by the number (volume) of the color pigments, is the continuous tone method. Although this method has been used for many decades, it can still be used today for sophisticated image reproduction by the modern half-tone techniques (such as those used in inkjet printers) are not replaced.

Natürlich könnte unabhängig von der Ausbildung des Körpers aus einzelnen Schichten auch bei einem monolithischen Körper eine Farbkodierung durch Anordnung verschiedenfärbig emittierender Nanopartikel in denselben oder benachbarten Mikrolöchern verwirklicht werden.Of course, regardless of the formation of the body of individual layers, even in a monolithic body, color coding could be differently colored by arrangement emissive nanoparticles in the same or adjacent microholes.

Bei einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die Markierung aus einzelnen Pixel aufgebaut ist, wobei jedes Pixel wenigstens ein Mikroloch aufweist. Dies ermöglicht einen systematischen Aufbau der Markierung(en). In diesem Fall kann natürlich vorgesehen sein, dass wenigstens eines der Pixel wenigstens zwei Mikrolöcher umfasst, wobei in einem ersten der wenigstens zwei Mikrolöcher Nanopartikel angeordnet sind, die eine erste Spektralfarbe emittieren können, und in einem zweiten der wenigstens zwei Mikrolöcher Nanopartikel angeordnet sind, die eine von der ersten Spektralfarbe verschiedene zweite Spektralfarbe emittieren können. Ebenso kann vorgesehen sein, dass die einzelnen Pixel zur Vermeidung von Beugungseffekten mit unterschiedlichen Abständen zueinander angeordnet sind.In a particularly preferred embodiment of the invention it is provided that the marking is made up of individual pixels, each pixel having at least one micro hole. This allows a systematic construction of the marker (s). In this case, it can of course be provided that at least one of the pixels comprises at least two microholes, wherein in a first of the at least two micro-holes nanoparticles are arranged, which can emit a first spectral color, and in a second of the at least two micro-holes nanoparticles are arranged can emit a second spectral color different from the first spectral color. It can also be provided that the individual pixels are arranged at different distances from one another to avoid diffraction effects.

Bei dem Körper aus transparentem Material kann es sich beispielsweise um einen Körper aus Glas oder Kunststoff handeln.The body of transparent material may be, for example, a body of glass or plastic.

Im Folgenden wird beschrieben, wie eine mehrfarbige Markierung eines Glaskörpers erzeugt werden kann. Es ist für den Fachmann jedoch unmittelbar einsichtig, dass die im Folgenden beschriebene Technik nicht auf Glaskörper beschränkt ist, sondern auch bei anderen Körpern aus transparentem Material, wie beispielsweise Kunststoff, zum Einsatz kommen kann.The following describes how a multi-colored marking of a glass body can be produced. However, it will be readily apparent to those skilled in the art that the technique described below is not limited to vitreous, but may be used with other bodies of transparent material, such as plastic.

Ein sehr großer Teil des Farbspektrums kann über additiv gewichtete Kombination von zumindest drei Farben realisiert werden (zum Beispiel RGB-Modell). Dabei kann über die Gewichtung auf die spektrale Helligkeitsempfindung für Tag- und Nachtsehen Rücksicht genommen werden. Eine Möglichkeit besteht nun darin, je eine Farbinformation auf eine Glashälfte zu kodieren. Die dritte Farbinformation wird in einer Zwischenschicht untergebracht. Dies kann z. B. eine weitere dünne Glasplatte sein. Die Information kann sich jedoch auch in einer mit Nanopartikel dotierten Matrixschicht mit einer Dicke von einigen Mikrometern (µm) befinden. Diese wird z. B. über ein Sprühverfahren aufgebracht, die räumliche Kodierung kann z. B. über eine Maske erfolgen.A very large part of the color spectrum can be realized via an additively weighted combination of at least three colors (for example RGB model). The weighting can be used to take into account the spectral perception of brightness for daytime and nighttime viewing. One possibility now is to code one color information per half of a glass. The third color information is placed in an intermediate layer. This can be z. B. be another thin glass plate. However, the information can also be in a nanoparticle-doped matrix layer with a thickness of a few micrometers (μm). This is z. B. applied via a spray process, the spatial coding can, for. B. via a mask.

Prinzipiell können diese Farbschichten auch mit den bekannten Herstellungsverfahren, wie Tintenstrahldrucker, Siebdruck, Lithografie realisiert werden.In principle, these color layers can also be realized with the known production methods, such as inkjet printers, screen printing, lithography.

Ein besonders vorteilhaftes Verfahren wird jedoch nachstehend beschrieben. Dieses Verfahren bietet eine Möglichkeit für die Erzeugung einer transparenten, hochaufgelösten flächigen Struktur, welche bevorzugt eben ist, jedoch auch gekrümmt sein kann und welche unter nicht-sichtbarer Anregung farbecht emittiert. Der Körper umfasst zumindest zwei Schichten aus transparentem Material. Die wenigstens zwei Schichten aus transparentem Material können beispielsweise mit transparentem UV-Kleber verbunden werden, wobei der Brechungsindex des UV-Klebers an jenen des transparenten Materials des Körpers angepasst ist. Dies bewirkt, dass auch eine eventuell verbleibende geringe Lichtstreuung an den Rändern der dotierten Matrixschicht verschwindet.However, a particularly advantageous method will be described below. This method offers a possibility for the production of a transparent, high-resolution planar structure, which is preferably planar, but can also be curved and which emits color-fast under non-visible excitation. The body comprises at least two layers of transparent material. For example, the at least two layers of transparent material may be joined to transparent UV adhesive, wherein the refractive index of the UV adhesive is matched to that of the transparent material of the body. This has the effect that any remaining low light scattering disappears at the edges of the doped matrix layer.

Die hohe Ortsauflösung wird hier mittels Mikrolöcher erzielt. Jedes Mikroloch hat einen Durchmesser, der unter der Auflösungsgrenze des Auges (unter 50 x 10-6 m bei 200 mm Abstand bzw. 1 Bogenminute) liegt. Die Mikrolöcher werden mit einer mit Nanopartikel dotierten Matrix gefüllt. Dabei kann beispielsweise eine Ebene einer der drei RGB-Farben entsprechen. Die jeweilige Gewichtung an einem Ort wird durch das Volumen des Mikrolochs bestimmt. Dabei kann in 2 Dimensionen kodiert werden, nämlich über die Fläche und über die Tiefe des Mikrolochs. Es sollte allerdings eine Mindesttiefe eingehalten werden, die zum Beispiel von der Welligkeit des Glases abhängt. Die maximale Tiefe hängt unter anderem von der optischen Dichte der dotierten Matrix ab (für eine optisch dichte Matrix kann eine Tiefe von etwa einer Wellenlänge ausreichend sein). Bei der Codierung kann das logarithmische Helligkeitsempfinden des Auges berücksichtigt werden. Für Fotoqualität wäre ein Dynamikbereich von zumindest 100 notwendig, für Dia-Qualität etwa 1000 ( J.D. Foley et al. Grundlagen der Computergraphik, Kapitel 11: Achromatisches und farbiges Licht. 1. Auflage. Addison-Wesley, 1994 ). Die minimale Intensitätsabstufung sollte 64 Stufen (6-Bit) nicht unterschreiten, bei 512 Stufen (9-Bit) liegt der Dynamikbereich zwischen Foto und Dia.The high spatial resolution is achieved here by means of microholes. Each microhole has a diameter which is below the resolution limit of the eye (below 50 x 10 -6 m at 200 mm distance or 1 arc minute). The microholes are filled with a nanoparticle-doped matrix. For example, one level may correspond to one of the three RGB colors. The respective weighting in one location is determined by the volume of the microhole. It can be coded in 2 dimensions, namely over the area and over the depth of the micro hole. However, a minimum depth should be maintained, which depends, for example, on the waviness of the glass. The maximum depth depends inter alia on the optical density of the doped matrix (for a dense matrix, a depth of about one wavelength may be sufficient). When coding the logarithmic brightness perception of the eye can be considered. For photo quality a dynamic range of at least 100 would be necessary, for slide quality about 1000 ( JD Foley et al. Foundations of Computer Graphics, Chapter 11: Achromatic and Colored Light. 1st edition. Addison-Wesley, 1994 ). The minimum intensity graduation should not fall below 64 levels (6-bit), at 512 levels (9-bit), the dynamic range between photo and slide.

Mit Zugabe einer weiteren dünnen Glasplatte kann z. B. auf der RGB- oder vier Farben (z. B. zusätzlicher Kanal für Farben außerhalb des Farbdreiecks, oder für höheren CRI-Wert) mit gleich bleibender Auflösung erweitert werden.With the addition of another thin glass plate z. For example, RGB or four colors (for example, an extra channel for colors outside the color triangle, or for higher CRI values) can be expanded with consistent resolution.

Ungewünschte Reabsorption des emittierten sichtbaren Lichts einer Farbschicht durch eine andere könnte durch eine geeignete Wahl der Farbschicht-Folge verhindert werden. Das heißt, vom Betrachter aus gesehen folgt zuerst die kurzwelligste Farbschicht, gefolgt von der zweit-kurzwelligsten Farbschicht und so weiter. Im RGB-Modell würde dies die folgende Abfolge bedeuten: Zuerst die blau emittierende Farbschicht, gefolgt von der grün emittierenden Farbschicht und zuletzt die rot emittierende Farbschicht.Undesired reabsorption of the emitted visible light of one color layer by another could be prevented by an appropriate choice of the color layer sequence. That is, from the viewer's point of view, the shortest wavelength color layer follows first, followed by the second shortest wavelength color layer and so on. In the RGB model, this would be the following Sequence means: first, the blue-emitting color layer, followed by the green-emitting color layer and finally the red-emitting color layer.

Vorzugsweise wird von beiden Seiten (mit einer oder mittels mehrerer Anregungsquellen, zum Beispiel UV-LED-Chip(s)), direkt oder indirekt (über Reflexion, Totalreflexion, Brechung) angeregt.Preferably, it is excited from both sides (with one or more excitation sources, for example UV LED chip (s)), directly or indirectly (via reflection, total reflection, refraction).

Bei optisch dichten Schichten und geringer Anregungsintensität kann die eventuelle Störabsorption auch rechnerisch berücksichtigt werden.With optically dense layers and low excitation intensity, the possible disturbance absorption can also be taken into account mathematically.

Wird eine Schicht über ein Sprühverfahren aufgebracht (Maske, Siebdruckverfahren), kann die Gewichtung bzw. die Helligkeit mittels Rasterung, zum Beispiel auch unter Berücksichtigung der Error Diffusion (siehe Floyd und Steinberg, An adaptive algorithm for spatial grey scale, in: Society for Information Display 1975, Symposia Digest of Technical Papers 1975, Seite 36 ) vorgegeben werden. Bei Verwendung von nur einer Maske mit z. B. 10 x 10 Löchern (d = 5 x 10-6 m) ergibt sich eine Dynamikbereich gleich 100 wobei der Wert für den Dynamikbereich in etwa Photoqualität entspricht, die Intensitätsstufen jedoch schon vom Auge wahrgenommen werden können.If a layer is applied by means of a spray process (mask, screen printing process), the weighting or the brightness can be determined by screening, for example taking into account the error diffusion (see Floyd and Steinberg, Adaptive Algorithm for Spatial Gray Scale, Society for Information Display 1975, Symposia Digest of Technical Papers 1975, page 36 ). When using only one mask with z. B. 10 x 10 holes (d = 5 x 10 -6 m) results in a dynamic range equal to 100 wherein the value for the dynamic range corresponds approximately to photo quality, but the intensity levels can already be perceived by the eye.

Bei dieser Maskentechnik kann die Farbqualität weiter durch Verwendung mehrerer maskenbestimmter Farbanlagen erhöht werden.In this mask technique, the color quality can be further increased by using a plurality of mask-specific color systems.

Eine andere Methode, eine räumlich kodierte Farbinformation aufzubringen, ist Lithographie. Die Nanopartikel befinden sich in diesem Ausführungsbeispiel in einer UV-aushärtbaren Matrix. Die wenige Mikrometer dünne Schicht aus den mit Nanopartikel dotierten Matrix wird durch eine Maske abgedeckt. Nur jene Schichtbereiche werden ausgehärtet, die in der Maske UV-durchlässig sind. Das überschüssige Matrixmaterial kann vorsichtig entfernt werden. Diese Methode eignet sich besonders für großflächige Markierungen mit geringerer Anforderung an die farblich-räumliche Kodierung. Beispielsweise können auf diese Art einfarbige Schriften, Muster oder transparente Segment-Anzeigen auf oder in einem transparenten Medium (z. B. Glas) erzeugt werden.Another method of applying spatially coded color information is lithography. The nanoparticles are in this embodiment in a UV-curable matrix. The few micrometers thin layer of nanoparticle-doped matrix is covered by a mask. Only those layer areas are cured which are UV-transparent in the mask. The excess matrix material can be removed carefully. This method is particularly suitable for large-area markings with a lower requirement for color-spatial coding. For example, single-color fonts, patterns or transparent segment displays can be produced on or in a transparent medium (eg glass) in this way.

Denkbar wäre auch eine Vorstrukturierung durch einfach strukturierbare chemische Verbindungen, an denen dann dafür spezifisch oberflächenpräparierte Nanopartikel anhaften bzw. welche von dafür spezifisch oberflächenpräparierten Nanopartikel gemieden werden. Eine weitere Möglichkeit wäre eine photolithografische Strukturierung wie sie in der Halbleitertechnik angewendet wird.It would also be conceivable to pre-structurize by simply structurable chemical compounds to which specific surface-prepared nanoparticles then adhere or which nanoparticles specifically surface-prepared for this purpose are avoided. Another possibility would be photolithographic structuring, as used in semiconductor technology.

Ganz allgemein ergibt sich ein erfindungsgemäßer Körper besonders hoher optischer Güte, wenn vorgesehen ist, dass der Körper frei von Strukturen ist, die elektromagnetische Strahlung im sichtbaren Spektralbereich absorbieren oder streuen.In general, a body according to the invention of particularly high optical quality results if it is provided that the body is free of structures which absorb or scatter electromagnetic radiation in the visible spectral range.

Ein Verfahren zur Herstellung eines Körpers nach den erfindungsgemäßen Ausführungsbeispielen, bei denen die Markierung Mikrolöcher umfasst, umfasst zumindest die folgenden Schritte:

  • Erzeugung der Mikrolöcher im transparenten Material des Körpers
  • Einbringung der Nanopartikel in die Mikrolöcher.
A method for producing a body according to the embodiments of the invention, in which the marking comprises microholes, comprises at least the following steps:
  • Generation of microholes in the transparent material of the body
  • Introduction of the nanoparticles into the microholes.

Wie bereits beschrieben, können die Mikrolöcher beispielsweise in das transparente Material eingestempelt, durch Laserbeschuss des transparenten Materials oder durch Trockenätzen erzeugt werden.As already described, the microholes can be stamped, for example, into the transparent material, produced by laser bombardment of the transparent material or by dry etching.

Eine besonders einfache Ausgestaltung des zweiten Verfahrensschrittes ergibt sich, wenn vorgesehen ist, dass die mit Nanopartikel dotierte Matrix zunächst großflächig auf die Oberfläche des Körpers aufgebracht, beispielsweise aufgesprüht wird. In diesem Fall kann auf eine gezielte Aufbringung der Matrix in die Mikrolöcher verzichtet werden. Diese Ausführungsform vermeidet das Problem, die dotierte Matrix punktgenau auf die Oberfläche aufbringen zu müssen.A particularly simple embodiment of the second method step results if it is provided that the matrix doped with nanoparticles is first applied over a large area to the surface of the body, for example sprayed on. In this case, can be dispensed with a targeted application of the matrix in the microholes. This embodiment avoids the problem of having to apply the doped matrix with pinpoint accuracy to the surface.

Es kann aber auch vorgesehen sein, dass die mit Nanopartikel versehene Matrix mit einem Tintenstrahldrucker auf die Oberfläche des Körpers aufgedruckt wird. Dies kann entweder großflächig oder gezielt im Wesentlichen punktgenau erfolgen.However, it can also be provided that the matrix provided with nanoparticles is printed on the surface of the body with an inkjet printer. This can be done either over a large area or in a targeted manner with pinpoint accuracy.

Bei einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die Matrix aus einem aushärtbaren Material besteht. Beispielsweise kann eine bei UV-Bestrahlung aushärtende Substanz gewählt werden.In a particularly preferred embodiment of the invention it is provided that the matrix consists of a curable material. For example, it is possible to choose a substance that cures on UV irradiation.

Dies gestattet es, die Matrix nach dem Aufbringen auf die Oberfläche des transparenten Körpers im Bereich jedes Mikroloches auszuhärten. Dies kann geschehen, ohne dass die UV-Strahlung gezielt nur im Bereich jedes Mikroloches eingesetzt wird. Beispielsweise kann vorgesehen sein, den Körper von der Seite zu bestrahlen, welche von der die Mikrolöcher tragende Oberfläche abgewandt ist. Es kann zum Beispiel vorgesehen sein, bereits vor der Erzeugung der Mikrolöcher eine in einem bestimmten UV-Bereich reflektierende Schicht (welche im sichtbaren Spektralbereich transparent ist) auf die Oberfläche des Körpers aufzubringen, in der die Mikrolöcher erzeugt werden. Da die UV-reflektierende Schicht bei der Erzeugung der Mikrolöcher im Bereich der Mikrolöcher entfernt wird, verhindert sie ausschließlich das Eindringen von UV-Strahlung in die Teile der Matrix, welche sich auf dem Körper außerhalb des Bereichs der Mikrolöcher befinden.This makes it possible to cure the matrix after application to the surface of the transparent body in the region of each micro-hole. This can be done without the UV radiation being deliberately used only in the area of each micro-hole. For example, can be provided to irradiate the body from the side which faces away from the surface carrying the micro-holes. It can be provided, for example, to apply a layer which is reflective in a certain UV range (which is transparent in the visible spectral range) to the surface of the body in which the microholes are produced, even before the microholes are generated. Since the UV-reflecting layer is removed in the area of the microholes when the microholes are formed, it exclusively prevents the penetration of UV radiation into the parts of the matrix which are located on the body outside the area of the microholes.

Eine weitere Möglichkeit besteht darin, die in den Mikrolöchern befindliche Matrix zielgenau mittels UV-Laser auszuhärten.Another possibility is to precisely cure the matrix located in the microholes by means of UV lasers.

Weiters kann als zusätzliche Maßnahme die Aufbringung einer Antihaftbeschichtung für die dotierte Matrix (welche im sichtbaren Spektralbereich transparent ist) vorgesehen sein. Eine derartige Antihaftbeschichtung verringert die Haftung zwischen dem Teil der Matrix, welcher sich außerhalb der Mikrolöcher befindet, wodurch dieser Teil leichter entfernt werden kann.Furthermore, as an additional measure, the application of a non-stick coating for the doped matrix (which is transparent in the visible spectral range) may be provided. Such a non-stick coating reduces the adhesion between the part of the matrix which is outside the microholes, which makes it easier to remove that part.

Bei einer weiteren Variante kann vorgesehen sein, dass nach dem Aufbringen der Matrix und vor dem Aushärten ein stabiles oder flexibles Material auf die beschichtete Oberfläche aufgelegt und angepresst wird, wobei das Material eine Vielzahl von vorzugsweise durchgehenden Poren aufweist. Die Oberflächenspannung des Materials und der Durchmesser der Poren ist dabei derart zu wählen, dass kein Kapillareffekt auftrifft, da andernfalls Material aus den Mikrolöchern herausgesaugt werden würde. Die Vielzahl von Poren bilden Kanäle, in welche die sich auf der Oberfläche des Materials befindende überschüssige Matrix eindringen kann. Nach dem Aushärten kann das Material gemeinsam mit der eingedrungenen Matrix auf einfache Weise entfernt werden.In a further variant, it can be provided that, after application of the matrix and before curing, a stable or flexible material is placed on the coated surface and pressed, the material having a plurality of preferably continuous pores. The surface tension of the material and the diameter of the pores is to be chosen such that no capillary effect impinges, otherwise material would be sucked out of the microholes. The plurality of pores form channels into which the excess matrix located on the surface of the material can penetrate. After curing, the material can be easily removed together with the invaded matrix.

Dabei könnte es sich bei dem beschriebenen, mit Poren versehenen Material zum einen um ein festes Material handeln, welches nach Reinigung wieder zur Verfügung steht oder aber um eine dünne, flexible Membran, welche nach einmaligem Gebrauch entsorgt wird.It could be in the described, provided with pores material on the one hand to a solid material, which is available again after cleaning or to a thin, flexible membrane, which is disposed of after a single use.

Besonders bevorzugt kann dabei vorgesehen sein, dass die Poren nicht in Richtung der Flächennormalen der Oberfläche sondern schräg dazu verlaufen. Dies ergibt einen vorteilhaften geometrischen Abschattungseffekt, der bewirkt, dass im Bereich der Mikroporen allenfalls ein kleiner Teil der in den Kanälen befindlichen Matrix aushärtet. Des weiteren wird durch eine Schrägstellung der Poren beim Entfernen des Material seine Messerwirkung erzielt, wenn die Schicht vor dem Abheben von der Oberfläche zuerst seitlich bewegt wird.Particularly preferably, it can be provided that the pores do not extend in the direction of the surface normal of the surface but obliquely thereto. This results in an advantageous geometric shading effect, which causes at most a small part of the matrix located in the channels to harden in the region of the micropores. Furthermore, will by an inclination of the pores when removing the material achieves its knife action when the layer is first moved laterally before lifting from the surface.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Figuren sowie der Figurenbeschreibung. Dabei zeigen:

Fig. 1a, 1b
in schematischer Darstellung ein erstes und ein zweites Ausführungsbeispiel eines erfindungsgemäßen Körpers,
Fig. 2
in schematischer Darstellung ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Körpers,
Fig. 3a, 3b
Detaildarstellungen des in Fig. 2 dargestellten Körpers
Fig. 4a-4f
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Verfahrens zur Herstellung eines erfindungsgemäßen Körpers,
Fig. 5a-5e
ein zweites Ausführungsbeispiel eines erfindungsgemäßen Verfahrens zur Herstellung eines erfindungsgemäßen Körpers und
Fig. 6a-6e
ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Verfahrens zur Herstellung eines erfindungsgemäßen Körpers.
Further advantages and details of the invention will become apparent from the following figures and the description of the figures. Showing:
Fig. 1a, 1b
a schematic representation of a first and a second embodiment of a body according to the invention,
Fig. 2
a schematic representation of another embodiment of a body according to the invention,
Fig. 3a, 3b
Details of the in Fig. 2 represented body
Fig. 4a-4f
A first embodiment of a method according to the invention for producing a body according to the invention,
Fig. 5a-5e
A second embodiment of a method according to the invention for producing a body according to the invention and
Fig. 6a-6e
a further embodiment of a method according to the invention for producing a body according to the invention.

Fig. 1a zeigt schematisch ein Ausführungsbeispiel eines erfindungsgemäßen Körpers 1 aus transparentem Material, an dessen Oberfläche 2 eine Markierung 3 in Form einer künstlerischen Darstellung angeordnet ist. Diese Markierung 3 ist nur bei Bestrahlung durch eine elektromagnetische Strahlung in einem nicht-sichtbaren Spektralbereich sichtbar. Die hierfür notwendige Quelle ist in Fig. 1a nicht dargestellt. Ohne die Bestrahlung hat der Betrachter den Eindruck eines transparenten Körpers 1, der keinerlei Markierung 3 aufweist. Fig. 1b zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Körpers 1 in Form eines Zylinders, wobei die Markierung 3 an der gekrümmten Mantelfläche (Oberfläche 2) des Zylinders angeordnet ist. Fig. 1a schematically shows an embodiment of a body according to the invention 1 of transparent material, on the surface 2 a marker 3 is arranged in the form of an artistic representation. This marker 3 is visible only when irradiated by electromagnetic radiation in a non-visible spectral range. The source required for this is in Fig. 1a not shown. Without the irradiation, the viewer has the impression of a transparent body 1, which has no mark 3. Fig. 1b shows a further embodiment of a body 1 according to the invention in the form of a cylinder, wherein the marking 3 on the curved lateral surface (surface 2) of the cylinder is arranged.

Fig. 2 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Körpers 1, welcher aus zwei Schichten 4, 5 besteht, die über eine Klebeschicht 6 miteinander verbunden sind. Im Inneren des Körpers 1 ist eine in diesem Ausführungsbeispiel als Schriftzug realisierte Markierung 3 angeordnet. Auch in diesem Ausführungsbeispiel ist die Markierung 3 nur bei Bestrahlung durch eine elektromagnetische Strahlung mit einer Wellenlänge im nicht-sichtbaren Spektralbereich sichtbar. Fig. 2 shows a further embodiment of a body 1 according to the invention, which consists of two layers 4, 5, which are interconnected via an adhesive layer 6. Inside the body 1 a realized in this embodiment as a writing mark 3 is arranged. Also in this embodiment, the mark 3 is visible only when irradiated by an electromagnetic radiation having a wavelength in the non-visible spectral range.

Fig. 3a zeigt eine erste Detaildarstellung des in Fig. 2 dargestellten Körpers im Bereich der Markierung 3. Erkennbar ist, dass die mit Nanopartikel dotierte Matrix 9 in Mikrolöchern 8 in jeder der beiden Schichten 4, 5 angeordnet ist. Jeder der strichlierten Bereiche 7 stellt dabei einen Pixel der Markierung 3 dar. Der hier für die Schicht 6 verwendete Kleber ist für die anregende Wellenlänge durchlässig. In der Variante nach Fig. 3a sind zwei unterschiedliche Farben realisiert, wobei in der einen Schicht 4 nur Nanopartikel einer ersten Farbe angeordnet sind und in der anderen Schicht 5 nur Nanopartikel einer anderen Farbe angeordnet sind. Eine Dreifarbenvariante 10 ist in der Fig. 3b dargestellt, welche eine alternative Ausbildung des in Fig. 2 dargestellten Körpers im Bereich der Markierung 3 zeigt. Die dritte Farbe ist in diesem Ausführungsbeispiel mit Hilfe einer Maske auf die Schicht 4 aufgesprüht worden. Danach wurden die beiden Schichten 4, 5 durch die Schicht 6 transparent miteinander verbunden. Fig. 3a shows a first detail of the in Fig. 2 It can be seen that the nanoparticle-doped matrix 9 is arranged in microholes 8 in each of the two layers 4, 5. Each of the dashed areas 7 represents a pixel of the mark 3. The adhesive used here for the layer 6 is permeable to the exciting wavelength. In the variant after Fig. 3a two different colors are realized, wherein in one layer 4 only nanoparticles of a first color are arranged and in the other layer 5 only nanoparticles of a different color are arranged. A three-color variant 10 is in the Fig. 3b which shows an alternative embodiment of the in Fig. 2 shown body in the region of the mark 3 shows. The third color has been sprayed on the layer 4 in this embodiment using a mask. Thereafter, the two layers 4, 5 were interconnected by the layer 6 transparent.

In den Fig. 4a-f ist ein erstes Ausführungsbeispiel für ein erfindungsgemäßes Verfahren zur Herstellung eines erfindungsgemäßen Körpers 1 dargestellt. Dabei kann - wie in Fig. 1 dargestellt - vorgesehen sein, die gezeigte Markierung 3 an der Oberfläche 2 des Körpers 1 auszubilden. Alternativ kann auch vorgesehen sein, eine erste Schicht 4 und eine zweite Schicht 5 nach dem in den Fig. 4a-f dargestellten Verfahren herzustellen und diese miteinander durch eine klebende Schicht 6 zu verbinden, wie dies in Fig. 2 dargestellt ist.In the Fig. 4a-fi St a first embodiment of an inventive method for producing a body 1 according to the invention shown. It can - as in Fig. 1 shown - be provided to form the mark 3 shown on the surface 2 of the body 1. Alternatively, it can also be provided, a first layer 4 and a second layer 5 after in the Fig. 4a-f and to connect these together by an adhesive layer 6, as shown in Fig. 2 is shown.

Fig. 4a zeigt den Ausgangszustand des Verfahrens, bei dem auf den Körper 1 optional eine dünne UV-reflektierende Schicht 12, welche im sichtbaren Spektralbereich transparent ist, aufgebracht wurde. Ebenso wurde optional eine Schicht 13 aufgebracht, welche eine Antihaftbeschichtung für die mit Nanopartikel dotierte Matrix 9 darstellt. Wie in Fig. 4b dargestellt, werden zuerst die Mikrolöcher 8 erzeugt. Hierdurch werden natürlich sowohl die Schicht 12 als auch die Schicht 13 im Bereich der Mikrolöcher 8 entfernt. Als nächster Schritt (Fig. 4c) wird die mit Nanopartikel dotierte Matrix 9 auf die Oberfläche des Körpers 1 aufgebracht. Dies kann entweder zum Beispiel durch Aufsprühen, Eintauchen oder durch Aufschmieren erfolgen. Hierdurch ergibt sich der in Fig. 4c dargestellte Zustand, bei dem die Mikrolöcher 8 gefüllt sind und ein Teil des Materials der Matrix 9 auf der Oberfläche des Körpers 1 verbleibt. Vorteilhafterweise kann vorgesehen sein, dass der Körper 1 in dem in Fig. 4c dargestellten Zustand einige Zeitlang einem Vakuum ausgesetzt wird. Hierdurch können eventuell in den Mikrolöchern 8 verbliebene Luftblasen ausdampfen. Als nächster Schritt erfolgt, wie in Fig. 4d dargestellt, eine Aushärtung der Matrix 9 im Bereich der Mikrolöcher 8. Dies erfolgt in diesem Ausführungsbeispiel durch Bestrahlung mit UV-Strahlung von der Seite des Körpers 1, der von der mit Mikrolöchern 8 versehenen Oberfläche abgewandt ist. Die hauptsächlich auf die Bereiche der Mikrolöcher 8 beschränkte Aushärtung der Matrix 9, wird im dargestellten Ausführungsbeispiel durch die zusätzliche Maßnahme der Schicht 12 verstärkt, welche die UV-Strahlung überall außer im Bereich der Mikrolöcher 8 von der Matrix 9 wegreflektiert. Falls eine Matrix 9 verwendet wird, welche bei Kontakt mit Sauerstoff schlecht aushärtet, kann dieser Vorgang in einer Atmosphäre aus reinem Sauerstoff erfolgen. Wie in Fig. 4e dargestellt, kann der Rest des nicht ausgehärteten Matrixmaterials 9 durch einen Schieber entfernt werden. Anschließend kann ein Nachhärten des Matrixmaterials 9 im Bereich der Oberflächen der Mikrolöcher 8 erfolgen. Dies kann beispielsweise in einer Stickstoffatmosphäre erfolgen, falls eine Matrix verwendet wird, welche vorzugsweise bei Kontakt mit Stickstoff aushärtet. Fig. 4a shows the initial state of the process, in which on the body 1 optionally a thin UV-reflecting layer 12, which is transparent in the visible spectral range, has been applied. Likewise, optionally, a layer 13 was applied, which represents a non-stick coating for the matrix 9 doped with nanoparticles. As in Fig. 4b 1, the microholes 8 are first generated. As a result, of course, both the layer 12 and the layer 13 in the region of the microholes 8 are removed. As a next step ( Fig. 4c ), the nanoparticle-doped matrix 9 is applied to the surface of the body 1. This can be done either by spraying, dipping or by greasing, for example. This results in the in Fig. 4c illustrated state in which the micro-holes 8 are filled and a part of the material of the matrix 9 remains on the surface of the body 1. Advantageously, it can be provided that the body 1 in the in Fig. 4c state is exposed to a vacuum for some time. As a result, any remaining in the micro holes 8 air bubbles can evaporate. The next step is done as in Fig. 4d Curing of the matrix 9 in the region of the microholes 8. This is done in this embodiment by irradiation with UV radiation from the side of the body 1 facing away from the surface provided with microholes 8. The curing of the matrix 9, which is restricted primarily to the areas of the microholes 8, is reinforced in the embodiment shown by the additional measure of the layer 12, which reflects the UV radiation away from the matrix 9 everywhere except in the area of the microholes 8. If a matrix 9 is used, which cures poorly upon contact with oxygen, this process can take place in an atmosphere of pure oxygen. As in Fig. 4e shown, the remainder of the uncured matrix material 9 can be removed by a slider. Subsequently, a post-curing of the matrix material 9 in the region of the surfaces of the microholes 8 take place. This can be done, for example, in a nitrogen atmosphere, if a matrix is used, which preferably hardens on contact with nitrogen.

Das Ausführungsbeispiel nach den Fig. 5a-e unterscheidet sich von jenem nach den Fig. 4a-f nur dadurch, dass eine zusätzliche Schicht 14 eingesetzt wird, welche mit einer Vielzahl von durch Kanäle gebildete Poren 15 versehen ist. Wie dargestellt, können diese Kanäle auch als schräg verlaufende Poren 16 ausgebildet sein. Erkennbar ist insbesondere in Fig. 5c, dass die schräg verlaufenden Poren 16 den Vorteil haben, dass ein geringerer Teil des Materials der Matrix 9 aushärtet. Dabei handelt es sich nämlich nur um den Teil, der von der UV-Strahlung geometrisch sowie durch Streuung erreicht werden kann. Bei gerade verlaufenden Poren 15 kann es vorkommen, dass das gesamte im Bereich der Mikrolöcher 8 in die Poren 15 eingedrungene Material der Matrix 9 aushärtet. Wie in Fig. 5d dargestellt, haben die schräg verlaufenden Poren 16 zusätzlich den Vorteil einer Messerwirkung, wenn beim Entfernen der Schicht 14 vorgesehen ist, diese zuerst seitlich entlang des Körpers 1 und dann erst vom Körper 1 weg zu bewegen.The embodiment of the Fig. 5a-e is different from that after the Fig. 4a-f only in that an additional layer 14 is used, which is provided with a plurality of pores 15 formed by channels. As shown, these channels may also be formed as slanted pores 16. Is recognizable in particular in Fig. 5c in that the oblique pores 16 have the advantage that a smaller part of the material of the matrix 9 cures. This is only the part that can be achieved geometrically by UV radiation and by scattering. In the case of straight pores 15, it may happen that the entire material of the matrix 9 that has penetrated into the pores 15 in the area of the microholes 8 cures. As in Fig. 5d shown, the inclined pores 16 additionally have the advantage of a knife action, if it is provided during the removal of the layer 14, these first laterally along the body 1 and then only from the body 1 to move away.

Bei einem weiteren Ausführungsbeispiel nach den Fig. 6a-e besteht der einzige Unterschied zu dem in den Fig. 5a-e dargestellte Verfahren darin, dass in den Fig. 6a-e anstelle einer steifen Schicht 14 eine flexible Schicht 14 verwendet wurde. Hierbei könnte es sich zum Beispiel um eine einmal zu verwendende Membran handeln.In a further embodiment of the Fig. 6a-e the only difference to that in the Fig. 5a-e illustrated method in that in the Fig. 6a-e instead of a stiff layer 14, a flexible layer 14 was used. This could, for example, be a membrane to be used once.

Claims (25)

  1. A body (1) of transparent material, wherein the body (1) has at least one marking (3) including nanoparticles, wherein the marking (3) is arranged in the transparent material and is such that, upon illumination with electromagnetic radiation whose wavelength is in the visible spectral range, it is invisible and, upon illumination with electromagnetic radiation whose wavelength is in the non-visible spectral range, it is visible, characterized in that the marking (3) is formed by way of microholes (8) with a diameter of less than 5.10-5 m and larger than 5.10-6 m, wherein the nanoparticles are in the microholes (8) and wherein the nanoparticles are embedded in substantially agglomeration-free manner in a matrix (9) whose resulting refractive index is substantially equal to the refractive index of the transparent material.
  2. A body as set forth in claim 1, characterized in that the nanoparticles are such that, upon illumination with electromagnetic radiation whose wavelength is in the non-visible spectral range, they emit electromagnetic radiation in the visible spectral range.
  3. A body as set forth in claim 2, characterized in that a first group of nanoparticles is such that upon illumination with electromagnetic radiation with a wavelength in the non-visible spectral range, they emit visible electromagnetic radiation with a first spectral color and a second group of nanoparticles is such that, upon illumination with the same non-visible electromagnetic radiation, they emit visible electromagnetic radiation with a second spectral color which is different from the first spectral color.
  4. A body as set forth in claim 3, characterized in that
    - a first group of nanoparticles is such that it can emit red light,
    - a seoond group of nanoparticles is such that it can emit green light, and
    - a third group of nanoparticles is such that it can emit blue light.
  5. A body as set forth in one of claims 1 through 4, characterized in that the microholes (8) are approximately regularly arranged.
  6. A body as set forth in claim 5, characterized in that the microholes (3) are arranged at different spacing relative to each other to avoid diffraction effects.
  7. A body as set forth in one of claims 1 through 6, characterized in that the body (1) includes at least two layers (4, 5) of transparent material which are arranged one upon the other- preferably glued to each other.
  8. A body as set forth in claim 7, characterized in that the first of the at least two layers (4, 5) has nanoparticles which can emit a first spectral color and the second of the at least two layers (4, 5) has nanoparticles which can emit a second spectral color.
  9. A body as set forth in claim 8, characterized in that the nanoparticles of the at least two layers (4, 5) are arranged in substantially mutually superposed relationship considered along the surface normal of the layers (4, 5).
  10. A body as set forth in one of claims 1 through 9, characterized in that the marking (3) is made up of individual pixels (7), wherein each pixel (7) has at least one microhole (8).
  11. A body as set forth in claim 10, characterized in that at least one of the pixels (7) has at least wo microholes (8), wherein arranged in a first of the at least two microholes (8) are nanoparticles which can emit a first spectral color and arranged in a second of the at least two microholes (8) are nanoparticles which can emit a second spectral color which is different from the first spectral color.
  12. A body as set forth in claim 6 and claim 11, characterized in that the first of the at least two microholes (8) is arranged in a first of the at least two layers (4, 5) and the second of the at least two microholes (8) is arranged in a second of the at least two layers (4, 5).
  13. A body as set forth in claim 12, characterized in that the two microholes (8) are arranged in substantially mutually superposed relationship considered along the surface normals of the layers (4, 5).
  14. A body as set forth in one of claims 1 through 13, characterized in that the body (1) is at least substantially free of structures which absorb or scatter electromagnetic radiation in the visible spectral range.
  15. A process for the production of a body as set forth in one of claims 1 through 14, characterized in that it includes the following steps:
    - producing the microholes (8) in the transparent material of the body, and
    - introducing the nanoparticles into the microholes (8).
  16. A process as set forth in claim 15, characterized in that the microholes (8) are stamped into the transparent material.
  17. A process as set forth in claim 15, characterized in that the microholes (8) are produced by laser bombardment of the transparent material.
  18. A process as set forth in claim 15, characterized in that the microholes (8) are etched into the transparent material.
  19. A process as set forth in one of claims 15 through 18, characterized in that the matrix (9) provided with nanoparticles is sprayed onto the surface (2) of the body (1).
  20. A process as set forth in one of claims 15 through 19, characterized in that there are applied to regions of the transparent body (1) chemical compounds to which nanoparticles which are specifically surface-prepared for that purpose then adhere or which are avoided by surface particles which are specifically surface-prepared for that purpose.
  21. A process as set forth in claim 19 or claim 20, characterized in that the matrix (9) is hardened after being applied to the surface (2) of the body (1) in the region of each microhole (8).
  22. A process as set forth in claim 21, characterized in that excess matrix material which has remained on the surface (2) of the transparent body (1) is removed.
  23. A process as set forth in claim 21 or claim 22, characterized in that a cover layer (14) having a plurality of pores (15, 16) is applied to the surface (2) of the body (1) after application of the matrix (9) to the surface (2) of the body (1) and prior to hardening of the matrix (9).
  24. A process as set forth in one of claims 15 through 23, characterized in that, prior to the production of the microholes (8), a layer is applied to the surface (2) of the body (1), which layer reflect electromagnetic radiation in the spectral range of the hardening wavelength.
  25. A process as set forth in one of claims 15 through 24, characterized in that prior to the production of the microholes (8), a layer is applied to the surface (2) of the body (1), which layer involves a greatly reduced bonding to the nanoparticle-doped matrix (9).
EP06721193.8A 2005-06-09 2006-04-04 Marked member made of transparent material and method of manufacture Not-in-force EP1910096B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0097905A AT501990B1 (en) 2005-06-09 2005-06-09 MARKED BODY OF TRANSPARENT MATERIAL
PCT/AT2006/000134 WO2006130887A2 (en) 2005-06-09 2006-04-04 Marked member made of transparent material, and production method

Publications (2)

Publication Number Publication Date
EP1910096A2 EP1910096A2 (en) 2008-04-16
EP1910096B1 true EP1910096B1 (en) 2013-09-25

Family

ID=37434206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06721193.8A Not-in-force EP1910096B1 (en) 2005-06-09 2006-04-04 Marked member made of transparent material and method of manufacture

Country Status (5)

Country Link
US (1) US20080118675A1 (en)
EP (1) EP1910096B1 (en)
AT (1) AT501990B1 (en)
ES (1) ES2440480T3 (en)
WO (1) WO2006130887A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507734A1 (en) 2008-12-16 2010-07-15 Swarovski & Co TRANSPARENT BODY

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE871685C (en) * 1938-04-30 1953-03-26 Pierre Michel Louis Latrobe Craft product made of translucent material with surface decorations
CS258703B1 (en) * 1985-01-17 1988-09-16 Peter Urbanek Method of decoration's selective formation on solid axially symmetrical products by means of laser and method for realization of this method
US5410125A (en) * 1990-10-11 1995-04-25 Harry Winston, S.A. Methods for producing indicia on diamonds
GB9126048D0 (en) * 1991-12-07 1992-02-05 Jennings Mark Printing
US5585640A (en) * 1995-01-11 1996-12-17 Huston; Alan L. Glass matrix doped with activated luminescent nanocrystalline particles
GB9514558D0 (en) * 1995-07-17 1995-09-13 Gersan Ets Marking diamond
US6211526B1 (en) * 1998-09-30 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Marking of materials using luminescent and optically stimulable glasses
WO2001085451A1 (en) * 2000-05-05 2001-11-15 3M Innovative Properties Company Durable security card and method for making same
JP2004503399A (en) * 2000-06-09 2004-02-05 スリーエム イノベイティブ プロパティズ カンパニー Secure laminate structure with embossed image-receiving surface
US6911254B2 (en) * 2000-11-14 2005-06-28 Solutia, Inc. Infrared absorbing compositions and laminates
GB0121953D0 (en) 2001-09-12 2001-10-31 Jennings Mark A method of anti-counterfeit printing fabricating and the production of both security and non-security items including items that show the passing of time by
US20040171076A1 (en) * 2001-12-20 2004-09-02 Dejneka Matthew J. Detectable micro to nano sized structures, methods of manufacture and use
US6624385B2 (en) * 2001-12-21 2003-09-23 Eastman Kodak Company Method for marking gemstones with a unique micro discrete indicia
AU2003218212A1 (en) * 2002-03-15 2003-09-29 Photon-X, Inc. Optical polymer nanocomposite substrates with surface relief structures
ES2296945T3 (en) * 2002-05-08 2008-05-01 LEONHARD KURZ STIFTUNG & CO. KG MULTI-PICTURE IMAGE, PARTICULARLY MULTICOLORED IMAGE.
US20040136179A1 (en) * 2003-01-13 2004-07-15 Lewis Edward D. Necklace with ultraviolet illuminated fluorescent pendant
US7612124B2 (en) * 2003-06-24 2009-11-03 Ppg Industries Ohio, Inc. Ink compositions and related methods
US20050031838A1 (en) * 2003-08-06 2005-02-10 Spectra Systems Corporation Taggant security system for paper products as a deterrent to counterfeiting

Also Published As

Publication number Publication date
ES2440480T3 (en) 2014-01-29
EP1910096A2 (en) 2008-04-16
WO2006130887A3 (en) 2008-07-10
AT501990B1 (en) 2007-03-15
WO2006130887A2 (en) 2006-12-14
US20080118675A1 (en) 2008-05-22
AT501990A1 (en) 2006-12-15

Similar Documents

Publication Publication Date Title
EP3459758B1 (en) Method for producing a valuable document and printing device
EP1117537B1 (en) Gravure process for printing adjacent colour surfaces with various colour coating thicknesses as well as data substrate, printing plate and method of manufacturing a printing plate
EP1440133A1 (en) Method for producing a laser-printable film
DE102005006231A1 (en) Method for producing a multilayer body
EP2379339A1 (en) Data media having inspection area
DE102010016729A1 (en) Method and device for marking objects
DE102011115125A1 (en) Method for producing micro-optical display assembly for displaying multicolor subject, involves providing carrier material with main surface and with another main surface, where former main surface has focusing element grid
EP2936628B1 (en) Individual photon source suitable for mass production and production method
DE102012111054A1 (en) Security element for a value and / or security document
DE112020005976T5 (en) OPTOELECTRONIC DEVICE
DE102019003947A1 (en) Method for producing an optically variable security element
EP2893577B1 (en) Electro-optical component having a quantum dot structure
DE10255377B4 (en) Method of making a sign
EP1910096B1 (en) Marked member made of transparent material and method of manufacture
DE102006009217A1 (en) Electroluminescent device and method for its production
EP3578379A1 (en) Security element having a coloured image
EP3651997A1 (en) Product or product packaging with structural element
DE112020003257T5 (en) Methods, devices and materials for the production of micropixelated LEDs by additive manufacturing
DE102008020882A1 (en) Light emitting device, has inhomogeneous light source and wavelength converting element positioned in relation to each other such that pre-defined optical characteristics of light is achieved by device
EP3135495B1 (en) Printed security element
DE10018168A1 (en) Method of manufacturing organic light emitting diodes
DE102008057485A1 (en) Method for producing a multicolor volume hologram and holographic photopolymer film
EP1765040A2 (en) Electroluminescent film and method of its production
DE10057559A1 (en) Illuminating system comprises a substrate which is provided with light emitting semiconductor elements and electrical supply lines, and is covered by means of a holed mask
DE102022002840A1 (en) Security element for a document of value with a luminescent security feature and method for producing it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071025

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RTI1 Title (correction)

Free format text: MARKIERTER KOERPER AUS TRANSPARENTEM MATERIAL UND HERSTELLVERFAHREN

R17D Deferred search report published (corrected)

Effective date: 20080710

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100903

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: D. SWAROVSKI KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20130326

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 633554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013234

Country of ref document: DE

Effective date: 20131128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2440480

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013234

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013234

Country of ref document: DE

Effective date: 20140626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140404

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 633554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160330

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060404

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160422

Year of fee payment: 11

Ref country code: GB

Payment date: 20160422

Year of fee payment: 11

Ref country code: DE

Payment date: 20160421

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160422

Year of fee payment: 11

Ref country code: FR

Payment date: 20160422

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170404

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013234

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170404

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170404

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170405