EP1906708B1 - Elément metallique chauffant traversé par un flux d'air - Google Patents

Elément metallique chauffant traversé par un flux d'air Download PDF

Info

Publication number
EP1906708B1
EP1906708B1 EP20070117369 EP07117369A EP1906708B1 EP 1906708 B1 EP1906708 B1 EP 1906708B1 EP 20070117369 EP20070117369 EP 20070117369 EP 07117369 A EP07117369 A EP 07117369A EP 1906708 B1 EP1906708 B1 EP 1906708B1
Authority
EP
European Patent Office
Prior art keywords
fins
heat
area
zone
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP20070117369
Other languages
German (de)
English (en)
Other versions
EP1906708A1 (fr
Inventor
Olivier VALEO SYSTEMES THERMIQUES Colette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37963519&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1906708(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1906708A1 publication Critical patent/EP1906708A1/fr
Application granted granted Critical
Publication of EP1906708B1 publication Critical patent/EP1906708B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0435Structures comprising heat spreading elements in the form of fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • F24H9/1872PTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the present invention relates to a heating bar of an electric heater and is used to heat a flow of air passing through the radiator.
  • the present invention more particularly relates to a heating bar of simple and compact structure applying in the field of vehicle air conditioning systems and its method of obtaining.
  • This electric heater comprises heating bars, the latter being the elements ensuring the heating of a flow of air passing through the air conditioning device from the start of the vehicle.
  • a heating bar comprises resistive elements in the form of PTC stone, heat sinks and electrodes.
  • the electrodes are glued on the large faces of the resistive elements and the heatsinks are fixed on these electrodes.
  • Such a structure of the heating bar is bulky and does not significantly reduce the dimensions of the latter without reducing its performance. Indeed, if we reduce the size of the elements Resistive, less heat will be produced and the airflow through the air conditioning system will be less heated.
  • the heat emitted by the resistive elements will be less dissipated and exchanged with the flow of air passing through the heating bar.
  • Such heating bars also have another major disadvantage. Because of their structure, these heating bars are expensive. Indeed, it comprises at least three elements: the resistive element, the electrode and the heat sink.
  • the present invention overcomes the disadvantages mentioned above by making the structure of the heating bar more compact while reducing the number of elements constituting the bar heating to lower the manufacturing cost of the electric heater.
  • the present invention provides a solution via a heating rod heat sink of an electric heater mounted in a heating and / or air conditioning system, comprising at least two distinct zones, a first solid zone on which is fixed at least one resistive element and a second zone for exchanging heat with a flow of air passing through said second zone.
  • the first zone extends in a plane P and the second zone extends between the plane P and a plane P1, the planes P and P1 being offset by an angle A between 0 and 80 °.
  • the second zone comprises a plurality of fins and extends longitudinally from one end allowing electrical contact of the heat sink with a power source at another end of the heat sink.
  • At least one fin is flat and / or curved and / or twisted and / or profiled.
  • the heat sink comprises a plurality of first and second zones so as to form a matrix.
  • the matrix facilitates the manufacture of the heating bar by reducing the number of heating rod constituting the radiator.
  • the radiator may consist of a single heating bar in the form of a matrix. This greatly reduces the production costs of an electric heater.
  • the matrix consists of an alternation of first and second zones.
  • the heat sink comprises a third zone for connecting it to a power source.
  • the third zone is in a first form for directly connecting the heat sink to a power source.
  • the third zone is in a second form for fixing an electronic switch, said electronic switch for connecting the heat sink to a power source
  • the present invention also relates to a heating bar of an electric heater mounted in a heating and / or air conditioning system, through which there is a flow of air comprising at least one resistive element and at least two heat sinks according to one embodiment. characteristics above, the resistive element extending in a plane P2 parallel to each plane P containing a first zone.
  • heating bar reduces its size, the number of components used and its assembly time. Having the resistive element in the plane P2 parallel to the plane P, this last being perpendicular to the air flow through the heating bar, reduces the thickness of the heating bar and thus reduce the size of the heating system and / or air conditioning in which the heating bar is installed.
  • the heat sinks are arranged so that the fins of a first heat sink are in front of the fins of a second heat sink.
  • the heat sinks are arranged so that the fins of a first heat sink are in front of holes formed between two successive fins of a second heat sink.
  • the heat sinks are arranged so that the rows of fins of the two heat sinks are located on either side of a plane P3 transverse to the plane P2 in which the resistive element extends.
  • the present invention also comprises an electric radiator traversed by an air flow comprising at least one heating bar according to one of the above characteristics.
  • the heating bar is compact and its thickness is reduced.
  • the structure of the heat sink provides a plurality of functions. Indeed, the heat sink provides both an electrode function, an electrical conductor function and a heat sink function, the latter function being the basic function for heating the air flow therethrough.
  • the electrode function is to distribute the electric current supplied by a power source throughout the length of the heat sink. This electrode function is essentially provided by the first zone of the heat sink.
  • the function of electrical conductor is to convey the electric current to the resistive elements. This function is also provided by the first zone.
  • the heat sink function is to heat the air flow passing through the heat sink. This function is provided by the fins, that is to say the second zone and consists of exchanging with air the heat produced by the resistive elements CTP effect.
  • the plurality of functions within the heat sink can reduce the number of heating bar parts by replacing a brass electrode and aluminum fins with a single heat sink.
  • the heating bar 3 comprises at least two heat sinks 1, 1 'and at least one resistive element 2.
  • the heat sink 1 is shown in solid lines and the heat sink 1' in a line batchwise.
  • Each heat sink 1, 1 ' consists of a metal sheet 4, 4' electrically and thermally conductive.
  • This sheet 4, 4 ' can be made of aluminum or copper alloy treated with tin and comprises three distinct zones.
  • the first zone 5 is intended for fixing the resistive element 2.
  • This first zone 5 is flat, solid, that is to say not perforated and substantially rectangular. It is sized to receive at least one resistive element 2 in its entirety.
  • the first zone 5 extends and is contained in a plane P. This first zone 5 is contiguous with a second zone 6.
  • the second zone 6 is intended to exchange heat with the flow of air passing through the heating bar 3 and therefore passing through the heat sink 1, 1 '.
  • exchange of heat with the air flow means that the air flow passes right through the second zone 6 in a direction substantially perpendicular to the plane P and thus increases its temperature in contact with this second zone 6.
  • the first zone 5 and the resistive element or elements that it comprises are substantially perpendicular to the direction of the air flow.
  • This second zone 6 is slot-shaped.
  • the slot shape consists of a plurality of fins 8 spaced from each other by holes 9. It should be noted that the first zone 5 is distinct from the second zone 6.
  • the fins 8 are of rectangular shape and each comprise two long sides 8a, 8b defining the length of the fin 8 and two small sides 8c, 8d defining the width of the fin 8.
  • the fins 8 are all 7 mm long and the thickness of the heat sink is 0.8 mm. These values are given by way of example only and are not in themselves limiting. In this regard, in general, the fins have a length of between 3 mm and 50 mm and the thickness of a heat sink is between 0.1 mm and 3 mm.
  • the small side 8c defines the free end of the fin 8.
  • the small side 8d shown dotted in the figures and opposite the free end 8c, is integral with the first zone 5 and delimits the second zone 6 of the first zone 5.
  • the fins 8 are located between the plane P and a plane P1, the planes P and P1 being offset by an angle A between 0 ° and 80 °.
  • the second zone 6 lies between the plane P and the plane P1.
  • the plane P1 is a plane passing through at least one fin 8 and the small side 8d of each fin 8.
  • This angle A is measured so that all the fins 8 forming the second zone 6 are contained in this angle A.
  • the angle A has a value of 0 °
  • the plane P and the plane P1 are merged.
  • the first zone 5 and the second zone 6 are contained in the same plane P.
  • this plurality of fins 8 extends longitudinally from a first end 10a to a second opposite end 10b of the heat sink 1.
  • the first end 10a is identified by the presence of a third zone 7 allowing electrical contact with the vehicle electrical network.
  • the ends 10a, 10b are formed by the Lateral edges of the heat sink 1.
  • the end 10a is formed by a lateral edge of the first zone 5 and a lateral edge of the third zone 7.
  • the end 10b is formed by the other lateral edge of the first zone 5 and a large side 8b of the last fin 8 of the second zone 6.
  • the length of the heat sink 1 is defined by the direction in which the fins 8 succeed one another.
  • the width of the heat sink is defined by the direction perpendicular to the direction defining the length of the heat sink.
  • the resistive element 2 is a ceramic or a polymeric parallelepiped with a resistive effect with a positive temperature coefficient. It can be of parallelepipedal shape, and more particularly rectangular. By its shape, this resistive element 2 comprises two large faces 2a, 2b.
  • each of its large faces 2a, 2b is intended to be brought into contact with the respective first zone 5, 5 'of each heat sink 1, 1'.
  • the resistive element 2 is fixed between the two heat dissipaters 1, 1 'so that it lies in a plane P2 parallel to each plane P, P' respectively containing the first zone 5, 5 'respectively of the heat sink 1, 1'.
  • the third zone 7 intended to connect the heat sink 1, 1 'to a power supply source can be made in two different forms according to the chosen embodiment. This third zone 7 will be described later in the description.
  • FIG. 1 To the Figures 1, 2 and 3 is shown a first embodiment of the invention.
  • a heating bar 3 As described above in exploded view.
  • the first zone 5 contains a resistive element 2 and the plurality of fins 8 is aligned in the plane P containing the first zone 5, that is to say the angla A is 0 ° and the planes P and P1 are merged.
  • the plane P is that of the sheet.
  • a mounted heating bar 3 is shown.
  • the resistive element 2 is placed between the two heat sinks 1, 1 'and fixed by gluing by means of an adhesive 100.
  • the fixing of the resistive element 2 is done at the level of the first zone 5, 5 so that the two large faces 2a, 2b are in total electrical and thermal contact with the heat sink 1, 1 '. More specifically, the entire surface of the large face 2a and the entire surface of the large face 2b are in contact with the respective first zone 5, 5 'of the two heat sinks 1, 1'. In this way, the heat exchange between the resistive element 2 and the heat sinks 1, 1 'in contact is optimal.
  • the figure 3 is a profile view of the heating bar 3 according to the first embodiment.
  • the resistive element 2 is fixed between the two heat sinks 1, 1 'through the glue 100 and each second zone 6, 6' is opposite each other.
  • the resistive element 2 is situated in a plane P2 parallel to each plane P, P 'respectively containing the first zone 5, 5' of the heat dissipaters 1, 1 '.
  • the fins 8, 8 ' are flat and are respectively contained in a plane P, P', the angle A, A 'between the plane P, P' and the plane P1, P1 'equal to 0 °.
  • the first zone 5, 5 'and the second zone 6, 6' are contained in the same plane P, P '(the plane P, P' coinciding with the plane P1, P1 ').
  • the heating bar 3 comprises two heat sinks 1, 1 'arranged so that the fins 8 of a first heat sink 1 are opposite holes 9' formed between two successive fins 8 'of a second heat sink 1 '.
  • the fins 8 of a first heat sink 1 are offset relative to the fins 8 'of the second heat sink 1'. .
  • This arrangement of the two heat sinks 1, 1 'relative to each other creates more aeraulic disturbances, which causes a better heat exchange between the air passing through the heating bar 3 and the second zones 6 , 6 '.
  • the heat sinks 1, 1 'of the heating rod 3 are arranged in such a way that the two pluralities of fins 8, 8' are situated on either side of a plane P3 transverse to the resistive element 2.
  • the transverse plane P3 is substantially perpendicular to the planes P, P 'containing the first zones 5, 5' of the heat dissipaters 1, 1 'and is median to the resistive element 2.
  • each second zone 6, 6 ' is located on both sides of the plane P3 transverse to the resistive element 2.
  • FIG 7 is shown an example of a heating bar 3 comprising a plurality of resistive elements 2.
  • This heating bar 3 comprises five resistive elements 2 and two heat sinks 1, 1 'arranged according to the third embodiment, that is to say so that each plurality of fins 8, 8 'are on both sides of a plane P3 transverse to the five resistive elements.
  • the dimensions of the heat sink 1 are as follows: the width of the heat sink 1 is 15 mm knowing that the width of the first zone 5 is 8 mm and the length of the fins 8 is 7 mm. The length of the first zone 5 is 153 mm.
  • the third embodiment comprises several variants. These last are focused on the conformation of the fins 8. Consequently, only the fins 8 of the heat sink 1 will be described below. Of course, the heat sink 1 'may have fins 8' of the same conformation or different conformation. It is obvious that all the variants described below are illustrated with the third embodiment only by way of example and these variants are in no way limited to the third embodiment. Therefore, all variants of conformation of the fins 8 can be applied to all the embodiments described in the present application. For a question of clarity of the figures, only a portion of the heating bar 3 is shown in these variants.
  • the fins 8 are all rectangular of the same dimensions, that is to say they all have the same width and the same length.
  • the fins 8 are flat, all extend in the plane P and the holes 9 formed between two successive fins 8 have the same dimensions as those of the fins 8.
  • the width of each hole 9 is identical to the width of each fin 8 and the length of each hole 9 is equal to the length of each fin 8.
  • the length of the fins 8 is 7 mm and the width of the fins 8 is 2 mm.
  • the holes 9 have a width of 2 mm, that is to say that two successive fins 8 are spaced by 2 mm.
  • the fins 8 are all planar and all extend in the plane P.
  • the fins 8 are also all rectangular of the same dimension.
  • the holes 9 formed between two successive fins 8 have a width smaller than that of the fins 8.
  • the length of the holes 9 is equal to the length of the fins 8.
  • the fins 8 are all 2.5 mm wide. and the holes 9 are all 1.5 mm wide.
  • FIG. 9A In a third variant of the invention, represented in Figure 9A, 9B, 9C and 9D some fins 8 are curved.
  • Figure 9A two fins 8 are curved while in Figure 9B a single fin 8 is curved.
  • Figure 9C when the fins 8 are bent, they are bent so as to extend between the plane P containing the first zone 5, this plane P also containing the flat fins 8 and the plane P1.
  • the plane P1 intersects the plane P at the small sides 8d of the fins 8 delimiting the first zone 5 and the second zone 6.
  • the term "curved" means an arcuate shape of the fin 8.
  • the curved fins 8 have the same dimensions as the planar fins 8 extending in the plane P, that is to say that the curved fins 8 have the same width and the same length as those of the fins 8 planes of the heat sink 1.
  • the angle A has a value of 45 °.
  • the fins 8 have a width of 2 mm and are spaced from each other by 2 mm. The curved shape of the fins makes it possible to improve the heat exchange between the heat sink 1 and the flow of air passing through it.
  • the angle A has a value of 20 ° and the curved fins 8 extend between the plane P and the plane P1. All fins 8 curved and flat have the same dimensions: same length and same width. Of course, it is possible that the width of the fins is different from the width of the holes 9. For example, the holes 9 have a width less than the width of the fins 8: the fins 8 have a width of 2.5 mm and the holes 9 have a width of 1.5 mm.
  • some fins 8 are twisted.
  • three fins are twisted but it is possible to envisage a plurality of fins comprising a single twisted fin.
  • These twisted fins 8 all extend in the same plane P.
  • the term "extend all in the same plane P" the fact that the plane P passes through the center line M of each fin 8.
  • This median line M is that in the direction of the length of the fin 8 and is represented by a straight line connecting the free end 8c of the fin 8 to the opposite end 8d forming the boundary between the first zone 5 and the second zone 6.
  • the center line M of all the twisted fins 8 is contained in the plane P.
  • the fins 8 are profiled so that an upper part 30 of each fin 8 is contained in a plane P4 parallel to the plane P containing the first zone 5.
  • the upper portion 30 is understood to mean the flat portion containing the free end 8c.
  • a lower portion 31 is defined as the portion containing two elbows 20, 21 and the end 8d.
  • each fin 8 has two elbows 20, 21 in its lower part 31.
  • These elbows 20, 21 can be in angular form, that is to say a fold, or arc of circle as illustrated on the figure 11 C.
  • two successive fins 8 of the same heat sink 1 are symmetrical with respect to the plane P.
  • the symmetry with respect to the plane P of two successive profiled fins 8 imply that these two successive profiled fins 8 are spaced apart by 1 mm, that is to say that the distance between the upper parts of two successive fins 8 is 1 mm.
  • the value of the spacing between the upper parts of two successive fins 8 is measured at the free end 8c of each fin 8 and from half the thickness of the upper part of a fin 8 until at half the thickness of the upper part of the other fin 8. This spacing is constant between the upper parts of the two successive fins 8.
  • the heat sink 1 comprises a third zone 7 to connect it to a power source not shown.
  • This third zone 7 can be in two forms.
  • the first form is intended to directly connect the heat sink 1 to a power source not shown.
  • This first form 7a is flat and solid and extends in the plane P, as illustrated in FIG. figure 12 .
  • This first form 7a is located at the fin 8 at the end of the heat sink 1.
  • the last fin 8 at the end 10a of the heat sink 1 is extended so as to project, in the direction the length of the first zone 5, with respect to this first zone 5.
  • the latter fin 8 constitutes the third zone 7 in the first form 7a.
  • the fin 8 allowing the electrical connection of the heat sink 1 has a shape different from that of the other fins 8: the width of the fin 8 located at the end 10a is greater than the width of the other fins 8 For example, the width of this first shape 7a of the third zone 7 is 10 mm.
  • the second form 7b of the third zone 7 makes it possible to fix an electronic switch 12 on the heat sink 1.
  • the electronic switch 12 makes it possible to connect the heat sink 1 to a power source, as represented in FIG. figure 13 .
  • This second form 7b of the third zone 7 is solid, flat and extends in the plane P containing the first zone 5.
  • the second shape 7b extends in continuity with the first zone 5 in the direction of the length of the latter .
  • the electronic switch 12 may be of the MOSFET transistor type and is fixed on the second form 7b.
  • This electronic switch 12 is connected to a power supply via a connector 13, to a track 14 for controlling it and to a return drain 15 to know in what state the electronic switch 12 is located
  • the latter can present two states, one being an operating state and the other being a state blocking the electrical current from the power source. It should be noted that the electronic switch 12, the connector 13, the track 14 and the return drain 15 do not constitute and are not part of a heat sink
  • the heating bar 3 is provided with a heat sink 1 'provided with a third zone 7' according to the second form 7b 'as represented in FIG. figure 13 and a heat sink 1 as shown in figure 12 .
  • the heat sink 1 ' comprising a third zone 7' according to the second form 7b 'on which an electronic switch 12 is fixed, corresponds to the negative electrode and the heat sink 1, comprising a third zone 7 according to the first form 7a, corresponds to the positive electrode.
  • the heat sink 1 comprises a plurality of first zones 5 and second zones 6 so as to form a matrix 16. More specifically, the heat sink 1 consists of four first zones 5 and five second zones 6. These zones are alternated between first zone 5 and second zone 6. This alternation is according to the width of the heat sink 1. In this way, a second zone 6 for exchanging heat with a flow of air passing through the heat sink 1 is adjacent to two first zones 5. All zones 5, 6 of the heat sink 1 are contained in the same plane P. All the fins 8 of a second zone 6 adjacent to two first zones 5 have their ends 8c, 8d integral with the respective first zone 5. The ends 8c, 8d not free are shown in dashed lines in the figure.
  • the part of the matrix 16 where two second zones 6 are each contiguous to two first zones 5 is in the form of a flat sheet and perforated by rows of holes 9, the two rows being parallel to one another and arranged along the length of the first zone.
  • the third zone 7 is in the first form 7a.
  • the matrix 16 has several first zones 5. Each of these first zones 5 can receive at least one resistive element 2.
  • the heat sink 1 ' in figure 16 , is in the form of a matrix 16 'and is shaped identically to the matrix 16 of the figure 15 except that it comprises a third zone 7 'having the second form 7b' dedicated to the fixing of an electronic switch 12.
  • the heat sink 1 ' comprises resistive elements 2 at its first zones 5 .
  • the third zone 7 ' can be located at any first zone 5'.
  • the second form 7b ' being an extension of a first zone 5', this second form 7b 'can be realized, for the purpose of easy connection to the power source, compared to any which first zone 5 'constituting the matrix 16'.
  • Each heat sink 1, 1 'forming a matrix 16, 16' has a plurality of rows of resistive elements 2.
  • each second zone 6 is extends between the plane P and the plane P1
  • the plane P and P1 being shifted by an angle A different from 0 °
  • each end 8c of each fin 8 will be free, that is to say not come from material with the first zone 5 adjacent.
  • the heat sink 1 may contain, at its first zone 5, a plurality of resistive elements 2, as illustrated in FIG. figure 6 .
  • the first zone 5 extending from one end to the other of the heat sink 1 may contain more or fewer resistive elements 2.
  • the second zone 6 may contain more or less fins 8.
  • FIG 17 there is shown a heating bar 3 comprising two heatsinks 1, 1 'each forming a matrix 16, 16' of the resistive elements 2, the electronic switch 12, the connector 13, the track 14 and the return drain 15.
  • the heat sink 1 comprises a third zone 7 according to the first form 7a and the heat sink 1 'has a third zone 7' according to the second form 7b 'provided with an electronic switch 12.
  • the heating rod examples described in the present application are assembled to form a not shown electric radiator.
  • Such an electric radiator equips an air conditioning system in a vehicle.
  • This electric radiator may also consist of a heating bar 3 or of several identical heating bars 3 or of a plurality of different heating bars 3, that is to say having for example at least one heating bar according to the figure 11 and at least one heating bar according to figure 10 .
  • the electric radiator of the present application traversed by a flow of air, therefore comprises at least one heating bar according to one of the described embodiments.
  • Step a) is a cutting to conform the different zones 5, 6 and 7.
  • the cutting of each metal sheet 4, 4 ' makes it possible to obtain the desired length of the heat sink, that is to say that is, each metal sheet 4, 4 'is cut so as to form the outline of each heat sink 1, 1'.
  • the cutting also makes it possible to form the fins 8 of the second zone 6 and to give them their final dimensions. For example, a length of 7 mm and a width of 2 mm. Similarly this step allows to size the holes 9 at their width.
  • the holes may have a width equal to that of the fins 8 or a width less than that of the fins 8.
  • this step also makes it possible to form the third zone 7 according to the first form 7a or the second form 7b.
  • Steps b), c) and d) make it possible to fix the resistive element or elements 2 on the part of each heat sink 1, 1 'which is defined as the first zone 5 and to form the heating bar 3.
  • the heating bar 3 is heated so as to harden the adhesive 100 used in step b).
  • all the elements of the heating bar obtained are permanently fixed to each other.
  • This step a ') is before step a) and after step b). This step makes it possible to form one or more fins 8 so that it (s) extends (s) between the plane P and the plane P1

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

    Domaine technique de l'invention :
  • La présente invention concerne un barreau chauffant d'un radiateur électrique et permet de chauffer un flux d'air traversant le radiateur. La présente invention concerne plus particulièrement un barreau chauffant de structure simple et compacte s'appliquant dans le domaine des systèmes de climatisation de véhicule ainsi que son procédé d'obtention.
  • Arrière plan de l'invention :
  • Dans le domaine automobile, la question du confort dans l'habitacle du véhicule est primordiale. De ce fait, une des voies d'amélioration du confort pour les passagers est de chauffer rapidement l'air de l'habitacle, surtout lors de la saison hivernale. Afin de répondre aux exigences des passagers, on a introduit dans les dispositifs de climatisation un radiateur secondaire de type électrique. Ce radiateur électrique comprend des barreaux chauffants, ces derniers étant les éléments assurant le chauffage d'un flux d'air traversant le dispositif de climatisation dès la mise en route du véhicule.
  • Ce type de radiateur électrique permet donc d'accroître le confort. Cependant, le désir de réduire au maximum l'encombrement d'un système de climatisation a pour conséquence de devoir réduire également les éléments composant le système de climatisation, tel qu'un dispositif de chauffage additionnel. Comme décrit dans la demande de brevet US 4 414 052 , un barreau chauffant comprend des éléments résistifs sous la forme de pierre CTP, des dissipateurs de chaleur et des électrodes. Les électrodes sont collées sur les grandes faces des éléments résistifs et les dissipateurs de chaleurs sont fixés sur ces électrodes. Une telle structure du barreau chauffant est encombrante et ne permet pas de réduire de façon conséquente les dimensions de ce dernier sans diminuer ses performances. En effet, s'il l'on réduit la taille des éléments résistifs, moins de chaleur sera produite et le flux d'air traversant le système de climatisation sera moins bien chauffé. De même, s'il l'on réduit les dimensions des ailettes des dissipateurs de chaleur, ces dernières permettant l'échange de chaleur entre le flux d'air et le barreau chauffant, la chaleur émise par les éléments résistifs sera moins dissipée et échangée avec le flux d'air traversant le barreau chauffant.
  • De tels barreaux chauffants possèdent également un autre inconvénient majeur. De par leur structure, ces barreaux chauffants sont coûteux. En effet, il comprennent au moins trois éléments : l'élément résistif, l'électrode et le dissipateur de chaleur.
  • La présente invention permet de surmonter les inconvénients évoqués ci-dessus en rendant la structure du barreau chauffant plus compacte tout en réduisant le nombre d'éléments constituant le barreau chauffant afin d'abaisser le coût de fabrication du radiateur électrique.
  • La présente invention apporte une solution par l'intermédiaire d'un dissipateur de chaleur pour barreau chauffant d'un radiateur électrique monté dans une installation de chauffage et/ou climatisation, comprenant au moins deux zones distinctes, une première zone pleine sur laquelle est fixée au moins un élément résistif et une deuxième zone destinée à échanger de la chaleur avec un flux d'air traversant ladite deuxième zone. La première zone s'étend dans un plan P et la deuxième zone s'étend entre le plan P et un plan P1, les plans P et P1 étant décalés d'un angle A compris entre 0 et 80°.
  • Avantageusement, la deuxième zone comprend une pluralité d'ailettes et s'étend longitudinalement d'une extrémité permettant le contact électrique du dissipateur de chaleur avec une source d'alimentation électrique à une autre extrémité du dissipateur de chaleur.
  • Avantageusement, au moins une ailette est plane et/ou courbée et/ou vrillée et/ou profilée.
  • Les différentes conformations permettent de créer des turbulences aérauliques. Ces dernières engendrent une amélioration de la dissipation thermique au niveau de la deuxième zone.
  • Avantageusement, le dissipateur de chaleur comprend une pluralité de première et de deuxième zones de sorte à former une matrice.
  • La matrice permet de faciliter la fabrication du barreau chauffant en réduisant le nombre de barreau chauffant constituant le radiateur. Ainsi, le radiateur peut être constitué d'un seul et unique barreau chauffant sous forme de matrice. Ceci réduit énormément les coûts de production d'un radiateur électrique.
  • Avantageusement, la matrice se compose d'une alternance de première et de deuxième zones.
  • Avantageusement, le dissipateur de chaleur comprend une troisième zone permettant de le connecter à une source d'alimentation électrique.
  • Avantageusement, la troisième zone se trouve sous une première forme permettant de connecter directement le dissipateur de chaleur à une source d'alimentation électrique.
  • Avantageusement, la troisième zone se trouve sous une deuxième forme permettant de fixer un commutateur électronique, ledit commutateur électronique permettant de connecter le dissipateur de chaleur à une source d'alimentation électrique
  • La présence d'un commutateur électronique sur le dissipateur de chaleur lui-même réduit l'encombrement du dispositif électronique de commande du radiateur. De plus, le commutateur électronique dissipe également de la chaleur et augment l'efficacité thermique du barreau chauffant.
  • La présente invention porte également sur un barreau chauffant d'un radiateur électrique monté dans une installation de chauffage et/ou de climatisation, traversé par un flux d'air comprenant au moins un élément résistif et au moins deux dissipateurs de chaleur selon l'une des caractéristiques ci-dessus, l'élément résistif s'étendant dans un plan P2 parallèle à chaque plan P contenant une première zone.
  • La structure d'un tel barreau chauffant permet de réduire son encombrement, son nombre de constituants utilisés et son temps d'assemblage. Le fait de disposer l'élément résistif dans le plan P2 parallèle au plan P, ce dernier étant perpendiculaire au flux d'air traversant le barreau chauffant, permet de réduire l'épaisseur du barreau chauffant et ainsi de réduire l'encombrement du système de chauffage et/ou climatisation dans lequel le barreau chauffant est installé.
  • Avantageusement, les dissipateurs de chaleur sont agencés de manière à ce que les ailettes d'un premier dissipateur de chaleur soient en face des ailettes d'un deuxième dissipateur de chaleur.
  • Avantageusement, les dissipateurs de chaleur sont agencés de manière à ce que les ailettes d'un premier dissipateur de chaleur soient en face de trous formés entre deux ailettes successives d'un deuxième dissipateur de chaleur.
  • Avantageusement, les dissipateurs de chaleur sont agencés de manière à ce que les rangées d'ailettes des deux dissipateurs de chaleur se situent de part et d'autre d'un plan P3 transversal au plan P2 dans lequel s'étend l'élément résistif.
  • La présente invention comprend également un radiateur électrique traversé par un flux d'air comprenant au moins un barreau chauffant selon l'une des caractéristiques ci-dessus.
  • Quelque soit le mode de réalisation, le barreau chauffant est compact et son épaisseur est réduite. En outre, la structure du dissipateur de chaleur permet d'assurer une pluralité de fonction. En effet, le dissipateur de chaleur assure à la fois une fonction d'électrode, une fonction de conducteur électrique et une fonction de dissipateur thermique, cette dernière fonction étant la fonction de base pour chauffer le flux d'air le traversant.
  • La fonction d'électrode consiste à répartir le courant électrique, fourni par une source d'alimentation électrique, d'un bout à l'autre de la longueur du dissipateur de chaleur. Cette fonction d'électrode est essentiellement assurée par la première zone du dissipateur de chaleur.
  • La fonction de conducteur électrique consiste à acheminer le courant électrique vers les éléments résistifs. Cette fonction est également assurée par la première zone.
  • La fonction de dissipateur thermique consiste à chauffer le flux d'air traversant le dissipateur de chaleur. Cette fonction est assurée par les ailettes, c'est-à-dire la deuxième zone et consiste à échanger avec l'air la chaleur produite par les éléments résistifs à effet CTP.
  • La pluralité de fonction au sein du dissipateur de chaleur permet de réduire le nombre de pièce du barreau chauffant en remplaçant une électrode en laiton et des ailettes en aluminium par un seul et même dissipateur de chaleur.
  • L'invention porte aussi sur un procédé de fabrication d'un barreau chauffant selon l'une des caractéristiques ci-dessus, le procédé comprenant les étapes successives suivantes :
    • à l'étape a), chaque feuille métallique est découpée de sorte à former les différentes zones des dissipateurs de chaleurs,
    • à l'étape b), chaque feuille métallique est recouverte de colle au niveau de sa ou de ses premières zones,
    • à l'étape c), au moins un élément résistif est placé sur une première zone recouverte de colle,
    • à l'étape d), les deux feuilles métalliques sont pressées l'une contre l'autre de sorte à former le barreau chauffant.
  • Le procédé de fabrication comprend en outre l'étape suivante :
    • une étape a'), au moins une ailette (8) est courbée et/ou vrillée et/ou profilée.
  • Le procédé de fabrication peut comprendre également les étapes suivantes :
    • une étape a1), le commutateur électronique (12) est brasé sur la troisième zone (7)
    • une étape a2), le commutateur électronique (12) est surmoulé
    • une étape a3), l'état du commutateur électronique (12) est contrôlé.
  • L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront mieux à la lecture de la description qui va suivre de plusieurs modes de réalisation du barreau chauffant conforme à son principe, donnés uniquement à titre d'exemple, et faits en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue éclatée d'un barreau chauffant 3 selon l'invention,
    • la figure 2 est une vue de face en transparence d'un barreau chauffant 3 selon un premier mode de réalisation,
    • la figure 3 est une vue de profil d'un barreau chauffant 3 selon un premier mode de réalisation,
    • la figure 4 est une vue de face d'un barreau chauffant selon un deuxième mode de réalisation,
    • la figure 5 est une vue de profil d'un barreau chauffant selon un deuxième mode de réalisation,
    • la figure 6 est une vue de face en transparence d'un barreau chauffant selon un troisième mode de réalisation,
    • la figure 7 est une autre vue de face en transparence d'un barreau chauffant selon un troisième mode de réalisation,
    • la figure 8 est une vue en perspective d'un barreau chauffant selon une première variante de réalisation,
    • la figure 9A est une vue en perspective d'un barreau chauffant selon une deuxième variante de réalisation,
    • la figure 9B est une autre vue en perspective d'un barreau chauffant selon une deuxième variante de réalisation,
    • la figure 9C est une vue de profil d'un barreau chauffant selon une deuxième variante de réalisation,
    • la figure 9D est une autre vue de profil d'un barreau chauffant selon une deuxième variante de réalisation,
    • la figure 10 est une vue en perspective d'un barreau chauffant selon une troisième variante de réalisation,
    • la figure 11A est une vue en perspective d'un barreau chauffant selon une quatrième variante de réalisation,
    • la figure 11 B est une vue de face d'un barreau chauffant selon une quatrième variante,
    • la figure 11C est une vue de profil de la figure 11,
    • la figure 12 est une vue de face d'un dissipateur de chaleur,
    • la figure 13 est une vue de face d'un autre dissipateur de chaleur,
    • la figure 14 est une vue de face d'un barreau chauffant,
    • la figure 15 est une vue de face d'un dissipateur de chaleur formant une matrice,
    • la figure 16 est une vue de face d'un autre dissipateur de chaleur formant une matrice,
    • la figure 17 est une vue de face d'un corps de chauffe comprenant les dissipateurs de chaleur selon les figures 15 et 16.
  • Quelque soit le mode de réalisation envisagé, le barreau chauffant 3 comprend au moins deux dissipateurs de chaleur 1, 1' et au moins un élément résistif 2. Le dissipateur de chaleur 1 est représenté en trait continu et le dissipateur de chaleur 1' en trait discontinu. Chaque dissipateur de chaleur 1, 1' est constitué d'une feuille métallique 4, 4' électriquement et thermiquement conductrice. Cette feuille 4, 4' peut être en aluminium ou en alliage cuivreux traité à l'étain et comprend trois zones distinctes. La première zone 5 est destinée à la fixation de l'élément résistif 2. Cette première zone 5 est plate, pleine c'est-à-dire non ajourée et sensiblement rectangulaire. Elle est dimensionnée de manière à recevoir au moins un élément résistif 2 dans son entier. La première zone 5 s'étend et est contenue dans un plan P. Cette première zone 5 est contiguë à une deuxième zone 6. La deuxième zone 6 est destinée à échanger de la chaleur avec le flux d'air traversant le barreau chauffant 3 et par conséquent traversant les dissipateurs de chaleur 1, 1'. On entend par « échanger de la chaleur avec le flux d'air » le fait que le flux d'air traverse de part en part la deuxième zone 6 selon une direction essentiellement perpendiculaire au plan P et ainsi augmente sa température au contact de cette deuxième zone 6. De ce fait, la première zone 5 et le ou les éléments résistifs qu'elle comporte sont sensiblement perpendiculaires à la direction du flux d'air. Cette deuxième zone 6 est en forme de créneau. La forme de créneau consiste en une pluralité d'ailettes 8 espacées les une des autres par des trous 9. Il est à noter que la première zone 5 est distincte de la deuxième zone 6. On entend par « distincte » le fait que les deux zones 5, 6 soient de structure différente (la première zone 5 est pleine et ainsi n'est pas traversée de part en part par un flux d'air, la deuxième zone 6 comporte des trous 9 et est ainsi traversée de part en part par un flux d'air) et qu'elles aient des fonctions différentes (la première zone 5 est le site de fixation des éléments résistifs 2 sur le dissipateur de chaleur 1 et permet d'alimenter en électricité les éléments résistifs 2 et de conduire la chaleur produite par les éléments résistifs vers la deuxième zone 6, la deuxième zone 6 permet quant à elle de dissiper la chaleur produite par les éléments résistifs 2 vers le flux d'air). Les ailettes 8 sont de forme rectangulaire et comportent chacune deux grands côtés 8a, 8b définissant la longueur de l'ailette 8 et deux petits côtés 8c, 8d définissant la largeur de l'ailette 8. Dans tous les exemples ci-après, les ailettes 8 ont toutes une longueur de 7 mm et l'épaisseur du dissipateur de chaleur est de 0,8 mm. Ces valeurs sont données uniquement à titre d'exemple et ne sont pas en soi limitatives. A cet égard, d'une manière générale, les ailettes ont une longueur comprise entre 3 mm et 50 mm et l'épaisseur d'un dissipateur de chaleur est comprise entre 0,1 mm et 3 mm. Le petit côté 8c définit l'extrémité libre de l'ailette 8. Le petit côté 8d, représenté en pointillé sur les figures et opposé à l'extrémité libre 8c, est venu de matière avec la première zone 5 et délimite la deuxième zone 6 de la première zone 5. Les ailettes 8 se situent entre le plan P et un plan P1, les plans P et P1 étant décalés d'un angle A compris entre 0° et 80°. En conséquence, la deuxième zone 6 se situe entre le plan P et le plan P1. Le plan P1 est un plan passant par au moins une ailette 8 et par le petit côté 8d de chaque ailette 8. Cet angle A est mesuré de sorte à ce que toutes les ailettes 8 formant la deuxième zone 6 soient contenues dans cet angle A. Lorsque l'angle A a une valeur de 0°, le plan P et le plan P1 sont confondus. Ainsi, la première zone 5 et la deuxième zone 6 sont contenues dans le même plan P. En outre, cette pluralité d'ailettes 8 s'étend longitudinalement d'une première extrémité 10a à une deuxième extrémité 10b opposée du dissipateur de chaleur 1. La première extrémité 10a est identifiée par la présence d'une troisième zone 7 permettant le contact électrique avec le réseau électrique du véhicule. Les extrémités 10a, 10b sont formées par les bords latéraux du dissipateur de chaleur 1. Plus précisément, l'extrémité 10a est formée par un bord latéral de la première zone 5 et un bord latéral de la troisième zone 7. L'extrémité 10b est formée par l'autre bord latéral de la première zone 5 et un grand côté 8b de la dernière ailette 8 de la deuxième zone 6. Dans la suite de la description, la longueur du dissipateur de chaleur 1 est définie par la direction dans laquelle les ailettes 8 se succèdent. Ainsi, la largeur du dissipateur de chaleur est définie par la direction perpendiculaire à la direction définissant la longueur du dissipateur de chaleur. L'élément résistif 2 est une céramique ou un parallélépipède polymère à effet résistif avec un coefficient de température positive. Il peut être de forme parallélépipédique, et plus particulièrement rectangulaire. De par sa forme, cet élément résistif 2 comprend deux grandes faces 2a, 2b. Chacune de ses grandes faces 2a, 2b est destinée à être mise en contact avec la première zone 5, 5' respective de chaque dissipateur de chaleur 1, 1'. Selon tous les modes de réalisation, l'élément résistif 2 est fixé entre les deux dissipateurs de chaleur 1, 1' de sorte qu'il se situe dans un plan P2 parallèle à chaque plan P, P' contenant respectivement la première zone 5, 5' respective des dissipateurs de chaleur 1, 1'. Une telle disposition de l'élément résistif 2 par rapport aux dissipateurs de chaleur 1, 1' permet de réduire l'encombrement du barreau chauffant 3 et ainsi augmenter la compacité du radiateur dans lequel il est installé. La troisième zone 7 destinée à relier le dissipateur de chaleur 1, 1' à une source d'alimentation électrique peut être réalisée sous deux formes différentes selon le mode de réalisation choisi. Cette troisième zone 7 sera décrite plus tard dans la description. On notera que pour la description des dissipateurs de chaleur, les référence 1, 4, 5, 6... sont utilisées pour le dissipateur de chaleur 1 et les références 1', 4', 5', 6'... sont utilisées pour le dissipateur de chaleur 1' mais les deux types de références désignent la même chose.
  • Aux figures 1, 2 et 3 est représenté un premier mode de réalisation de l'invention. A la figure 1 est illustré un barreau chauffant 3 tel que décrit ci-dessus en vue éclatée. Dans ce mode de réalisation, la première zone 5 contient un élément résistif 2 et la pluralité d'ailettes 8 est alignée dans le plan P contenant la première zone 5, autrement dit l'angla A vaut 0° et les plans P et P1 sont confondus. Selon la figure 1, le plan P est celui de la feuille.
  • A la figure 2, un barreau chauffant 3 monté est représenté. L'élément résistif 2 est placé entre les deux dissipateurs de chaleur 1, 1' et fixé par collage par l'intermédiaire d'une colle 100. La fixation de l'élément résistif 2 se fait au niveau de la première zone 5, 5' de sorte à ce que les deux grandes face 2a, 2b soient en total contact électrique et thermique avec les dissipateurs de chaleur 1, 1'. Plus précisément, toute la surface de la grande face 2a et toute la surface de la grande face 2b sont en contact avec la première zone 5, 5' respective des deux dissipateurs de chaleur 1, 1'. De cette manière, l'échange thermique entre l'élément résistif 2 et les dissipateurs de chaleur 1, 1' en contact est optimal. Les deux dissipateurs de chaleurs 1, 1' sont disposés l'un en face de l'autre de manière à ce que la pluralité d'ailettes 8 du dissipateur de chaleur 1 soit en vis-à-vis de la pluralité d'ailettes 8' du dissipateur de chaleur 1'. Autrement dit, les dissipateurs de chaleur 1, 1' sont agencés de manière à ce que les ailettes 8 d'un dissipateur de chaleur 1 soient en face des ailettes 8' de l'autre dissipateur de chaleur 1'.
  • La figure 3 est une vue de profil du barreau chauffant 3 selon le premier mode de réalisation. L'élément résistif 2 est fixé entre les deux dissipateurs de chaleur 1, 1' par l'intermédiaire de la colle 100 et chaque deuxième zone 6, 6' est en face l'une de l'autre. L'élément résistif 2 est situé dans un plan P2 parallèle à chaque plan P, P' contenant respectivement la première zone 5, 5' des dissipateurs de chaleur 1, 1'. Les ailettes 8, 8' sont planes et sont respectivement contenues dans un plan P, P', l'angle A, A' entre le plan P, P' et le plan P1, P1' valant 0°. Ainsi, la première zone 5, 5' et la deuxième zone 6, 6' sont contenues dans un même plan P, P' (le plan P, P' étant confondus avec le plan P1, P1').
  • Selon une deuxième mode de réalisation de l'invention, tel que représenté selon la figure 4, le barreau chauffant 3 comprend deux dissipateurs de chaleur 1, 1' agencés de manière à ce que les ailettes 8 d'un premier dissipateur de chaleur 1 soient en face de trous 9' formés entre deux ailettes 8' successives d'un deuxième dissipateur de chaleur 1'. Autrement dit, les ailettes 8 d'un premier dissipateur de chaleur 1 sont décalées par rapport aux ailettes 8' du deuxième dissipateur de chaleur 1'. '. Cette disposition des deux dissipateurs de chaleur 1, 1' l'un par rapport à l'autre permet de créer plus de perturbations aérauliques, ce qui provoque un meilleur échange de chaleur entre l'air traversant le barreau chauffant 3 et les deuxièmes zones 6, 6'.
  • Selon un troisième mode de réalisation de l'invention illustré aux figures 5 et 6, les dissipateurs de chaleur 1, 1' du barreau chauffant 3 sont agencés de manière à ce que les deux pluralités de ailettes 8, 8' se situent de part et d'autre d'un plan P3 transversal à l'élément résistif 2. Le plan P3 transversal est sensiblement perpendiculaire aux plans P, P' contenant les premières zones 5, 5' des dissipateurs de chaleur 1, 1' et est médian à l'élément résistif 2. En d'autres termes, chaque deuxième zone 6, 6' se situe de part et d'autre du plan P3 transversal à l'élément résistif 2.
  • En figure 7 est représenté un exemple de barreau chauffant 3 comprenant une pluralité d'éléments résistifs 2. Ce barreau chauffant 3 comprend cinq éléments résistifs 2 et deux dissipateurs de chaleur 1, 1' disposés selon le troisième mode de réalisation, c'est-à-dire de sorte que chaque pluralité d'ailettes 8, 8' soient de part et d'autre d'un plan P3 transversal aux cinq éléments résistifs. En exemple, les dimensions du dissipateur de chaleur 1 sont les suivantes : la largeur du dissipateur de chaleur 1 est de 15 mm sachant que la largeur de la première zone 5 est de 8 mm et la longueur des ailettes 8 est de 7 mm. La longueur de la première zone 5 est de 153 mm.
  • Le troisième mode de réalisation comprend plusieurs variantes. Ces dernières se portent sur la conformation des ailettes 8. En conséquence, seules les ailettes 8 du dissipateur de chaleur 1 seront décrites ci-dessous. Bien entendu, le dissipateur de chaleur 1' peut avoir des ailettes 8' de même conformation ou de conformation différente. Il est évident que toutes les variantes décrites ci-dessous sont illustrées avec le troisième mode de réalisation uniquement à titre d'exemple et ces variantes ne sont en aucun cas limitées au troisième mode de réalisation. Par conséquent, toutes les variantes de conformation des ailettes 8 peuvent être appliquées à tous les modes de réalisation décrits dans la présente demande. Pour une question de clarté des figures, seule une partie du barreau chauffant 3 est représentée dans ces variantes.
  • Dans une première variante du troisième mode de réalisation, représentée en figure 8, les ailettes 8 sont toutes rectangulaires de même dimensions, c'est-à-dire qu'elles ont toutes la même largeur et la même longueur. En outre, les ailettes 8 sont planes, s'étendent toutes dans le plan P et les trous 9 formés entre deux ailettes 8 successives possèdent les mêmes dimensions que celles des ailettes 8. Ainsi, la largeur de chaque trou 9 est identique à la largeur de chaque ailette 8 et la longueur de chaque trou 9 est égale à la longueur de chaque ailette 8. La longueur des ailettes 8 est de 7 mm et la largeur des ailettes 8 est de 2 mm. En outre, les trous 9 ont une largeur de 2 mm, c'est-à-dire que deux ailettes 8 successives sont espacées de 2 mm.
  • Selon une deuxième variante, non représentée, les ailettes 8 sont toutes planes et s'étendent toutes dans le plan P. Les ailettes 8 sont également toutes rectangulaires de même dimension. Cependant, les trous 9 formés entre deux ailettes 8 successives ont une largeur inférieure à celle des ailettes 8. La longueur des trous 9 est égale à la longueur des ailettes 8. Par exemple, les ailettes 8 ont toutes une largeur de 2,5 mm et les trous 9 ont tous une largeur de 1,5 mm.
  • Dans les cas où toutes les ailettes 8 sont planes, c'est-à-dire pour la première et deuxième variante, l'angle A est égal à 0°, le plan P et le plan P1 sont alors confondus. Il est à noter que les modes et variantes de réalisation représentés en figures 1 à 7 correspondent au cas où l'angle A a une valeur égale à 0°, c'est-à-dire au cas où le plan P et le plan P1 sont confondus. Il est à noter qu'une variante de réalisation avec des ailettes planes et avec un angle A différent de 0° peut être envisagée.
  • Dans une troisième variante de l'invention, représentée en figure 9A, 9B, 9C et 9D, certaines ailettes 8 sont courbées. En figure 9A, deux ailettes 8 sont courbées tandis qu'en figure 9B une seule ailette 8 est courbée. Comme illustré en figure 9C, lorsque les ailettes 8 sont courbées, elles le sont de manière à s'étendre entre le plan P contenant la première zone 5, ce plan P contenant également les ailettes 8 planes, et le plan P1. Le plan P1 coupe le plan P au niveau des petits côtés 8d des ailettes 8 délimitant la première zone 5 et la deuxième zone 6. On entend par « courbé » une forme en arc de cercle de l'ailette 8. Les ailettes 8 courbées ont les mêmes dimensions que les ailettes 8 planes s'étendant dans le plan P, c'est-à-dire que les ailettes 8 courbées ont la même largeur et la même longueur que celles des ailettes 8 planes du dissipateur de chaleur 1. En figure 9C, l'angle A a une valeur de 45°. En outre, les ailettes 8 ont une largeur de 2 mm et sont espacées les unes des autres de 2 mm. La forme courbée des ailettes permet d'améliorer l'échange thermique entre le dissipateur de chaleur 1 et le flux d'air le traversant.
  • En figure 9D, l'angle A a une valeur de 20° et les ailettes 8 courbées s'étendent entre le plan P et le plan P1. Toutes les ailettes 8 courbées et planes ont les mêmes dimensions : même longueur et même largeur. Bien entendu, il est possible que la largeur des ailettes soit différente de la largeur des trous 9. Par exemple, les trous 9 ont une largeur inférieure à la largeur des ailettes 8 : les ailettes 8 ont une largeur de 2,5 mm et les trous 9 ont une largeur de 1,5 mm.
  • Dans une quatrième variante de réalisation, illustrée en figure 10, certaines ailettes 8 sont vrillées. En figure 10, trois ailettes sont vrillées mais il est possible d'envisager une pluralité d'ailettes comprenant une seule ailette vrillée. Ces ailettes 8 vrillées s'étendent toutes dans le même plan P. On entend par « s'étendre toutes dans un même plan P» le fait que le plan P passe par la ligne médiane M de chaque ailette 8. Cette ligne médiane M est celle dans le sens de la longueur de l'ailette 8 et est représentée par une droite reliant l'extrémité libre 8c de l'ailette 8 à l'extrémité 8d opposée formant la limite entre la première zone 5 et la deuxième zone 6. Ainsi, la ligne médiane M de toutes les ailettes 8 vrillées est contenue dans le plan P.
  • Selon une cinquième variante de l'invention, représentée en figure 11A, 11 B et 11 C, les ailettes 8 sont profilés de sorte à ce qu'une partie supérieure 30 de chaque ailette 8 soit contenue dans un plan P4 parallèle du plan P contenant la première zone 5. On entend par partie supérieure 30, la partie plane contenant l'extrémité libre 8c. Ainsi, une partie inférieure 31 est définie comme la partie contenant deux coudes 20, 21 et l'extrémité 8d. Autrement dit, chaque ailette 8 comporte deux coudes 20, 21 dans sa partie inférieure 31. Ces coudes 20, 21 peuvent être sous forme angulaire, c'est-à-dire un pli, ou d'arc de cercle tel qu'illustré sur la figure 11 C. En outre, deux ailettes 8 successives d'un même dissipateur de chaleur 1 sont symétriques par rapport au plan P. La symétrie par rapport au plan P de deux ailettes 8 profilées successives impliquent que ces deux ailettes 8 profilées successives sont espacées de 1 mm, c'est-à-dire que la distance entre les parties supérieures de deux ailettes 8 successives est de 1 mm. La valeur de l'espacement entre les parties supérieures de deux ailettes 8 successives se mesure au niveau de l'extrémité libre 8c de chaque ailette 8 et à partir de la moitié de l'épaisseur de la partie supérieure d'une ailette 8 jusqu'à la moitié de l'épaisseur de la partie supérieure de l'autre ailette 8. Cet espacement est constant entre les parties supérieures des deux ailettes 8 successives.
  • Toutes ces variantes de réalisation sont présentées uniquement à titre d'exemple et il est possible de combiner plusieurs variantes entre elles, comme par exemple une pluralité d'ailettes d'un même dissipateur comprenant une ou plusieurs ailettes planes et/ou une ou plusieurs ailettes vrillées et/ou une ou plusieurs ailettes courbées et/ou une ou plusieurs ailettes profilées. En outre, les diverses dimensions d'un dissipateur de chaleur selon l'invention sont telles que :
    • la longueur des ailettes 8 est comprise entre 3 et 50 mm
    • la largeur des ailettes 8 est comprise entre 1 et 5 mm
    • la largeur des trous 9 est comprise entre 0,1 et 5 mm
    • la longueur de la première zone 5 est comprise entre 10 et 500 mm
    • la largeur de la première zone 5 est comprise entre 1 et 30 mm
    • l'épaisseur du dissipateur de chaleur est comprise entre 0,1 et 3 mm
    • l'espacement entre les parties supérieures de deux ailettes successives est compris entre 0,5mm et 10 mm
  • Les valeurs ci-dessus correspondent au point de fonctionnement optimum d'un dissipateur de chaleur.
  • Quelque soit le mode de réalisation et sa variante, le dissipateur de chaleur 1 comprend une troisième zone 7 pour le connecter à une source d'alimentation électrique non représentée. Cette troisième zone 7 peut être sous deux formes.
  • La première forme est destinée à connecter directement le dissipateur de chaleur 1 à une source d'alimentation électrique non représentée. Cette première forme 7a est plate et pleine et s'étend dans le plan P, comme illustrée en figure 12. Cette première forme 7a se localise au niveau de l'ailette 8 en extrémité du dissipateur de chaleur 1. En fait, la dernière ailette 8 à l'extrémité 10a du dissipateur de chaleur 1 se prolonge de sorte à être en saillie, dans le sens de la longueur de la première zone 5, par rapport à cette première zone 5. Ainsi, cette dernière ailette 8 constitue la troisième zone 7 sous la première forme 7a. De cette manière, l'ailette 8 permettant la connexion électrique du dissipateur de chaleur 1 a une forme différente de celle des autres ailettes 8 : la largeur de l'ailette 8 localisée à l'extrémité 10a est supérieure à la largeur des autres ailettes 8. Par exemple, la largeur de cette première forme 7a de la troisième zone 7 est de 10 mm.
  • La deuxième forme 7b de la troisième zone 7 permet de fixer un commutateur électronique 12 sur le dissipateur de chaleur 1. Le commutateur électronique 12 permet de connecter le dissipateur de chaleur 1 à une source d'alimentation électrique, comme représenté en figure 13. Cette deuxième forme 7b de la troisième zone 7 est pleine, plate et s'étend dans le plan P contenant la première zone 5. La deuxième forme 7b s'étend en continuité de la première zone 5 dans le sens de la longueur de cette dernière. Le commutateur électronique 12 peut être du type transistor MOSFET et est fixé sur la deuxième forme 7b. Ce commutateur électronique 12 est relié à une source d'alimentation électrique par l'intermédiaire d'une connectique 13, à une piste 14 permettant de le commander et à un drain de retour 15 permettant de savoir dans quel état se trouve le commutateur électronique 12. Ce dernier peut présenter deux états, l'un étant un état de fonctionnement et l'autre étant un état bloquant le courant électrique provenant de la source d'alimentation électrique. Il est à noter que le commutateur électronique 12, la connectique 13, la piste 14 et le drain de retour 15 ne constituent pas et ne font pas partie d'un dissipateur de chaleur
  • En figure 14, le barreau chauffant 3 est muni d'un dissipateur de chaleur 1' muni d'une troisième zone 7' selon la deuxième forme 7b' tel que représenté en figure 13 et un dissipateur de chaleur 1 tel que représenté en figure 12. Le dissipateur de chaleur 1', comprenant une troisième zone 7' selon la deuxième forme 7b' sur laquelle est fixé un commutateur électronique 12, correspond à l'électrode négative et le dissipateur de chaleur 1, comprenant une troisième zone 7 selon la première forme 7a, correspond à l'électrode positive.
  • En figure 15, le dissipateur de chaleur 1 comprend une pluralité de premières zones 5 et de deuxièmes zones 6 de sorte à former une matrice 16. Plus précisément, le dissipateur de chaleur 1 est constitué de quatre premières zones 5 et de cinq deuxièmes zones 6. Ces zones sont disposées selon une alternance de première zone 5 et de deuxième zone 6. Cette alternance se fait selon la largeur du dissipateur de chaleur 1. De cette manière, une deuxième zone 6 destinée à échanger de la chaleur avec un flux d'air traversant le dissipateur de chaleur 1 est adjacente à deux premières zones 5. Toutes les zones 5, 6 du dissipateur de chaleur 1 sont contenues dans un même plan P. Toutes les ailettes 8 d'une deuxième zone 6 adjacente à deux premières zones 5 ont leurs extrémités 8c, 8d venue de matière avec la première zone 5 respective. Les extrémités 8c, 8d non libres sont représentées en pointillé sur la figure. Concernant les deuxièmes zones 6 situées aux extrémités du dissipateur de chaleur, les extrémités 8c des ailettes 8 sont libres. La partie de la matrice 16 où deux deuxièmes zone 6 sont chacune contiguë à deux premières zones 5 est sous la forme d'une feuille plate et ajourée par des rangées de trous 9, les deux rangées étant parallèles entre elles et disposées selon la longueur de la première zone. La troisième zone 7 se trouve sous la première forme 7a. La matrice 16 comporte plusieurs premières zones 5. Chacune de ces premières zones 5 peut recevoir au moins un élément résistif 2.
  • Le dissipateur de chaleur 1', en figure 16, est sous forme d'une matrice 16' et est conformé de manière identique à la matrice 16 de la figure 15 à ceci près qu'il comporte une troisième zone 7' ayant la deuxième forme 7b' dédiée à la fixation d'un commutateur électronique 12. En outre, le dissipateur de chaleur 1' comporte des éléments résistifs 2 au niveau de ses premières zones 5'. La troisième zone 7' peut se localiser au niveau de n'importe quelle première zone 5'. En effet, la deuxième forme 7b' étant un prolongement d'une première zone 5', cette deuxième forme 7b' peut être réalisée, dans le but d'une connexion aisée à la source d'alimentation électrique, par rapport à n'importe quelle première zone 5' constituant la matrice 16'.
  • Chaque dissipateur de chaleur 1, 1' formant une matrice 16, 16' comporte une pluralité de rangée d'éléments résistifs 2.
  • Bien entendu, lorsque le dissipateur de chaleur 1, 1' est agencé de sorte à former une matrice 16, il est possible d'utiliser toutes les variantes de réalisation concernant la forme des ailettes 8. Dans les cas où chaque deuxième zone 6 s'étend entre le plan P et le plan P1, les plan P et P1 étant décalés d'un angle A différent de 0°, chaque extrémité 8c de chaque ailette 8 sera libre, c'est-à-dire non venue de matière avec la première zone 5 adjacente.
  • Bien entendu, le dissipateur de chaleur 1 peut contenir, au niveau de sa première zone 5, une pluralité d'éléments résistifs 2, comme illustré en figure 6. Selon les dimensions de la feuille 4, la première zone 5 s'étendant d'une extrémité à l'autre du dissipateur de chaleur 1 peut contenir plus ou moins d'éléments résistifs 2. De même, selon les dimensions de la feuille 4, la deuxième zone 6 peut contenir plus ou moins d'ailettes 8.
  • Enfin, en figure 17, on a représenté un barreau chauffant 3 comprenant deux dissipateurs de chaleurs 1, 1' formant chacun une matrice 16, 16' des éléments résistifs 2, le commutateur électronique 12, la connectique 13, la piste 14 et le drain de retour 15. Le dissipateur de chaleur 1 comporte une troisième zone 7 selon la première forme 7a et le dissipateur de chaleur 1' comporte une troisième zone 7' selon la deuxième forme 7b' munie d'un commutateur électronique 12.
  • Les exemples de barreau chauffant décrits dans la présente demande sont assemblés pour former un radiateur électrique non représenté. Un tel radiateur électrique équipe un système de climatisation dans un véhicule. Ce radiateur électrique peut être aussi constitué d'un barreau chauffant 3 ou de plusieurs barreaux chauffants 3 identiques ou d'une pluralité de barreaux chauffants 3 différents, c'est-à-dire présentant par exemple au moins un barreau chauffant selon la figure 11 et au moins un barreau chauffant selon la figure 10. Le radiateur électrique de la présente demande, traversé par un flux d'air, comprend donc au moins un barreau chauffant selon l'un des modes de réalisation décrits.
  • Un barreau chauffant 3 selon l'invention est réalisé selon un procédé de fabrication comprenant les étapes successives suivantes :
    • à l'étape a), chaque feuille métallique 4, 4' est découpée de sorte à former les différentes zones des dissipateurs de chaleurs 1, 1',
    • à l'étape b), chaque feuille métallique 4, 4' est recouverte de colle 100 au niveau de sa ou de ses premières zones 5,
    • à l'étape c), au moins un élément résistif 2 est placé sur une première zone 5 recouverte de colle 100,
    • à l'étape d), les deux feuilles métalliques 4, 4' sont pressées l'une contre l'autre de sorte à former le barreau chauffant 3,
  • Ce procédé est en continu. Chaque feuille métallique 4, 4' se trouve sous la forme d'une bobine qui se déroule au fur et à mesure des étapes du procédé. L'étape a) est un découpage pour conformer les différentes zones 5, 6 et 7. En premier lieu, le découpage de chaque feuille métallique 4, 4' permet d'obtenir la longueur désirée du dissipateur de chaleur, c'est-à-dire que chaque feuille métallique 4, 4' est découpée de manière à réaliser le contour de chaque dissipateur de chaleur 1, 1'. Le découpage permet également de former les ailettes 8 de la deuxième zone 6 et de leur donner leurs dimensions définitives. Par exemple, une longueur de 7 mm et une largeur de 2 mm. De même cette étape permet de dimensionner les trous 9 au niveau de leur largeur. Par exemple, les trous peuvent avoir une largeur égale à celle des ailettes 8 ou une largeur inférieure à celle des ailettes 8. En outre, cette étape permet également de former la troisième zone 7 selon la première forme 7a ou la deuxième forme 7b. Les étapes b), c) et d) permettent de fixer le ou les éléments résistifs 2 sur la partie de chaque dissipateur de chaleur 1, 1' qui est définie comme la première zone 5 et de former le barreau chauffant 3. Pour maintenir les deux dissipateurs de chaleur 1, 1' avec le ou les éléments résistifs 2, le barreau chauffant 3 est chauffé de manière à durcir la colle 100 utilisée à l'étape b). Ainsi, tous les éléments du barreau chauffant obtenu sont définitivement fixés les uns aux autres.
  • Selon la conformation des ailettes 8, le procédé de fabrication peut comprendre en outre l'étape suivante :
    • une étape a'), au moins une ailette 8 est courbée et/ou vrillée et/ou profilée.
  • Cette étape a') se situe avant l'étape a) et après l'étape b). Cette étape permet de conformer une ou plusieurs ailettes 8 de sorte à ce qu'elle(s) s'étende(nt) entre le plan P et le plan P1
  • Enfin, lorsqu'un dissipateur de chaleur comprend une troisième dédiée à recevoir un commutateur électronique, en d'autres termes une troisième zone sous la deuxième forme 7b, trois étapes a1), a2), et a3) supplémentaires successives sont comprises dans le procédé. Ces trois étapes s'effectuent juste avant l'étape b). Ces étapes sont les suivantes :
    • une étape a1), le commutateur électronique 12 est brasé sur la troisième zone 7 sous la deuxième forme 7b
    • une étape a2), le commutateur électronique 12 est surmoulé
    • une étape a3), l'état du commutateur électronique 12 est contrôlé L'étape a1) permet de fixer sur la troisième zone 7 le commutateur électronique 12. Le brasage s'effectue par refusion. En outre, une vérification de ce brasage du commutateur électronique 12 est réalisée à l'aide de rayons X. L'étape a2) permet de solidariser définitivement le commutateur électronique 12 au dissipateur de chaleur par l'intermédiaire du surmoulage. Ce surmoulage renforce la fixation déjà obtenue par le brasage. L'étape a3) permet de vérifier que le commutateur électronique 12 fixé sur le dissipateur de chaleur 1 est en état de fonctionnement.

Claims (20)

  1. Dissipateur de chaleur (1) pour barreau chauffant d'un radiateur électrique monté dans une installation de chauffage et/ou climatisation, comprenant au moins deux zones distinctes, une première zone (5) pleine sur laquelle est fixée au moins un élément résistif (2) et une deuxième zone (6) destinée à échanger de la chaleur avec un flux d'air traversant ladite deuxième zone (6), la deuxième zone (6) comportant une pluralité d'ailettes (8) espacées les unes des autres par des trous (9) et étant traversée de part en part par le flux d'air, chaque ailette (8) ayant un petit côté (8d) venu de matière avec la première zone (5) et délimitant la deuxième zone (6) de la première zone (5), caractérisé en ce que la première zone (5) s'étend dans un plan P et en ce que la deuxième zone (6) s'étend entre le plan P et un plan P1, les plans P et P1 étant décalés d'un angle A compris entre 0 et 80°.
  2. Dissipateur de chaleur (1) selon la revendication 1, caractérisé en ce que la deuxième zone (6) comprend une pluralité d'ailettes (8) et s'étend longitudinalement d'une extrémité (10a) permettant le contact électrique du dissipateur de chaleur (1) avec une source d'alimentation électrique à une autre extrémité (10b) du dissipateur de chaleur (1).
  3. Dissipateur de chaleur (1) selon la revendication 2, caractérisé en ce qu'au moins une ailette (8) est plane.
  4. Dissipateur de chaleur (1) selon la revendication 2 ou 3, caractérisé en ce qu'au moins une ailette (8) est vrillée.
  5. Dissipateur de chaleur (1) selon l'une quelconque des revendications 2 à 4, caractérisé en ce qu'au moins une ailette (8) est courbée.
  6. Dissipateur de chaleur (1) selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'au moins une ailette (8) est profilée.
  7. Dissipateur de chaleur (1) selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend une pluralité de première (5) et de deuxième zones (6) de sorte à former une matrice (16).
  8. Dissipateur de chaleur (1) selon la revendication 7, caractérisé en ce que la matrice (16) se compose d'une alternance de première et de deuxième zones (5, 6).
  9. Dissipateur de chaleur (1) selon l'une des revendications 1 à 8, caractérisé en ce qu'il comprend une troisième zone (7) permettant de le connecter à une source d'alimentation électrique.
  10. Dissipateur de chaleur (1) selon la revendication 9, caractérisé en ce que la troisième zone (7) se trouve sous une première forme (7a) permettant de connecter directement le dissipateur de chaleur (1) à une source d'alimentation électrique.
  11. Dissipateur de chaleur (1) selon la revendication 9, caractérisé en ce que la troisième zone (7) se trouve sous une deuxième forme (7b) permettant de fixer un commutateur électronique (12), ledit commutateur électronique (12) permettant de connecter le dissipateur de chaleur (1) à une source d'alimentation électrique.
  12. Barreau chauffant (3) d'un radiateur électrique monté dans une installation de chauffage et/ou de climatisation, traversé par un flux d'air comprenant au moins un élément résistif (2) et au moins deux dissipateurs de chaleur (1, 1') selon l'une des revendications 1 à 11, caractérisé en ce que l'élément résistif (2) s'étend dans un plan P2 parallèle à chaque plan P contenant une première zone (5, 5').
  13. Barreau chauffant selon la revendication 12, caractérisé en ce que les dissipateurs de chaleur (1, 1') sont agencés de manière à ce que les ailettes (8) d'un premier dissipateur de chaleur (1) soient en face des ailettes (8') d'un deuxième dissipateur de chaleur (1').
  14. Barreau chauffant selon la revendication 12, caractérisé en ce que les dissipateurs de chaleur (1, 1') sont agencés de manière à ce que les ailettes (8) d'un premier dissipateur de chaleur (1) soient en face de trous (9') formés entre deux ailettes (8') successives d'un deuxième dissipateur de chaleur (1').
  15. Barreau chauffant selon la revendication 12, caractérisé en ce que les dissipateurs de chaleur (1, 1') sont agencés de manière à ce que les rangées d'ailettes (8, 8') des deux dissipateurs de chaleur (1, 1') se situent de part et d'autre d'un plan P3 transversal au plan P2 dans lequel s'étend l'élément résistif (2).
  16. Radiateur électrique traversé par un flux d'air comprenant au moins un barreau chauffant (3) selon l'une des revendications 11 à 15.
  17. Installation de chauffage et/ou climatisation de véhicule comprenant un radiateur électrique selon la revendication 16, dans lequel la première zone (5) et le ou les éléments résistifs (2) qu'elle comporte sont sensiblement perpendiculaires à la direction du flux d'air.
  18. Procédé de fabrication d'un barreau chauffant selon l'une des revendications 12 à 15 caractérisé en ce qu'il comprend les étapes successives suivantes :
    - à l'étape a), chaque feuille métallique (4, 4') est découpée de sorte à former les différentes zones des dissipateurs de chaleurs (1, 1'),
    - à l'étape b), chaque feuille métallique (4, 4') est recouverte de colle (100) au niveau de sa ou de ses premières zones (5),
    - à l'étape c), au moins un élément résistif (2) est placé sur une première zone (5) recouverte de colle (100),
    - à l'étape d), les deux feuilles métalliques (4, 4') sont pressées l'une contre l'autre de sorte à former le barreau chauffant (3).
  19. Procédé de fabrication selon la revendication 17, caractérisé en ce qu'il comprend en outre l'étape suivante :
    - une étape a'), au moins une ailette (8) est courbée et/ou vrillée et/ou profilée.
  20. Procédé de fabrication selon la revendication 17 ou 18, caractérisé en ce qu'il comprend les étapes suivantes :
    - une étape a1), le commutateur électronique (12) est brasé sur la troisième zone (7) sous la deuxième forme (7b),
    - une étape a2), le commutateur électronique (12) est surmoulé,
    - une étape a3), l'état du commutateur électronique (12) est contrôlé.
EP20070117369 2006-09-29 2007-09-27 Elément metallique chauffant traversé par un flux d'air Revoked EP1906708B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0608577A FR2906602B1 (fr) 2006-09-29 2006-09-29 Element metallique chauffant traverse par un flux d'air.

Publications (2)

Publication Number Publication Date
EP1906708A1 EP1906708A1 (fr) 2008-04-02
EP1906708B1 true EP1906708B1 (fr) 2013-12-25

Family

ID=37963519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070117369 Revoked EP1906708B1 (fr) 2006-09-29 2007-09-27 Elément metallique chauffant traversé par un flux d'air

Country Status (2)

Country Link
EP (1) EP1906708B1 (fr)
FR (1) FR2906602B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020070A1 (de) * 2010-05-09 2011-11-10 Esw Gmbh Heizmodul zur Erwärmung strömender Medien und Verfahren zu seiner Herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902909A1 (de) * 1979-01-26 1980-07-31 Eichenauer Fa Fritz Schaltschrank-heizgeraet
JPS55131979A (en) * 1979-04-03 1980-10-14 Ngk Insulators Ltd Positive temperature coefficient porcelain heater
FR2580451A1 (fr) * 1985-04-16 1986-10-17 Zaegel Held Sa Resistance chauffante
FR2764162B1 (fr) * 1997-05-27 2004-09-03 Muller Et Cie Procede de realisation de resistances electriques blindees a dissipateurs multiples et resistances electriques ainsi obtenues
FR2803370B3 (fr) * 1999-12-29 2001-12-21 Chia Hsiung Wu Appareil de chauffage a enveloppe de protection

Also Published As

Publication number Publication date
FR2906602A1 (fr) 2008-04-04
EP1906708A1 (fr) 2008-04-02
FR2906602B1 (fr) 2009-02-20

Similar Documents

Publication Publication Date Title
EP2022293B1 (fr) Element metallique dissipant une énergie thermique, traversé par un flux d'air et par un courant électrique
EP2766669B1 (fr) Module de chauffe isolé pour dispositif de chauffage additionnel
FR2690003A1 (fr) Résistance pastille à couche métallique.
EP2604088B1 (fr) Bloc de chauffe pour radiateur électrique de chauffage
FR2963868A1 (fr) Echangeur de chaleur comprenant un element chauffant serigraphie
EP2909542B1 (fr) Dissipateur thermique, module chauffant associé et procédé d'assemblage correspondant
EP1906708B1 (fr) Elément metallique chauffant traversé par un flux d'air
WO2003009451A1 (fr) Agencement de redressement de courant pour machines electriques tournantes, notamment alternateurs pour vehicule automobile
EP2876005A1 (fr) Elément chauffant pour balai d'essuie-glace d'un véhicule
EP1926354B1 (fr) Bus de conduction thermique, notamment pour unité de calcul à microprocesseur
FR2901869A1 (fr) Echangeur de chaleur, en particulier pour un systeme de chauffage ou de climatisation d'un vehicule automobile
FR3075333A1 (fr) Echangeur de chaleur pour vehicule
FR3086211A1 (fr) Radiateur electrique d'une installation de ventilation, de chauffage et/ou de climatisation d'un vehicule automobile
FR3073035A1 (fr) Tube pour dispositif de chauffage pour vehicule automobile dont une paroi laterale forme un relief
EP2604089B1 (fr) Module chauffant comprenant un element chauffant serigraphie
EP4034396B1 (fr) Boitier d'interface électronique de commande d'un dispositif de chauffage électrique
FR2764162A1 (fr) Procede de realisation de resistances electriques blindees a dissipateurs multiples et resistances electriques ainsi obtenues
EP2241840B1 (fr) Armature pour un module chauffant électrique et procédé de fabrication correspondant
FR3062344A1 (fr) Cadre d'un dispositif de chauffage electrique comprenant des nervures de rigidification
FR3064811A1 (fr) Element chauffant et dispositif de chauffage electrique comportant un tel element chauffant
FR3058368A1 (fr) Matelassure d’assise ou de dossier de siege de vehicule automobile
FR3083301A1 (fr) Bloc de chauffage assemble par brasage
WO2020002797A1 (fr) Bloc de chauffage electrique
FR3075334A1 (fr) Echangeur de chaleur pour vehicule a dispositif de dissipation electriquement chauffant
FR3126480A1 (fr) Radiateur electrique d’une installation de ventilation, de chauffage, et/ou de climatisation d’un vehicule automobile.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080912

17Q First examination report despatched

Effective date: 20081013

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130722

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007034406

Country of ref document: DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 647166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602007034406

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602007034406

Country of ref document: DE

Effective date: 20140924

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140927

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180911

Year of fee payment: 12

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190927

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210818

Year of fee payment: 15

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APBC Information on closure of appeal procedure deleted

Free format text: ORIGINAL CODE: EPIDOSDNOA9O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220916

Year of fee payment: 16

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 602007034406

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 602007034406

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220922

Year of fee payment: 16

27W Patent revoked

Effective date: 20221107

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528