EP1908194A2 - Système de transmission optique et dispositif de réception d'un signal optique - Google Patents

Système de transmission optique et dispositif de réception d'un signal optique

Info

Publication number
EP1908194A2
EP1908194A2 EP06794190A EP06794190A EP1908194A2 EP 1908194 A2 EP1908194 A2 EP 1908194A2 EP 06794190 A EP06794190 A EP 06794190A EP 06794190 A EP06794190 A EP 06794190A EP 1908194 A2 EP1908194 A2 EP 1908194A2
Authority
EP
European Patent Office
Prior art keywords
optical signal
signal
optical
modulated
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06794190A
Other languages
German (de)
English (en)
Inventor
Jean-Marc Merolla
Johann Cussey
Frédéric PATOIS
Nicolas Pelloquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Smartquantum SA
Universite de Franche-Comte
Original Assignee
Centre National de la Recherche Scientifique CNRS
Smartquantum SA
Universite de Franche-Comte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Smartquantum SA, Universite de Franche-Comte filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1908194A2 publication Critical patent/EP1908194A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Definitions

  • the present invention relates to an optical transmission system and a device for receiving an optical signal comprising at least one optical signal modulated by an electrical signal whose phase varies as a function of the value of at least one data bit to be transmitted.
  • the present invention is more particularly applicable in the field of securing information transfers and more particularly in the field of quantum cryptography.
  • the information is encoded at the transmitter and decoded by the receiver using a predetermined algorithm known to the transmitter and the receiver.
  • the security of the system depends on whether the key used by the algorithm is known only to the authorized sender and receiver.
  • Quantum cryptography distributes the key of the algorithm to ensure that if a third party device captures the signals carrying the key, the transmitter and the receiver can determine if the key has been picked up by the third party device.
  • a communication channel is used for the transmission, in the form of photons, of the quantum key.
  • a second communication channel called public channel, is used by the transmitter and the receiver to exchange data to check whether the transmission of the key on the quantum channel has been distorted, picked up by a third party device or not.
  • the transmission device transmits on the quantum channel a sequence of photons by randomly choosing the quantum state of each photon.
  • the state of each photon is chosen according to a known rule of the transmitter and receiver devices. Some of the chosen states are non-orthogonal, that is to say that it is not possible to differentiate them in a certain way.
  • the receiving device selects randomly and independently from that used by the transmitting device, a decision rule among at least two decision rules. If the receiving device uses the same decision rule as the transmitting device, the receiving device unequivocally determines the value of the transmitted bit. If the receiving device uses a decision rule that is not compatible with the state chosen by the sender or the decision rule chosen by the sender, the result obtained does not make it possible to determine the value of the transmitted bit. The probability of concluding at a bit 1 or a bit 0 is then equiprobable. The measure is therefore inconclusive.
  • the receiver device When the photon transmission is complete, the receiver device discloses the decision rule for each received photon via the public channel to the transmitting device. The result of the measurement remains naturally secret.
  • the transmitter and receiver devices eliminate by this method all the inconclusive results. Finally, they share a random sequence of bits that can be used as a cryptographic key.
  • Various quantum cryptography techniques have been proposed. Some use the polarization state of the photon to encode a binary information, others a phase modulation.
  • a first solution consists in introducing a phase shift carrying the information by introducing an optical path difference between the different optical signals between at least two temporally separated optical signals.
  • a second solution consists in introducing a phase shift carrying the information between "
  • This phase shift is performed by periodically modulating an optical signal.
  • the aforementioned cryptographic techniques are sensitive to polarization variations mainly related to the medium used for the transmission of photons.
  • the photon transmission medium is, for example and without limitation, the atmosphere or an optical fiber.
  • These polarization variations are related to the environment of the medium such as, for example, temperature variations thereof.
  • the invention solves the drawbacks of the prior art by providing a reception device which is insensitive to polarization variations and which thus enables key transmission according to quantum cryptography technique over long distances and / or high reliability in the time.
  • the invention proposes a device for receiving an optical signal comprising at least one optical pulse signal ⁇ 0 modulated by an electrical pulse signal ⁇ whose phase ⁇ l varies as a function of the value. at least one bit of data to be transmitted, characterized in that the reception device comprises:
  • a polarization separator for separating the optical signal of angular frequency ⁇ 0 modulated first and second optical signals propagating in the same direction, the first optical signal having a first polarization and the second optical signal having a second polarization,
  • the invention also relates to a system for transmitting an optical signal comprising at least one optical pulse signal ⁇ > o modulated by an electrical pulse signal ⁇ whose phase ⁇ l varies as a function of the value of at least one bit of data to be transmitted, characterized in that the system comprises: a transmitting device capable of forming the optical pulse signal ⁇ 0 modulated by the electrical pulse signal ⁇ whose phase ⁇ 1 varies as a function of the value of at least one bit of data to be transmitted, a receiver device comprising: polarization splitter for splitting the optical signal of angular frequency ⁇ 0 modulated first and second optical signals propagating in the same direction, the first optical signal having a first polarization and the second optical signal having a second polarization,
  • means for modulating the second optical signal from the second electrical ⁇ and ⁇ 2 phase pulsation signal means for combining the first modulated optical signal and the second modulated optical signal to form a recombined optical signal.
  • the receiver device further comprises photon detection means included in the optical signal, counting means for counting the number of photons detected over a predetermined time interval, and means for transferring data to the photon.
  • transmitter device for a modification of the pulsation ⁇ > o of the optical signal.
  • the receiving device is insensitive to frequency variations of the optical signals related for example to temperature or variations in time.
  • the modulating means of the first optical signal and the second optical signal are phase modulators or intensity modulators or electro-absorbent modulators.
  • the amplitude and / or phase of the first and second optical signals are adjusted independently.
  • the data is a cryptographic key and the optical signal consists of at least one modulation sideband comprising a photon.
  • the optical signal further comprises an optical pulse signal ⁇ s modulated by the electric pulse signal ⁇ and the means for obtaining the ⁇ and phase ⁇ 2 electric pulse signal comprise:
  • a wavelength demultiplexer (140) which separates in the optical signal the modulated optical pulse signal ⁇ 0 from the pulsating optical signal ⁇ s,
  • a detector which detects the photons of the pulsed optical signal ⁇ s modulated to form an electrical pulse synchronization signal ⁇
  • phase shifter of the phase synchronization electrical signal ⁇ 2 a phase shifter of the phase synchronization electrical signal ⁇ 2.
  • the receiving device has a synchronization signal which is insensitive to variations related to variations in the optical path of the optical signal received.
  • the device further comprises at least one filter for forming an optical signal whose pulsation corresponds to the pulsation of one of the modulation sidebands resulting from the modulation of the pulsating optical signal ⁇ 0 and at least one detector for detecting at least one photon in the optical signal comprising the modulation sideband.
  • the filter is a Fabry Pérot cavity and the device further comprises means for modifying the characteristics of the Fabry Pérot cavity.
  • the optical signal consists of two lateral modulation bands and the means for modifying the characteristics of the Fabry Pérot cavity modify the characteristics of the Fabry Pérot cavity to form an optical signal comprising the one or other of the modulation sidebands.
  • the means for modifying the characteristics of the Fabry Pérot cavity modify the characteristics of the Fabry Pérot cavity as a function of the number of photons detected over a predetermined time interval.
  • the receiving device is insensitive to frequency variations of the optical signals related for example to temperature or variations in time.
  • the Fabry Pérot cavity is associated with a temperature control device and the means for modifying the characteristics of the Fabry Pérot cavity comprise means for modifying the control temperature.
  • FIG. . 1 represents the architecture of the optical transmission system according to the present invention
  • FIG. 2 represents a Fabry Pérot cavity according to the present invention
  • FIG. 3 represents a system for controlling the temperature of the Fabry Pérot cavity according to the present invention.
  • Fig. 1 represents the architecture of the optical transmission system according to the present invention.
  • the optical transmission system as shown in FIG. 1 is particularly suitable for transmitting a cryptographic key.
  • a transmission device 160 transmits via a transmission medium 150, a cryptographic key to a receiving device 100.
  • the transmission medium 150 is the quantum channel and is, for example, an optical fiber.
  • the transmission medium 150 may also, according to an alternative embodiment, be the atmosphere.
  • the transmission device 160 is also connected to the receiver device 100 via a public channel 170.
  • the public channel 170 is for example included in a public communication network such as, for example, an IP type network or a telephone type communication network. Through the public channel 170, the transmitting device 160 and the receiving device 100 exchange information for the exchange of a key as previously described.
  • the transmission device 160 comprises a sine wave oscillator 161 ⁇ .
  • the sinusoidal electrical signal delivered by the oscillator 161 is then separated into two signals S1 and S2 by a power splitter 162 or "power splitter” in English.
  • the signals S1 and S2 are preferably of the same amplitude.
  • the signal Sl is then phase-shifted by a phase shift circuit 163.
  • the phase shift of the signal Sl makes it possible to code the bits of information to be transmitted.
  • the phase shift ⁇ l is equal to 0 or ⁇ / 2 when the two-state protocol B92 is used or is equal to 0 or ⁇ / 2, ⁇ or 3 ⁇ / 2 when the protocol BB84 is used.
  • the BB84 protocol is described in the publication of CH Bennett and G. Brassard entitled “Quantum cryptography: Public key distribution and coin tossing", “Proceeding of IEEE International on Computers, Systems and Signal Processing, Bangalore, India” (IEEE New York, 1984). ), pp 175-179.
  • the Sl-phase electrical signal is then transferred to an emission source 164 of an optical signal which modulates the optical signal of angular frequency ⁇ 0 by the phase shifted signal Sl.
  • the source of emission 164 of an optical signal consists, for example and without limitation, of a laser diode 164a and a modulator 164b electro-optical integrated on a substrate of lithium crystals niobate (LiNbO 3 ) or with electro absorption preferably integrated on the chip of the laser diode 164a.
  • the emission source 164 of the optical signal modulates the optical signal by the out-of-phase signal Sl with a modulation ratio denoted In 1 which is preferably much less than unity. It should be noted here that, the intensity phase modulation ratio of the laser diode 164 being negligible, the optical signal SI 1 formed by the emission source 164 is approximated as follows: o -
  • E 0 is the peak amplitude of the signal E ⁇ (t).
  • the spectral power density of the signal E ⁇ (t) consists of a carrier line of frequency at ⁇ 0 / 2 ⁇ , a frequency modulation sideband at ((Oo + ⁇ ) / 2 ⁇ , and a band lateral frequency modulation at ( ⁇ - ⁇ ) / 2 ⁇ .
  • the laser diode 164a is a DFB diode, acronym for "Distributed Feed Back" whose pulse ⁇ 0 is modified, for example by means of a change in its operating temperature, according to an instruction received from the reception device 100 via the transmission medium 150 or the public channel 170.
  • the electrical signal S2 is transferred to a transmission source 165 of an optical signal which modulates the optical pulse signal ⁇ s different from the pulsation ⁇ 0 by the signal S2 to form a synchronization signal S 12.
  • the emission source 165 of an optical signal is constituted, for example and without limitation, a laser diode 165a and an integrated electro optic modulator 165b on a substrate of lithium crystals niobate (LiNbO 3 ) or electro absorption preferably integrated on the chip of the laser diode.
  • optical signals SI 1 and S 12 are then multiplexed by a wavelength multiplexer 166 and transmitted on the quantum channel 150.
  • the transmitter device 160 does not include a power divider 162, a transmission source 165 and a wavelength multiplexer 166.
  • only the signal SI 1 is formed and transferred on the quantum channel 150.
  • the receiving device 100 comprises a wavelength demultiplexer 140 which separates in the received signal the optical signal Sl I 1 or quantum signal Sl 11 from the optical signal S 121 or reference signal S 121.
  • the reference signal S 121 avoids having, at the level of the reception device 100, a local oscillator synchronized with the pulsation signal ⁇ of the transmission device 160.
  • the reference signal S 121 of pulsation ⁇ s is transferred to a detector 102, such as, for example, an avalanche photodiode.
  • the detector 102 produces an electrical signal S 122 of the same pulsation ⁇ as the signal delivered by the oscillator 161 of the transmission device 160.
  • the receiver device 100 instead of obtaining the electrical signal S 122 of the ⁇ pulsation of the received optical signal, the receiver device 100 comprises a local oscillator of pulsation ⁇ as well as means for synchronizing its sound. local oscillator with the local oscillator 161 of the transmitter device 160.
  • the electrical signal S 122 is then phase shifted by a phase shift circuit 103.
  • the phase shift circuit 103 shifts the electrical signal S 122 by a phase shift ⁇ 2 + ⁇ / 2.
  • the phase shift ⁇ 2 is equal to 0 or ⁇ / 2 when the two-state protocol B92 is used or is equal to 0 or ⁇ / 2, ⁇ or 3 ⁇ / 2 when the BB84 protocol is used.
  • the out-of-phase electric signal S 123 is then separated into two electrical signals S 123a and S 123b of the same amplitude by a power divider 104.
  • the phases and amplitudes of the electrical signals S123a and S123b are adjusted so as to equalize the amplitude variations. and phase related to the characteristics of the active elements such as amplifiers (not shown in Fig. 1) or passive, such as the lengths of the tracks carrying the electrical signals S123a and S123b, so as to obtain a degree of modulation m 2 at the level of phase modulators 110a and HOb equal to nt / 2.
  • the electrical signals S 123a and S 123b are used as modulation signals respectively by the modulators 110a and 110b.
  • the quantum signal Sl I l is transferred, according to the invention, to a polarization splitter 105.
  • the polarization splitter 105 makes it possible to separate the received quantum signal Sl I l from any polarization into two optical signals Sl l ia and Sl 1 Ib propagating in the same direction but in different polarizations.
  • These polarizations are preferably orthogonal.
  • the electric field of the received quantum signal Sl I 1 is represented in an orthogonal coordinate system whose axes u and v are the axes of the polarization separator 105 in the form: in which A and B are the respective projections of the electric field ⁇ sm on the axes û and v.
  • the quantum signal Sl I l is divided into an optical signal Sl 1 or the quantum signal Sl 1 la whose electric field is:
  • the polarization separator 105 is, for example and without limitation, a polarization separator marketed by General Photonics Corporation under the name "Polarization Beam Splitter PBS-001-P-03-SM-FC / PC”.
  • the quantum signals Sl I la and Sl 11b are respectively transmitted to a phase modulator HOa and to a phase modulator HOb.
  • HOa and HOb modulators are intensity modulators or electro-absorbent modulators.
  • the modulator 110a modulates the quantum signal S11a by the electrical signal S123a
  • the phase modulator HOb modulates the quantum signal Sl 11b by the electrical signal S 123b.
  • Modulators 110 are modulators for example marketed by the company "EOspace” under the name “Very-Low-Loss Phase Modulator”.
  • the pulsation modulation sideband ⁇ > o + ⁇ is maximum and the lateral band of pulse modulation ⁇ 0 - ⁇ is zero.
  • the pulsation modulation sideband ⁇ 0 - ⁇ is maximum and the pulsation modulation sideband ⁇ 0 + ⁇ is zero.
  • the intensity of the quantum signal Sl 12a in the pulsation band O) 0 ⁇ ⁇ at the output of the phase modulator 11 Oa is proportional to:
  • the intensity of the quantum signal Sl 12b in the pulse band O) 0 ⁇ ⁇ at the output of the phase modulator 11 Ob is proportional to:
  • the quantum signals Sl 12a and Sl 12b are then recombined by a polarization separator 115, identical to the polarization separator 105 and used in reverse. After recombination, the total intensity in the pulsation band O) 0 ⁇ ⁇ of the quantum signals Sl 12a and Sl 12b is proportional to:
  • the recombined signal Sl 13 is filtered by a filter 120 to form a signal Sl 14 which comprises only one of the two modulation sidebands.
  • the filter 120 consists of Bragg filters, multilayer filters, AWG filters, acronym for Array Wave Guide, etc.
  • the filter 120 is a Fabry cavity
  • the recombined signal Sl 13 consists of three frequencies: the frequency at ⁇ 0 11%, a frequency modulation sideband at ( ⁇ o - ⁇ ) / 2 ⁇ and a frequency modulation sideband at ( ⁇ 0 + ⁇ ) / 2 ⁇ .
  • the filter 120 filters the recombined signal
  • the signal Sl 14 is then processed by a quantum detector 130 consisting of a photo detector which detects each photon transmitted in the frequency sideband ( ⁇ 0 + ⁇ ) / 2 ⁇ .
  • the receiver device 100 comprises two filters that filter the recombined signal Sl 13 so as to obtain respectively a first optical signal comprising the sideband at the frequency ( ⁇ 0 - ⁇ ) / 2 ⁇ and a second optical signal comprising the sideband at the frequency ( ⁇ 0 + ⁇ ) / 2 ⁇ .
  • the first optical signal is then processed by a first photo detector which detects each photon transmitted in the frequency sideband ( ⁇ 0 - ⁇ ) / 2 ⁇ and the second optical signal is then processed by a second photo detector that detects each photon transmitted in the frequency sideband ( ⁇ 0 + ⁇ ) / 2 ⁇ .
  • Fig. 2 represents a Fabry Pérot cavity according to the present invention.
  • the Fabry Pérot cavity 120 consists of two Bragg mirrors 24a and 24b inscribed on an optical fiber 21 consisting for example of a core of 9 microns and a sheath of 125 microns.
  • the cavity thus formed is held in a support composed of two parts 22a and 22b.
  • the two parts 22a and 22b are shown spaced from each other in FIG. 2 in order to allow the representation of the optical fiber 21.
  • the parts 22a and 22b are in contact to allow good thermal conduction.
  • a temperature control module 23 such as, for example, a Peltier effect module 23, is placed on the upper part of the support 22a to allow heating or cooling the optical fiber 21.
  • a heat sink 26 is placed on the Peltier effect module 23 and optimizes the temperature difference that exists between the external environment and the temperature of the Fabry Pérot cavity 120.
  • a temperature sensor 25, for example a thermistor, is placed on the lower part. 22b of the support and makes it possible to determine the temperature of the optical fiber 21.
  • Bragg 24 corresponding to the maximum reflection is variable depending on the temperature.
  • a system for controlling the temperature of the Fabry Pérot cavity is made in such a way as to adjust the frequency band or the frequency bands filtered by the Fabry Pérot cavity 120.
  • the Fabry cavity is made in such a way as to adjust the frequency band or the frequency bands filtered by the Fabry Pérot cavity 120.
  • Perot 120 is not temperature controlled to adjust the frequency band or the filtered frequency bands as a function of the number of photons detected within a predetermined time interval.
  • the pulsation ⁇ 0 of the laser diode 164a is controlled so that one of the two modulation bands is included in the frequency band or the frequency bands filtered by the Fabry Pérot cavity 120.
  • Fig. 3 represents a system for controlling the temperature of the Fabry Pérot cavity according to the present invention.
  • the recomposed signal Sl 13 is filtered by the Fabry Pérot cavity 120 described above.
  • the resulting signal Sl 14 consists of a single frequency and contains on average less than one photon.
  • the quantum detector 130 is preferably a cooled avalanche photodiode.
  • the avalanche photodiode operates as an active trigger and / or a feedback trigger.
  • the quantum detector alternatively comprises means for transposing the frequency of the resulting signal Sl 14 into a double frequency, so as to increase the performance of the quantum detector.
  • the quantum detector 130 makes it possible to detect the passage of a photon.
  • the quantum detector 130 emits an electric pulse which is shaped by an adaptation circuit 31 so as to be processed subsequently by conventional digital electronic components.
  • the adapted signal S300 is transferred to a processing unit 30.
  • the processing unit 30 is for example a microprocessor or a DSP, acronym for "Digital Signal Processing", or a computer.
  • the processing unit 30 comprises a communication bus 301 to which a processor 300, a non-volatile memory 302, a random access memory 303, a filter interface 305 and a counter 307 are connected.
  • the processing unit 30 further comprises a communication interface, not shown in FIG. 3, which allows the transfer of data allowing the control of the pulsation ⁇ 0 of the laser diode 120.
  • the non-volatile memory 302 stores the frequency control program of the filter according to the present invention.
  • the programs are transferred to the RAM 303 which then contains the executable code of the invention as well as the data necessary for the implementation of the invention.
  • the pulses of the adapted signal S 300 are counted by the counter 307 for a predetermined time of the order of a few microseconds to a few seconds.
  • the predetermined time is defined inter alia depending on the performance of the detector, the attenuation of the transmission channel.
  • the processor 300 obtains the number of pulses counted by the counter 306. When the filter 120 is not tuned to the frequency ( ⁇ 0 + ⁇ ) / 2 ⁇ , the number of pulses counted decreases.
  • the processor 300 determines, from a predetermined formula or a correspondence table stored in the non-volatile memory 302, the electrical signal to be delivered to the Peltier effect module 23 so as to modify the temperature of the optical fiber.
  • the processor 300 determines, from a predetermined formula or a correspondence table stored in the non-volatile memory 302, data that is transmitted to the transmission device 160 so as to modify the pulsation ⁇ 0 of the laser diode 120 so that one of the two modulation bands is included in the frequency band or the frequency bands filtered by the Fabry Pérot cavity 120.
  • the processor 300 transfers the determined electrical signal to the filter interface 305 which delivers the electrical signal corresponding to the Peltier effect module 23.
  • the temperature modification makes it possible to displace the frequential characteristics of the Fabry Pérot cavity 120 and to correct the drifts. wavelength of the sinusoidal filter or oscillator 161 of the transmitter device 160.
  • the processor 300 transfers the determined data to the transmission device 160 via the communication interface and the transmission medium 150 or the public channel 170.
  • the filter interface 305 is able to receive the electrical signal delivered by the thermistor 25 to check whether the temperature of the optical fiber 21 is in accordance with the regulation temperature and to correct the variations in the wavelength or transmission frequency of the emission source 164.
  • the processor 300 is able to transfer an electric signal to the Peltier effect module so as to bring the temperature of the optical fiber 21 to two different setpoint temperatures. These setpoint temperatures modify characteristics of the Fabry Perot cavity 120 to obtain an optical signal Sl 14 comprising one or other of the modulation sidebands. This allows you to choose the modulation sideband.
  • the processor 300 is also able to process the pulses of the adapted signal S300 to use them for the negotiation of the encryption key and to transfer it to a decryption device and / or encryption or further processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention concerne un dispositif de réception (100) d'un signal optique comprenant au moins un signal optique de pulsation ?<SUB>0</SUB> modulé par un signal électrique de pulsation O dont la phase Fl varie en fonction de la valeur d'au moins un bit de données à transmettre. Le dispositif de réception (100) comporte un séparateur de polarisation (105) pour séparer le signal optique de pulsation ?<SUB>0</SUB> modulé, en un premier et un second signaux optiques de polarisation différentes, des moyens d'obtention (140, 102, 103, 104) de deux signaux électriques, des moyens de modulation (110a) du premier signal optique à partir du premier signal électrique, des moyens de modulation (110b) du second signal optique à partir du second signal électrique, des moyens de combinaison (115) du premier signal optique modulé et du second signal optique modulé pour former un signal optique recombiné.

Description

Système de transmission optique et dispositif de réception d'un signal optique
La présente invention concerne un système de transmission optique et un dispositif de réception d'un signal optique comprenant au moins un signal optique modulé par un signal électrique dont la phase varie en fonction de la valeur d'au moins un bit de données à transmettre. La présente invention trouve plus particulièrement application dans le domaine de la sécurisation des transferts d'informations et plus particulièrement dans le domaine de la cryptographie quantique.
Dans un système de cryptographie, les informations sont codées à l'émetteur et décodées par le récepteur à l'aide d'un algorithme prédéterminé connu de l'émetteur et du récepteur. La sécurité du système dépend du fait que la clé utilisée par l'algorithme soit connue uniquement de l'émetteur et du récepteur autorisés.
La cryptographie quantique permet de distribuer la clé de l'algorithme de manière à garantir que si un dispositif tiers capte les signaux véhiculant la clé, l'émetteur et le récepteur puissent déterminer si la clé a été captée par le dispositif tiers.
Dans la cryptographie quantique, deux canaux de communication sont préférentiellement utilisés par le dispositif émetteur et le dispositif récepteur. Un premier canal de communication, dit canal quantique, est utilisé pour la transmission, sous la forme de photons, de la clé quantique. Un second canal de communication, dit canal public, est utilisé par l'émetteur et le récepteur pour échanger des données pour vérifier si la transmission de la clé sur le canal quantique a été distordue, captée par un dispositif tiers ou non.
Le transfert de la clé çrypto graphique s'effectue classiquement de la manière suivante :
A la première étape, le dispositif d'émission transmet sur le canal quantique une séquence de photons en choisissant de manière aléatoire l'état quantique de chaque photon. L'état de chaque photon est choisi selon une règle connue des dispositifs émetteur et récepteur. Une partie des états choisis sont non orthogonaux, c'est-à-dire qu'il n'est pas possible de les différencier de manière certaine.
Le dispositif récepteur choisit de manière aléatoire et indépendante de celle utilisée par le dispositif d'émission, une règle de décision parmi au moins deux règles de décision. Si le dispositif récepteur utilise la même règle de décision que le dispositif d'émission, le dispositif récepteur détermine sans équivoque la valeur du bit transmis. Si le dispositif récepteur utilise un règle de décision qui n'est pas compatible avec l'état choisi par l'émetteur ou la règle de décision choisie par l'émetteur, le résultat obtenu ne permet pas de déterminer la valeur du bit transmis. La probabilité de conclure à un bit 1 ou à un bit 0 est alors équiprobable. La mesure est donc non concluante.
Lorsque la transmission des photons est terminée, le dispositif récepteur divulgue par le canal public au dispositif émetteur, la règle de décision pour chaque photon reçu. Le résultat de la mesure reste naturellement secret. Les dispositifs émetteur et récepteur éliminent par cette méthode tous les résultats non concluants. Finalement, ils partagent une séquence aléatoire de bits qui pourra être utilisée comme clé cryptographique.
Diverses techniques de cryptographie quantique ont été proposées. Certaines utilisent l'état de polarisation du photon pour coder une information binaire, d'autres une modulation de phase. Dans la cryptographie quantique utilisant la modulation de phase, une première solution consiste à introduire un déphasage porteur de l'information en introduisant une différence de trajet optique entre les différents signaux optiques entre au moins deux signaux optiques séparés temporellement. Une seconde solution consiste à introduire un déphasage porteur de l'information entre au „
moins deux signaux optiques séparés dans le domaine fréquentiel. Ce déphasage est effectué en modulant périodiquement un signal optique.
Les techniques de cryptographie susmentionnées sont sensibles aux variations de polarisation liées principalement au milieu utilisé pour la transmission des photons. Le milieu de transmission des photons est, par exemple et de manière non limitative, l'atmosphère ou une fibre optique. Ces variations de polarisation sont liées à l'environnement du milieu comme, par exemple, aux variations de température de celui-ci.
L'invention résout les inconvénients de l'art antérieur en proposant un dispositif de réception qui soit insensible aux variations de polarisation et qui permette ainsi la transmission de clé selon la technique de cryptographie quantique sur de longues distances et/ou de grande fiabilité dans le temps.
A cette fin, selon un premier aspect, l'invention propose un dispositif de réception d'un signal optique comprenant au moins un signal optique de pulsation ω0 modulé par un signal électrique de pulsation Ω dont la phase Φl varie en fonction de la valeur d'au moins un bit de données à transmettre, caractérisé en ce que le dispositif de réception comporte :
- un séparateur de polarisation pour séparer le signal optique de pulsation ω0 modulé en un premier et un second signaux optiques se propageant selon une même direction, le premier signal optique ayant une première polarisation et le second signal optique ayant une seconde polarisation,
- des moyens d'obtention d'un premier et d'un second signaux électriques de pulsation Ω et de phase Φ2,
- des moyens de modulation du premier signal optique à partir du premier signal électrique de pulsation Ω et de phase Φ2,
- des moyens de modulation du second signal optique à partir du second signal électrique de pulsation Ω et de phase Φ2,
- des moyens de combinaison du premier signal optique modulé et du second signal optique modulé pour former un signal optique recombiné. L'invention concerne aussi un système de transmission d'un signal optique comprenant au moins un signal optique de pulsation α>o modulé par un signal électrique de pulsation Ω dont la phase Φl varie en fonction de la valeur d'au moins un bit de données à transmettre, caractérisé en ce que le système comporte : - un dispositif émetteur apte à former le signal optique de pulsation ω0 modulé par le signal électrique de pulsation Ω dont la phase Φl varie en fonction de la valeur d'au moins un bit de données à transmettre, un dispositif récepteur comportant : - un séparateur de polarisation pour séparer le signal optique de pulsation ω0 modulé en un premier et un second signaux optiques se propageant selon une même direction, le premier signal optique ayant une première polarisation et le second signal optique ayant une seconde polarisation,
- des moyens d'obtention d'un premier et d'un second signaux électriques de pulsation Ω et de phase Φ2,
- des moyens de modulation du premier signal optique à partir du premier signal électrique de pulsation Ω et de phase Φ2,
- des moyens de modulation du second signal optique à partir du second signal électrique de pulsation Ω et de phase Φ2, - des moyens de combinaison du premier signal optique modulé et du second signal optique modulé pour former un signal optique recombiné.
Ainsi, on obtient un signal optique recombiné qui est insensible aux variations de la polarisation. Cette insensibilité permet ainsi la transmission de données sur de longues distances et/ou de grande fiabilité dans le temps.
Selon un autre aspect de l'invention, le dispositif récepteur comporte en outre des moyens de détection de photons compris dans le signal optique, des moyens de comptage du nombre de photons détecté sur un intervalle de temps prédéterminé et des moyens de transfert de données au dispositif émetteur pour une modification de la pulsation α>o du signal optique.
Ainsi, le dispositif de réception est insensible à des variations de fréquence des signaux optiques liées par exemple à la température ou à des variations dans le temps. Selon un autre aspect de l'invention, les moyens de modulation du premier signal optique et du second signal optique sont des modulateurs de phase ou des modulateurs d'intensité ou des modulateurs électro-absorbants.
Selon un autre aspect de l'invention, l'amplitude et/ou la phase du premier et du second signal optique sont ajustées indépendamment.
Ainsi, les dispersions au niveau des composants actifs et/ou passifs sont supprimées. Selon un autre aspect de l'invention, les données sont une clé cryptographique et le signal optique est constitué d'au moins une bande latérale de modulation comprenant un photon.
Ainsi, il est possible de transmettre une clé cryptographique sur de longues distances.
Selon un autre aspect de l'invention, le signal optique comporte en outre un signal optique de pulsation ωs modulé par le signal électrique de pulsation Ω et les moyens d'obtention du signal électrique de pulsation Ω et de phase Φ2 comportent :
- un démultiplexeur de longueurs d'ondes (140) qui sépare dans le signal optique le signal optique de pulsation ω0 modulé du signal optique de pulsation ωs,
- un détecteur qui détecte les photons du signal optique de pulsation ωs modulé pour former un signal électrique de synchronisation de pulsation Ω,
- un déphaseur du signal électrique de synchronisation de phase Φ2.
Ainsi, le dispositif de réception dispose d'un signal de synchronisation qui est peu sensible aux variations liées aux variations du chemin optique du signal optique reçu.
Selon un autre aspect de l'invention, le dispositif comporte en outre au moins un filtre pour former un signal optique dont la pulsation correspond à la pulsation d'une des bandes latérales de modulation issue de la modulation du signal optique de pulsation ω0 et au moins un détecteur pour détecter au moins un photon dans le signal optique comprenant la bande latérale de modulation.
Ainsi, le coût et l'encombrement du dispositif de réception sont réduits.
Selon un autre aspect de l'invention, le filtre est une cavité de Fabry Pérot et le dispositif comporte en outre des moyens de modification des caractéristiques de la cavité de Fabry Pérot.
Ainsi, il est possible d'ajuster les caractéristiques de la cavité de Fabry Pérot.
Selon un autre aspect de l'invention, le signal optique est constitué de deux bandes latérales de modulation et les moyens de modification des caractéristiques de la cavité de Fabry Pérot modifient les caractéristiques de la cavité de Fabry Pérot pour former un signal optique comprenant l'une ou l'autre des bandes latérales de modulation.
Ainsi, il est possible de choisir la bande latérale de modulation qui est utilisée pour détecter la clé cryptographique. Il est alors plus difficile pour un dispositif espion de détecter la clé cryptographique sans que le dispositif de réception et/ou le dispositif d'émission ayant émis le signal optique ne le détecte.
Selon un autre aspect de l'invention, les moyens de modification des caractéristiques de la cavité de Fabry Pérot modifient les caractéristiques de la cavité de Fabry Pérot en fonction du nombre de photons détecté sur un intervalle de temps prédéterminé.
Ainsi, le dispositif de réception est insensible à des variations de fréquence des signaux optiques liées par exemple à la température ou à des variations dans le temps.
Selon un autre aspect de l'invention, la cavité de Fabry Pérot est associée à un dispositif de régulation de température et les moyens de modification des caractéristiques de la cavité de Fabry Pérot comportent des moyens de modification de la température de régulation.
Ainsi, la modification des caractéristiques de la cavité de Fabry Pérot est effectuée de manière simple. Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels: la Fig. 1 représente l'architecture du système de transmission optique selon la présente invention ; la Fig. 2 représente une cavité de Fabry Pérot selon la présente invention ; la Fig. 3 représente un système de contrôle de la température de la cavité de Fabry Pérot selon la présente invention.
La Fig. 1 représente l'architecture du système de transmission optique selon la présente invention.
Le système de transmission optique tel que représenté en Fig. 1 est particulièrement adapté à la transmission d'une clé cryptographique.
Dans le système pour la transmission optique sécurisée de clé cryptographique, un dispositif d'émission 160 transmet par l'intermédiaire d'un milieu de transmission 150, une clé cryptographique à un dispositif de réception 100.
Le milieu de transmission 150 est le canal quantique et est, par exemple, une fibre optique. Le milieu de transmission 150 peut aussi, selon une variante de réalisation, être l'atmosphère. Le dispositif d'émission 160 est aussi relié au dispositif récepteur 100 par l'intermédiaire d'un canal public 170. Le canal public 170 est par exemple compris dans un réseau de communication public tel que, par exemple, un réseau de type IP ou un réseau de communication de type téléphonique. Par l'intermédiaire du canal public 170, le dispositif d'émission 160 et le dispositif récepteur 100 échangent des informations pour l'échange d'une clé comme cela a été précédemment décrit.
Le dispositif d'émission 160 comprend un oscillateur 161 sinusoïdal de pulsation Ω. Le signal électrique sinusoïdal délivré par l'oscillateur 161 est ensuite séparé en deux signaux Sl et S2 par un diviseur de puissance 162 ou « power splitter » en anglais. Les signaux Sl et S2 sont de préférence de même amplitude.
Le signal Sl est ensuite déphasé par un circuit de déphasage 163. Le déphasage du signal Sl permet de coder les bits d'informations à transmettre. Selon la valeur du bit d'information à transmettre, le déphasage Φl est égal à 0 ou π/2 lorsque le protocole à deux états B92 est utilisé ou est égal à 0 ou π/2, π ou 3 π/2 lorsque le protocole BB84 est utilisé. Le protocole BB84 est décrit dans la publication de CH Bennett et G. Brassard intitulée « Quantum cryptographie : Public key distribution and coin tossing », « Proceeding of IEEE International on Computers, Systems and Signal Processing, Bangalore, Inde (IEEE New York, 1984), pp 175-179.
Le protocole B92 est décrit dans la publication de CH. Bennett intitulée « Quantum cryptography using two non orthogonal states », Physical Review Letters, vol 68, no 21, pp 3121-3124, 1992.
Le signal électrique Sl déphasé est ensuite transféré à une source d'émission 164 d'un signal optique qui module le signal optique de pulsation ω0 par le signal Sl déphasé. La source d'émission 164 d'un signal optique est constituée, par exemple et de manière non limitative, d'une diode laser 164a et d'un modulateur 164b électro optique intégré sur un substrat de cristaux de lithium niobate (LiNbO3) ou à électro absorption préférablement intégré sur la puce de la diode laser 164a. La source d'émission 164 du signal optique module le signal optique par le signal Sl déphasé avec un taux de modulation noté In1 qui est préférentiellement très inférieur à l'unité. II est à remarquer ici que, le rapport de modulation phase intensité de la diode laser 164 étant négligeable, le signal optique SI l formé par la source d'émission 164 est approximé de la manière suivante : o -
^n(O = l + - m*-cos(Ω* + fl ) Uxp(jωot)
En (0 = E01 1 + -Λ. C0S(Ωt + φt ) I exp(jωot)
dans lequel E0 est l'amplitude crête du signal Eπ(t).
La densité spectrale de puissance du signal Eπ(t) est constituée d'une raie porteuse de fréquence à ω0 /2π, d'une bande latérale de modulation de fréquence à ((Oo + Ω)/2π,et d'une bande latérale de modulation de fréquence à (ωo- Ω)/2π.
Dans une variante de réalisation de la présente invention, la diode laser 164a est une diode DFB, acronyme de « Distributed Feed Back » dont la pulsation ω0 est modifiée, par exemple par l'intermédiaire d'un changement de sa température de fonctionnement, selon une consigne reçue du dispositif de réception 100 par l'intermédiaire du milieu de transmission 150 ou du canal public 170.
Le signal électrique S2 est transféré à une source d'émission 165 d'un signal optique qui module le signal optique de pulsation ωs différente de la pulsation ω0 par le signal S2 pour former un signal de synchronisation S 12. La source d'émission 165 d'un signal optique est constituée, par exemple et de manière non limitative, d'une diode laser 165a et d'un modulateurl65b électro optique intégré sur un substrat de cristaux de lithium niobate (LiNbO3) ou à électro absorption préférablement intégré sur la puce de la diode laser.
Les signaux optiques SI l et S 12 sont ensuite multiplexes par un multiplexeur de longueurs d'ondes 166 et émis sur le canal quantique 150.
Il est à remarquer ici que, dans une première variante de réalisation, le dispositif émetteur 160 ne comporte pas de diviseur de puissance 162, de source d'émission 165 et de multiplexeur de longueurs d'ondes 166. Selon cette variante de réalisation, seul le signal SI l est formé et transféré sur le canal quantique 150. II est à remarquer ici que, préalablement à l'émission du signal optique sur le canal quantique, celui-ci est atténué de sorte que la probabilité d'avoir plus d'un photon dans chaque bande latérale de modulation est faible. Typiquement, la probabilité d'avoir un photon par bande latérale de modulation est inférieure à 0,01 pour chaque impulsion. Le dispositif de réception 100 comporte un démultiplexeur de longueurs d'ondes 140 qui sépare dans le signal reçu, le signal optique Sl I l ou signal quantique Sl 11 du signal optique S 121 ou signal de référence S 121. II est à remarquer ici que le signal de référence S 121 évite d'avoir, au niveau du dispositif de réception 100, un oscillateur local synchronisé sur le signal de pulsation Ω du dispositif d'émission 160.
Le signal de référence S 121 de pulsation ωs est transféré à un détecteur 102, tel que par exemple, une photodiode à avalanche.
Le détecteur 102 produit un signal électrique S 122 de même pulsation Ω que le signal délivré par l'oscillateur 161 du dispositif d'émission 160.
Il est à remarquer que, selon la première variante de réalisation, au lieu d'obtenir le signal électrique S 122 de pulsation Ω du signal optique reçu, le dispositif récepteur 100 comporte un oscillateur local de pulsation Ω ainsi que des moyens de synchronisation de son oscillateur local avec l'oscillateur local 161 du dispositif émetteur 160.
Le signal électrique S 122 est ensuite déphasé par un circuit de déphasage 103. Le circuit de déphasage 103 déphase le signal électrique S 122 d'un déphasage Φ2 + π/2. Le déphasage Φ2 est égal à 0 ou π/2 lorsque le protocole à deux états B92 est utilisé ou est égal à 0 ou π/2, π ou 3 π/2 lorsque le protocole BB84 est utilisé.
Le signal électrique déphasé S 123 est ensuite séparé en deux signaux électriques S 123a et S 123b de même amplitude par un diviseur de puissance 104. Les phases et les amplitudes des signaux électriques S123a et S123b sont ajustées de manière à égaliser les variations d'amplitude et de phase liées aux caractéristiques des éléments actifs tels que des amplificateurs (non représentés en Fig. 1) ou passifs, tels que les longueurs des pistes véhiculant les signaux électriques S123a et S123b, de manière à obtenir un taux de modulation m2 au niveau des modulateurs de phase 110a et HOb égal a nt/2. Les signaux électriques S 123a et S 123b sont utilisés comme signaux de modulation respectivement par les modulateurs 110a et 110b.
Le signal quantique Sl I l est transféré, selon l'invention, à un séparateur de polarisation 105. Le séparateur de polarisation 105 permet de séparer le signal quantique Sl I l reçu de polarisation quelconque en deux signaux optiques Sl l ia et Sl 1 Ib se propageant dans la même direction mais selon des polarisations différentes.
Ces polarisations sont préférentiellement orthogonales.
Le champ électrique du signal quantique reçu Sl I l est représenté dans un repère orthogonal dont les axes u et v sont les axes du séparateur de polarisation 105 sous la forme : dans lequel A et B sont les projections respectives du champ électrique Èsm sur les axes û et v .
Il est à remarquer ici que A et B vérifient l'équation suivante : A1 + B2 = 1.
Ainsi le signal quantique Sl I l est divisé en un signal optique Sl 1 la ou signal quantique Sl 1 la dont le champ électrique est :
S 11 Ib ou signal quantique S 11 Ib dont le champ électrique est :
Le séparateur de polarisation 105 est, par exemple et de manière non limitative, un séparateur de polarisation commercialisé par la société General Photonics Corporation sous la dénomination « Polarization Beam Splitter PBS-001-P-03-SM- FC/PC ».
Les signaux quantiques Sl l la et Sl 11b sont respectivement transmis à un modulateur de phase HOa et à un modulateur de phase HOb. En variante, les modulateurs HOa et HOb sont des modulateurs d'intensité ou des modulateurs électro-absorbants .
Le modulateur 110a module le signal quantique Sll la par le signal électrique S123a, le modulateur de phase HOb module le signal quantique Sl 11b par le signal électrique S 123b.
Les modulateurs 110 sont des modulateurs par exemple commercialisés par la société « EOspace » sous la dénomination « Very-Low-Loss Phase Modulator ».
Lorsque le dispositif d'émission 160 et le dispositif de réception 100 sont en phase, c'est-à-dire que Φl est égale à Φ2, la bande latérale de modulation de pulsation α>o + Ω est maximale et la bande latérale de modulation de pulsation ω0 - Ω est nulle.
Au contraire, si le dispositif d'émission 160 et le dispositif de réception 100 sont en opposition de phase, la bande latérale de modulation de pulsation ω0 - Ω est maximale et la bande latérale de modulation de pulsation ω0 + Ω est nulle. L'intensité du signal quantique Sl 12a dans la bande de pulsation O)0 ± Ω en sortie du modulateur de phase 11 Oa est proportionnelle à :
%»° ~ A2(l+/-coS(φl-φ2))
L'intensité du signal quantique Sl 12b dans la bande de pulsation O)0 ± Ω en sortie du modulateur de phase 11 Ob est proportionnelle à :
Les signaux quantiques Sl 12a et Sl 12b sont ensuite recombinés par un séparateur de polarisation 115, identique au séparateur de polarisation 105 et utilisé en inverse. Après recombinaison, l'intensité totale dans la bande de pulsation O)0 ± Ω des signaux quantiques Sl 12a et Sl 12b est proportionnelle à :
C " (Λ2 + B2 )(1 + /- COS(^l - φ2))
Et par simplification à
Nous remarquons ici que l'intensité totale ne dépend ni de A ni de B et donc de la polarisation du signal quantique reçu Sl I l. Le récepteur ainsi constitué est ainsi insensible à la polarisation.
Le signal recombiné Sl 13 est filtré par un filtre 120 pour former un signal Sl 14 qui comprend uniquement une des deux bandes latérales de modulation. Le filtre 120 est constitué de filtres de Bragg, de filtres multicouches, de filtres AWG, acronyme de Array Wave Guide, etc. Préférentiellement, le filtre 120 est une cavité de Fabry
Pérot. Elle sera décrite plus en détail en regard de la Fig. 2.
Le signal recombiné Sl 13 est constitué de trois fréquences : la fréquence à ω0 11%, une bande latérale de modulation de fréquence à (ωo - Ω)/2π et une bande latérale de modulation de fréquence à (ω0 + Ω)/2π. Le filtre 120 filtre le signal recombiné
Sl 13 de manière à supprimer la composante à la fréquence ω0 11% et une des bandes latérales de modulation, par exemple, la bande latérale à la fréquence (ω0- Ω)/2π.
Le signal Sl 14 est ensuite traité par un détecteur quantique 130 constitué d'un photo détecteur qui détecte chaque photon transmis dans la bande latérale de fréquence (ω0 + Ω)/2π. II est à remarquer ici que, dans une seconde variante de réalisation, le dispositif récepteur 100 comporte deux filtres qui filtrent le signal recombiné Sl 13 de manière à obtenir respectivement un premier signal optique comprenant la bande latérale à la fréquence (ω0 - Ω)/2π et un second signal optique comprenant la bande latérale à la fréquence (ω0 + Ω)/2π. Selon cette seconde variante de réalisation, le premier signal optique est ensuite traité par un premier photo détecteur qui détecte chaque photon transmis dans la bande latérale de fréquence (ω0 - Ω)/2π et le second signal optique est ensuite traité par un second photo détecteur qui détecte chaque photon transmis dans la bande latérale de fréquence (ω0 + Ω)/2π. La Fig. 2 représente une cavité de Fabry Pérot selon la présente invention.
La cavité de Fabry Pérot 120 est constituée de deux miroirs de Bragg 24a et 24b inscrits sur une fibre optique 21 constituée par exemple d'un cœur de 9 μm et d'une gaine de 125 μm. La cavité ainsi constituée est maintenue dans un support composé de deux parties 22a et 22b. Les deux parties 22a et 22b sont présentées distantes l'une de l'autre dans la Fig. 2 de manière à permettre la représentation de la fibre optique 21. En réalité, les parties 22a et 22b sont en contact pour permettre une bonne conduction thermique. Un module de régulation de température 23 tel que, par exemple, un module à effet Peltier 23, est placé sur la partie supérieure du support 22a afin de permettre de chauffer ou de refroidir la fibre optique 21. Un dissipateur thermique 26 est placé sur le module à effet Peltier 23 et permet d'optimiser l'écart de température qui existe entre l'environnement extérieur et la température de la cavité de Fabry Pérot 120. Un capteur de température 25, par exemple une thermistance, est placé sur la partie inférieure 22b du support et permet de déterminer la température de la fibre optique 21. Dans la cavité de Fabry Pérot 120, la longueur d'onde centrale des miroirs de
Bragg 24 correspondant au maximum de réflexion est variable en fonction de la température. Selon l'invention, un système de contrôle de la température de la cavité de Fabry Pérot est effectué de manière à ajuster la bande de fréquence ou les bandes de fréquence filtrées par la cavité de Fabry Pérot 120. Selon une variante de réalisation de la présente invention, la cavité de Fabry
Pérot 120 n'est pas contrôlée en température pour ajuster la bande de fréquence ou les bandes de fréquence filtrées en fonction du nombre de photons détectés dans un intervalle de temps prédéterminé. Selon cette variante, la pulsation ω0 de la diode laser 164a est contrôlée pour qu'une des deux bandes de modulation soit comprise dans la bande de fréquence ou les bandes de fréquence filtrées par la cavité de Fabry Pérot 120.
La Fig. 3 représente un système de contrôle de la température de la cavité de Fabry Pérot selon la présente invention. Le signal recomposé Sl 13 est filtré par la cavité de Fabry Pérot 120 décrite précédemment. Le signal résultant Sl 14 est constitué d'une unique fréquence et contient en moyenne moins de un photon. Le détecteur quantique 130 est préférentiellement une photodiode à avalanche refroidie. La photodiode à avalanche fonctionne en déclenchement actif et/ou à déclenchement à contre réaction. Il est à remarquer ici que le détecteur quantique comporte en variante des moyens de transposition de la fréquence du signal résultant Sl 14 en une fréquence double, de manière à augmenter les performances du détecteur quantique.
Le détecteur quantique 130 permet de détecter le passage d'un photon. Lorsque le passage d'un photon est détecté, le détecteur quantique 130 émet une impulsion électrique qui est mise en forme par un circuit d'adaptation 31 de manière à être traitée par la suite par des composants électroniques numériques classiques. Le signal adapté S300 est transféré à une unité de traitement 30. L'unité de traitement 30 est par exemple un microprocesseur ou un DSP, acronyme de « Digital Signal Processing », ou un ordinateur. L'unité de traitement 30 comporte un bus de communication 301 auquel sont reliés un processeur 300, une mémoire non volatile 302, une mémoire vive 303, une interface filtre 305 et un compteur 307.
L'unité de traitement 30 comporte en outre une interface de communication, non représentée en Fig. 3, qui permet le transfert de données permettant le contrôle de la pulsation ω0 de la diode laser 120.
La mémoire non volatile 302 mémorise le programme d'asservissement en fréquence du filtre selon la présente invention. Lors de la mise sous tension de l'unité de traitement 30, les programmes sont transférés dans la mémoire vive 303 qui contient alors le code exécutable de l'invention ainsi que les données nécessaires à la mise en œuvre de l'invention.
Les impulsions du signal adapté S 300 sont comptées par le compteur 307 pendant un temps prédéterminé de l'ordre de quelques microsecondes à quelques secondes. Le temps prédéterminé est défini entre autres en fonction du rendement du détecteur, de l'atténuation du canal de transmission. Le processeur 300 obtient le nombre d'impulsions comptées par le compteur 306. Lorsque le filtre 120 n'est pas accordé à la fréquence (ω0 + Ω)/2π, le nombre d'impulsions comptées diminue. Le processeur 300 détermine, à partir d'une formule prédéterminée ou d'une table de correspondance mémorisée dans la mémoire non volatile 302, le signal électrique qui doit être délivré au module à effet Peltier 23 de manière à modifier la température de la fibre optique 21 et donc à ajuster la bande de fréquence ou les bandes de fréquence filtrées par la cavité de Fabry Pérot 120. Si le nombre d'impulsions détectées diminue lorsque la valeur de la consigne augmente, alors le sens de variation de la consigne est inversé. Sinon, la valeur de la consigne varie dans le même sens jusqu'à observer de nouveau une réduction du nombre de coups détectés.
Dans une variante de réalisation, le processeur 300 détermine, à partir d'une formule prédéterminée ou d'une table de correspondance mémorisée dans la mémoire non volatile 302, des données qui sont transmises au dispositif d'émission 160 de manière à modifier la pulsation ω0 de la diode laser 120 pour qu'une des deux bandes de modulation soit comprise dans la bande de fréquence ou les bandes de fréquence filtrées par la cavité de Fabry Pérot 120.
Le processeur 300 transfère le signal électrique déterminé à l'interface filtre 305 qui délivre le signal électrique correspondant au module à effet Peltier 23. La modification de température permet de déplacer les caractéristiques fréquentielles de la cavité de Fabry Pérot 120 et de corriger les dérives en longueur d'onde du filtre ou de l'oscillateur 161 sinusoïdal du dispositif émetteur 160.
Selon la variante de réalisation, le processeur 300 transfère les données déterminées au dispositif d'émission 160 par l'intermédiaire de l'interface de communication et du milieu de transmission 150 ou du canal public 170.
L'interface filtre 305 est apte à recevoir le signal électrique délivré par la thermistance 25 pour contrôler si la température de la fibre optique 21 est conforme à la température de régulation et pour corriger les variations de la longueur d'onde ou fréquence d'émission de la source d'émission 164. De la même manière, le processeur 300 est apte à transférer un signal électrique au module à effet Peltier de manière à amener la température de la fibre optique 21 à deux températures de consigne différentes. Ces températures de consigne modifient des caractéristiques de la cavité de Fabry Pérot 120 pour obtenir un signal optique Sl 14 comprenant l'une ou l'autre des bandes latérales de modulation. Ceci permet de choisir la bande latérale de modulation.
Le processeur 300 est aussi apte à traiter les impulsions du signal adapté S300 pour utiliser celles-ci pour la négociation de la clé de cryptage et à transférer celle-ci vers un dispositif de décryptage et/ou de cryptage ou un traitement ultérieur.
Bien entendu, la présente invention n'est nullement limitée aux modes de réalisation décrits ici, mais englobe, bien au contraire, toute variante à la portée de l'homme du métier.

Claims

REVENDICATIONS
1) Dispositif de réception (100) d'un signal optique comprenant au moins un signal optique de pulsation ω0 modulé par un signal électrique de pulsation Ω dont la phase Φl varie en fonction de la valeur d'au moins un bit de données à transmettre, caractérisé en ce que le dispositif de réception (100) comporte : - un séparateur de polarisation (105) pour séparer le signal optique de pulsation ω0 modulé (SlI l) en un premier (Sl lia) et un second (Sl Hb) signaux optiques se propageant selon une même direction, le premier signal optique (Sl l ia) ayant une première polarisation et le second signal optique (Sl l ia) ayant une seconde polarisation, - des moyens d'obtention (140, 102, 103, 104) d'un premier et d'un second signaux électriques de pulsation Ω et de phase Φ2,
- des moyens de modulation (110a) du premier signal optique à partir du premier signal électrique de pulsation Ω et de phase Φ2,
- des moyens de modulation (HOb) du second signal optique à partir du second signal électrique de pulsation Ω et de phase Φ2,
- des moyens de combinaison (115) du premier signal optique modulé et du second signal optique modulé pour former un signal optique recombiné.
2) Dispositif selon la revendication 1, caractérisé en ce que les moyens de modulation du premier signal optique et du second signal optique sont des modulateurs de phase ou des modulateurs d'intensité ou des modulateurs électroabsorbants.
3) Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'amplitude et/ou la phase du premier et du second signal optique sont ajustés indépendamment.
4) Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les données sont une clé cryptographique et en ce que le signal optique est constitué d'au moins une bande latérale de modulation comprenant un photon.
5) Dispositif selon la revendication 4, caractérisé en ce que le signal optique comporte en outre un signal optique de pulsation ωs (S 121) modulé par le signal électrique de pulsation Ω et en ce que les moyens d'obtention du signal électrique de pulsation Ω et de phase Φ2 comportent :
- un démultiplexeur de longueurs d'ondes (140) qui sépare dans le signal optique le signal optique de pulsation ω0 modulé du signal optique de pulsation oos, - un détecteur (102) qui détecte les photons du signal optique de pulsation ωs modulé pour former un signal électrique de synchronisation de pulsation Ω,
- un déphaseur (103) du signal électrique de synchronisation de phase Φ2.
6) Dispositif selon la revendication 5, caractérisé en ce que le dispositif comporte en outre au moins un filtre (120) pour former un signal optique dont la pulsation correspond à la pulsation d'une des bandes latérales de modulation issue de la modulation du signal optique de pulsation co0 et au moins un détecteur (130) pour détecter au moins un photon dans le signal optique comprenant la bande latérale de modulation.
7) Dispositif selon la revendication 6, caractérisé en ce que le filtre est une cavité de Fabry Pérot et en ce que le dispositif comporte en outre des moyens de modification (30) des caractéristiques de la cavité de Fabry Pérot.
8) Dispositif selon la revendication 7, caractérisé en ce que le signal optique est constitué de deux bandes latérales de modulation et en ce que les moyens de modification des caractéristiques de la cavité de Fabry Pérot modifient les caractéristiques de la cavité de Fabry Pérot pour former un signal optique comprenant l'une ou l'autre des bandes latérales de modulation.
9) Dispositif selon la revendication 7, caractérisé en ce que les moyens de modification des caractéristiques de la cavité de Fabry Pérot modifient les caractéristiques de la cavité de Fabry Pérot en fonction du nombre de photons détecté sur un intervalle de temps prédéterminé.
10) Dispositif selon la revendication 7, caractérisé en ce que la cavité de Fabry Pérot est associée à un dispositif de régulation de température et en ce que les moyens de modification des caractéristiques de la cavité de Fabry Pérot comportent des moyens de modification de la température de régulation.
. _
Io
11) Système de transmission d'un signal optique comprenant au moins un signal optique de pulsation coo modulé par un signal électrique de pulsation Ω dont la phase Φl varie en fonction de la valeur d'au moins un bit de données à transmettre, caractérisé en ce que le système comporte :
- un dispositif émetteur (160) apte à former le signal optique de pulsation α>o modulé par le signal électrique de pulsation Ω dont la phase Φl varie en fonction de la valeur d'au moins un bit de données à transmettre, un dispositif récepteur (100) comportant : - un séparateur de polarisation (105) pour séparer le signal optique de pulsation coo modulé en un premier et un second signaux optiques se propageant selon une même direction, le premier signal optique ayant une première polarisation et le second signal optique ayant une seconde polarisation,
- des moyens d'obtention (140, 102, 103, 104) d'un premier et d'un second signaux électriques de pulsation Ω et de phase Φ2,
- des moyens de modulation (HOa) du premier signal optique à partir du premier signal électrique de pulsation Ω et de phase Φ2,
- des moyens de modulation (HOb) du second signal optique à partir du second signal électrique de pulsation Ω et de phase Φ2, - des moyens de combinaison (115) du premier signal optique modulé et du second signal optique modulé pour former un signal optique recombiné.
12) Système selon la revendication 11, caractérisé en ce que le dispositif récepteur comporte en outre des moyens de détection de photons compris dans le signal optique, des moyens de comptage du nombre de photons détectés sur un intervalle de temps prédéterminé et des moyens de transfert de données au dispositif émetteur pour une modification de la pulsation ω0 du signal optique.
EP06794190A 2005-07-27 2006-07-13 Système de transmission optique et dispositif de réception d'un signal optique Withdrawn EP1908194A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508013A FR2889320B1 (fr) 2005-07-27 2005-07-27 Systeme de transmission optique et dispositif de reception d'un signal optique
PCT/FR2006/001744 WO2007012730A2 (fr) 2005-07-27 2006-07-13 Système de transmission optique et dispositif de réception d'un signal optique

Publications (1)

Publication Number Publication Date
EP1908194A2 true EP1908194A2 (fr) 2008-04-09

Family

ID=36035826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06794190A Withdrawn EP1908194A2 (fr) 2005-07-27 2006-07-13 Système de transmission optique et dispositif de réception d'un signal optique

Country Status (5)

Country Link
US (1) US20090310965A1 (fr)
EP (1) EP1908194A2 (fr)
JP (1) JP2009503971A (fr)
FR (1) FR2889320B1 (fr)
WO (1) WO2007012730A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935845B1 (fr) 2008-09-05 2010-09-10 Centre Nat Rech Scient Cavite optique amplificatrice de type fabry-perot
CN103178954B (zh) * 2013-03-12 2016-01-06 华南师范大学 一种用于提高相位调制器半波电压测量可信度的方法
EP4159989B1 (fr) 2021-09-30 2024-08-07 Honda Motor Co., Ltd. Dispositif à taux de compression variable

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2152628C (fr) * 1992-12-24 1999-02-02 Paul David Townsend Systeme et methode de distribution de cles utilisant la cryptographie quantique
JP3734830B2 (ja) * 1993-09-09 2006-01-11 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー 量子暗号法を使用したキー分配方法
US5953421A (en) * 1995-08-16 1999-09-14 British Telecommunications Public Limited Company Quantum cryptography
CA2254767C (fr) * 1996-05-22 2002-04-16 British Telecommunications Public Limited Company Procede et appareil de cryptographie quantique insensible a la polarisation
FR2763193B1 (fr) * 1997-05-06 1999-06-18 France Telecom Procede et dispositif de distribution quantique de cle de cryptage
JP3841261B2 (ja) * 2000-09-11 2006-11-01 三菱電機株式会社 位相変調装置及び位相変調方法
GB2368502B (en) * 2000-10-25 2003-03-12 Toshiba Res Europ Ltd Encoding decoding and communication method and apparatus
FR2818061B1 (fr) * 2000-12-12 2003-03-28 France Telecom Systeme pour la transmission optique securisee de code binaire
GB2392063B (en) * 2002-05-31 2005-06-22 Corning Inc Method and apparatus for use in encrypted communications
US7406173B2 (en) * 2002-10-02 2008-07-29 Kabushiki Kaisha Toshiba Quantum communication apparatus and quantum communication method
GB2397452B (en) * 2003-01-16 2005-07-13 Toshiba Res Europ Ltd A quantum communication system
US7227955B2 (en) * 2003-02-07 2007-06-05 Magiq Technologies, Inc. Single-photon watch dog detector for folded quantum key distribution system
GB2399220B (en) * 2003-03-06 2005-07-13 Toshiba Res Europ Ltd Photonic quantum information system using unpolarised light
GB2404103B (en) * 2003-07-15 2005-06-29 Toshiba Res Europ Ltd A quantum communication system
GB2405294B (en) * 2003-08-18 2006-08-09 Toshiba Res Europ Ltd A quantum communication system and a receiver for a quantum communication system
JP4632652B2 (ja) * 2003-10-10 2011-02-16 日本電気株式会社 量子暗号鍵配布システム及びそれに用いる同期方法
US7606371B2 (en) * 2003-12-22 2009-10-20 Magiq Technologies, Inc. Two-way QKD system with active compensation
JP4200909B2 (ja) * 2004-01-29 2008-12-24 日本電気株式会社 乱数生成共有システム、暗号化通信装置及びそれらに用いる乱数生成共有方法
FR2879381B1 (fr) * 2004-12-15 2008-12-26 Thales Sa Systeme de distribution quantique de cle de cryptage a variables continues

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BETHUNE D S ET AL: "AN AUTOCOMPENSATION FIBER-OPTIC QUANTUM CRYPTOGRAPHY SYSTEM BASED ON POLARIZATION SPLITTING OF LIGHT", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA LNKD- DOI:10.1109/3.825881, vol. 36, no. 3, 1 March 2000 (2000-03-01), pages 340 - 347, XP000935998, ISSN: 0018-9197 *

Also Published As

Publication number Publication date
JP2009503971A (ja) 2009-01-29
WO2007012730A2 (fr) 2007-02-01
WO2007012730A3 (fr) 2007-03-22
FR2889320B1 (fr) 2007-10-26
US20090310965A1 (en) 2009-12-17
FR2889320A1 (fr) 2007-02-02

Similar Documents

Publication Publication Date Title
EP0877508B1 (fr) Procédé et dispositif de distribution quantique de clé de cryptage
EP1825633B1 (fr) Systeme de distribution quantique de cle de cryptage a variables continues
EP0783215B1 (fr) Système de transmission optique mettant en oeuvre un cryptage par chaos déterministe
EP1342337B1 (fr) Systeme pour la transmission optique securisee de code binaire
US9401766B2 (en) Quantum communication network
JP4064463B2 (ja) 偏波に感応しない量子暗号用の方法および装置
FR2920550A1 (fr) Emetteur optique et son procede de commande.
WO2003107585A1 (fr) Procédé d&#39;échange sécurisé d&#39;informations entre deux dispositifs
EP2067298B1 (fr) Système et procédé pour la transmission sécurisée de code binaire par codage en phase et en intensité
JP5347644B2 (ja) 光通信システム及び方法、送信機及び受信機、量子暗号鍵配付システム及び方法
WO2022189118A1 (fr) Client simplifié et architectures associées pour la délégation de calculs quantiques à un serveur quantique
Zahidy et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber
WO2007012730A2 (fr) Système de transmission optique et dispositif de réception d&#39;un signal optique
EP3993312A1 (fr) Procede de securisation de transmission de donnees satellitaires et systeme de transmission associe
WO2023232937A1 (fr) Systeme et procede de determination de cles de cryptage utilisant l&#39;encodage de phase d&#39;un signal
EP1280290B1 (fr) Réseau de communications optiques, multi-utilisateurs, reconfigurable à faible temps de latence
EP1005192A1 (fr) Dispositif de cryptage quantique
EP0094866B1 (fr) Dispositif de liaison conversationnelle de type BUS à fibres optiques unimodales
EP3993313A1 (fr) Procede d&#39;echange securise de donnees via un systeme de messagerie par satellite
FR3100642A1 (fr) Procede de transmission securisee de sequences d’etats quantiques entre plusieurs participants en ligne sur un canal de communication quantique
EP1158352A2 (fr) Convertisseur optique de format NRZ-RZ
EP3785382B1 (fr) Dispositif de traitement reconfigurable pour les communications quantiques
EP4144039A1 (fr) Procédé de calcul d&#39;un et logique entre deux bits de manière sécurisée par l&#39;utilisation de la communication quantique
WO2023170026A1 (fr) Systeme de modulation configure pour controler la modulation d&#39;un signal
Islam et al. Building Blocks of Quantum Key Distribution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PELLOQUIN, NICOLAS

Inventor name: MEROLLA, JEAN-MARC

Inventor name: PATOIS, FREDERIC

Inventor name: CUSSEY, JOHANN

17Q First examination report despatched

Effective date: 20100804

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110215